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We propose a procedure of constructing new block designs starting from a given one by looking at the intersections of its blocks
with various sets and grouping those sets according to the structure of the intersections. We introduce a symmetric relationship of
friendship between block designs built on a set𝑉 and consider families of block designs where all designs are friends of each other,
the so-called friendly families. We show that a friendly family admits a partial ordering. Furthermore, we exhibit a map from the
power set of 𝑉, partially ordered by inclusion, to a friendly family of a particular type which preserves the partial order.

1. Introduction

We consider balanced incomplete block designs (BIBDs) (see
[1–3]). With every block design one can associate some other
block designs obtained using the original one. For example,
given a block design 𝐷 with blocks’ length 𝑘, one can form
another block design by taking all subsets of length 𝑘 < 𝑘

of all the blocks of 𝐷. We suggest a new way of looking at
relationships between block designs.

We introduce a notion of friendship between block
designs based on the structure of intersections between their
blocks. More precisely, suppose that we choose a block of one
of the two BIBDs and look at the intersections of this block
with all the blocks of the other BIBD. Suppose also that the
number of blocks of the second BIBD that give intersections
of length 𝑛 only depends on 𝑛 and does not depend on our
choice of a block of the first BIBD. Now, if the same is true
after we interchange the roles of the two BIBDs, then they
are called friends. This is quite a strong condition and we
expect families of block designs that are friends of each other
to possess interesting properties. We give examples of friends
and study the question of when a block design is friends with
itself.

We call a family of block designs built on a set 𝑉 which
are pairwise friends a friendly family. On such a family
we introduce a partial order. Furthermore, given that the
power set of 𝑉 is also partially ordered by inclusion, we

show that there exists a map from the power set of 𝑉 to
a friendly family of a particular type which preserves the
ordering.

We also suggest studying families of block designs con-
structed using a common “parent” block design. In Section 5,
making use of a given block design built on a set 𝑉, we
define an equivalence relation on the power set of the set 𝑉.
We conjecture that if the given block design is a Desargues
projective plane, then the constructed equivalence classes in
the power set are block designs, which are pairwise friends;
that is, they form a friendly family. Furthermore, we suggest
using the procedure of intersecting the blocks of a BIBD
by various sets as a way to generate new block designs. We
describe a few cases when such a construction yields friends
of the original block design.

2. Definitions and Notation

A balanced incomplete block design is defined as follows (see
[1–3]).

Definition 1. Let 𝑉 be a finite set of cardinality V = |𝑉| and 𝑏,
𝑘, 𝑟, 𝜆 four positive integers. A block design with parameters
(V, 𝑏, 𝑟, 𝑘, 𝜆) built on𝑉 is a list of 𝑏 blocks, each of which is a 𝑘-
element subset of𝑉, such that every element of𝑉 is contained
in exactly 𝑟 blocks and every pair of elements of𝑉 is contained
in exactly 𝜆 blocks.
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We assume that all block designs are simple; that is, they
have no repeated blocks.The notationwe use is in accordance
with [3].

(i) P(𝑉) is the power set of𝑉, that is, the set of all subsets
of 𝑉 including the empty set and 𝑉 itself, ordered by
inclusion: for 𝑋,𝑌 ⊂ 𝑉 we say 𝑋 < 𝑌 if and only if
𝑋 ⊂ 𝑌.

(ii) 𝐷
𝑖
, 𝑖 ∈ 𝐼, is a set of block designs, each of which is

built on the set 𝑉 and has parameters (V, 𝑏
𝑖
, 𝑟
𝑖
, 𝑘
𝑖
, 𝜆
𝑖
).

(iii) 𝐷𝑠
𝑖
, 𝑠 = 1, . . . , 𝑏

𝑖
, stand for the blocks of the block

design𝐷
𝑖
.

(iv) D
𝑘
is a full design of block size 𝑘 built on the set 𝑉,

that is, a block design with parameters (V, ( V
𝑘
) , 𝑟, 𝑘, 𝜆)

whose set of blocks is the full set of combinations of 𝑘
out of V elements. We assume that𝐷

0
is the empty set

andDV = 𝑉.

Remark 2. Theparameters of a block design are not indepen-
dent: one has 𝑏𝑘 = V𝑟 and 𝑟(𝑘 − 1) = 𝜆(V − 1).

3. Friends of Block Designs

We are going to consider intersections of the blocks of a
design by a given set and focus on the number of elements
in these intersections. Let us consider a block design 𝐷 built
on a set 𝑉 and some subset 𝑀 of 𝑉. For 𝑗 ≥ 0, let 𝑧

𝑗
∈ N

stand for a number of blocks of 𝐷 whose intersections with
𝑀 contain exactly 𝑗 elements. More precisely, we define

𝑧
𝑗
= ∑

1≤𝑠≤𝑏

𝛿 (
𝑀 ∩ 𝐵

𝑠

 , 𝑗) , (1)

where for two sets𝑀 and 𝐿

𝛿 (|𝑀 ∩ 𝐿| , 𝑗) =
{

{

{

1 if |𝑀 ∩ 𝐿| = 𝑗,

0 otherwise.
(2)

Lemma 3. Let 𝐷 be a block design with parameters
(V, 𝑏, 𝑟, 𝑘, 𝜆) built on the set 𝑉. Let 𝑀 be a subset of 𝑉
with |𝑀| = 𝑚. Then the following formulas hold:

