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A reflexive relation on a set can be a starting point in defining the causal structure of a spacetime in General Relativity and other
relativistic theories of gravity. If we identify this relation as the relation between lightlike separated events (the horismos relation),
we can construct in a natural way the entire causal structure: causal and chronological relations, causal curves, and a topology. By
imposing a simple additional condition, the structure gains a definite number of dimensions. This construction works with both
continuous and discrete spacetimes.The dimensionality is obtained also in the discrete case, so this approach can be suited to prove
the fundamental conjecture of causal sets. Other simple conditions lead to a differentiable manifold with a conformal structure
(the metric up to a scaling factor) as in Lorentzian manifolds. This structure provides a simple and general reconstruction of the
spacetime in relativistic theories of gravity, which normally requires topological structure, differential structure, and geometric
structure (which decomposes in the conformal structure, giving the causal relations and the volume element). Motivations for
such a reconstruction come from relativistic theories of gravity, where the conformal structure is important, from the problem
of singularities, and from Quantum Gravity, where various discretization methods are pursued, particularly in the causal sets
approach.

1. Introduction

In Lorentzian manifolds, the causal relations are defined as
holding between events that can be joined by future oriented
causal curves. Causal relations give the causal structure of a
spacetime. In [1], the causal structure was used to recover
the horismos and chronology relations of a spacetime (the
relations between events that can be joined by future lightlike,
resp., timelike curves). The causal structure is known to be
sufficient to recover the metric of the spacetime up to a
conformal factor. The conformal factor can be obtained if in
addition we know ameasure which gives the volume element
[2–6]. This works for distinguishing spacetimes—spacetimes
whose events can be distinguished by the chronological
relations they have with the other events (e.g., spacetimes
containing closed timelike curves are not distinguishing).
Moreover, for distinguishing spacetimes, the causal structure
can be obtained from the horismos relation [7].

The fact that the causal structure and a measure are
enough to recover the geometry of spacetime in General
Relativity and other relativistic theories of gravity and the
hope that discretization may be the way to Quantum Gravity
by providing anUV cutoffmotivated the study of sets ordered
by the causal order [4, 8, 9]. Another motivation was that a
discrete structure could account for the black hole entropy
[10, 11]. These reasons led in particular to the idea of causal
set, defined as a set 𝐶 endowed with a partial order ≤,
which therefore is reflexive, antisymmetric, and transitive
(in standard causal set articles and some General Relativity
articles like [12] the notation “≺” is used, but in standard
General Relativity articles and textbooks like [13] the notation
“≤” is preferred). In addition, it is required that, for any
𝑎, 𝑏 ∈ 𝐶, the cardinality of the set {𝑝 ∈ 𝐶 | 𝑎 ≤ 𝑝 ≤ 𝑏}

is finite [14–16]. In the causal set approach, the continuous
spacetime is considered to be an effective limit of the causal
set. The measure used to recover the volume element is given
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by the number of events in each region. As Sorkin put it,
“order plus number equals geometry.”

However, causal sets do not have a definite dimension.
One sort of dimension is the smallest dimension of a
Minkowski spacetime in which the causal set can be embed-
ded (flat conformal dimension), but there are more possible
definitions of dimension, such as statistical and spectral
dimensions [15, 17–19], none of them satisfactory enough for
this problem. This is probably the main reason why it is so
difficult to prove and even to formulate mathematically the
fundamental conjecture of causal sets (Hauptvermutung) that
the causal set can recover within reasonable approximation
(yet to be defined) themanifold structure. In the limiting case
of infinite event density uniformly distributed, the conjecture
has been proven [20], but in general the problem remains
open.

In the following, we consider sets of events endowed with
a reflexive relation which represents the horismos relation.
We do this in the most general settings, including both
the continuous and the discrete cases. We show that from
the horismos relation one can recover the topology, the
causal structure, and, with simple additional requirements,
the dimension of spacetime and the differential structure.

The paper is organized as follows. We start with the
definitions and main properties of the horismotic sets in
Section 2.1. From them, we derive the causal structure in
Section 2.2 and show how to obtain a topology in Section 2.3.
Then, based on the horismotic sets, we introduce the causal
curves in Section 2.4. To recover the dimension, we start with
a simple example in two dimensions, which contains themain
ingredients in Section 3.1. Then, we introduce a notion of
dimension on horismotic sets in Section 3.2, which allows us
to construct light cone coordinates in Section 3.3.These allow
straightforwardly recovering the structure of a topological
manifold and, under reasonable conditions, the differential
structure and the conformal structure in Section 3.4.

