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Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient
(WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies,
ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed
that theWSC remains constant.This assumption creates significant error in resource assessment, increasing uncertainty in projects
and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of
knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to
improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind
shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The
results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root
mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights
ranging from 33% to 100% above the highest actual wind measurement.

1. Introduction

Wind has been a major contributor to renewable energy
sources, with large wind, both onshore and offshore, domi-
nating the energy mix in many countries [1]. This trend will
continue with wind expected to generate 12% of global elec-
tricity by 2020 and 20% by 2030. Much of this development
will be in large scale wind; however, small wind is becoming a
major player for both grid-tied distributed power generation
and off-grid generation [2]. Accurate assessment of the wind
resource is crucial in order to secure funding for projects,
with many funding agencies requiring wind measurements
at two-thirds of the proposed hub height; however, with
increasing turbine sizes this is becoming more difficult, even
with 60mmeteorological towers. Suitable forecastingmodels
are an essential component of the assessment of proposed
wind projects and the subsequent control and integration into
grid-tied systems. Forecasting models and control technolo-
gies have received significant attention, evidenced by recent
comprehensive reviews; Foley et al. [3] identify the significant
advances in forecasting methods, encompassing statistical

and physical models over varying time horizons and Mahela
and Shaik [4] and Jain et al. [5] provide an equally detailed
and enlightened review of the control strategies and predic-
tion methods used to integrate wind into transmission and
distribution networks. The necessity to accurately forecast
wind speed is well documented and is generally based upon
the Weibull probability density function, which is estimated
from time series wind data typically obtained from a meteo-
rological tower over extended testing periods [6].TheWeibull
probability density function is a two-parameter function
which is used to produce a wind speed profile for a particular
site. Two parameters of shape (k) which is dimensionless
and scale (c) in m/s are sufficient to characterize the Weibull
function and are estimated from time series wind data
typically obtained from ameteorological tower over extended
testing periods. Of several recent regional studies testing
the Weibull parameters, Weisser [7] analyzed two years of
meteorological data in Grenada, West Indies, demonstrating
the value of long termwind data to account for seasonal wind
speed variations and the need for capturing the variation
of wind speeds over the course of a day to account for
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diurnal changes but further highlight that typically two years
of wind speed data is insufficient. Similarly, both Zhou et
al. [8] and Lun and Lam [9] analyzed wind speed data, 1-
year and 30-year data sets, respectively, both highlighting
the value of the Weibull distribution, the need for long term
data sets, and the need for wind-related assessments and
evaluations. Statistical analyses of estimating the Weibull
distribution of wind speed time series data are analyzed using
various methods such as maximum likelihood, modified
maximum likelihood, least squares, chi square, regression,
graphical method, and methods of moments [10–12], with
Seguro and Lambert [13] suggesting “maximum likelihood”
as the recommended method, while Genc et al. [11] report
the least squares method as producing better results for
large sample sizes, while chi square is reported as providing
the best overall fit [6]. The resulting Weibull distribution
is then used to provide an estimate of potential power
generation capacity, the basis for economic evaluation of
a wind energy project for a particular site. Meteorological
towers provide characteristics of wind speed near the earth’s
surface and it is therefore necessary to extrapolate wind speed
to higher levels in the planetary boundary layer, particularly
with higher turbine hub heights. This is achieved using
a wind shear exponent or wind shear coefficient (WSC),
variation in wind speed as a function of height, with two
mathematicalmodels of power law (PL) andLogarithmic Law
(LL) used for extrapolation [14]. PL extrapolation is the most
commonly utilized method for predicting wind speeds at a
higher height than what is measured and historically uses a
default exponent of 1/7th (0.142); however, research indicates
that this value is neither stable on a diurnal, weekly, or
seasonal basis, nor accurate for all sites due to varying surface
roughness factors, atmospheric influences, andmeasurement
heights [15, 16]. Firtin et al. [17], in a review of available
WRAP (Winds Resource Analysis Program) data, found that
91.9% of wind shear coefficients were above 0.14, a clear
indication that a default WSC may in some cases result in
under- or overestimation of wind speeds and subsequently
turbine Actual Energy Output (AEO). These findings were
further supported by Rehman et al. [18] and Schwartz and
Elliot [19], who identified a more realistic range of WSC of
between 0.15 and 0.25. With the recognized issues of using
a default 1/7th PL exponent for extrapolation, researchers
have sought to modify the standard power law methodology
and other extrapolation methods to better predict wind
speeds at higher heights; however, in many cases, a fixed
WSC is used based on long term average time series wind
data. Farrugia [20] reported that while PL and LL were
generally accepted for extrapolation up to heights of 100m,
significant variation in WSC occurred based on the month
and time of day, a result that was also reported in a substantial
study conducted by Bailey [21]. Ray et al. [22] conclude that
there is little difference between the performance of the PL
and LL models but noted greater variation in WSC with
more complex terrain. Other researchers have investigated
fundamental factors that impact wind shear, which includes
its impact on turbine structures [23] and composite turbine
blades [24], atmospheric stability, upwind terrain, surface
roughness, sky condition (which contributes to night time

