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Micropolar fluidmodel consists ofNavier-Stokes equations andmicrorotational velocity equations describing the dynamics of flows
in which microstructure of fluid is important. In this paper, we propose and analyze a decoupled time-stepping algorithm for the
evolutionary micropolar flow. The proposed method requires solving only one uncoupled Navier-Stokes and one microrotation
subphysics problem per time step. We derive optimal order error estimates in suitable norms without assuming any stability
condition or time step size restriction.

1. Introduction

Micropolar fluid model theory considers the interaction
between the fluid motion and rotational motion of micropar-
ticles suspended in a viscous medium when the deformation
of microparticles is ignored. Numerous experimental and
numerical studies have indicated that the micropolar fluid
theory better describes micro- and nanoflows than the clas-
sical Naiver-Stokes theory. Understanding microscale fluid
flow phenomena is important in order to effectively design
and fabricate microchannels and chambers for microfluidic
systems [1]. Growing interest in microscale flow phenomena
is also due to the miniaturization of fluid devices for control-
ling flows inmicromachines. Numerical predictions reported
in [2] and experimental studies reported in [3–7] show that
micropolar fluid models better represent the behavior of
flows in microfluidic systems compared to the Navier-Stokes
equations. In the experimental work reported in [7], fluids
containing minute polymeric additives indicate considerable
reduction of the skin friction which can be related to the
presence of antisymmetric and coupled stresses inmicropolar
fluids leading to an increase in the energy dissipation.

There are numerous papers devoted to the mathematical
analysis of micropolar fluid flows such as the existence and

uniqueness of solutions to micropolar flow equations; see [8–
13]. In [14–16], optimal control problems associated with
micropolar fluids are studied from the theoretical point of
view. Stability problems for micropolar fluids are investigated
in [17, 18]. It has also been the subject of many computa-
tional simulation based investigations [2, 19–22].Theseworks
mainly focus on the numerical solution of micropolar fluid
equationsmodeling various applied problems such asHagen-
Poiseuille flow and nano/microfluid system [23, 24]. Microp-
olar fluid models for real and nontrivial flow problems would
involve a system of nineteen partial differential equations
in nineteen unknowns, therefore computationally very chal-
lenging. Despite these challenges in computing micropolar
fluid flow, there are very few studies in the literature on
numerical analysis and algorithms for efficient computation
of micropolar fluid flows. In [25], a numerical scheme based
on projection method in time and finite-difference in space
is incorporated to solve unsteady incompressible micropolar
fluid flow problems. In [26], convergence rate of Galerkin
spectral spatial approximation for themicropolar fluidmodel
is studied.

In the present work, we propose and study a decoupled
time-stepping scheme for the evolutionary micropolar fluid
flow model. It uses a semi-implicit Crank-Nicolson scheme
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that combines an implicit treatment of the second derivative
terms, a semi-implicit second-order extrapolation of the
nonlinear convective terms, and explicit treatment of the
coupling terms. The proposed scheme solves the Navier-
Stokes equations and the microrotational velocity equations
separately in each time step without iteration.We derive opti-
mal order error estimates of the scheme without any stability
condition or time step size restriction.

An outline of the paper is as follows. In Section 2, we
present the governing equations and some preliminary mate-
rials. In Section 3, we propose a decoupled Crank-Nicolson
time-stepping scheme using extrapolation in time and prove
that the proposed decoupled scheme yields the second-order
convergence in the temporal direction. Numerical tests are
reported in Section 4.

2. Micropolar Fluid System

2.1. Formulation of the Problem. Incompressible flow of
micropolar fluids is modeled by the system; see, for example,
[27–29]. Given f

1
, f
2
, g, and q and time 𝑇 > 0, find u :

Ω×[0, 𝑇] → R𝑑,𝑝 : Ω×[0, 𝑇] → R, andw : Ω×[0, 𝑇] → R𝑑

such that

𝜕
𝑡
u − (] + ]

𝑟
) Δu + (u ⋅ ∇) u + ∇𝑝 = 2]

𝑟
∇ × w + f

1

in Ω × (0, 𝑇] ,

𝜕
𝑡
w − (𝑐

𝑎
+ 𝑐

𝑑
) Δw − (𝑐

0
+ 𝑐

𝑑
− 𝑐

𝑎
) ∇ (∇ ⋅ w) + (u ⋅ ∇)w

+ 4]
𝑟
w = 2]

𝑟
∇ × u + f

2
in Ω × (0, 𝑇] ,

∇ ⋅ u = 0 in Ω × (0, 𝑇] ,

(1)

where u is the fluid velocity, w the microrotation field
interpreted as the angular velocity field of rotation of par-
ticles, and 𝑝 the fluid kinematic pressure. Notice that the
microrotation vector w is equal neither to the flow vorticity
∇ × u nor to average flow angular velocity (1/2)∇ × u. The
fields f

1
and f

2
are the external body force and moment

(torque), respectively.The positive constants ], ]
𝑟
, 𝑐
0
, 𝑐
𝑎
, and

𝑐
𝑑
represent viscosity coefficients, ] is the usual Newtonian

viscosity, and ]
𝑟
is the microrotation viscosity. Moreover,

the constants 𝑐
0
, 𝑐
𝑑
, and 𝑐

𝑎
satisfy the inequality 𝑐

0
+ 𝑐

𝑑
>

𝑐
𝑎
. The system is supplemented by the Dirichlet boundary

conditions,

u = g,

w = q

on Γ × (0, 𝑇] ,

(2)

and the initial conditions,

u (x, 0) = u
0
(x) ,

w (x, 0) = w
0
(x)

in Ω.

(3)

Here Ω is a bounded, Lipschitz domain in R𝑑 (𝑑 = 3)
and ∫

Γ
g ⋅ n 𝑑𝑠 = 0. Notice that w is a vector variable and

the equations satisfied by its components 𝑤
𝑖
are coupled via

the second-order terms ∇(∇ ⋅ w) which may pose difficulty.

2.2. Weak Formulation of the Evolutionary Micropolar Fluid
Model. For a Banach space 𝑋, we denote by 𝐿

𝑝
(0, 𝑇;𝑋)

the time-space function space endowed with the norm
‖𝑤‖

𝐿
𝑝
(0,𝑇;𝑋)

fl (∫
𝑇

0
‖𝑤‖

𝑝

𝑋
𝑑𝑡)

1/𝑝 if 1 ≤ 𝑝 < ∞ and
ess sup

𝑡∈[0,𝑇]
‖𝑤‖

𝑋
if 𝑝 = ∞. We will often use the abbre-

viated notation 𝐿
𝑝
(𝑋) fl 𝐿

𝑝
(0, 𝑇;𝑋) for convenience.

The symbol 𝐶([0, 𝑇]; 𝑋) denotes the set of continuous
functions 𝑢 : [0, 𝑇] → 𝑋 endowed with the norm
‖𝑢‖

𝐶(0,𝑇;𝑋)
fl max

0≤𝑡≤𝑇
‖𝑢(𝑡)‖

𝑋
. For any integer 𝑘 ≥ 1, let

𝑊
𝑘,𝑝
(Ω) be the Sobolev space of functions in 𝐿

𝑝
(Ω) with

derivatives up to the 𝑘th order endowed with the norm
‖𝜙‖

𝑚,𝑝
fl [∑

|𝛼|≤𝑚
∫
Ω
|𝜕
𝛼

𝑥
𝜙(x)|𝑝𝑑𝑥]1/𝑝, where 𝜕

𝛼

𝑥
𝜙(x) fl

(𝜕
|𝛼|
/(𝜕

𝛼1

𝑥1
⋅ ⋅ ⋅ 𝜕

𝛼𝑑

𝑥𝑑
))𝜙(x), 𝛼 fl (𝛼

1
, . . . , 𝛼

𝑑
), 𝛼

𝑖
≥ 0, |𝛼| fl

∑
𝑑

𝑖=1
𝛼
𝑖
. We denote by𝐻𝑘

(Ω) the space𝑊𝑘,2
(Ω), when 𝑝 = 2,

and drop the subscripts 𝑝 (=2) in referring to the norm in
𝐻
𝑘
(Ω). Moreover, we will use the following simplified norm

notations:
‖𝑢‖ fl ‖𝑢‖𝐿2(Ω) ,

‖𝑢‖
∞

fl ‖𝑢‖𝐿∞(Ω) .

(4)

We introduce the time discrete space 𝑙𝑝(𝑍) associated with
𝐿
𝑝
(0, 𝑇; 𝑍); 𝑙𝑝(𝑍) is the space of 𝑍-valued sequences 𝑤 fl

{𝑤
𝑛
; 𝑛 = 1, . . . , 𝑁} with norm ‖ ⋅ ‖

𝑙
𝑝
(𝑍)

defined by

‖𝑤‖𝑙𝑝(𝑍) fl
{{{

{{{

{

(Δ𝑡

𝑁

∑

𝑛=1

󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩

𝑝

𝑍
)

1/𝑝

if 1 ≤ 𝑝 < ∞

max
1≤𝑛≤𝑁

󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩𝑍 if 𝑝 = ∞.

(5)

We define the spaces

H1
𝑔
(Ω) fl {k ∈ H1 (Ω) : k|Γ = g} ,

V
𝑔
fl {k ∈ H1 (Ω) : k|Γ = g, ∇ ⋅ k = 0 in Ω} ,

(6)

for g ∈ H1/2(Γ) satisfying ∫
Γ
g ⋅ n 𝑑𝑠 = 0,

H1
𝑞
(Ω) fl {k ∈ H1 (Ω) : k|Γ = q} (7)

for q ∈ H1/2(Γ) and

𝐿
2

0
(Ω) fl {𝑝 ∈ 𝐿

2
(Ω) : ∫

Ω

𝑝𝑑Ω = 0} . (8)

We often use the Sobolev inequality for 1 ≤ 𝑞 ≤ 6

‖u‖𝐿𝑞(Ω) ≤ 𝑐 ‖u‖1 ∀u ∈ H1 (Ω) (9)

and the Poincaré inequality

‖u‖ ≤ 𝜆 ‖∇u‖ ∀u ∈ H1
0
(Ω) . (10)

We recall also the Gagliardo-Nirenberg interpolation
inequality

‖u‖1,3 ≤ 𝑐 ‖u‖1/2
1

‖u‖1/2
2

∀u ∈ H2 (Ω) (11)
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and Agmon’s inequality

‖u‖∞ ≤ 𝑐 ‖u‖1/2
1

‖u‖1/2
2

u ∈ H2 (Ω) ∩H1
0
(Ω) , (12)

and see, for example, [30].
If we define the bilinear forms 𝑎

1
: H1(Ω) ×H1(Ω) → R,

𝑎
2
: H1(Ω) × H1(Ω) → R, 𝑑 : H1(Ω) × H1(Ω) → R, and

𝑏 : H1(Ω) × 𝐿2
0
(Ω) → R in the following way, for u

1
, u
2
, u
3
∈

H1(Ω) and 𝑝 ∈ 𝐿
2

0
(Ω):

𝑎
1
(u
1
, u
2
) fl (] + ]

𝑟
) ∫
Ω

∇u
1
⋅ ∇u

2
𝑑Ω,

𝑎
2
(u
1
, u
2
) fl (𝑐

𝑎
+ 𝑐

𝑑
) ∫
Ω

∇u
1
⋅ ∇u

2
𝑑Ω

+ (𝑐
0
+ 𝑐

𝑑
− 𝑐

𝑎
) ∫
Ω

∇ ⋅ u
1
∇ ⋅ u

2
𝑑Ω,

𝑏 (u
1
, 𝑝) fl −∫

Ω

𝑝∇ ⋅ u
1
𝑑Ω,

𝑑 (w
1
,w
2
) fl 2]

𝑟
∫
Ω

∇ × w
1
⋅ w

2
𝑑Ω,

(13)

and define the trilinear form 𝑐 : H1(Ω)×H1(Ω)×H1(Ω) → R

as

𝑐 (u
1
, u
2
, u
3
)

fl
1

2
∫
Ω

[(u
1
⋅ ∇) u

2
⋅ u
3
− (u

1
⋅ ∇)u

3
⋅ u
2
] 𝑑Ω,

= ∫
Ω

[(u
1
⋅ ∇)u

2
⋅ u
3
+
1

2
(∇ ⋅ u

1
) u

2
⋅ u
3
] 𝑑Ω,

(14)

for all u
1
, u
2
, u
3
∈ H1(Ω)with (u

1
⋅n)u

2
⋅u
3
= 0 on Γ, then the

weak formulation of the micropolar fluid model is as follows:
seek (u,w) ∈ H1

𝑔
(Ω) ×H1

𝑞
(Ω) and 𝑝 ∈ 𝐿

2

0
(Ω) such that

⟨𝜕
𝑡
u, k⟩ + 𝑎

1
(u, k) + 𝑐 (u, u, k) + 𝑏 (k, 𝑝)

= 𝑑 (w, k) + ⟨f
1
, k⟩ ∀k ∈ H1

0
(Ω) ,

𝑏 (u, 𝑟) = 0 ∀𝑟 ∈ 𝐿
2

0
(Ω) ,

⟨𝜕
𝑡
w,𝜙⟩ + 𝑎

2
(w,𝜙) + 𝑐 (u,w,𝜙) + 4]

𝑟
(w,𝜙)

= 𝑑 (u,𝜙) + ⟨f
2
,𝜙⟩ ∀𝜙 ∈ H1

0
(Ω) ,

(u (0) ,w (0)) = (u
0
,w
0
) .