2. Horismotic Sets

2.1. Elementary Properties

Definition 1 (horismotic set). A horismotic set (M,→) is a set
M whose elements one calls events, endowed with a binary
relation→, which is reflexive (𝑎 → 𝑎 for any 𝑎 ∈ M). If 𝑎 →

𝑏, one says that 𝑎 and 𝑏 are in the horismos relation or simply
that 𝑎 horismos 𝑏. For an event 𝑎 ∈ M, one defines its future
horismos or future light cone as 𝐸+(𝑎) fl {𝑏 ∈ M | 𝑎 → 𝑏} and
its past horismos or past light cone as 𝐸−(𝑎) fl {𝑏 ∈ M | 𝑏 →

𝑎}.

The horismos relation 𝑎 → 𝑏 has the physical meaning
that a light ray can be emitted from the event 𝑎 to 𝑏; thus,
it represents the lightlike separation between events. This
relation is not transitive.

Definition 2. Thehorismotic relation→ is antisymmetric (i.e.,
for any two events 𝑎 and 𝑏 from M, from 𝑎 → 𝑏 and 𝑏 → 𝑎

follows 𝑎 = 𝑏) if and only if for any event 𝑎 fromM, 𝐸+(𝑎) ∩
𝐸
−
(𝑎) = {𝑎}.

Proposition 3. If the horismotic relation→ is antisymmetric,
then for any two events 𝑎 and 𝑏 fromM, from 𝐸

+
(𝑎) = 𝐸

+
(𝑏)

it follows that 𝑎 = 𝑏.

Proof. If 𝐸+(𝑎) = 𝐸
+
(𝑏), then, since 𝑎 → 𝑎 and 𝑏 → 𝑏, it

follows that 𝑎 ∈ 𝐸
+
(𝑎) = 𝐸

+
(𝑏) and 𝑏 ∈ 𝐸

+
(𝑏) = 𝐸

+
(𝑎).

Hence, 𝑎 → 𝑏 and 𝑏 → 𝑎, and from antisymmetry, 𝑎 = 𝑏.

2.2. Causal Structure

Definition 4. A horismotic chain between two events 𝑎, 𝑏 ∈

M is a set of 𝑘 + 1 events {𝑐
0
, . . . , 𝑐

𝑘
} ∈ M, where 𝑘 ∈ N is

a nonnegative integer, so that 𝑐
0
= 𝑎, 𝑐

𝑖−1
→ 𝑐
𝑖
for all 𝑖, and

𝑐
𝑘
= 𝑏. The length of the chain is then defined to be 𝑘 + 1. Let

one define the causal relation between two events 𝑎, 𝑏 ∈ M,
by 𝑎 ≤ 𝑏 iff there is a horismotic chain joining 𝑎 and 𝑏. One
defines the chronology relation ≪ on M by 𝑎 ≪ 𝑏 iff 𝑎 ≤ 𝑏

and not 𝑎 → 𝑏. The relation≪ represents timelike separation
between events. One also defines the relation ≪ by 𝑎≪𝑏 ⇔

(𝑎 ≪ 𝑏)∨(𝑎 = 𝑏). Two events 𝑎, 𝑏 ∈ M are spacelike separated,
𝑎 ♮ 𝑏, iff neither 𝑎 ≤ 𝑏 nor 𝑏 ≤ 𝑎.

Definition 5. For an event 𝑎 ∈ M, one defines its chronologi-
cal future by 𝐼+(𝑎) fl {𝑏 ∈ M | 𝑎 ≪ 𝑏} and its chronological
past by 𝐼

−
(𝑎) fl {𝑏 ∈ M | 𝑏 ≪ 𝑎}. One defines its causal

future by 𝐽
+
(𝑎) fl {𝑏 ∈ M | 𝑎 ≤ 𝑏} and its causal past by

𝐽
−
(𝑎) fl {𝑏 ∈ M | 𝑏 ≤ 𝑎}. One defines the causal cone of 𝑎

by 𝐽(𝑎) = 𝐽
+
(𝑎) ∪ 𝐽

−
(𝑎), the chronological cone of 𝑎 by 𝐼(𝑎) =

𝐼
+
(𝑎) ∪ 𝐼

−
(𝑎), and the light cone of 𝑎 by 𝐸(𝑎) = 𝐸

+
(𝑎) ∪𝐸

−
(𝑎).