radiative cooling), temperature, air-pressure, and humid-
ity, in daily, seasonal, and directional trends. A common
assumption however, that the WSC remains constant, has
been identified by a number of authors as a contributing
factor to increasing uncertainty in wind speed extrapolation.
Lubitz [25] investigated the level of uncertainty associated
with the PL model, concluding that the mean absolute error
of extrapolated wind speed increased with increasing height
above the measured wind speed and Irwin [26] proposed
that variations in the power law exponent were impacted
mostly by surface roughness and atmospheric stability, a
factor that has more impact closer to the earth’s surface.
Fox [27] used friction velocity instead of a fixed WSC and
applied this to utility scale turbines based on heights up to
150m, claiming greater accuracy inwind speed extrapolation.
Mikhail [28] used an alternative method referred to as a
modified power law expression, claiming better accuracy.The
degree of uncertainty in wind speed extrapolation has amuch
greater influence on energy production estimates [29]. Firtin
et al. [17] investigated the impact of wind shear coefficients on
electrical energy generation suggesting up to 49.6% error in
energy production estimates using a PL extrapolation, with
a fixed WSC. Several researchers such as Altunkaynak et al.
[30] and Gualtieri and Secci [31] have attempted to address
the uncertainty of WSC using a distribution, particularly the
Weibull probability distribution to incorporate the temporal
variation in WSC, using tower data. Şen et al. [32] consider
an additional approach and combine the Weibull probability
distribution with perturbation theory (which includes the
standard deviations and covariance of wind speed at different
elevations) to produce an extended PL, again incorporating
time variations. Đurišić andMikulović [33] utilized amethod
of least squares (LES) and varied the shear exponent on
a time-varying basis as a method of improving upon the
traditional PL methodology. This methodology removes the
concept of surface roughness and takes in to account the
significant variation in WSC found on a diurnal and seasonal
basis. Smedman-Hogstrom and Hogstrom, [34] developed a
modified PL empirical model that incorporates the surface
roughness in to the WSC calculation and Panofsky and
Dutton developed a modified PL semiempirical model that
estimates WSC as a function of surface roughness and
stability [31]. Haque et al. [35] propose a new strategy for
using computing models to predict short term wind speed,
a method that has potential for both shear prediction and
control systems. Significant advances have been made in the
prediction of wind speed and there is evidence that such
methods are now beginning to be considered for wind shear
calculations as shown by Sintra et al. [36]. The evaluation
of wind speed and wind shear is also inherently linked
to control systems as such information is a prerequisite in
the development of predictive control methodologies. The
multivariable temporal variations in wind shear could be
addressed using control theory and represented as a multi-
variable disturbance model, which has been demonstrated in
other industries to result in improved controller performance
[37].This along and hybrid forecasting are emerging research
opportunities [38]. Remote sensing of wind speed data using
SoDAR is reported to provide wind speedmeasurements that
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correlate with anemometer data [39]. It has been proposed
by Jeannotte [40] that SoDAR technology may have some
limitations when used in complex terrain; however, there is
merit in the contribution that SoDAR canmake in addressing
uncertainty associated with wind shear estimation, especially
when applied to noncomplex terrain. Several researchers
including Altunkaynak et al. [30] and Farrugia [20] have
attempted to address the uncertainty of WSC using a distri-
bution, particularly the Weibull probability distribution, to
incorporate the temporal variation inWSC, using tower data.
Şen et al. [32] consider an additional approach and combine
theWeibull probability distribution with perturbation theory
(which includes the standard deviations and covariance of
wind speed at different elevations) to produce and extended
power law, again incorporating time variations. A number of
authors [35, 38, 41] have used advanced models to improve
the characterization of wind speed and wind power estimates
including neurofuzzy inference systems [42] and Markov
Chain Models [43]. Bilgili et al. [44] utilized ANN to predict
meanmonthlywind speed at a target site using local reference
wind tower data with some success but concluded that there
is a need to ensure that reference wind towers must have a
reasonable correlation factor (0.59). Fadare [45], Lee et al.
[46], and Carolin Mabel and Fernandez [47] have all applied
ANN models to specific geographic areas, with the authors
highlighting the success of the ANN models in achieving
reasonable accuracy in predicting wind speeds and the
subsequent power output of wind turbines. However, while
the use of ANN as a valuable tool is not disputed, Li and Shi
[48] state that due to the number of different ANN models
available and developed there are currently a number of fac-
tors that will influence forecasting accuracy including model
structures, learning rates, and variation in required inputs.
These models provide estimation at a single height, typically
hub height using time series analysis, linear, nonlinear, and
Artificial Neural Network (ANN) models, and subsequent
hybrids, but there is little evidence of the same methods
being applied to wind shear estimation. The estimation
of WSC using a single fixed variable is an oversimplified
approach creating challenges and increasing uncertainty in
power production estimates for wind power projects. One
must question the impact of such oversimplification and
is the motivation behind the research presented in this
paper. WSC research is possible using remote sensing, in
this case, SoDAR technology to evaluate the potential of
using a wind shear distribution (WSD), instead of a fixed
WSC. This paper contributes to the research of wind shear
estimation by presenting the results of an applied regional
project conducted in the province of Nova Scotia, Canada.
This research demonstrates the improvement in accuracy of
wind speed estimation achieved using aWSD, validated using
power prediction estimates for a commercial turbine, based
on 60mwind data with proposed hub heights of 80m, 100m,
and 120m. The paper examines the reduction in uncertainty
and error obtained by using a variable of WSC creating a
distribution instead of a fixedWSC to evaluate the accuracy of
wind speed predictions at heights abovemeasurement height.