(15)

We now give the following proposition on the existence
and uniqueness result for (1). They were obtained by [8, 9] in
a slightly different setting.

Proposition 1. Assume that the given functions f
1
, f
2
, g, q,

u
0
, and w

0
satisfy f

1
, f
2
∈ 𝐿

2
(0, 𝑇;H−1(Ω)), g ∈ 𝐻

1
(0, 𝑇;

H1/2(Γ)), q ∈ 𝐻
1
(0, 𝑇;H1/2(Γ)), ∫

Γ
g ⋅ n 𝑑𝑠 = 0, u

0
∈ Vg(⋅,0),

and w
0
∈ H1

𝑞(⋅,0)
(Ω). Then, problem (15) has at least one solu-

tion (u, 𝑝,w) such that u ∈ 𝐿∞(0, 𝑇; L2(Ω))∩𝐿2(0, 𝑇;Vg),w ∈

𝐿
∞
(0, 𝑇; L2(Ω))∩𝐿2(0, 𝑇;H1

𝑞
(Ω)), and𝑝 ∈ 𝐿

2
(0, 𝑇; 𝐿

2

0
(Ω)). In

two spatial dimensions (𝑑 = 2), these solutions are unique.

In order to derive the decoupled time-stepping algorithm,
we assume Ω is a convex polyhedral domain, for simplicity,
and partition Ω into a mesh T

ℎ
with Ω = ⋃

𝐾∈Tℎ
𝐾 so that

diameter (𝐾) ≤ ℎ and any two closed elements 𝐾
1
and 𝐾

2
∈

T
ℎ
either are disjoint or share exactly one face, side, or vertex.

Suppose further thatT
ℎ
is a shape regular and quasiuniform

triangulation. On the other hand, we divide the time interval
[0, 𝑇] into 𝑁 subintervals [𝑡

𝑛
, 𝑡
𝑛+1

] (𝑛 = 0, 1, 2, . . . , 𝑁 − 1),
satisfying

0 < 𝑡
1
< 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑁−1
< 𝑡

𝑁
= 𝑇. (16)

Let Δ𝑡 fl 𝑡
𝑛
− 𝑡

𝑛−1
be the time step. We introduce the finite

element spaces X
ℎ
⊂ 𝐻

1
(Ω) and Q

ℎ
⊂ 𝐿

2
(Ω) which are div-

stable: there exists a constant 𝛽 > 0, independent of ℎ, such
that

𝛽 ≤ inf
0 ̸=𝑟ℎ∈Qℎ

sup
0 ̸=kℎ∈Xℎ

𝑏 (k
ℎ
, 𝑞
ℎ
)

󵄩󵄩󵄩󵄩kℎ
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩𝑞ℎ
󵄩󵄩󵄩󵄩

. (17)

LetY
ℎ
⊂ 𝐻

1
(Ω) be another finite element space and let g

ℎ
and

q
ℎ
be approximations of g and q, respectively, such that there

exist u
ℎ
∈ X

ℎ
andw

ℎ
∈ Y

ℎ
satisfying u

ℎ
|
Γ
= g

ℎ
andw

ℎ
|
Γ
= q

ℎ
.

We then define X
ℎ,𝑔ℎ

(Ω) fl X
ℎ
∩ H1

𝑔ℎ
(Ω), Y

ℎ,𝑞ℎ
(Ω) fl Y

ℎ
∩

H1
𝑞ℎ
(Ω), and 𝑄

ℎ
fl Q

ℎ
∩ 𝐿

2

0
(Ω).

We make the following assumptions on the finite dimen-
sional subspacesX

ℎ
,Y
ℎ
, andQ

ℎ
.

Assumption A1. We have the approximation properties: there
exist an integer 𝑘 and a constant 𝐶, independent of ℎ, k, w,
and 𝑟, such that

inf
kℎ∈Xℎ

[
󵄩󵄩󵄩󵄩k − k

ℎ

󵄩󵄩󵄩󵄩 + ℎ
󵄩󵄩󵄩󵄩∇ (k − k

ℎ
)
󵄩󵄩󵄩󵄩] ≤ 𝐶ℎ

ℓ+1
‖k‖ℓ+1

∀k ∈ Hℓ+1 (Ω) , 1 ≤ ℓ ≤ 𝑘,

inf
wℎ∈Yℎ

[
󵄩󵄩󵄩󵄩w − w

ℎ

󵄩󵄩󵄩󵄩 + ℎ
󵄩󵄩󵄩󵄩∇ (w − w

ℎ
)
󵄩󵄩󵄩󵄩] ≤ 𝐶ℎ

ℓ+1
‖w‖ℓ+1

∀w ∈ Hℓ+1 (Ω) , 1 ≤ ℓ ≤ 𝑘,

inf
𝑟ℎ∈𝑄ℎ

󵄩󵄩󵄩󵄩𝑟 − 𝑟ℎ
󵄩󵄩󵄩󵄩 ≤ 𝐶ℎ

ℓ
‖𝑟‖ℓ

∀𝑟 ∈ 𝐻
ℓ
(Ω) .

(18)

Assumption A2. For any integers 𝑙 and𝑚 (0 ≤ 𝑙 ≤ 𝑚 ≤ 1) and
any real numbers 𝑝 and 𝑞 (1 ≤ 𝑝 ≤ 𝑞 ≤ ∞) it holds that

󵄩󵄩󵄩󵄩𝜓ℎ
󵄩󵄩󵄩󵄩𝑚,𝑞 ≤ 𝑐ℎ

𝑙−𝑚+𝑑(1/𝑞−1/𝑝) 󵄩󵄩󵄩󵄩𝜓ℎ
󵄩󵄩󵄩󵄩𝑙,𝑝 ∀𝜓

ℎ
∈ X

ℎ
. (19)

There are many conforming finite element spaces satisfy-
ing Assumptions A1 and A2. One may choose, for example,
the Taylor-Hood element pair for the velocity and pressure
(i.e., piecewise quadratic polynomial for velocity and piece-
wise linear polynomial for pressure) and piecewise quadratic
polynomials for the microrotation vector. Then, Hypotheses
A1 and A2 hold with 𝑘 = 2.

We also cite a discrete Grönwall lemma which is useful in
our analysis as follows.
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Lemma 2 (discrete Grönwall lemma [31]). Let 𝑑, Δ𝑡, {𝑎
𝑛
}
𝑛≥0

,
{𝑏
𝑛
}
𝑛≥0

, {𝑐
𝑛
}
𝑛≥0

, and {𝑑
𝑛
}
𝑛≥0

be nonnegative numbers such that

𝑎
𝑚
+ Δ𝑡

𝑚

∑

𝑛=1

𝑏
𝑛
≤ Δ𝑡

𝑚−1

∑

𝑛=0

𝑎
𝑛
𝑑
𝑛
+ Δ𝑡

𝑚−1

∑

𝑛=0

𝑐
𝑛
+ 𝑑, 𝑚 ≥ 1. (20)

Then one has

𝑎
𝑚
+ Δ𝑡

𝑚

∑

𝑛=1

𝑏
𝑛
≤ exp(Δ𝑡

𝑚−1

∑

𝑛=0

𝑑
𝑛
)(Δ𝑡

𝑚−1

∑

𝑛=0

𝑐
𝑛
+ 𝑑) ,

𝑚 ≥ 1.

(21)

3. Error Analysis of the Decoupled
Time-Stepping Scheme

In this section, we present the decoupled time-stepping
algorithm for the micropolar fluid model and derive error
estimates. System (15) is discretized by Crank-Nicholson
scheme in time andGalerkin finite element in space.The time
discretization combines an implicit treatment of the second
derivative terms, a semi-implicit second-order extrapolation
for the nonlinear convective terms and explicit treatment of
the microrotation vector coupling term in the Navier-Stokes
equations.

Let [𝑡
𝑛
, 𝑡
𝑛+1

] ⊂ R+ denote a typical time subinterval and
let 𝜙𝑛(⋅) be a given algorithmic approximation to 𝜙(⋅, 𝑡

𝑛
). Let

D(𝜙
𝑛+1

) denote the difference operator

D (𝜙
𝑛+1

) fl
𝜙
𝑛+1

− 𝜙
𝑛

Δ𝑡

(22)

and let I(𝜙
𝑛+1/2

) denote the extrapolation operator
I(𝜙

𝑛+1/2
) fl (3/2)𝜙

𝑛
− (1/2)𝜙

𝑛−1.

Algorithm 3. Given (u𝑖
ℎ
,w𝑖
ℎ
, 𝑝
𝑖

ℎ
) ∈ X

ℎ,𝑔
𝑖

ℎ

×Y
ℎ,𝑞
𝑖

ℎ

×𝑄
ℎ
, 𝑖 = 0, 1,

find {(u𝑛+1
ℎ

,w𝑛+1
ℎ

, 𝑝
𝑛+1

ℎ
)} ∈ X

ℎ,𝑔
𝑛+1

ℎ

× Y
ℎ,𝑞
𝑛+1

ℎ

× 𝑄
ℎ
such that

(D (u𝑛+1
ℎ

) , k
ℎ
) + 𝑎

1
(u𝑛+1/2
ℎ

, k
ℎ
)

+ 𝑐 (I (u𝑛+1/2
ℎ

) , u𝑛+1/2
ℎ

, k
ℎ
)

+ 𝑏 (k
ℎ
, 𝑝
𝑛+1/2

ℎ
) = 𝑑 (I (w𝑛+1/2

ℎ
) , k

ℎ
)

+ ⟨f
1
(𝑡
𝑛+1/2

) , k
ℎ
⟩ ∀k

ℎ
∈ X

ℎ
,

𝑏 (u𝑛+1/2
ℎ

, 𝑟
ℎ
) = 0 ∀𝑟

ℎ
∈ 𝑄

ℎ
,

(D (w𝑛+1
ℎ

) ,𝜙
ℎ
) + 𝑎

2
(w𝑛+1/2

ℎ
,𝜙
ℎ
)

+ 𝑐 (I (u𝑛+1/2
ℎ

) ,w𝑛+1/2
ℎ

,𝜙
ℎ
)

+ 4]
𝑟
(w𝑛+1/2

ℎ
,𝜙
ℎ
) = 𝑑 (u𝑛+1/2

ℎ
,𝜙
ℎ
)

+ ⟨f
2
(𝑡
𝑛+1/2

) ,𝜙
ℎ
⟩ ∀𝜙

ℎ
∈ Y

ℎ
,

(23)

for 𝑛 = 1, 2, . . . , 𝑁 − 1, where u𝑛+1/2
ℎ

, w𝑛+1
ℎ

, and 𝑝
𝑛+1/2

ℎ
are

the intermediate variables defined by u𝑛+1/2
ℎ

fl (1/2)u𝑛+1
ℎ

+

(1/2)u𝑛
ℎ
, w𝑛+1/2

ℎ
fl (1/2)w𝑛+1

ℎ
+ (1/2)w𝑛

ℎ
, and 𝑝

𝑛+1/2

ℎ
fl

(1/2)𝑝
𝑛+1

ℎ
+ (1/2)𝑝

𝑛

ℎ
, respectively.