One defines 𝐸
∗
(𝑎) fl 𝐸(𝑎) \ {𝑎}, 𝐸±

∗
(𝑎) fl 𝐸

±
(𝑎) \ {𝑎},

𝐽
∗
(𝑎) fl 𝐽(𝑎) \ {𝑎}, and 𝐽

±

∗
(𝑎) fl 𝐽

±
(𝑎) \ {𝑎}. Two events

𝑎, 𝑏 ∈ M define a chronological interval 𝐼(𝑎, 𝑏) fl 𝐼
+
(𝑎)∩𝐼

−
(𝑏)

and a causal interval 𝐽(𝑎, 𝑏) fl 𝐽
+
(𝑎) ∩ 𝐽

−
(𝑏).

Proposition 6. Let 𝑎, 𝑏 ∈ M. Then, 𝑏 ∈ 𝐽
+
(𝑎) ⇔ 𝑎 ∈ 𝐽

−
(𝑏),

𝑏 ∈ 𝐼
+
(𝑎) ⇔ 𝑎 ∈ 𝐼

−
(𝑏), and 𝑏 ∈ 𝐸

+
(𝑎) ⇔ 𝑎 ∈ 𝐸

−
(𝑏).

Proof. The proof follows immediately from Definitions 1, 4,
and 5.

Proposition 7. The causal relations ≤ and≪ are transitive.

Proof. The proof follows immediately from the definitions of
the relations ≤ and≪.

The causal relation ≤ is the smallest transitive extension
of the horismos relation→.

Definition 8. A horismotic set M is said to be future (past)
distinguishing at an event 𝑎 ∈ M if for any 𝑏 ∈ M, 𝑏 ̸= 𝑎

implies 𝐼+(𝑎) ̸= 𝐼
+
(𝑏) (resp., 𝐼−(𝑎) ̸= 𝐼

−
(𝑏)). It is said to be

future (past) distinguishing if it is future (past) distinguishing
at all of its events. It is said to be distinguishing if it is both
future and past distinguishing.

Many of the properties of the causal and chronological
relations known from General Relativity and Lorentzian
manifolds in general [12] can be derived in the settings of
horismotic sets.
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2.3. The Topology. We can endow M with a structure of
topological space generated by finite intersections and unions
of open sets the sets of the form 𝐼

±
(𝑎). As an example, con-

sider the spacetime of General Relativity and other relativistic
theories of gravity.The sets of the form 𝐼

±
(𝑎) are the interiors

of future and past light cones and are indeed open sets
and generate the Alexandrov interval topology. This topology
coincides with the manifold topology iff it is Hausdorff and
iff the spacetime is strongly causal (at each event there is an
open set𝑈 so that timelike curves that leave𝑈 do not return)
[12].

But not any horismotic set has a definite dimension, nor
it is locally homeomorphic to R𝑛. Additional conditions are
needed and will be provided in the following.

2.4. Causal Curves. To define causal curves in Lorentzian
manifolds, one usually imposes conditions on the vectors
tangent to the curve [12]. However, by default a horismotic
set does not have a differential structure, so here we will give
a definition that does not require a differential and not even
a topological structure.

Definition 9. Let ⊲ denote any of the relations →, ≤, and ≪

on a horismotic setM.
An open curve with respect to the relation ⊲ defined on a

horismotic setM is a set of events 𝛾 ⊂ M so that the following
two conditions hold:

(1) The relation ⊲ is total on 𝛾; that is, for any 𝑎, 𝑏 ∈ 𝛾,
𝑎 ̸= 𝑏, either 𝑎 ⊲ 𝑏 or 𝑏 ⊲ 𝑎.

(2) For any pair 𝑎, 𝑏 ∈ 𝛾, 𝑎 ⊲ 𝑏, if there is an event 𝑐 ∈

M \ 𝛾 so that 𝑎 ⊲ 𝑐 and 𝑐 ⊲ 𝑏, then the restriction of
the relation ⊲ to the set 𝛾 ∪ {𝑐} is not total.

