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Magnesium oxide (MgO) nanopowder was synthesized by thermal plasma in a novel thermal DC plasma torch using magnesium
nitrate hexahydrate. Magnesium nitrate hexahydrate (Mg(NO

3
)
2
⋅6H
2
O) was obtained from serpentinite (Mg

3
Si
2
O
5
(OH)

4
;

lizardite) (Halilovskiy array, Orenburg region, Russia). The synthesized samples were characterized by analytical techniques
including X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD and TEM characterization studies
confirmed that MgO nanopowder obtained has periclase structure with high purity, and the particle sizes vary within the range of
100 nm to 150 nm. We believe that the present work will promote further experimental studies on the physical properties and the
applications of MgO nanopowders in the fields such as high-densed ceramics, additives in bactericide, and refractory products.

1. Introduction

Magnesium oxide (MgO) is an attractive material which
has many potential applications, such as water purification,
optoelectronics, andmicroelectronics, is an additive in heavy
fuel oil, paint, gas separation, and bactericides, and is an
insulator in industrial cables, crucibles, and refractory mate-
rials. However, the useful properties of MgO are further
enhanced when used as nanosized powder with novel nanos-
tructures [1–4]. Many methods like flame spray pyrolysis [5],
combustion aerosol synthesis [6], hydrothermal method [7],
laser vaporization [8], chemical gas phase deposition [9],
solvothermal method [10], aqueous wet chemical method
[11], and others [12–14] have been developed for the synthesis
of nanosize of MgO.

Among the different techniques commonly used for
preparation of magnesium oxide, thermal plasmas which
provide high temperatures and steep temperature gradients
offer an attractive and chemically unspecific route for syn-
thesizing fine refractory powders [15–18]. Thermal plasmas

suitable for synthesis are primarily produced by means of
high intensity AC or DC arcs, high frequency discharges,
DC-RF hybrid plasmas, and a reactive submerged arc (RSA).
Depending on the process, either the discharge itself or the
plasma flame downstream of the discharge may be used for
synthesizing the powders. In thermal plasma synthesis, the
reactants may be gases, liquids, or solids before injection into
the plasma [19].

In this paper, we report the synthesis and characterization
of magnesium oxide nanopowder by thermal plasma in a
novel thermal DC plasma torch using magnesium nitrate
hexahydrate as the precursor.

2. Experimental Procedure

Magnesium nitrate hexahydrate (Mg(NO
3
)
2
⋅6H
2
O) was

obtained from serpentinite (Halilovskiy array, Orenburg
region, Russia). Serpentinite consisted mostly of magnesium,
silicon, and iron in the formof serpentinite (Mg

3
Si
2
O
5
(OH)
4
;

lizardite).
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Figure 1: Schematic diagram of a novel thermal DC plasma torch.

Serpentinite was dissolved in 40% nitric acid solution.
MgNO

3
solution was obtained after the ions like Fe3+ and

Fe2+ were transformed into hydroxide precipitates, and the
precipitates were separated by filtration. MgNO

3
-rich solu-

tion was transferred to a glass beaker for evaporation of
the solution. The solution started boiling at 90∘C and was
boiled for 4 h in order to evaporate most of the solvent.
The residue of hydrated magnesium carbonate was cooled to
room temperature and filtered. Mg(NO

3
)
2
⋅6H
2
Owas ground

by a vortex jet flow typemill (productivity of 50 g per minute,
air pressure of 10 bar, and air volume of 1m3/min).

MgO nanopowder was synthesized by using thermal
plasma from magnesium nitrate hexahydrate (Mg(NO

3
)
2
⋅

6H
2
O). Mg(NO

3
)
2
⋅6H
2
O was easily decomposed in the high

temperature (𝑇) range of plasma and converted to MgO
particle due to rapid quenching:

2Mg (NO
3
)

2

𝑇,
∘C
→ 2MgO + 4NO

2
↑ +O

2
↑

(1)

A novel thermal DC plasma torch has been employed for
the production of MgO nanopowder (Figure 1). The powder
is separated during the passage of the gas-dust mixture
through a system of cyclones, and the gas mixture is utilized
in the venturi scrubber.

The phase composition of the samples was analyzed by X-
ray diffraction (XRD) with CuK𝛼 radiation. A Rigaku Ultima
IV X-ray powder diffractometer was used. Crystalline phases
were identified by the ICDD PDF-2 (2008) powder diffrac-
tion database. The microstructure of MgO nanopowder was
carried out using a JEM 2100 (JEOL Ltd., Tokyo, Japan)
transmission electron microscope (TEM) equipped with an
INCA energy-dispersive X-ray spectrometer (EDS; Oxford
Instruments, Oxfordshire, UK) with an acceleration voltage
of 200 kV. The TEM specimens are prepared by method
for the preparation of micrometer-sized powder particles
described in [20].
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Figure 2: XRDpattern forMg(NO
3
)
2
⋅6H
2
Oproduced from serpen-

tinite.
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Figure 3: XRD pattern for MgO nanopowder.

3. Results and Discussion

Analysis of the phase composition of the magnesium nitrate
(Mg(NO

3
)
2
⋅6H
2
O) shows that, according to the ICDD data

catalog (Figure 2), the powder consists of Mg(NO
3
)
2
(H
2
O)
6

with a monoclinic lattice with P121/c1, unique-b, cell-1 space
group and Mg(NO

3
)
2
⋅6H
2
O with a monoclinic lattice with

P121/c1, unique-b, cell-1 space group phases.
Thekey idea in this study is to prepare the nanosizedMgO

particles with high crystallinity and no impurities.
Analysis of the phase composition of MgO nanopowder

(Figure 3) shows that, according to the ICDD data catalog, it
is one-phase material MgO (periclase) and had cubic lattice
with Fm-3m space group (𝑎 = 𝑏 = 𝑐 = 4.215 Å). No
diffraction peaks representing other phases were detected
in Figure 2, which indicated high purity of the periclase.
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Figure 4: TEM image of MgO nanoparticles for different magnification: (a) 60K and (b, c) 100K.

This present value is in good accordance with the literature
reports. All reflections are sharp with slight broadening.
These reflect the crystalline nature of MgO nanopowder.

Transmission electron microscope (TEM), a powerful
method for structure analysis at a nanometer scale, allows
for direct observation of the morphological and structural
features of MgO samples. The morphological and structural
features of MgO nanopowder, shown in Figure 4, were
characterized with transmission electronmicroscope (TEM).
The TEM images are shown in different magnifications.
These images illustrate that small amount of agglomeration
is present in the sample. The results showed that MgO
nanopowderwith irregularmorphologywith size in the range
of 100–150 nm was fabricated.

4. Conclusions

From our present work, it is concluded that it is easy to pre-
pare MgO nanoparticles by thermal plasma in a novel ther-
mal DC plasma torch using magnesium nitrate (Mg(NO

3
)
2
⋅

6H
2
O) as precursor. The XRD patterns show that the

obtained magnesium oxide (MgO) nanopowder has the per-
iclase structure. The XRD pattern confirmed the crystallinity
and phase purity of the nano-MgO powder. MgO powder
has very homogeneous structure without any observable
pores. MgO materials obtained by thermal plasma using
magnesium nitrate (Mg(NO

3
)
2
⋅6H
2
O) as precursor may

prove potential applications in catalyst, water purification,
pigments, optoelectronics, bactericides, insulator, crucibles,
substrate, and refractory materials.
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