3.1. Error Analysis of Decoupled Scheme. In this section, we
will derive error estimates of the decoupled Crank-Nicolson
scheme proposed above. For simplicity, we will assume the
boundary data is independent of time in the subsequent
analysis.

Let us define two projections, namely, Stokes and general-
ized Ritz projections, as follows: given (u, 𝑝) ∈ H1(Ω)×𝐿2

0
(Ω)

and w ∈ H1(Ω), we define the Stokes projection (𝑃𝑠
ℎ
u, 𝑃𝑠

ℎ
𝑝) ∈

X
ℎ,𝑔ℎ

× 𝑄
ℎ
as the solution of the problem

𝑎
1
((u − 𝑃𝑠

ℎ
u) , k

ℎ
) + 𝑏 (k

ℎ
, (𝑝 − 𝑃

𝑠

ℎ
𝑝)) = 0

∀k
ℎ
∈ X

ℎ
,

𝑏 (u − 𝑃𝑠
ℎ
u, 𝑟

ℎ
) = 0 ∀𝑟

ℎ
∈ 𝑄

ℎ

(24)

and the generalized Ritz projection 𝑃𝑟
ℎ
w ∈ Y

ℎ,𝑞ℎ
as the solu-

tion of the problem

𝑎
2
((w − 𝑃

𝑟

ℎ
w) , 𝜓

ℎ
) = 0 ∀𝜓

ℎ
∈ Y

ℎ
. (25)

Using the 𝐻
2-regularity property of the Stokes and Ritz

operators in smooth domains and a duality argument, we can
show the following approximation properties hold:

󵄩󵄩󵄩󵄩u − 𝑃
𝑠

ℎ
u󵄩󵄩󵄩󵄩1 +

󵄩󵄩󵄩󵄩𝑝 − 𝑃
𝑠

ℎ
𝑝
󵄩󵄩󵄩󵄩 ≤ 𝑐ℎ

𝑘
(‖u‖𝑘+1 +

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝑘)

(26)

󵄩󵄩󵄩󵄩w − 𝑃
𝑟

ℎ
w󵄩󵄩󵄩󵄩1 ≤ 𝑐ℎ

𝑘
‖w‖𝑘+1 . (27)

Moreover, these approximation properties together with (11)-
(12) yield

󵄩󵄩󵄩󵄩𝑃
𝑠

ℎ
u󵄩󵄩󵄩󵄩∞ +

󵄩󵄩󵄩󵄩𝑃
𝑠

ℎ
u󵄩󵄩󵄩󵄩1,3 ≤ 𝑐 (‖u‖2 +

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩1) ,

󵄩󵄩󵄩󵄩𝑃
𝑟

ℎ
w󵄩󵄩󵄩󵄩∞ +

󵄩󵄩󵄩󵄩𝑃
𝑟

ℎ
w󵄩󵄩󵄩󵄩1,3 ≤ 𝑐 ‖w‖2 .

(28)

Moreover, under certain smoothness assumptions on 𝜙,
we have by Taylor expansion with integral remainder

󵄩󵄩󵄩󵄩󵄩
𝜙
𝑛+1/2

− 𝜙 (𝑡
𝑛+1/2

)
󵄩󵄩󵄩󵄩󵄩

2

𝑘
≤
(Δ𝑡)

3

48
∫

𝑡𝑛+1

𝑡𝑛

󵄩󵄩󵄩󵄩󵄩
𝜕
2

𝑡
𝜙
󵄩󵄩󵄩󵄩󵄩

2

𝑘
𝑑𝑡, (29)

󵄩󵄩󵄩󵄩𝜕𝑡𝜙 (𝑡𝑛+1/2) −D (𝜙 (𝑡
𝑛+1

))
󵄩󵄩󵄩󵄩

2

≤
(Δ𝑡)

3

1280
∫

𝑡𝑛+1

𝑡𝑛

󵄩󵄩󵄩󵄩󵄩
𝜕
3

𝑡
𝜙 (𝑡)

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑡,

(30)

󵄩󵄩󵄩󵄩I (𝜙 (𝑡
𝑛+1/2

)) − 𝜙 (𝑡
𝑛+1/2

)
󵄩󵄩󵄩󵄩𝐻𝑘

≤ 𝑐 (Δ𝑡)
3/2 󵄩󵄩󵄩󵄩󵄩

𝜕
2

𝑡
𝜙 (𝑡)

󵄩󵄩󵄩󵄩󵄩𝐿2(𝑡𝑛−1 ,𝑡𝑛+1/2;𝐻
𝑘
)
.

(31)

Under the above-mentioned assumptions, we can obtain
the following error estimate for the velocity.
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Theorem 4. Suppose that Assumptions A1 and A2 hold with
a positive number ℎ

0
and a positive integer 𝑘 that the solution

(u,w, 𝑝) of (15) satisfies

u ∈ C ([0, 𝑇] ;V𝑔) ∩ 𝐻
1
(0, 𝑇;H𝑘+1 (Ω))

∩ 𝐻
3
(0, 𝑇; L2 (Ω)) ,

w ∈ C ([0, 𝑇] ;H1
𝑞
) ∩ 𝐻

1
(0, 𝑇;H𝑘+1 (Ω))

∩ 𝐻
3
(0, 𝑇; L2 (Ω)) ,

𝑝 ∈ C ([0, 𝑇] ; 𝐿
2

0
(Ω) ∩ 𝐻

𝑘
(Ω))

(32)

and that the initial conditions (u𝑖
ℎ
,w𝑖
ℎ
), 𝑖 = 0, 1 satisfy

∑
1

𝑖=0
‖(u𝑖

ℎ
,w𝑖
ℎ
) − (u(𝑡

𝑖
),w(𝑡

𝑖
))‖ ≤ 𝑐ℎ

𝑘
.Then, for any ℎ ∈ (0, ℎ

0
]

the approximate solutions (u
ℎ
,w
ℎ
) of (23) satisfy the following

error estimates:

󵄩󵄩󵄩󵄩u − u
ℎ

󵄩󵄩󵄩󵄩𝑙∞(𝐿2(Ω))∩𝑙2(H1(Ω)) ≤ 𝐶 (Δ𝑡
2
+ ℎ

𝑘
) ,

󵄩󵄩󵄩󵄩w − w
ℎ

󵄩󵄩󵄩󵄩𝑙∞(𝐿2(Ω))∩𝑙2(H1(Ω)) ≤ 𝐶 (Δ𝑡
2
+ ℎ

𝑘
)

(33)

for some constant 𝐶 independent of the mesh size ℎ and time
step Δ𝑡.

Proof. Let us denote the Stokes projection (𝑃𝑠
ℎ
u(𝑡

𝑛
), 𝑃

𝑠

ℎ
𝑝(𝑡

𝑛
))

and generalized Ritz projection 𝑃
𝑟

ℎ
w(𝑡

𝑛
) by (u(𝑡

𝑛
), 𝑝(𝑡

𝑛
))

and w(𝑡
𝑛
), respectively, for convenience. Moreover, let (e𝑛

1ℎ
,

𝑒
𝑛

2ℎ
, e𝑛
3ℎ
) be the errors defined by

e𝑛
1ℎ

fl u𝑛
ℎ
− u (𝑡

𝑛
) ,

𝑒
𝑛

2ℎ
fl 𝑝

𝑛

ℎ
− 𝑝 (𝑡

𝑛
) ,

e𝑛
3ℎ

fl w𝑛
ℎ
− w (𝑡

𝑛
) .

(34)

Then by the approximation properties (26)-(27), we need to
only estimate e𝑛

1ℎ
and 𝑒𝑛

2ℎ
in order to furnish the desired error

estimates. To this end, we first subtract (15) from (23) and
obtain

(D (u𝑛+1
ℎ

) − 𝜕
𝑡
u (𝑡

𝑛+1/2
) , k

ℎ
) + 𝑎

1
(u𝑛+1/2
ℎ

, k
ℎ
)

+ 𝑏 (k
ℎ
, 𝑝
𝑛+1/2

ℎ
) = ⟨ℵ

𝑛

ℎ
, k
ℎ
⟩ + 𝑎

1
(u (𝑡

𝑛+1/2
) , k

ℎ
)

+ 𝑏 (k
ℎ
, 𝑝 (𝑡

𝑛+1/2
)) ∀k

ℎ
∈ X

ℎ
,

𝑏 (u𝑛+1/2
ℎ

, 𝑟
ℎ
) = 𝑏 (u (𝑡

𝑛+1/2
) , 𝑟

ℎ
) ∀𝑟

ℎ
∈ 𝑄

ℎ
,

(D (w𝑛+1
ℎ

) − 𝜕
𝑡
w (𝑡

𝑛+1/2
) ,𝜙

ℎ
) + 𝑎

2
(w𝑛+1/2

ℎ
,𝜙
ℎ
)

+ 4]
𝑟
(w𝑛+1/2

ℎ
− w (𝑡

𝑛+1/2
) ,𝜙

ℎ
)

= 𝑎
2
(w (𝑡

𝑛+1/2
) ,𝜙

ℎ
) + ⟨ℵ̂

𝑛

ℎ
,𝜙
ℎ
⟩ ∀𝜙

ℎ
∈ Y

ℎ
,

(35)

at each time step 𝑛, where ℵ𝑛
ℎ
and ℵ̂𝑛

ℎ
are defined by

⟨ℵ
𝑛

ℎ
, k
ℎ
⟩ fl 𝑐 (u (𝑡

𝑛+1/2
) , u (𝑡

𝑛+1/2
) , k

ℎ
)

− 𝑐 (I (u𝑛+1/2
ℎ

) , u𝑛+1/2
ℎ

, k
ℎ
)

+ 𝑑 (I (w𝑛+1/2
ℎ

) − w (𝑡
𝑛+1/2

) , k
ℎ
) ,

⟨ℵ̂
𝑛

ℎ
,𝜙
ℎ
⟩ fl 𝑐 (u (𝑡

𝑛+1/2
) ,w (𝑡

𝑛+1/2
) ,𝜙

ℎ
)

− 𝑐 (I (u𝑛+1/2
ℎ

) ,w𝑛+1/2
ℎ

,𝜙
ℎ
)

+ 𝑑 (u𝑛+1/2
ℎ

− u (𝑡
𝑛+1/2

) ,𝜙) .

(36)

Using the definition of Stokes and generalized Ritz pro-
jections, we obtain the basic error equations of the method

(D (e𝑛+1
1ℎ

) , k
ℎ
) + 𝑎

1
(e𝑛+1/2
1ℎ

, k
ℎ
) + 𝑏 (k

ℎ
, 𝑒
𝑛+1/2

2ℎ
)

= ⟨ℵ
𝑛

ℎ
, k
ℎ
⟩ + (𝜕

𝑡
u (𝑡

𝑛+1/2
) −Du (𝑡

𝑛+1
) , k

ℎ
)

∀k
ℎ
∈ X

ℎ
,

𝑏 (e𝑛+1/2
1ℎ

, 𝑟
ℎ
) = 0 ∀𝑟

ℎ
∈ 𝑄

ℎ
,

(D (e𝑛+1
3ℎ

) ,𝜙
ℎ
) + 𝑎

2
(e𝑛+1/2
3ℎ

,𝜙
ℎ
) + 4]

𝑟
(e𝑛+1/2
3ℎ

,𝜙
ℎ
)

= (𝜕
𝑡
w (𝑡

𝑛+1/2
) −Dw (𝑡

𝑛+1
) ,𝜙

ℎ
) + ⟨ℵ̂

𝑛

ℎ
,𝜙
ℎ
⟩

+ 4]
𝑟
(w (𝑡

𝑛+1/2
) − w (𝑡

𝑛+1/2
) ,𝜙

ℎ
) ∀𝜙

ℎ
∈ Y

ℎ
.