A loop or closed curve with respect to the relation ⊲ defined on
a horismotic set M is a set of events 𝜆 ⊂ M so that, for any
event 𝑎 ∈ 𝜆, the set 𝜆 \ {𝑎} is an open curve with respect to
the same relation.

Remark 10. Note that usually a curve is defined as the image
of a continuous injective function 𝛾 : [𝑥, 𝑦] → 𝑀, where
[𝑥, 𝑦] ⊂ R and 𝑀 is a topological space. Therefore, it is
a topological subspace of 𝑀 and at the same time a totally
ordered set, with the order induced by the order on the
interval [𝑥, 𝑦]. Definition 9 is more general, since it applies to
horismotic sets, in particular to both discrete and continuous
spacetimes. In Section 2.3 the horismotic setMwas endowed
with a topology, the Alexandrov interval topology, and a
curve as in Definition 9 is still a topological subspace of
M, which has the property that it is totally ordered with
respect to the relation ⊲. In the particular case when M is
a manifold with distinguishing causal structure, the notion of
curve defined here coincides with the usual notion of curve.

For simplicity, in the following, by “curve” we will
understand “open curve,” and by “loop,” “closed curve.”
We denote by C(M, ⊲) and L(M, ⊲) the set of curves,

respectively, loops, with respect to the relation ⊲. Let 𝛾, 𝛾󸀠 ∈
C(M, ⊲) be two curves. If 𝛾 ⊆ 𝛾

󸀠, then 𝛾
󸀠 is said to be an

extension of 𝛾, and 𝛾 is named a subcurve of 𝛾󸀠. If for any
extension 𝛾

󸀠 of the curve 𝛾 it follows that 𝛾󸀠 = 𝛾, we say that
𝛾 is an inextensible curve. If an extension 𝛾

󸀠 of a curve 𝛾 is
inextensible, we say that 𝛾󸀠 is amaximal extension of 𝛾.

If 𝑎 ∈ 𝛾 ∈ C(M, ⊲), then 𝑎 defines two curves for which 𝛾
is an extension: 𝛾

𝑎+
fl {𝑏 ∈ 𝛾, 𝑎 ⊲ 𝑏}, and 𝛾

𝑎−
fl {𝑏 ∈ 𝛾, 𝑏 ⊲

𝑎}. If 𝑎, 𝑏 ∈ 𝛾, 𝑎 ⊲ 𝑏, then they define a curve 𝛾
𝑎𝑏

fl 𝛾
𝑎+

∩ 𝛾
𝑏−
,

and we call it the segment of the curve 𝛾 determined by 𝑎 and
𝑏.

A curve from C(M, ≤) is called causal curve. A curve
from C(M, ≪) is called chronological curve. A curve from
C(M,→) is called lightlike curve. Similar definitions are given
for loops.

Remark 11. It is easy to see that L(M,→) ⊂ L(M, ≤),
L(M, ≪) ⊂ L(M, ≤), C(M,→) ⊂ C(M, ≤), and C(M,

≪) ⊂ C(M, ≤). Also, if the horismos relation → is antisym-
metric, then there are no closed lightlike curves, L(M,→)

= 0. Even when the relation→ is antisymmetric, ≤ and≪ are
not necessarily antisymmetric, so if we want to avoid closed
causal and chronological curves, we have to add this as a
condition.

Definition 12. A spacetime on which there are no causal
loops, that is,L(M, ≤) = 0, is called causal spacetime. Simi-
larly one defines a chronological spacetime byL(M, ≪) = 0.

Proposition 13. Let 𝛾 be a curve in M, and 𝑎 ∈ 𝛾. If 𝛾 is a
causal curve, then 𝛾

𝑎±
⊂ 𝐽
±
(𝑎). If 𝛾 is a chronological curve,

then 𝛾
𝑎±

⊂ 𝐼
±
(𝑎). If 𝛾 is a lightlike curve, then 𝛾

𝑎±
⊂ 𝐸
±
(𝑎).

Proof. It follows from the condition that the relation ≤ is total
on any causal curve, ≪ is total on any chronological curve,
and→ is total on any lightlike curve.