Table 1: SoDAR Specifications.

Wind data capture range 40–200m
Wind speed capture range 0–25m/s

Filtered data correlation Within 2% of
anemometers

Nominal filtered data recovery rate at 100m 90%–95% or
higher

Figure 1: Trailer mounted SoDAR system.

2. Materials and Methods

Wind speed data was collected at eighteen different sites
in Nova Scotia using a Vaisala Triton� Sonic Wind Profiler
and SoDAR (Sonic Detection And Ranging), which uses
the Doppler effect to reliably and accurately determine wind
speed, wind direction, quality, and other operational parame-
ters at heights ranging from 40m to 200m.The data collected
by the SoDAR is sent via satellite to a “skyserve” website
every 10 minutes, which is then downloaded to an excel
file. The SoDAR, Figure 1, was mounted on a mission trailer
for easy deployment and transportation between sites, the
specification of which is listed in Table 1.

Deployment and commissioning of the SoDAR consist
of selecting an appropriate position, leveling and securing
the trailer. A Bushnell Scout 1000 range finder was used
to ensure that the Triton was located a distance of at least
200m from any obstruction, which includes buildings, trees,
steep hills, or any crop that may be taller than the SoDAR,
which may cause an echo and potentially corrupt the data.
The SoDAR is oriented with the solar panels facing south to
achieve maximum exposure to the sun. The Triton is then
leveled within three degrees in all directions and secured
using blocks. Propane tanks are installed inside the SoDAR
which fuels a heater to avoid ice and snow buildup. In some
cases, electric fences were installed to protect the SoDAR
from livestock interference. The SoDAR was located at each
of the 18 sites for at least three weeks. Site descriptors for the
eighteen chosen locations are listed in Table 2 and displayed
graphically in Figure 2. The raw SoDAR data for each site
was imported to “Windographer” commercial wind analysis
software for further investigation. The data for each site was
analyzed to produce a Weibull distribution and subsequent
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Figure 2: SoDAR deployment locations in Nova Scotia.

Table 2: Site description.