(37)

We next split the nonlinear terms ⟨ℵ𝑛
ℎ
, k
ℎ
⟩ and ⟨ℵ̂𝑛

ℎ
,𝜙
ℎ
⟩ on

the right-hand side of (37) into several terms as follows:

⟨ℵ
𝑛

ℎ
, k
ℎ
⟩ = 𝑐 (u (𝑡

𝑛+1/2
) , u (𝑡

𝑛+1/2
) − u (𝑡

𝑛+1/2
) , k

ℎ
)

+ 𝑐 (u (𝑡
𝑛+1/2

) −I (u (𝑡
𝑛+1/2

)) , u (𝑡
𝑛+1/2

) , k
ℎ
)

+ 𝑐 (I (u (𝑡
𝑛+1/2

))

−I (u (𝑡
𝑛+1/2

)) , u (𝑡
𝑛+1/2

) , k
ℎ
)

− 𝑐 (I (e𝑛+1/2
1ℎ

) , u (𝑡
𝑛+1/2

) , k
ℎ
)

− 𝑐 (I (u (𝑡
𝑛+1/2

)) , e𝑛+1/2
1ℎ

, k
ℎ
)

− 𝑐 (I (e𝑛+1/2
1ℎ

) , e𝑛+1/2
1ℎ

, k
ℎ
) + 𝑑 (I (w (𝑡

𝑛+1/2
))

− w (𝑡
𝑛+1/2

) , k
ℎ
) + 𝑑 (I (e𝑛+1/2

3ℎ
) , k

ℎ
)

š
8

∑

𝑖=1

⟨ℵ
𝑛

𝑖
, k
ℎ
⟩ ,

⟨ℵ̂
𝑛

ℎ
,𝜙
ℎ
⟩ = 𝑐 (u (𝑡

𝑛+1/2
) ,w (𝑡

𝑛+1/2
) − w (𝑡

𝑛+1/2
) ,𝜙

ℎ
)

+ 𝑐 (u (𝑡
𝑛+1/2

) −I (u (𝑡
𝑛+1/2

)) ,w (𝑡
𝑛+1/2

) ,𝜙
ℎ
)

+ 𝑐 (I (u (𝑡
𝑛+1/2

))
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−I (u (𝑡
𝑛+1/2

)) ,w (𝑡
𝑛+1/2

) ,𝜙
ℎ
)

− 𝑐 (I (e𝑛+1/2
1ℎ

) ,w (𝑡
𝑛+1/2

) ,𝜙
ℎ
)

− 𝑐 (I (u (𝑡
𝑛+1/2

)) , 𝑒
𝑛+1/2

3ℎ
,𝜙
ℎ
)

− 𝑐 (I (e𝑛+1/2
1ℎ

) , 𝑒
𝑛+1/2

3ℎ
,𝜙
ℎ
) + 𝑑 (e𝑛+1/2

1ℎ
,𝜙
ℎ
)

+ 𝑑 (u (𝑡
𝑛+1/2

) − u (𝑡
𝑛+1/2

) ,𝜙
ℎ
) š

8

∑

𝑖=1

⟨ℵ̂
𝑛

𝑖
,𝜙
ℎ
⟩ .

(38)

Notice ⟨ℵ𝑛
5
, e𝑛+1/2
1ℎ

⟩ = ⟨ℵ
𝑛

6
, e𝑛+1/2
1ℎ

⟩ = ⟨ℵ̂
𝑛

5
, e𝑛+1/2
3ℎ

⟩ = ⟨ℵ̂
𝑛

6
,

e𝑛+1/2
3ℎ

⟩ = 0 due to skew-symmetry of trilinear form 𝑐(⋅, ⋅, ⋅).
Therefore, setting (k

ℎ
,𝜙
ℎ
) = (Δ𝑡e𝑛+1/2

1ℎ
, Δ𝑡e𝑛+1/2

3ℎ
) into (37) we

can write it as

󵄩󵄩󵄩󵄩󵄩
e𝑛+1
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩e
𝑛

1ℎ

󵄩󵄩󵄩󵄩

2

+ Δ𝑡 (] + ]
𝑟
)
󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

= Δ𝑡 (𝜕
𝑡
u (𝑡

𝑛+1/2
) −Du (𝑡

𝑛+1
) , e𝑛+1/2

1ℎ
)

+ Δ𝑡

4

∑

𝑖=1

⟨ℵ
𝑛

𝑖
, e𝑛+1/2
1ℎ

⟩ + Δ𝑡

8

∑

𝑖=7

⟨ℵ
𝑛

𝑖
, e𝑛+1/2
1ℎ

⟩ ,

󵄩󵄩󵄩󵄩󵄩
e𝑛+1
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩e
𝑛

3ℎ

󵄩󵄩󵄩󵄩

2

+ (𝑐
𝑎
+ 𝑐

𝑑
) Δ𝑡

󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

+ 4]
𝑟
Δ𝑡

󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

+ (𝑐
0
+ 𝑐

𝑑
− 𝑐

𝑎
) Δ𝑡

󵄩󵄩󵄩󵄩󵄩
∇ ⋅ e𝑛+1/2

3ℎ

󵄩󵄩󵄩󵄩󵄩

2

= Δ𝑡 (𝜕
𝑡
w (𝑡

𝑛+1/2
) −D (w𝑛+1) , e𝑛+1/2

3ℎ
)

+ 4]
𝑟
Δ𝑡 (w (𝑡

𝑛+1/2
) − w (𝑡

𝑛+1/2
) , e𝑛+1/2

3ℎ
)

+ Δ𝑡

4

∑

𝑖=1

⟨ℵ̂
𝑛

ℎ
, e𝑛+1/2
3ℎ

⟩ + Δ𝑡

8

∑

𝑖=7

⟨ℵ̂
𝑛

ℎ
, e𝑛+1/2
3ℎ

⟩ .

(39)

We proceed to bound each term on the right-hand side of
(39) and absorb like-terms into the left-hand side. We begin
with the first terms on the right-hand side of (39)

1
and (39)

2
.

Notice that by triangle inequality

󵄩󵄩󵄩󵄩𝜕𝑡u (𝑡𝑛+1/2) −Du (𝑡
𝑛+1

)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝜕𝑡u (𝑡𝑛+1/2) −Du (𝑡

𝑛+1
)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩Du (𝑡

𝑛+1
) −Du (𝑡

𝑛+1
)
󵄩󵄩󵄩󵄩 .

(40)

It is easy to verify, by Cauchy-Schwarz inequality, that

󵄩󵄩󵄩󵄩Du (𝑡
𝑛+1

) −Du (𝑡
𝑛+1

)
󵄩󵄩󵄩󵄩 =

1

Δ𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡𝑛+1

𝑡𝑛

(𝑃
𝑠

ℎ
− 𝐼) 𝜕

𝑡
u 𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
1

√Δ𝑡

󵄩󵄩󵄩󵄩(𝑃
𝑠

ℎ
− 𝐼) 𝜕

𝑡
u󵄩󵄩󵄩󵄩𝐿2(𝑡𝑛,𝑡𝑛+1;L(Ω)) .

(41)

Combining this with Stokes projection approximation prop-
erty (26) and estimate (30), we obtain

󵄩󵄩󵄩󵄩𝜕𝑡u (𝑡𝑛+1/2) −Du (𝑡
𝑛+1

)
󵄩󵄩󵄩󵄩

≤ 𝑐 {(Δ𝑡)
3/2 󵄩󵄩󵄩󵄩󵄩

𝜕
3

𝑡
u󵄩󵄩󵄩󵄩󵄩𝐿2(𝑡𝑛 ,𝑡𝑛+1;L2(Ω))

+
ℎ
𝑘

√Δ𝑡

󵄩󵄩󵄩󵄩(𝜕𝑡u, 𝜕𝑡𝑝)
󵄩󵄩󵄩󵄩𝐿2(𝑡𝑛 ,𝑡𝑛+1;H𝑘+1(Ω)×𝐻𝑘(Ω))

} .

(42)

In the same way, we can show

󵄩󵄩󵄩󵄩𝜕𝑡w (𝑡
𝑛+1/2

) −Dw (𝑡
𝑛+1

)
󵄩󵄩󵄩󵄩

≤ 𝑐 {(Δ𝑡)
3/2 󵄩󵄩󵄩󵄩󵄩

𝜕
3

𝑡
w󵄩󵄩󵄩󵄩󵄩𝐿2(𝑡𝑛 ,𝑡𝑛+1;L2(Ω))

+
ℎ
𝑘

√Δ𝑡

󵄩󵄩󵄩󵄩𝜕𝑡w
󵄩󵄩󵄩󵄩𝐿2(𝑡𝑛 ,𝑡𝑛+1;H𝑘+1(Ω))

} .

(43)

By Cauchy-Schwarz inequality and (42) and (43), we have

(𝜕
𝑡
u (𝑡

𝑛+1/2
) −Du (𝑡

𝑛+1
) , e𝑛+1/2

1ℎ
)

≤ 𝐶{(Δ𝑡)
3/2 󵄩󵄩󵄩󵄩󵄩

𝜕
3

𝑡
u󵄩󵄩󵄩󵄩󵄩𝐿2(𝑡𝑛,𝑡𝑛+1;L2(Ω))

+
ℎ
𝑘

√Δ𝑡

󵄩󵄩󵄩󵄩(𝜕𝑡u, 𝜕𝑡𝑝)
󵄩󵄩󵄩󵄩𝐿2(𝑡𝑛 ,𝑡𝑛+1;H𝑘+1(Ω)×𝐻𝑘(Ω))

}
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩
,

(𝜕
𝑡
w (𝑡

𝑛+1/2
) −Dw (𝑡

𝑛+1
) , e𝑛+1/2

3ℎ
)

≤ 𝐶{(Δ𝑡)
3/2 󵄩󵄩󵄩󵄩󵄩

𝜕
3

𝑡
w󵄩󵄩󵄩󵄩󵄩𝐿2(𝑡𝑛 ,𝑡𝑛+1;L2(Ω))

+
ℎ
𝑘

√Δ𝑡

󵄩󵄩󵄩󵄩𝜕𝑡w
󵄩󵄩󵄩󵄩𝐿2(𝑡𝑛,𝑡𝑛+1;H𝑘+1(Ω))

}
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
3ℎ

󵄩󵄩󵄩󵄩󵄩
.