Corollary 14. Let 𝛾 be a curve in M, and 𝑎, 𝑏 ∈ 𝛾. If 𝛾 is a
causal curve, then 𝛾

𝑎𝑏
⊂ 𝐽(𝑎, 𝑏). If 𝛾 is a chronological curve,

then 𝛾
𝑎𝑏

⊂ 𝐼(𝑎, 𝑏) ∪ {𝑎, 𝑏}.

Proof. It follows from Proposition 13.

Corollary 15. The causal, chronological, and lightlike curves
and loops are continuous with respect to the interval topology
defined in Section 2.3.

Proof. From Corollary 14, for any causal curve 𝛾 and 𝑎, 𝑏 ∈ 𝛾,
the curve 𝛾

𝑎𝑏
⊂ 𝐽(𝑎, 𝑏). Since the interiors of the intervals

of the form 𝐽(𝑎, 𝑏) form a base for the interval topology, it
follows that 𝛾 is continuous. Similarly, if 𝛾 is a loop, the curve
obtained by removing a point of 𝛾 is a continuous curve.

3. Recovering the Dimension

3.1. Example: The Two-Dimensional Case. We look first at a
simple example of recovering the conformal structure of a
Lorentzian manifold in two dimensions, which later will be
distilled and generalized.
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a

Figure 1: Any event 𝑝 ∈ 𝐼
+

(𝑎) has light cone coordinates
(𝑓
1
(𝑐
1
), 𝑓
2
(𝑐
2
)), and {𝑝} = 𝐸

+

(𝑐
1
) ∩ 𝐸
+

(𝑐
2
).

Assume that through any event 𝑎 ∈ M pass exactly
two maximal lightlike lines, say 𝛾

𝑎

1
and 𝛾

𝑎

2
. For a Lorentzian

manifold, the global hyperbolicity condition states that, for any
two events 𝑎, 𝑏 ∈ M, the set 𝐽(𝑎, 𝑏) is compact. The notion of
global hyperbolicity extends naturally to a general horismotic
setM, because it is also a topological space, as shown in Sec-
tion 2.3. We assume that M satisfies global hyperbolicity. In
the two-dimensional case, this is equivalent to the condition
that, for any event𝑝 ∈ 𝐼

+
(𝑎), 𝛾𝑎
1
intersects 𝛾𝑝

2
and 𝛾𝑎
2
intersects

𝛾
𝑝

1
(see Figure 1). Let us see why the two conditions are

equivalent. If, for example, 𝛾𝑎
1
would not intersect 𝛾𝑝

2
, then the

set 𝐽(𝑎, 𝑏)would not be compact. Because of the assumptions
at the beginning of this paragraph, the intersection 𝛾

𝑎

1
∩ 𝛾
𝑝

2

contains a unique event 𝑐
1
. Similarly, 𝛾𝑎

2
∩𝛾
𝑝

1
contains a unique

event 𝑐
2
.

The unique events 𝑐
1
and 𝑐
2
uniquely identify 𝑝. For any

maximal lightlike line 𝛾 through 𝑎, a parametrization𝑓 : 𝛾 →

R can be chosen so that for any 𝑐, 𝑑 ∈ 𝛾, 𝑐 → 𝑑, 𝑓(𝑐) ≤

𝑓(𝑑). Then, the lightlike lines 𝛾𝑎
1
and 𝛾

𝑎

2
together with such

parametrizations will give coordinates for 𝐼+(𝑎). In addition,
if the parametrization can be chosen so that 𝑓(𝛾) is an open
interval in R, then M gains a structure of topological mani-
fold. A cover of M with open sets on which such light cone
coordinates are defined, and such that the transition maps
are differentiable, makes M into a differentiable manifold of
dimension 2.

Note that there is no need to assume global hyperbolicity;
a local version is enough: for any event𝑝 ∈ M there is an open
set 𝑈 containing 𝑝 which is globally hyperbolic. In General
Relativity and other relativistic theories of gravity, this local
version is satisfied also on spacetimes that are not globally
hyperbolic.

We now detail these ideas and extend them to 𝑛 dimen-
sions.

3.2. Dimensionality. Themere existence of a topology defined
by chronological intervals on M does not imply anything
about dimension. In order to assign to M a dimension, we
have to define it and to require it one way or another.