Site Latitude Longitude Elevation
(m)

Time elapsed
(days)

Wind
power
class

1 45.37531 −63.45630 28 32 1
2 45.31687 −63.64144 31 34 2
3 45.88444 −63.98996 77 22 1
4 45.79366 −63.09253 26 36 2
5 44.77670 −65.41752 14 35 1
6 45.06085 −64.09318 45 36 1
7 45.53122 −64.27106 101 22 1
8 46.06527 −61.42274 20 23 1
9 46.17020 −60.25802 40 43 1
10 45.90073 −60.23143 86 23 1
11 45.89380 −63.82726 39 43 2
12 45.13878 −63.47387 95 21 1
13 45.69448 −62.84342 97 24 2
14 45.01728 −64.07950 45 14 1
15 44.98186 −64.04230 28 21 1
16 45.08299 −64.38023 44 44 1
17 45.08287 −64.73690 52 23 1
18 45.0877 −64.80604 230 42 1

average wind speeds for heights of 40m, 50m, 60m, 80m,
100m, 120m, 140m, 160m, 180m, and 200m.

According to the National Renewable Energy Lab clas-
sification, sites with wind power class three or higher are
well qualified for large utility scale wind turbine applica-
tions, while sites with wind power class two (marginal) are
not suitable for utility purpose but are suitable for rural
applications [34]. Lastly, the sites with wind power class one
are not suitable for utility scale or rural scale wind turbine

application. Among the eighteen sites, fourteen sites had a
wind power of class one with only four other sites identified
as 2, 4, 11, and 13 having class two wind power. The objective
of this research is to evaluate the impact of using a variable
wind shear coefficient on the prediction of average wind
speeds at heights above wind measurement height, estimate
subsequent power production, and potential revenue stream
of three turbines.The turbines selected include Enercon E48-
800, EWT DW54-900, and Gamera G58-850, all of which
have been selected because of the wind class.

3. Theory and Calculations

Two methods of wind speed prediction are used, both using
the power law (PL) method for wind speed extrapolation, (1),
to estimate the wind speed at 80m, 100m, and 120m from
a known reference height using a fixed wind shear coefficient
(FWSC) and a variable wind shear coefficient (VWSC), where𝑉𝑖 represents wind speed at the new height 𝐻𝑖, 𝑉𝑖𝑜 is the
speed at the original height 𝐻𝑖𝑜, and “𝛼𝑖” is the wind shear
coefficient for the ith site, where 𝑖 = 4.

𝑉𝑖 = 𝑉𝑖𝑜 × ( 𝐻𝑖𝐻𝑖𝑜)
𝛼𝑖 . (1)

The twoWSCpredictionmethods were evaluated by compar-
ing the predicted wind speeds with the actual data collected
using SoDAR at 80m, 100m, and 120m for each site.

Method 1 (fixed wind shear coefficient (FWSC)). Method 1
utilizes a fixed wind shear coefficient (FWSC). The FWSC
is extrapolated using the average actual wind measurements
obtained for the entire test period for each site, identified
as 𝛼(𝑖), where subscript (i) represents the fixed wind shear
coefficient for the ith site. The FWSC is then applied to the
60m SoDAR wind data at hourly time steps to produce a
synthesized data set at heights of 80m, 100m, and 120m for
each of the four sites. This requires a two-step process.

Step 1. For each of the four sites, the average actual wind speed
data obtained using SoDAR at 40m and 60m, for the entire
test period, was used to calculate a wind shear coefficient:

𝛼𝑖 = ln (𝑉𝑖,60/𝑉𝑖,40)
ln (𝐻𝑖,60/𝐻𝑖,40) for 𝑖 = 1 : 4. (2)

Step 2. A synthesizedwind data set, VF, was then produced, at
three heights, for each of the four sites using (3), by applying
the FWSC calculated for each site using (2) and the 60m time
series wind data set obtained using SoDAR with hourly time
steps, where the ith subscript represents the site and the jth
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subscript each hourly time step in the synthesized time series
data set.

VF𝑖,𝑗,80 = 𝑉𝑖,60 × (8060)𝛼𝑖 for 𝑖 = 1 : 4
VF𝑖,𝑗,100 = 𝑉𝑖,60 × (10060 )𝛼𝑖 for 𝑖 = 1 : 4.
VF𝑖,𝑗,120 = 𝑉𝑖,60 × (12060 )𝛼𝑖 for 𝑖 = 1 : 4

(3)

Method 2 (variable wind shear coefficient (VWSC)). The
second prediction method utilizes variable wind shear coef-
ficients (VWSC), creating a wind shear distribution. In this
model, there are also two steps.