(44)

Using Hölder’s inequality, Sobolev inequality, and (26)
and (31), we obtain

󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

1
, e𝑛+1/2
1ℎ

⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

∗ 󵄩󵄩󵄩󵄩u (𝑡𝑛+1/2)
󵄩󵄩󵄩󵄩1

⋅
󵄩󵄩󵄩󵄩u (𝑡𝑛+1/2) − u (𝑡

𝑛+1/2
)
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩1

≤ 𝑐
∗
ℎ
𝑘 󵄩󵄩󵄩󵄩(u, 𝑝)

󵄩󵄩󵄩󵄩C([𝑡𝑛,𝑡𝑛+1];H𝑘+1(Ω)×H𝑘(Ω))
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩
,

󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

2
, e𝑛+1/2
1ℎ

⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

∗ 󵄩󵄩󵄩󵄩u (𝑡𝑛+1/2) −I (u (𝑡
𝑛+1/2

))
󵄩󵄩󵄩󵄩

⋅ (
󵄩󵄩󵄩󵄩∇u (𝑡𝑛+1/2)

󵄩󵄩󵄩󵄩𝐿3(Ω)
+
󵄩󵄩󵄩󵄩u (𝑡𝑛+1/2)

󵄩󵄩󵄩󵄩∞
)
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩1

≤ 𝑐
∗
(Δ𝑡)

3/2 󵄩󵄩󵄩󵄩󵄩
𝜕
2

𝑡
u󵄩󵄩󵄩󵄩󵄩𝐿2(𝑡𝑛 ,𝑡𝑛+1;𝐿2(Ω))

󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩1
,
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󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

3
, e𝑛+1/2
1ℎ

⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

∗ 󵄩󵄩󵄩󵄩I (u (𝑡
𝑛+1/2

)) −I (u (𝑡
𝑛+1/2

))
󵄩󵄩󵄩󵄩1

⋅ (
󵄩󵄩󵄩󵄩u (𝑡𝑛+1/2)

󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩∇u (𝑡𝑛+1/2)

󵄩󵄩󵄩󵄩𝐿3(Ω)
)
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩

≤ 𝑐
∗
ℎ
𝑘 󵄩󵄩󵄩󵄩(u, 𝑝)

󵄩󵄩󵄩󵄩C([𝑡𝑛 ,𝑡𝑛+1];H𝑘+1(Ω)×H𝑘(Ω))
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩
,

󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

4
, e𝑛+1/2
1ℎ

⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

∗ 󵄩󵄩󵄩󵄩󵄩
I (e𝑛+1/2

1ℎ
)
󵄩󵄩󵄩󵄩󵄩

⋅ (
󵄩󵄩󵄩󵄩u (𝑡𝑛+1/2)

󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩∇u (𝑡𝑛+1/2)

󵄩󵄩󵄩󵄩𝐿3(Ω)
)
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩1

≤ 𝑐
∗
(
󵄩󵄩󵄩󵄩e
𝑛

1ℎ

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
e𝑛−1
1ℎ

󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩1
.

(45)

We next estimate ⟨ℵ𝑛
7
, e𝑛+1/2
1ℎ

⟩ and ⟨ℵ
𝑛

8
, e𝑛+1/2
1ℎ

⟩. To this end,
first notice that ∫

Ω
∇ × w ⋅ k 𝑑Ω = ∫

Ω
w ⋅ ∇ × k 𝑑Ω for k ∈

H1
0
(Ω). Therefore, using this identity, Hölder’s inequality and

(27) and (31) we find that
󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

7
, e𝑛+1/2
1ℎ

⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

󵄩󵄩󵄩󵄩I (w (𝑡
𝑛+1/2

)) − w (𝑡
𝑛+1/2

)
󵄩󵄩󵄩󵄩

⋅
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩1
≤ 𝑐 [ℎ

𝑘
‖w‖C([𝑡𝑛−1 ,𝑡𝑛+1];H𝑘+1(Ω))

+ (Δ𝑡)
3/2 󵄩󵄩󵄩󵄩󵄩

𝜕
2

𝑡
w󵄩󵄩󵄩󵄩󵄩𝐿2(𝑡𝑛,𝑡𝑛+1/2 ;𝐿2(Ω))]

󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩1
.

(46)

Arguing similarly we obtain
󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

8
, e𝑛+1/2
1ℎ

⟩
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
2]
𝑟
(I (e𝑛+1/2

3ℎ
) , ∇ × e𝑛+1/2

1ℎ
)
󵄨󵄨󵄨󵄨󵄨

≤ 2√2]
𝑟

󵄩󵄩󵄩󵄩󵄩
I (e𝑛+1/2

3ℎ
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩
.

(47)

Thus combining these estimates and using Young’s inequality,
we have

4

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

𝑖
, e𝑛+1/2
1ℎ

⟩
󵄨󵄨󵄨󵄨󵄨
+

8

∑

𝑖=7

󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

𝑖
, e𝑛+1/2
1ℎ

⟩
󵄨󵄨󵄨󵄨󵄨

≤ 𝑐 {ℎ
2𝑘 󵄩󵄩󵄩󵄩(u, 𝑝)

󵄩󵄩󵄩󵄩

2

C([𝑡𝑛,𝑡𝑛+1];H𝑘+1(Ω)×H𝑘(Ω))

+ ℎ
2𝑘
‖w‖2C([𝑡𝑛,𝑡𝑛+1];𝐻𝑘+1(Ω))

+ (Δ𝑡)
3 󵄩󵄩󵄩󵄩󵄩
(𝜕
2

𝑡
u, 𝜕2

𝑡
w)󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝑡𝑛 ,𝑡𝑛+1;L2(Ω))

+
󵄩󵄩󵄩󵄩e
𝑛

1ℎ

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
e𝑛−1
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩e
𝑛

3ℎ

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
e𝑛−1
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

} +
]
𝑟

2

󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

.

(48)

We can estimate ⟨ℵ̂𝑛
𝑗
, e𝑛+1/2
3ℎ

⟩, 𝑗 = 1, 2, 3, 4 similarly using
Hölder’s inequality, Sobolev inequality, and approximation
properties. Therefore, we obtain

4

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
⟨ℵ̂

𝑛

𝑖
, e𝑛+1/2
3ℎ

⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐 {(Δ𝑡)

3 󵄩󵄩󵄩󵄩󵄩
𝜕
2

𝑡
u󵄩󵄩󵄩󵄩󵄩
2

𝐿
2
(𝑡𝑛 ,𝑡𝑛+1;𝐿

2
(Ω))

+ ℎ
2𝑘 󵄩󵄩󵄩󵄩(u, 𝑝)

󵄩󵄩󵄩󵄩

2

C([𝑡𝑛 ,𝑡𝑛+1];H𝑘+1(Ω)×𝐻𝑘(Ω))

+ ℎ
2𝑘
‖w‖2C([𝑡𝑛,𝑡𝑛+1];H𝑘+1(Ω)) +

󵄩󵄩󵄩󵄩e
𝑛

1ℎ

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
e𝑛−1
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

}

+
𝑐
𝑎
+ 𝑐

𝑑

8

󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

.

(49)

In order to estimate terms ⟨ℵ̂𝑛
7
, e𝑛+1/2
3ℎ

⟩ and ⟨ℵ̂
𝑛

8
, e𝑛+1/2
3ℎ

⟩, we
proceed as follows. We estimate the first term as

󵄨󵄨󵄨󵄨󵄨
⟨ℵ̂

𝑛

7
, e𝑛+1/2
3ℎ

⟩
󵄨󵄨󵄨󵄨󵄨
≤ 2√2]

𝑟

󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩e3ℎ
󵄩󵄩󵄩󵄩

≤ 4]
𝑟

󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

+
]
𝑟

2

󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩

2
(50)

and the second as
󵄨󵄨󵄨󵄨󵄨
⟨ℵ̂

𝑛

8
, e𝑛+1/2
3ℎ

⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

󵄩󵄩󵄩󵄩u (𝑡𝑛+1/2) − u (𝑡
𝑛+1/2

)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
3ℎ

󵄩󵄩󵄩󵄩󵄩

≤ 𝑐ℎ
2𝑘 󵄩󵄩󵄩󵄩(u, 𝑝)

󵄩󵄩󵄩󵄩

2

C([𝑡𝑛 ,𝑡𝑛+1];H𝑘+1(Ω)×H𝑘(Ω))

+
𝑐
𝑎
+ 𝑐

𝑑

8

󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

.

(51)

Applying estimates (44), (48), (49), (50), and (51) into (39)
gives

󵄩󵄩󵄩󵄩󵄩
e𝑛+1
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩e
𝑛

1ℎ

󵄩󵄩󵄩󵄩

2

+
(] + ]

𝑟
) Δ𝑡

2

󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

≤ Δ𝑡Υ
𝑛

1

+ 𝑐Δ𝑡 {
󵄩󵄩󵄩󵄩e
𝑛

1ℎ

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
e𝑛−1
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩e
𝑛

3ℎ

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
e𝑛−1
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

} ,

󵄩󵄩󵄩󵄩󵄩
e𝑛+1
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩e
𝑛

3ℎ

󵄩󵄩󵄩󵄩

2

+
(𝑐
𝑎
+ 𝑐

𝑑
) Δ𝑡

2

󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

+ (𝑐
0
+ 𝑐

𝑑
− 𝑐

𝑎
) Δ𝑡

󵄩󵄩󵄩󵄩󵄩
∇ ⋅ e𝑛+1/2

3ℎ

󵄩󵄩󵄩󵄩󵄩

2

≤ Δ𝑡Υ
𝑛

2

+ 𝑐Δ𝑡 [
󵄩󵄩󵄩󵄩e
𝑛

1ℎ

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
e𝑛−1
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

] +
]
𝑟

2
Δ𝑡

󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

,

(52)

where

Υ
𝑛

1
fl 𝑐 {(Δ𝑡)

3 󵄩󵄩󵄩󵄩󵄩
𝜕
3

𝑡
u󵄩󵄩󵄩󵄩󵄩
2

𝐿
2
(𝑡𝑛 ,𝑡𝑛+1;𝐿

2
(Ω))

+
ℎ
2𝑘

Δ𝑡

󵄩󵄩󵄩󵄩(𝜕𝑡u, 𝜕𝑡𝑝)
󵄩󵄩󵄩󵄩

2

𝐿
2
(𝑡𝑛,𝑡𝑛+1;H𝑘+1(Ω)×H𝑘(Ω))

+ ℎ
2𝑘 󵄩󵄩󵄩󵄩(u, 𝑝)

󵄩󵄩󵄩󵄩

2

C([𝑡𝑛 ,𝑡𝑛+1];H𝑘+1(Ω)×H𝑘(Ω))

+ ℎ
2𝑘
‖w‖2C([𝑡𝑛 ,𝑡𝑛+1];H𝑘+1(Ω))

+ (Δ𝑡)
3 󵄩󵄩󵄩󵄩󵄩
(𝜕
2

𝑡
u, 𝜕2

𝑡
w)󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝑡𝑛,𝑡𝑛+1;L2(Ω))

} ,

Υ
𝑛

2
fl 𝑐 {(Δ𝑡)

3 󵄩󵄩󵄩󵄩󵄩
𝜕
3

𝑡
w󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝑡𝑛 ,𝑡𝑛+1;𝐿

2
(Ω))

+
ℎ
2𝑘

Δ𝑡

󵄩󵄩󵄩󵄩𝜕𝑡w
󵄩󵄩󵄩󵄩

2

𝐿
2
(𝑡𝑛,𝑡𝑛+1;H𝑘+1(Ω))

+ ℎ
2𝑘 󵄩󵄩󵄩󵄩(u, 𝑝)

󵄩󵄩󵄩󵄩

2

C([𝑡𝑛 ,𝑡𝑛+1];H𝑘+1(Ω)×H𝑘(Ω))

+ ℎ
2𝑘
‖w‖2C([𝑡𝑛 ,𝑡𝑛+1];H𝑘+1(Ω))

+ (Δ𝑡)
3 󵄩󵄩󵄩󵄩󵄩
𝜕
2

𝑡
u󵄩󵄩󵄩󵄩󵄩
2

𝐿
2
(𝑡𝑛 ,𝑡𝑛+1;L2(Ω))

} .