Definition 16. Anumber 𝑛 ∈ N is called dimension of an open
set𝑈 ⊂ M if there are 𝑛 distinct causal curves 𝛾

1
, . . . , 𝛾

𝑛
⊂ M

p

c1

c2

c3

Figure 2: An event {𝑝} = 𝐸
+

(𝑐
1
) ∩ 𝐸
+

(𝑐
2
) ∩ 𝐸
+

(𝑐
3
), with light cone

coordinates (𝑓
1
(𝑐
1
), 𝑓
2
(𝑐
2
), 𝑓
3
(𝑐
3
)).

satisfying the following:

(1) For any 𝑝 ∈ 𝑈 there are 𝑛 events 𝑐
𝑖
∈ 𝛾
𝑖
, 𝑖 ∈ {1, . . . , 𝑛}

so that

{𝑝} =

𝑛

⋂

𝑖=1

𝐸
+

(𝑐
𝑖
)

or {𝑝} =

𝑛

⋂

𝑖=1

𝐸
−

(𝑐
𝑖
) .

(1)

(2) The number 𝑛 is the smallest with this property.

We say that the curves 𝛾
1
, . . . , 𝛾

𝑛
form a light cone basis of

dimension 𝑛 of the open set 𝑈 (Figure 2).

Definition 17. Let 𝑛 ∈ N. An 𝑛-dimensional horismotic set is a
horismotic set (𝑀,→) so that for any event 𝑝 ∈ M there is an
open set 𝑝 ∈ 𝑈 of dimension 𝑛. One says that the dimension
ofM is dimM = 𝑛.

3.3. Light Cone Coordinates

Definition 18. A parametrized causal curve is a causal curve
𝛾 and a function 𝑓 : 𝛾 → R (called parametrization of 𝛾)
which keeps the total order, that is, 𝑓(𝑐) ≤ 𝑓(𝑑), if and only
if 𝑐 ≤ 𝑑. A causal curve is called parameterizable if it admits a
parametrization.

Definition 19. Let𝑈 be an open set ofM and 𝑛 distinct causal
curves 𝛾

1
, . . . , 𝛾

𝑛
⊂ M, as in Definition 16. If the causal curves

𝛾
1
, . . . , 𝛾

𝑛
are parametrized by some functions 𝑓

1
, . . . , 𝑓

𝑛
, the

light cone basis they form assigns to any event 𝑝 ∈ 𝑈 an 𝑛-
tuple of real numbers (𝑓

1
(𝑐
1
), . . . , 𝑓

𝑛
(𝑐
𝑛
)), hence coordinates,

which we call lightlike coordinates.

3.4. Recovering the Lorentzian Spacetime. Note that what we
said so far works equally for continuous and discreteM. Now
we focus on topological manifolds.

Definition 20. If the coordinates can be chosen to map the
causal curve 𝛾 to an open interval in R, then for any event
𝑎 ∈ M there is a local homeomorphism between an open set
𝑎 ∈ 𝑈 and R𝑛. In this case,M is called continuous spacetime.
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Consider an open cover U of M so that for any 𝑈
𝑖
∈ U

there is a light cone coordinate system 𝑓
𝑖
: 𝑈
𝑖
→ R𝑛. This

endowsM with a structure of topological manifold.
If (M,→) has a structure of topological manifold, and

there is an open coverU ofM so that for any𝑈
𝑖
∈ U there is

a light cone coordinate system 𝑓
𝑖
: 𝑈
𝑖
→ R𝑛 and so that for

any 𝑈
𝑖
∩ 𝑈
𝑗

̸= 0 the transition function 𝑓
𝑗
|
𝑈𝑖∩𝑈𝑗

∘ (𝑓
𝑖
|
𝑈𝑖∩𝑈𝑗

)
−1

is differentiable, then the cover U together with the charts
(𝑈
𝑖
, 𝑓
𝑖
) determines a differential structure onM.

An 𝑛-dimensional horismotic set (M,→) whose coor-
dinates are continuous and such that the transition maps
are differentiable is naturally endowed with a structure of
differentiable manifold of dimension 𝑛. We know the light
geodesics, and they give the conformal structure of M; that
is, the metric is defined up to a scaling function Ω : M →

(0,∞).