Step 1. The average hourly wind speeds obtained at 40m
and 60m for each site were used to create an hourly WSC,
the combination of which creates a distribution, referred to
throughout the remainder of the paper as a VWSC. The
hourly time period was chosen to minimize the impact of
high frequency wind speed variations and minimize noise in
the prediction method. The daily VWSC obtained for each
site is identified as 𝛼(𝑖,𝑗), where the subscript (𝑖, 𝑗) represents
the ith site variable wind shear coefficient and j represents the
hourly time step:

𝛼(𝑖,𝑗) = ln (𝑉𝑖,𝑗,60/𝑉𝑖,𝑗,40)
ln (𝐻𝑖,𝑗,60/𝐻𝑖,𝑗,40)

for 𝑖 = 1 : 4, 𝑘 = 1 : 𝑦 over the test period, (4)

where y is the number of hourly time steps obtained over the
entire test period, resulting in the production of a distribution
of wind shear coefficients for each site, Figure 3.

Step 2. The VWSC is then used to produce a corresponding
estimate of wind speed Vv at 80m, 100m, and 120m for each
site:

Vv(𝑖,𝑗,80) = 𝑉𝑖,𝑗,60 × (8060)𝛼(𝑖,𝑗) for 𝑖 = 1 : 4
Vv(𝑖,𝑗,100) = 𝑉𝑖,𝑗,60 × (10060 )𝛼(𝑖,𝑗) for 𝑖 = 1 : 4
Vv(𝑖,𝑗,120) = 𝑉𝑖,𝑗,60 × (12060 )𝛼(𝑖,𝑗) for 𝑖 = 1 : 4.

(5)

These two methods therefore result in the production of six
synthesized data sets for each of the four sites, two at 80m,
100m, and 120m, respectively, one produced at each height
using an FWSC, and the second produced using a VWSC
where the variable coefficient distribution has been calculated
every hour and is displayed in Figure 3.

The root mean square error, (6), was used to compare the
accuracy of the synthesized time series wind data produced
at each of the three heights for each of the four sites using
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Figure 3: Variable wind shear coefficient distribution for each of the
four sites.

an FWSC and a VWSC with the actual time series wind data
obtained at 80m, 100m, and 120m using SoDAR.

RMSE = √(∑𝑛𝑖=1 (𝑉𝑖,predicted − 𝑉𝑖,actual)2𝑛 ). (6)

4. Results

The RMSE results for wind speed calculations at 80m, 100m,
and 120m for the class two sites for each of the two prediction
methods are displayed in Table 3 and Figure 4. These results
present the difference in RMSE between the synthesizedwind
speeds produced using the two methods, FWSC and VWSC,
(6). Utilizing a VWSC, based on hourly time steps, produces
a reduced RMSE at all 4 sites, between predicted and actual
wind speeds at heights of 80m, 100m, and 120m.

Figures 4(a), 4(b), and 4(c) show that the RMSE obtained
at 80m, 100m, and 120m are consistently better using the
VWSC than that obtained using the FWSC.The improvement
ranges from 41% to 4% reduction in root mean squared error
(RMSE) between predicted and actual wind speeds when
using a variablewind shear coefficient at heights ranging from
33% to 100% above the highest actual windmeasurement. It is
proposed that a variable WSC, or distribution, better reflects
the true changes in wind speed as a function of height and
time.

The goal of accurate wind speed prediction is to reduce
uncertainty with annual energy output calculations and
subsequent economic analysis of potential sites. Synthesized
wind speed data sets at 80m, 100m, and 120m were created
for each site using each of the two wind speed prediction
methods and applied to the wind turbine power curves for
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Figure 4: (a) 80m wind speed RMSE. (b) 100m wind speed RMSE. (c) 120m wind speed RMSE.

Table 3: Wind speed RMSE for two prediction methods at 80m, 100m, and 120m.

RMSE
Site RMSEV80 RMSEV100 RMSEV120 RMSEF80 RMSEF100 RMSEF120
2 0.277 0.5383 0.8802 0.4148 0.8022 1.1859
4 0.3549 0.6274 0.9334 0.3813 0.6824 0.9743
11 0.2692 0.4812 0.7357 0.3667 0.6624 0.9666
13 0.2353 0.4089 0.6291 0.3774 0.6988 1.005

Table 4: Wind turbine specifications.