(53)



8 Advances in Numerical Analysis

Adding (52)
1
and (52)

2
yields

󵄩󵄩󵄩󵄩󵄩
(e𝑛+1
1ℎ

, e𝑛+1
3ℎ

)
󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(e

𝑛

1ℎ
, e𝑛
3ℎ
)
󵄩󵄩󵄩󵄩

2

+
]Δ𝑡
2

󵄩󵄩󵄩󵄩󵄩
∇ × e𝑛+1/2

1ℎ

󵄩󵄩󵄩󵄩󵄩

2

+
(𝑐
𝑎
+ 𝑐

𝑑
)

2
Δ𝑡

󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

+ (𝑐
0
+ 𝑐

𝑑
− 𝑐

𝑎
) Δ𝑡

󵄩󵄩󵄩󵄩󵄩
∇ ⋅ e𝑛+1/2

3ℎ

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑐Δ𝑡 [
󵄩󵄩󵄩󵄩󵄩
(e𝑛−1
1ℎ

, e𝑛−1
3ℎ

)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩(e

𝑛

1ℎ
, e𝑛
3ℎ
)
󵄩󵄩󵄩󵄩

2

] + Δ𝑡Υ
𝑛
,

(54)

where

Υ
𝑛 fl

2

∑

𝑖=1

Υ
𝑛

𝑖
= 𝑐 [(Δ𝑡)

3 󵄩󵄩󵄩󵄩󵄩
(𝜕
3

𝑡
u, 𝜕3

𝑡
w)󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝑡𝑛 ,𝑡𝑛+1;L2(Ω))

+ (Δ𝑡)
3 󵄩󵄩󵄩󵄩󵄩
(𝜕
2

𝑡
u, 𝜕2

𝑡
w)󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝑡𝑛 ,𝑡𝑛+1;𝐿

2
(Ω))

+
ℎ
2𝑘

Δ𝑡

󵄩󵄩󵄩󵄩(𝜕𝑡u, 𝜕𝑡𝑝,

𝜕
𝑡
w)󵄩󵄩󵄩󵄩

2

𝐿
2
(𝑡𝑛 ,𝑡𝑛+1;H𝑘+1(Ω)×𝐻𝑘(Ω)×H𝑘+1(Ω))

+ ℎ
2𝑘 󵄩󵄩󵄩󵄩(u,

𝑝)
󵄩󵄩󵄩󵄩

2

C([𝑡𝑛 ,𝑡𝑛+1];H𝑘+1(Ω)×𝐻𝑘(Ω))

+ ℎ
2𝑘
‖w‖2C([𝑡𝑛 ,𝑡𝑛+1];H𝑘+1(Ω))] .

(55)

Summing (54) from 𝑛 = 1 to𝑚 − 1 and applying the discrete
Grönwall inequality, we have that

󵄩󵄩󵄩󵄩e
𝑚

1ℎ

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩e
𝑚

3ℎ

󵄩󵄩󵄩󵄩

2

+
Δ𝑡]
2

𝑚−1

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

+
(𝑐
𝑎
+ 𝑐

𝑑
) Δ𝑡

2

𝑚−1

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
∇𝑒
𝑛+1/2

3ℎ

󵄩󵄩󵄩󵄩󵄩

2

+ (𝑐
0
+ 𝑐

𝑑
− 𝑐

𝑎
) Δ𝑡

𝑚−1

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
∇ ⋅ e𝑛+1/2

3ℎ

󵄩󵄩󵄩󵄩󵄩

2

≤ Δ𝑡

𝑚−1

∑

𝑛=1

Υ
𝑛
+
󵄩󵄩󵄩󵄩󵄩
e0
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
e0
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

.

(56)

Notice that from the assumptions on the solution (u, 𝑝,w) it
holds that

Δ𝑡

𝑁

∑

𝑛=1

Υ
𝑛
≤ 𝑐 ((Δ𝑡)

4
+ ℎ

2𝑘
) . (57)

Therefore the required error estimate now follows from
(56), assumptions on the initial errors and triangle inequality.

We next analyze the convergence of pressure for the
decoupled scheme. Note that

󵄩󵄩󵄩󵄩𝑝 − 𝑝
𝑛

ℎ

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑝 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑝 − 𝑝

𝑛

ℎ

󵄩󵄩󵄩󵄩 , (58)

so we need to only estimate ‖𝑝 − 𝑝𝑛
ℎ
‖.

Theorem 5. Under the assumptions inTheorem 4, the approx-
imate pressure 𝑝

ℎ
of (23) satisfies

󵄩󵄩󵄩󵄩𝑝 − 𝑝ℎ
󵄩󵄩󵄩󵄩𝑙2(𝐿2(Ω)) ≤

𝑐

√Δ𝑡
(Δ𝑡

2
+ ℎ

𝑘
) , (59)

for some constant 𝑐 independent of mesh size ℎ and time step
Δ𝑡.

Proof. From (37)
1
and inf-sup condition (17), it holds that

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1/2

2ℎ

󵄩󵄩󵄩󵄩󵄩
≤
1

𝛽
sup
kℎ∈Xℎ

𝑏 (k
ℎ
, 𝑒
𝑛+1/2

2ℎ
)

󵄩󵄩󵄩󵄩kℎ
󵄩󵄩󵄩󵄩1

≤
1

𝛽
sup
kℎ∈Xℎ

1

󵄩󵄩󵄩󵄩kℎ
󵄩󵄩󵄩󵄩1

⋅ {− (De𝑛+1
1ℎ

, k
ℎ
) − 𝑎

1
(e𝑛+1/2
1ℎ

, k
ℎ
)

+ (𝜕
𝑡
u (𝑡

𝑛+1/2
) −Du (𝑡

𝑛+1
) , k

ℎ
) + ⟨ℵ

𝑛

ℎ
, k
ℎ
⟩}

≤ 𝑐{
󵄩󵄩󵄩󵄩󵄩
De𝑛+1

1ℎ

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝜕𝑡u (𝑡𝑛+1/2) −Du (𝑡

𝑛+1
)
󵄩󵄩󵄩󵄩𝑋ℎ
∗ +

8

∑

𝑖=1

󵄩󵄩󵄩󵄩ℵ
𝑛

𝑖

󵄩󵄩󵄩󵄩𝑋ℎ
∗} .

(60)

We start by estimating ‖ℵ𝑛
5
‖
𝑋ℎ
∗ and ‖ℵ𝑛

6
‖
𝑋ℎ
∗ as others can be

estimated as usual. First, byHölder’s and Sobolev inequalities,
we obtain

󵄨󵄨󵄨󵄨⟨ℵ
𝑛

5
, k
ℎ
⟩
󵄨󵄨󵄨󵄨 = (I (u (𝑡

𝑛+1/2
)) ⋅ ∇e𝑛+1/2

1ℎ
, k
ℎ
) +

1

2
(∇

⋅I (u (𝑡
𝑛+1/2

)) e𝑛+1/2
1ℎ

k
ℎ
) ≤ 𝑐 (

󵄩󵄩󵄩󵄩I (u (𝑡
𝑛+1/2

))
󵄩󵄩󵄩󵄩∞

+
󵄩󵄩󵄩󵄩∇ (I (u (𝑡

𝑛+1/2
)))

󵄩󵄩󵄩󵄩𝐿3(Ω)
)
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩kℎ
󵄩󵄩󵄩󵄩1 .

(61)

Before estimating the other term, notice that, by the inverse
estimate (Assumption A2) and (56), we obtain

󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩1
≤ 𝑐

∗min {ℎ−1 󵄩󵄩󵄩󵄩󵄩e
𝑛+1/2

1ℎ

󵄩󵄩󵄩󵄩󵄩
,
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩1
}

≤ 𝑐min {ℎ−1 (Δ𝑡2 + ℎ𝑘) , (Δ𝑡)−1 (Δ𝑡2 + ℎ𝑘)} ≤ 𝑐.

(62)

Therefore, by Hölder’s and Sobolev inequalities and (62), we
obtain

󵄨󵄨󵄨󵄨⟨ℵ
𝑛

6
, k
ℎ
⟩
󵄨󵄨󵄨󵄨 ≤ 𝑐

󵄩󵄩󵄩󵄩󵄩
I (e𝑛+1/2

1ℎ
)
󵄩󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩kℎ
󵄩󵄩󵄩󵄩1

≤ 𝑐
∗ 󵄩󵄩󵄩󵄩󵄩

I (e𝑛+1/2
1ℎ

)
󵄩󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩kℎ
󵄩󵄩󵄩󵄩1 .

(63)

Estimating other terms in (60) as we did in the proof of
Theorem 4, we obtain

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1/2

2ℎ

󵄩󵄩󵄩󵄩󵄩
≤ 𝑐 {

󵄩󵄩󵄩󵄩󵄩
De𝑛+1

1ℎ

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
3ℎ

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
I (e𝑛+1/2

1ℎ
)
󵄩󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩󵄩
I (e𝑛+1/2

3ℎ
)
󵄩󵄩󵄩󵄩󵄩
+ (Δ𝑡)

3/2
+ ℎ

𝑘

+
ℎ
𝑘

√Δ𝑡
} .

(64)

The required error estimate now follows from last inequality
by usingTheorem 4 and triangle inequality.
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The error estimate for the pressure in the previous theo-
rem can be improved under stronger regularity properties of
the solution. To this end, we next derive optimal order error
estimates for the time derivatives of velocity and micropolar
velocity.

Corollary 6. Suppose the assumptions of Theorem 4 hold.
Moreover, assume u,w ∈ 𝐻

2
(0, 𝑇;H1(Ω)) and the initial

conditions satisfy ∑1
𝑖=0

‖(u(𝑡
𝑖
),w(𝑡

𝑖
)) − (u𝑖

ℎ
,w𝑖
ℎ
)‖
1
≤ 𝑐ℎ

𝑘 and
𝑏(u𝑖

ℎ
, 𝑟
ℎ
) = 0, ∀𝑟

ℎ
∈ 𝑄

ℎ
, for 𝑖 = 0, 1. Then for any ℎ ∈ (0, ℎ

0
]

the approximations u𝑛
ℎ
and w𝑛

ℎ
satisfy

󵄩󵄩󵄩󵄩𝜕𝑡u −Du
ℎ

󵄩󵄩󵄩󵄩𝑙2(𝐿2(Ω)) ,
󵄩󵄩󵄩󵄩𝜕𝑡w −Dw

ℎ

󵄩󵄩󵄩󵄩𝑙2(𝐿2(Ω))

≤ 𝑐 (Δ𝑡
2
+ ℎ

𝑘
) .

(65)

Moreover, we have

󵄩󵄩󵄩󵄩u − u
ℎ

󵄩󵄩󵄩󵄩𝑙∞(𝐻1(Ω)) ,
󵄩󵄩󵄩󵄩w − w

ℎ

󵄩󵄩󵄩󵄩𝑙∞(𝐻1(Ω)) ≤ 𝑐 (Δ𝑡
2
+ ℎ

𝑘
) , (66)

for some constant 𝑐 independent of the mesh size ℎ and time
step Δ𝑡.

Proof. Putting (k
ℎ
,𝜙
ℎ
) = (D(e𝑛+1

1ℎ
),D(e𝑛+1

3ℎ
)) into (37) and

splitting the nonlinear terms as in the proof of Theorem 4,
we obtain

󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

1ℎ
)
󵄩󵄩󵄩󵄩󵄩

2

+
(] + ]

𝑟
)

2
D (

󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

)

= (𝜕
𝑡
u (𝑡

𝑛+1/2
) −D (u (𝑡

𝑛+1
)) ,D (e𝑛+1

1ℎ
))

+

8

∑

𝑖=1

⟨ℵ
𝑛

𝑖
,D (e𝑛+1

1ℎ
)⟩ ,

󵄩󵄩󵄩󵄩D (e𝑛
3ℎ
)
󵄩󵄩󵄩󵄩

2

+
(𝑐
𝑎
+ 𝑐

𝑑
)

2
D (

󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

)

+
(𝑐
0
+ 𝑐

𝑑
)

2
D (

󵄩󵄩󵄩󵄩󵄩
∇ ⋅ e𝑛+1

3ℎ

󵄩󵄩󵄩󵄩󵄩

2

) + 2]
𝑟
D (

󵄩󵄩󵄩󵄩󵄩
e𝑛+1
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

)

= (𝜕
𝑡
w (𝑡

𝑛+1/2
) −D (w (𝑡

𝑛+1
)) ,D (e𝑛+1

3ℎ
))

+

8

∑

𝑖=1

⟨ℵ̂
𝑛

𝑖
,D (e𝑛+1

3ℎ
)⟩

+ 4]
𝑟
(w (𝑡

𝑛+1/2
) − w (𝑡

𝑛+1/2
) ,D (e𝑛+1

3ℎ
)) .