4. Discussion

What is the correspondence between causal sets and horis-
motic sets? Given that the causal sets approach is based only
on the causal relation, which does not distinguish between
horismos and chronological relations, there are more ways
to choose which pairs of events in causal relation are in
a horismos or in a chronological relation. Moreover, if the
events are selected from a continuousmanifold by sprinkling,
the chance that two events of the causal set are in a horismos
relation is practically zero. In the continuum case, even if
we start from the causal relation, the solution is unique, at
least for distinguishing spacetimes: the boundary of the light
cone at an event 𝑝 gives the events in a horismos relation
with 𝑝, and the interior gives those in a chronology relation
with 𝑝. And asmentioned, the horismos relation is enough to
reconstruct the causal structure [7].

There are some advantages in starting with the horismos
relation rather than the causal one. The chronological and
causal relations can be obtained from the horismos relation.
But if we start with the causal relations, as in the causal set
approach, we cannot obtain the horismos relation, unless,
for example, the spacetime has a structure of topological
manifold or at least can be embedded densely in a topological
manifold, which is not the case for causal sets. Even if
we have the means to distinguish the horismos relation
from the causal relation, we still have to impose additional
compatibility constraints, since the causal relation can be
generated by the horismos. But if we start with the horismos
relation, we can obtain everything about the spacetime,
including the geometry up to a scaling factor, and we do not
have to impose compatibility conditions, showing that the
horismos relation is more fundamental.

The most important advantage of horismos relation
appears to be that we can obtain a spacetime with a definite
dimension by imposing a simple condition. This may be
of help in building models similar to causal sets and with
definite dimension, but it may still be difficult in practice.

The properties and results that can be derived starting
onlywith the horismos relation have correspondence in those
of Lorentzian manifolds, which are presented, for example,

in [12]. However, we do not enter here in much detail about
this, the main purpose being to recover the causal structure
and the dimensionality of spacetime.

An advantage of the causal set approach is that it aims
to recover in a good approximation the manifold and the
conformal structure but also to find the conformal factor
needed to recover the metric, by approximating the volume
with the number of events in that region. This relation
between volume and number of events seems pretty clear,
and at this point we do not know a way to do the same
in the approach of horismotic sets, especially when the
dimension is well defined as in Section 3.2. However, the
volume information can be provided by a measure.

Horismotic sets in which the horismotic relation is not
antisymmetric can be used to include additional structures.
For example, consider gauge theory, described by a fiber
bundle E over a distinguishing Lorentzian manifoldM, and
let 𝐹 be the typical fiber. The causal relations on M can be
lifted to E in the following way. Let 𝑝, 𝑞 ∈ E be any pair of
points inE; then 𝑝 = (𝑎, 𝑥) ∈ M×𝐹 and 𝑞 = (𝑏, 𝑦) ∈ M×𝐹.
We define the horismos relation on E by 𝑝 → 𝑞 iff 𝑎 → 𝑏,
and similarly we define the chronological and causal relations
on E. But then, if 𝑎 = 𝑏 and 𝑥 ̸= 𝑦, it follows that 𝑝 → 𝑞 and
𝑞 → 𝑝 but 𝑝 ̸= 𝑞. So even if antisymmetry holds on the base
space M, it does not hold on the bundle E. The points of E
in the same fiber are in the horismos (and also chronological)
relation, but they are distinct. This corresponds to the gauge
degrees of freedom.Of course, the typical fiber𝐹 is not simply
a set and should be endowed with additional structure, which
is not captured in the horismos relation.

In short, the approach of starting with the horismos
relation

(1) is very general, because we just start with a reflexive
relation, which we identify as the horismos relation;

(2) works for both discrete and continuous spacetimes;

(3) allows us to recover the causal and chronological
relations, while recovering the horismotic relation
from the causal relation works only in special cases,
for example, for continuous spacetimes;

(4) allows us to recover the interval topology;

(5) avoids redundancy and compatibility conditions
when defining the causal structure, which are present
when starting from the causal relation;

(6) allows defining causal, chronological, and lightlike
curves and loops, without the need of differential or
even topological structures;

(7) allows recovering the dimensionality, as well as the
manifold structure, under simple conditions (while
these problems are still open in the case of causal sets).

In another article [21], an additional reason is given to
consider the causal structure as fundamental in General
Relativity: while the metric becomes singular at some black
hole and big bang singularities, the causal structure remains
regular.
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