Turbine model Rated power Wind class Rotor diameter Hub height (m)
Enercon E48-800 800 kW IEC - IIA 48m 50, 55, 60, 65, 76
EWT DW54-900 900 kW IEC - IIIA 54m 40, 50, 75
Gamera G58-850 850 kW IEC -IIA/IIIB 58m 44, 49, 55, 65, 74

each of the three turbines. These predicted power outputs
were then compared to the power outputs calculated using
the actual wind speeds measured at 80m, 100m, and 120m
using SoDAR and presented as RMSE obtained using (6).

The synthesized wind speeds produce synthetic data
which then is applied to each of the turbine power curves to
provide corresponding power calculations.The specifications
and power curves of the wind turbine selected are listed in
Table 4 and displayed in Figure 5, all of which have low start-
up wind speeds of around 3m/s and are available in North
America.

4.1.Wind Turbine Power Output: Enercon E48-800. Thewind
turbine power output for the Enercon E48-800 turbine for
actual, fixed, and variable wind speed at 80m, 100m, and
120m heights for each of the four sites is shown in Table 5.
TheRMSE results for wind power output calculations at 80m,
100m, and 120m for each of class two sites for each of the two
predictionmethods are displayed in Table 6 and illustrated in
Figures 6(a), 6(b), and 6(c).

4.2.WindTurbine PowerOutput: GamesaG58-850. Thewind
turbine power output for the Gamesa G58-850 turbine for
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Table 5: Wind turbine power output for Enercon E48-800.

Net AEP (kWh/yr) for Enercon E48-800

Site Variable Fixed Actual
80m 100m 120m 80m 100m 120m 80m 100m 120m

2 1,640,339 1,834,187 1,992,187 1,557,492 1,680,627 1,784,254 1,644,432 1,843,249 1,977,211
4 1,833,872 1,984,803 2,114,853 1,820,445 1,953,188 2,063,269 1,797,344 1,930,490 2,045,135
11 2,170,278 2,465,171 2,731,790 2,136,041 2,372,395 2,572,013 2,210,066 2,554,526 2,833,121
13 1,969,887 2,280,955 2,535,078 1,916,173 2,182,055 2,406,725 1,986,843 2,308,628 2,545,774

Table 6: Wind turbine power output RMSE for Enercon E48-800.

Net AEP RMSE for Enercon E48-800

Site 80m 100m 120m
RMSEV RMSEF RMSEV RMSEF RMSEV RMSEF

Site 2 4,093 86,940 9,062 162,622 14,976 192,957
Site 4 36,528 23,101 54,313 22,698 69,718 18,134
Site 11 39,788 74,025 89,355 182,131 101,331 261,108
Site 13 16,956 70,670 27,673 126,573 10,696 139,049

Table 7: Wind turbine power output for Gamesa G58-850.

Net AEP (kWh/yr) for Gamesa G58-850

Site Variable Fixed Actual
80m 100m 120m 80m 100m 120m 80m 100m 120m

2 2,028,024 2,232,454 2,392,822 1,943,955 2,082,363 2,197,916 2,027,119 2,231,847 2,366,294
4 2,276,979 2,445,476 2,589,021 2,270,153 2,425,254 2,552,843 2,239,821 2,390,976 2,518,140
11 2,711,994 3,052,454 3,348,556 2,659,726 2,925,249 3,145,154 2,756,050 3,145,939 3,440,052
13 2,460,251 2,799,006 3,062,744 2,403,492 2,708,465 2,958,548 2,480,600 2,830,961 3,072,855
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Figure 5:Wind turbine power curves for the three selected turbines.

actual, fixed, and variable wind speed at 80m, 100m, and
120m heights for each of the four sites is shown in Table 7.
TheRMSE results for wind power output calculations at 80m,
100m, and 120m for each of class two sites for each of the two

predictionmethods are displayed in Table 8 and illustrated in
Figures 7(a), 7(b), and 7(c).

4.3.Wind Turbine PowerOutput: EWTDW54-900. Thewind
turbine power output for the EWT DW54-900 turbine for
actual, fixed, and variable wind speed at 80m, 100m, and
120m heights for each of the four sites is shown in Table 9.
TheRMSE results for wind power output calculations at 80m,
100m, and 120m for each of class two sites for each of the two
prediction methods are displayed in Table 10 and illustrated
in Figures 8(a), 8(b), and 8(c).