(67)

Next, we bound each of the terms on the right-hand sides of
(67). We start by estimating ⟨ℵ𝑛

𝑖
,D(e𝑛+1

1ℎ
)⟩ for 𝑖 = 1, . . . , 8

in (67)
1
. To this end, we use Hölder’s inequality and Sobolev

inequality. We find that

󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

1
,D (e𝑛+1

1ℎ
)⟩
󵄨󵄨󵄨󵄨󵄨

≤ 𝑐 (
󵄩󵄩󵄩󵄩u (𝑡𝑛+1/2)

󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩∇u (𝑡𝑛+1/2)

󵄩󵄩󵄩󵄩𝐿3(Ω)
)

⋅
󵄩󵄩󵄩󵄩u (𝑡𝑛+1/2) − u (𝑡

𝑛+1/2
)
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

1ℎ
)
󵄩󵄩󵄩󵄩󵄩
,

󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

2
,D (e𝑛+1

1ℎ
)⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

󵄩󵄩󵄩󵄩u (𝑡𝑛+1/2) −I (u (𝑡
𝑛+1/2

))
󵄩󵄩󵄩󵄩1

⋅ (
󵄩󵄩󵄩󵄩u (𝑡𝑛+1/2)

󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩∇u (𝑡𝑛+1/2)

󵄩󵄩󵄩󵄩𝐿3(Ω)
)
󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

1ℎ
)
󵄩󵄩󵄩󵄩󵄩
,

󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

3
,D (e𝑛+1

1ℎ
)⟩
󵄨󵄨󵄨󵄨󵄨

≤ 𝑐 (
󵄩󵄩󵄩󵄩u (𝑡𝑛+1/2)

󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩∇u (𝑡𝑛+1/2)

󵄩󵄩󵄩󵄩𝐿3(Ω)
)

⋅
󵄩󵄩󵄩󵄩I (u (𝑡

𝑛+1/2
) − u (𝑡

𝑛+1/2
))
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

1ℎ
)
󵄩󵄩󵄩󵄩󵄩
,

󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

4
,D (e𝑛+1

1ℎ
)⟩
󵄨󵄨󵄨󵄨󵄨

≤ 𝑐 (
󵄩󵄩󵄩󵄩u (𝑡𝑛+1/2)

󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩∇u (𝑡𝑛+1/2)

󵄩󵄩󵄩󵄩𝐿3(Ω)
)

⋅
󵄩󵄩󵄩󵄩󵄩
I (e𝑛+1/2

1ℎ
)
󵄩󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

1ℎ
)
󵄩󵄩󵄩󵄩󵄩
,

󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

5
,D (e𝑛+1

1ℎ
)⟩
󵄨󵄨󵄨󵄨󵄨

≤ 𝑐 (
󵄩󵄩󵄩󵄩I (u (𝑡

𝑛+1/2
))
󵄩󵄩󵄩󵄩∞

+
󵄩󵄩󵄩󵄩∇I (u (𝑡

𝑛+1/2
))
󵄩󵄩󵄩󵄩𝐿3(Ω)

)

⋅
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

1ℎ
)
󵄩󵄩󵄩󵄩󵄩
.

(68)

From the inverse inequality (Assumption A2) and Sobolev
inequality, it follows that

󵄩󵄩󵄩󵄩𝜙ℎ
󵄩󵄩󵄩󵄩∞ +

󵄩󵄩󵄩󵄩∇𝜙ℎ
󵄩󵄩󵄩󵄩𝐿3(Ω) ≤ 𝑐ℎ

−𝑑/6 󵄩󵄩󵄩󵄩𝜙ℎ
󵄩󵄩󵄩󵄩1 ∀𝜙

ℎ
∈ 𝑋

ℎ
. (69)

Using (69), we estimate ⟨ℵ𝑛
6
,D(e𝑛+1

1ℎ
)⟩ as below

󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

6
,D (e𝑛+1

1ℎ
)⟩
󵄨󵄨󵄨󵄨󵄨

≤ [
󵄩󵄩󵄩󵄩󵄩
I (e𝑛+1/2

1ℎ
)
󵄩󵄩󵄩󵄩󵄩∞

+
󵄩󵄩󵄩󵄩󵄩
∇I (e𝑛+1/2

1ℎ
)
󵄩󵄩󵄩󵄩󵄩𝐿3(Ω)

]
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩1

⋅
󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

1ℎ
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑐

∗ 󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
I (e𝑛+1/2

1ℎ
)
󵄩󵄩󵄩󵄩󵄩1

⋅ ℎ
−𝑑/6 󵄩󵄩󵄩󵄩󵄩

D (e𝑛+1
1ℎ

)
󵄩󵄩󵄩󵄩󵄩
.

(70)

Alternatively, we can estimate ⟨ℵ𝑛
6
,D(e𝑛

1ℎ
)⟩ as follows:

󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

6
,D (e𝑛+1

1ℎ
)⟩
󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2Δ𝑡
𝑐
1
(I (e𝑛+1/2

1ℎ
) , e𝑛+1

1ℎ
, e𝑛
1ℎ
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2Δ𝑡
𝑐
1
(I (e𝑛+1/2

1ℎ
) , e𝑛

1ℎ
, e𝑛+1
1ℎ

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝑐
∗

Δ𝑡

󵄩󵄩󵄩󵄩󵄩
I (e𝑛+1/2

1ℎ
)
󵄩󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩e
𝑛

1ℎ

󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
e𝑛+1
1ℎ

󵄩󵄩󵄩󵄩󵄩1
.

(71)

Combining (70) and (71), we have

󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

6
,D (e𝑛+1

1ℎ
)⟩
󵄨󵄨󵄨󵄨󵄨

≤ 𝑐𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
I (e𝑛+1/2

1ℎ
)
󵄩󵄩󵄩󵄩󵄩1
[
󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

1ℎ
)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
e𝑛−1
1ℎ

󵄩󵄩󵄩󵄩󵄩1
] ,

(72)

where

𝛾
𝑛
fl min {ℎ−𝑑/6, (Δ𝑡)−1/2} 󵄩󵄩󵄩󵄩󵄩e

𝑛+1/2

1ℎ

󵄩󵄩󵄩󵄩󵄩1
. (73)
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Estimating the other terms similarly, we obtain
󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

7
,D (e𝑛+1

1ℎ
)⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

󵄩󵄩󵄩󵄩I (w (𝑡
𝑛+1/2

)) − w (𝑡
𝑛+1/2

)
󵄩󵄩󵄩󵄩1

⋅
󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

1ℎ
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑐 [ℎ

𝑘
‖w‖

𝐶([𝑡𝑛−1 ,𝑡𝑛+1];H𝑘+1(Ω))

+ (Δ𝑡)
3/2 󵄩󵄩󵄩󵄩󵄩

𝜕
2

𝑡
w󵄩󵄩󵄩󵄩󵄩𝐿2(𝑡𝑛,𝑡𝑛+1/2 ;H1(Ω))]

󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

1ℎ
)
󵄩󵄩󵄩󵄩󵄩
,

󵄨󵄨󵄨󵄨󵄨
⟨ℵ

𝑛

8
,D (e𝑛+1

1ℎ
)⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

󵄩󵄩󵄩󵄩󵄩
∇I (e𝑛+1/2

3ℎ
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

1ℎ
)
󵄩󵄩󵄩󵄩󵄩
.

(74)

We procced similarly for the terms in (67)
2
. Estimation of

⟨ℵ̂
𝑛

1
,D(e𝑛+1

3ℎ
)⟩ − ⟨ℵ̂

𝑛

5
,D(e𝑛+1

3ℎ
)⟩ is similar to estimation of

⟨ℵ
𝑛

1
,D(e𝑛+1

1ℎ
)⟩ − ⟨ℵ

𝑛

5
,D(e𝑛+1

1ℎ
)⟩. We obtain

5

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
⟨ℵ̂

𝑛

𝑖
,D (e𝑛+1

3ℎ
)⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐 [

󵄩󵄩󵄩󵄩w (𝑡
𝑛+1/2

) − w (𝑡
𝑛+1/2

)
󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩w (𝑡

𝑛+1/2
) −I (w (𝑡

𝑛+1/2
))
󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩I (u (𝑡

𝑛+1/2
) − w (𝑡

𝑛+1/2
))
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
3ℎ

󵄩󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩󵄩
I (e𝑛+1/2

1ℎ
)
󵄩󵄩󵄩󵄩󵄩1
]
󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

1ℎ
)
󵄩󵄩󵄩󵄩󵄩
.

(75)

We estimate ⟨ℵ̂𝑛
6
,D(e𝑛+1

3ℎ
)⟩ in the same way we estimated

⟨ℵ
𝑛

6
,D(e𝑛+1

1ℎ
)⟩. We obtain

󵄨󵄨󵄨󵄨󵄨
⟨ℵ̂

𝑛

6
,D (e𝑛+1

3ℎ
)⟩
󵄨󵄨󵄨󵄨󵄨

≤ 𝑐𝛾̂
𝑛

󵄩󵄩󵄩󵄩󵄩
I (e𝑛+1/2

1ℎ
)
󵄩󵄩󵄩󵄩󵄩1
[
󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

3ℎ
) +

󵄩󵄩󵄩󵄩󵄩
e𝑛−1
3ℎ

‖
1
] ,

(76)

where

𝛾̂
𝑛
fl min {ℎ−𝑑/6, (Δ𝑡)−1/2} 󵄩󵄩󵄩󵄩󵄩𝑒

𝑛+1/2

3ℎ

󵄩󵄩󵄩󵄩󵄩1
. (77)

Estimating other terms as usual, we obtain
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

8

∑

𝑖=7

⟨ℵ̂
𝑛

𝑖
,D (e𝑛+1

3ℎ
)⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐 [
󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩u (𝑡𝑛+1/2) − u (𝑡

𝑛+1/2
)
󵄩󵄩󵄩󵄩1
]

⋅
󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

3ℎ
)
󵄩󵄩󵄩󵄩󵄩
.

(78)

Employing these estimates in (67), we can write it as

(
󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩∇e

𝑛

1ℎ

󵄩󵄩󵄩󵄩

2

) +
Δ𝑡

(]
𝑟
+ ])

󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

1ℎ
)
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑐 [𝛾
2

𝑛
Δ𝑡

󵄩󵄩󵄩󵄩󵄩
I (e𝑛+1/2

1ℎ
)
󵄩󵄩󵄩󵄩󵄩

2

1
+ 𝛼

𝑛
Δ𝑡] ,

(
󵄩󵄩󵄩󵄩󵄩
∇e𝑛+1
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩∇e

𝑛

3ℎ

󵄩󵄩󵄩󵄩

2

)

+
(𝑐
0
+ 𝑐

𝑑
)

(𝑐
𝑎
+ 𝑐

𝑑
)
(
󵄩󵄩󵄩󵄩󵄩
∇ ⋅ e𝑛+1

3ℎ

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩∇ ⋅ e𝑛

3ℎ

󵄩󵄩󵄩󵄩

2

)

+
4]
𝑟

(𝑐
𝑎
+ 𝑐

𝑑
)
(
󵄩󵄩󵄩󵄩󵄩
e𝑛+1
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩e
𝑛

3ℎ

󵄩󵄩󵄩󵄩

2

)

+
Δ𝑡

(𝑐
𝑎
+ 𝑐

𝑑
)

󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

3ℎ
)
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑐 [𝛼̂
𝑛
Δ𝑡 + 𝛾

2

𝑛
Δ𝑡

󵄩󵄩󵄩󵄩I (e𝑛
1ℎ
)
󵄩󵄩󵄩󵄩

2

1
] ,

(79)

where

𝛼
𝑛
fl (Δ𝑡)

3 󵄩󵄩󵄩󵄩󵄩
𝜕
3

𝑡
u󵄩󵄩󵄩󵄩󵄩
2

𝐿
2
(𝑡𝑛,𝑡𝑛+1;L2(Ω))

+
ℎ
2𝑘

Δ𝑡

󵄩󵄩󵄩󵄩(𝜕𝑡u, 𝜕𝑡𝑝)
󵄩󵄩󵄩󵄩

2

𝐿
2
(𝑡𝑛,𝑡𝑛+1;H𝑘+1(Ω)×𝐻𝑘(Ω))

+ ℎ
2𝑘 󵄩󵄩󵄩󵄩(u, 𝑝)

󵄩󵄩󵄩󵄩

2

C([𝑡𝑛 ,𝑡𝑛+1];H𝑘+1(Ω)×𝐻𝑘(Ω))

+ ℎ
2𝑘
‖w‖2C([𝑡𝑛 ,𝑡𝑛+1];H𝑘+1(Ω))

+ (Δ𝑡)
3 󵄩󵄩󵄩󵄩󵄩
𝜕
2

𝑡
u󵄩󵄩󵄩󵄩󵄩
2

𝐿
2
(𝑡𝑛 ,𝑡𝑛+1;H1(Ω))

+ (Δ𝑡)
3 󵄩󵄩󵄩󵄩󵄩
𝜕
2

𝑡
w󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝑡𝑛,𝑡𝑛+1;H1(Ω))

+

1

∑

𝑖=0

[
󵄩󵄩󵄩󵄩󵄩
e𝑛−𝑖
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

1
+
󵄩󵄩󵄩󵄩󵄩
e𝑛−𝑖
4ℎ

󵄩󵄩󵄩󵄩󵄩

2

1
] +

󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

1

+
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

1
,

𝛼̂
𝑛
fl (Δ𝑡)

3 󵄩󵄩󵄩󵄩󵄩
𝜕
3

𝑡
w󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝑡𝑛 ,𝑡𝑛+1;𝐿

2
(Ω))

+
ℎ
2𝑘

Δ𝑡

󵄩󵄩󵄩󵄩𝜕𝑡w
󵄩󵄩󵄩󵄩

2

𝐿
2
(𝑡𝑛,𝑡𝑛+1;H𝑘+1(Ω))

+ ℎ
2𝑘 󵄩󵄩󵄩󵄩(u, 𝑝)

󵄩󵄩󵄩󵄩

2

C([𝑡𝑛 ,𝑡𝑛+1];H𝑘+1(Ω)×𝐻𝑘(Ω))

+ ℎ
2𝑘
‖w‖2C([𝑡𝑛 ,𝑡𝑛+1];H𝑘+1(Ω))

+ (Δ𝑡)
3 󵄩󵄩󵄩󵄩󵄩
𝜕
2

𝑡
w󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(𝑡𝑛,𝑡𝑛+1;H1(Ω))

+

2

∑

𝑖=0

󵄩󵄩󵄩󵄩󵄩
e𝑛−𝑖
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

1

+
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
3ℎ

󵄩󵄩󵄩󵄩󵄩

2

1
+
󵄩󵄩󵄩󵄩󵄩
e𝑛+1/2
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

1
.

(80)

Notice, by the regularity properties of the solution (u, 𝑝,w)
andTheorem 4, we have

Δ𝑡

𝑁

∑

𝑖=1

𝛼
𝑖
, Δ𝑡

𝑁

∑

𝑖=1

𝛼̂
𝑖
≤ 𝑐 ((Δ𝑡)

4
+ ℎ

2𝑘
) . (81)

Therefore summing (79) from 𝑛 = 1 to 𝑚 − 1 and using (81)
and the assumptions on initial conditions (u𝑖

ℎ
,w𝑖
ℎ
), 𝑖 = 0, 1,

we obtain

󵄩󵄩󵄩󵄩∇e
𝑚

1ℎ

󵄩󵄩󵄩󵄩

2

+
Δ𝑡

(]
𝑟
+ ])

𝑚−1

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

1ℎ
)
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑐 [

𝑚−1

∑

𝑛=1

𝛾
2

𝑛
Δ𝑡

󵄩󵄩󵄩󵄩∇e
𝑛

1ℎ

󵄩󵄩󵄩󵄩

2

+ (Δ𝑡)
4
+ ℎ

2𝑘
] ,

󵄩󵄩󵄩󵄩∇e
𝑚

3ℎ

󵄩󵄩󵄩󵄩

2

+
(𝑐
0
+ 𝑐

𝑑
)

(𝑐
𝑎
+ 𝑐

𝑑
)

󵄩󵄩󵄩󵄩∇ ⋅ e𝑚
3ℎ

󵄩󵄩󵄩󵄩

2

+
4]
𝑟

(𝑐
𝑎
+ 𝑐

𝑑
)

󵄩󵄩󵄩󵄩e
𝑚

3ℎ

󵄩󵄩󵄩󵄩

2
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+
Δ𝑡

(𝑐
𝑎
+ 𝑐

𝑑
)

𝑚−1

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
D (e𝑛+1

3ℎ
)
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑐 [(Δ𝑡)
4
+ ℎ

2𝑘
+

𝑚−1

∑

𝑛=1

𝛾̂
2

𝑛
Δ𝑡

󵄩󵄩󵄩󵄩I (e𝑛
1ℎ
)
󵄩󵄩󵄩󵄩

2

1
] .

(82)

Notice that, byTheorem 4 and the definition of 𝛾
𝑛
in (73), we

have that

Δ𝑡

𝑁

∑

𝑖=1

𝛾
2

𝑖
≤ min {ℎ−𝑑/3, (Δ𝑡)−2} Δ𝑡

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
e𝑖
1ℎ

󵄩󵄩󵄩󵄩󵄩

2

1

≤ 𝑐min {ℎ−𝑑/3, (Δ𝑡)−2} (ℎ2𝑘 + (Δ𝑡)4)

≤ 𝑐min {ℎ2𝑘−𝑑/3 + (Δ𝑡)2} ≤ 𝑐.

(83)

Similarly, using the definition of 𝛾̂
𝑛
in (77), we can show that

Δ𝑡

𝑁

∑

𝑖=1

𝛾̂
2

𝑖
≤ 𝑐. (84)

The required results now follow if we add (82)
1
and (82)

2

and apply the discrete Grönwall inequality to the resulting
inequality with (83)-(84).

Corollary 7. Suppose the assumptions of Corollary 6 hold.
Then the approximate pressure 𝑝𝑛+1/2

ℎ
in (23) satisfies

󵄩󵄩󵄩󵄩𝑝 − 𝑝ℎ
󵄩󵄩󵄩󵄩𝑙2(𝐿2(Ω)) ≤ 𝑐 (Δ𝑡

2
+ ℎ

𝑘
) . (85)

Proof. We provide only a sketch of the proof of this corollary
as it is similar to the proof of Theorem 5. It follows from (82)
that

Δ𝑡
󵄩󵄩󵄩󵄩󵄩
De𝑛+1

1ℎ

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑐 ((Δ𝑡)
4
+ ℎ

2𝑘
) . (86)

Therefore using (86) in (64), we obtain the required estimate.

Remark 8. The error estimates we have obtained so far also
provide stability estimates without any time step restriction.
In particular, it proves that the fully discrete velocities and
microrotation vector fields are bounded in ℓ

∞
(H1(Ω)) and

the pressures are bounded in ℓ2(L2(Ω)) due to the regularity
assumed on the continuous solutions.

4. Numerical Results

In this section, we present numerical results from tests which
confirm the theoretical convergence rates of our algorithm.
Assume the spatial domain Ω = [0, 1] × [0, 1] and the time

Table 1: Convergence performance of the decoupled andmonolithic
(coupled) schemes at time 𝑡

𝑁
= 1.0, with fixed time step Δ𝑡 = 0.01.

ℎ
Coupled scheme Decoupled scheme

󵄩󵄩󵄩󵄩u(𝑡𝑛) − u𝑛
ℎ

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩w(𝑡𝑛) − w𝑛

ℎ

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩u(𝑡𝑛) − u𝑛

ℎ

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩w(𝑡𝑛) − w𝑛

ℎ

󵄩󵄩󵄩󵄩

1/2 0.03508120 0.0224123 0.0350728 0.0219623
1/4 0.0086203 0.00580328 0.0087782 0.0055905
1/8 0.0024316 0.00150977 0.0022925 0.0013795
1/16 0.00058251 0.000036079 0.0005587 0.00034529
1/32 0.00012395 0.000088654 0.00014729 0.00008624

interval 0 ≤ 𝑡 ≤ 1. We use the exact solution (u, 𝑝,w) given
by

u = (− (1 − cos (2𝜋𝑥)) sin (2𝜋𝑦) 𝑒−𝑡, sin (2𝜋𝑦)

⋅ (1 − cos (2𝜋𝑦)) 𝑒−𝑡) ,

w = (cos (𝜋𝑦) sin (𝜋𝑥) 𝑒−𝑡, − sin (𝜋𝑦) cos (𝜋𝑥) 𝑒−𝑡) ,

𝑝 = (sin (4𝜋𝑥) + sin (4𝜋𝑦)) 𝑒−𝑡.

(87)

Here the source terms, initial conditions, and boundary
conditions are chosen to correspond to the exact solution.
The finite element spaces are constructed using piecewise
quadratic polynomial for velocity and piecewise linear poly-
nomial for the pressure in the Navier-Stokes equations and
quadratic finite elements for themicrorotational velocity.The
performance of the numerical scheme studied herein is also
compared with the monolithic, fully implicit method derived
by setting I(u𝑛+1/2

ℎ
) = u𝑛+1/2

ℎ
and I(w𝑛+1/2

ℎ
) = w𝑛+1/2

ℎ
in

Algorithm 3. The monolithic scheme requires a system of
nonlinear algebraic equations to be solved using an iterative
method at each time step. We employ Newton iterative
method for solving those nonlinear algebraic equations and
the iteration is stoppedwhen relative nonlinear residual is less
than 10−6.

In Table 1, we consider both schemes at time 𝑡
𝑁
= 1.0,

with varying spacing ℎ but for fixed time step Δ𝑡 = 0.01.
The results in Table 1 show that the two schemes achieve

similar precision. Moreover, it can be seen that the error esti-
mates of u and w in Theorem 4 for the order of convergence
in space agree well with the numerical experiments. In order
to determine the order of convergence 𝛼 with respect to the
time step Δ𝑡, we will use the following approximation:

𝛼 ≈ log
2

󵄩󵄩󵄩󵄩kℎ,Δ𝑡 (𝑥, 𝑡𝑁) − k
ℎ,Δ𝑡/2

(𝑥, 𝑡
𝑁
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩kℎ,Δ𝑡/2 (𝑥, 𝑡𝑁) − k
ℎ,Δ𝑡/4

(𝑥, 𝑡
𝑁
)
󵄩󵄩󵄩󵄩

. (88)

In Table 2, we list the values of the right-hand side of
(88) with fixed spacing ℎ = 1/32 and varying time step
Δ𝑡 = 1/20, 1/40, 1/80, 1/160. As can be seen the orders of
convergence in time are all of second order for the decoupled
scheme suggesting that the orders of convergence in time in
error estimates in Theorem 4 for the 𝐿2-norm of u and w are
optimal.
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Table 2: Convergence orders of 𝑂(Δ𝑡𝛼) of the decoupled scheme at
time 𝑡

𝑁
= 1.0, with the fixed spacing ℎ = 1/32.

Δ𝑡
󵄩󵄩󵄩󵄩u(𝑡𝑛) − u𝑛

ℎ

󵄩󵄩󵄩󵄩 Rate 󵄩󵄩󵄩󵄩w(𝑡𝑛) − w𝑛
ℎ

󵄩󵄩󵄩󵄩 Rate
1/20 4.01235 × 10

−5 — 3.96243 × 10
−5 —

1/40 2.0319915 × 10
−5 1.97459 2.001783 × 10

−5 1.97945
1/80 1.0221336 × 10

−5 1.98799 1.0067712 × 10
−5 1.98832

1/160 5.126534 × 10
−6 1.99381 5.047737 × 10

−6 1.9945

4.1. Conclusion. In this paper, we give a complete error
analysis of an efficient time-stepping scheme for micropolar
fluid flow problems. Our algorithm extrapolates the coupling
terms to the previous time levels at each time step and solves
each subphysics problem separately without iteration. We
derived optimal order error estimates in suitable norms with-
out assuming any time step restriction. These error estimates
also show the scheme is unconditionally stable. Numerical
tests illustrate the validity of the theoretical results.
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