4.4. Economic Analysis of Wind Production. The Province
of Nova Scotia implemented a Community Feed in Tariff
(COMFIT) [29] which paid $0.131 per kWh generated by
wind turbines; however, this program has not ended. The
Nova Scotia Government, as part of the Provincial Renewable
Energy Plan, opened up the energy market to Independent
Power Producers offering $90–$100/MWh for utility scale
wind farms; however, this would not apply to a stand-alone
wind turbine, and therefore the calculated Predicted Annual
Revenue $/kWh is maintained at $13.1¢, as per the COMFIT
program. By applying this rate to the wind turbine power
generated for each of the two different methods for heights
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Figure 6: Enercon E48-800 AEP RMSE. (a) AEP RMSE, 80m hub height. (b) AEP RMSE, 100m hub height. (c) AEP RMSE, 120m hub
height.

Table 8: Wind turbine power output RMSE for Gamesa G58-850.

Net AEP RMSE for Gamesa G58-850

Site 80m 100m 120m
RMSEV 80m RMSEF 80m RMSEV 100m RMSEF 100m RMSEV 120m RMSEF 120m

Site 2 905 83,164 607 149,484 26,528 168,378
Site 4 37,158 30,332 54,500 34,278 70,881 34,703
Site 11 44,056 96,324 93,485 220,690 91,496 294,898
Site 13 20,349 77,108 31,955 122,496 10,111 114,307

Table 9: Wind turbine power output for EWT DW54-900.

Net AEP (kWh/yr) for EWT DW54-900

Site Variable Fixed Actual
80m 100m 120m 80m 100m 120m 80m 100m 120m

Site 2 1,903,062 2,109,284 2,282,389 1,819,282 1,952,476 2,064,646 1,903,322 2,120,251 2,271,117
Site 4 2,126,366 2,293,489 2,437,733 2,121,769 2,275,454 2,403,107 2,087,667 2,235,122 2,359,198
Site 11 2,521,990 2,841,949 3,126,906 2,479,981 2,739,408 2,957,418 2,565,611 2,936,741 3,232,414
Site 13 2,289,489 2,627,862 2,907,482 2,234,621 2,522,097 2,768,711 2,306,779 2,654,928 2,915,576

80m, 100m, and 120m, the predicted revenue generated for
each turbine is presented in Tables 11–13.

By comparing these values with the predicted revenue
calculated using the power generation obtained using actual
wind speeds at 80m, 100m, and 120m, (7), the percentage

of error and hence the risk associated with the two different
methods can be determined, the results of which are shown
in Tables 14–16.

% error = 𝑉predicted − 𝑉actual𝑉actual . (7)
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Figure 7: Gamesa G58-850AEPRMSE. (a) AEPRMSE, 80mhub height. (b) AEPRMSE, 100mhub height. (c) AEPRMSE, 120mhub height.

Table 10: Wind turbine power output RMSE for EWT DW54-900.

RMSE for EWT DW54-900

Site 80m 100m 120m
RMSEV 80m RMSEF 80m RMSEV 100m RMSEF 100m RMSEV 120m RMSEF 120m

Site 2 260 84040 10967 167775 11272 206471
Site 4 38699 34102 58367 40332 78535 43909
Site 11 43621 85630 94792 197333 105508 274996
Site 13 17290 72158 27066 132831 8094 146865

Table 11: Predicted annual revenue for Enercon E48-800.

Predicted annual revenue for Enercon E48-800

Site Variable Fixed Actual
80m 100m 120m 80m 100m 120m 80m 100m 120m

Site 2 $214,884 $240,278 $260,976 $204,031 $220,162 $233,737 $215,421 $241,466 $259,015
Site 4 $240,237 $260,009 $277,046 $238,478 $255,868 $270,288 $235,452 $252,894 $267,913
Site 11 $284,306 $322,937 $357,864 $279,821 $310,784 $336,934 $289,519 $334,643 $371,139
Site 13 $258,055 $298,805 $332,095 $251,019 $285,849 $315,281 $260,276 $302,430 $333,496

The results presented in in Tables 14–16 provide some insight
into the potential reduction of risk when using a distribution
of wind shear coefficients and hence allowing amore accurate
estimation of wind speed at heights above measurement
height. This approach accounts for temporal variations and

as such in almost all cases reduced the risk of projects. At
sites 2, 11, and 13, the VWSC has a financial % error that is
significantly lower than that obtained using the fixedmethod.
At site 2, the FWSC method overestimates the revenue
production by 5 to 10%while theVWSCoverpredicts revenue
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Figure 8: EWT DW54-900 AEP RMSE. (a) AEP RMSE, 80m hub height. (b) AEP RMSE, 100m hub height. (c) AEP RMSE, 120m hub
height.

Table 12: Predicted annual revenue for Gamesa G58-850.

Predicted annual revenue for Gamesa G58-850

Site Variable Fixed Actual
80m 100m 120m 80m 100m 120m 80m 100m 120m

Site 2 $265,671 $292,451 $313,460 $254,658 $272,790 $287,927 $265,553 $292,372 $309,985
Site 4 $298,284 $320,357 $339,162 $297,390 $317,708 $334,422 $293,417 $313,218 $329,876
Site 11 $355,271 $399,871 $438,661 $348,424 $383,208 $412,015 $361,043 $412,118 $450,647
Site 13 $322,293 $366,670 $401,219 $314,857 $354,809 $387,570 $324,959 $370,856 $402,544

Table 13: Predicted annual revenue for EWT DW54-900.

Predicted annual revenue for EWT DW54-900

Site Variable Fixed Actual
80m 100m 120m 80m 100m 120m 80m 100m 120m

Site 2 $249,301 $276,316 $298,993 $238,326 $255,774 $270,469 $249,335 $277,753 $297,516
Site 4 $278,554 $300,447 $319,343 $277,952 $298,084 $314,807 $273,484 $292,801 $309,055
Site 11 $330,381 $372,295 $409,625 $324,878 $358,862 $387,422 $336,095 $384,713 $423,446
Site 13 $299,923 $344,250 $380,880 $292,735 $330,395 $362,701 $302,188 $347,796 $381,940

by less than 1% error at all three heights. Site 11 has similar
results ranging from 3% to 10% overprediction for the FWSC
and only 2% to 4% overprediction when using the VWSC.
Sites 13 has an overprediction range of 4% to 6% for the

FWSC with 0.5% to 1.2% for the VWSC. Site 4 is the only one
where the VWSChas a higher error than the FWSC; however,
the error is positive meaning that the revenue production is
underestimated.
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Table 14: Percentage error from actual revenue generated for the
two different methods: Enercon E48-800.

% error from actual revenue generated for Enercon E48-800

Site Variable versus actual % error Fixed versus actual % error
80m 100m 120m 80m 100m 120m

Site 2 −0.250 −0.494 0.752 −5.58 −9.676 −10.814
Site 4 1.992 2.736 3.297 1.27 1.162 0.879
Site 11 −1.833 −3.625 −3.709 −3.47 −7.677 −10.152
Site 13−0.861 −1.213 −0.422 −3.69 −5.801 −5.778
Table 15: Percentage error from actual revenue generated for the
two different methods: Gamesa G58-850.

% error from actual revenue generated for Gamesa G58-850

Site
Variable versus actual %

error
Fixed versus actual %

error
80m 100m 120m 80m 100m 120m

Site 2 0.04 0.027 1.1 −4.103 −6.7 −7.1
Site 4 1.659 2.279 2.8 1.4 1.4 1.4
Site 11 −1.6 −3.0 −2.7 −3.5 −7.0 −8.6
Site 13 −0.8 −1.1 −0.3 −3.1 −4.3 −3.7
Table 16: Percentage error from actual revenue generated for the
two different methods: EWT DW54-900.

% error from actual revenue generated for EWT DW54-900

Site
Variable versus actual %

error
Fixed versus actual %

error
80m 100m 120m 80m 100m 120m

Site 2 −0.01 −0.52 0.50 −4.42 −7.91 −9.09
Site 4 1.85 2.61 3.33 1.63 1.80 1.86
Site 11 −1.70 −3.23 −3.26 −3.34 −6.72 −8.51
Site 13 −0.75 −1.02 −0.28 −3.13 −5.00 −5.04

5. Conclusion

This paper has presented a study based on measured wind
data obtained at four different sites using SoDAR technology.
The paper has compared the accuracy of wind speed pre-
dictions with actual wind measurements obtained using two
methods of calculating wind shear coefficients. The results
indicate that there is potential for significant reduction in
RMSE and hence increased accuracy of wind speed predic-
tion when using a distribution of wind speed coefficients
with data at a range of heights above measured height.
The results also show how such inaccuracies impact power
prediction outputs with increasing height. The results sug-
gest that encompassing a VWSC could significantly reduce
uncertainty associated with wind speed estimation, power
prediction, and revenue generation associated with wind
energy project assessment. The next step in this research is to
incorporate VWSC into predictivemodels to further enhance
the accuracy of site assessment.
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