𝑘

∑

𝑗=0

𝑧
𝑗
= 𝑏, (3)

𝑘

∑

𝑗=0

𝑧
𝑗
𝑗 = 𝑟𝑚, (4)

𝑘

∑

𝑗=0

𝑧
𝑗
𝑗
2
= 𝑚 (𝜆𝑚 − 𝜆 + 𝑟) . (5)

Proof. Thefirst two equations follow directly from the defini-
tion of a block design. In the same way one obtains

𝑘

∑

𝑗=0

𝑧
𝑗
(

𝑗

2
) = (

𝑚

2
)𝜆. (6)

Here and below we assume that (𝑚𝑛 ) = 0 if 𝑛 > 𝑚.This and
the first two equations of the lemma imply (5).

Due to the first equation of Lemma 3, the sequence 𝜑 =
(𝑧
0
, 𝑧
1
, . . . , 𝑧

𝑘
) is a partition of the number of blocks 𝑏. Let us

denote this partition by 𝜑(𝐷,𝑀) = (𝑧
0
, 𝑧
1
, . . . , 𝑧

𝑘
). Note that

we allow 𝑧
𝑖
= 0, for some 𝑖 ≤ 𝑘, and do not require 𝑧

𝑖
≥ 𝑧
𝑗
,

for 𝑖 ≥ 𝑗.

Definition 4. Two block designs 𝐷
1
and 𝐷

2
built on the

same set 𝑉 are called friends if the partitions 𝜑(𝐷
1
, 𝐷
𝑖

2
) and

𝜑(𝐷
2
, 𝐷
𝑗

1
) do not depend on 𝑖 and 𝑗, respectively.

Note that this relationship between designs is symmetric
by definition.

For designs which are friends, we simplify the notation
for partition: we write 𝜑(𝐷

1
, 𝐷
2
) instead of 𝜑(𝐷

1
, 𝐷
𝑖

2
) and

𝜑(𝐷
2
, 𝐷
1
) instead of 𝜑(𝐷

2
, 𝐷
𝑖

1
).

Example 5. Let P
3
be the finite projective plane with param-

eters (V = 𝑏 = 7, 𝑟 = 3, 𝑘 = 3, 𝜆 = 1) built on the set
𝑉 = {1, 2, . . . , 7}, the Fano plane. Denote its blocks by 𝐵

𝑖
; that

is, P
3
= {𝐵
1
, . . . , 𝐵

7
}. More precisely, we have 𝐵

1
= (2, 3, 5),

𝐵
2
= (3, 4, 6), 𝐵

3
= (4, 5, 7), 𝐵

4
= (1, 5, 6), 𝐵

5
= (2, 6, 7),

𝐵
6
= (1, 3, 7), 𝐵

7
= (1, 2, 4). LetD

5
be the full design of block

size five built on the same set 𝑉. Then P
3
andD

5
are friends.

The corresponding partitions are 𝜑(D
5
,P
3
) = (0, 3, 12, 6)

and 𝜑(P
3
,D
5
) = (0, 1, 4, 2).

For more examples of friends see Section 4.

Proposition 6. Let block designs𝐷
1
and 𝐷

2
be friends; then

𝜑 (𝐷
1
, 𝐷
2
) 𝑏
2
= 𝜑 (𝐷

2
, 𝐷
1
) 𝑏
1
. (7)

Proof. Consider a matrix M with entries given by M
𝑖𝑗
=

|𝐷
𝑖

1
∩ 𝐷
𝑗

2
| for 𝑖 = 1, . . . , 𝑏

1
and 𝑗 = 1, . . . , 𝑏

2
. Because 𝐷

1

and 𝐷
2
are friends, the rows (columns) ofM are equal up to

permutations. Any integer 𝑛 appears equal number of times
in every row (column). Multiplying this number of times by
𝑏
1
(resp., 𝑏

2
), we get the total number of times the integer 𝑛

appears in the matrixM. On the other hand, by doing so we
get the corresponding component of the partition in the left
(resp., right) hand side of (7).

Proposition 7. Let block designs𝐷 and𝐷
1
be friends with the

corresponding partition 𝜑(𝐷,𝐷
1
) = (𝑧

0
, 𝑧
1
, . . . , 𝑧

𝑘𝐷
); here 𝑘

𝐷

is the block size of 𝐷. Let design 𝐷
2
be the complement of 𝐷

1
;

that is,𝐷𝑠
2
= 𝑉\𝐷

𝑠

1
for all 𝑠 = 1, . . . , 𝑏

1
.Then𝐷 and𝐷

2
are also

friends and the partition 𝜑(𝐷,𝐷
2
) = (𝜔

0
, . . . , 𝜔

𝑘𝐷
) satisfies

𝜔
𝑖
= 𝑧
𝑘𝐷−𝑖

, 𝑖 = 0, . . . , 𝑘
𝐷
. (8)

Proof. Let us assume that 𝑘
𝐷

is smaller than block sizes
of designs 𝐷

1
and 𝐷

2
; the other situations are considered

similarly. Suppose that a block𝐷𝑠
1
has 𝑖 elements in common

with a block 𝐷𝑡 of design 𝐷. Then the remaining 𝑘
𝐷
− 𝑖

elements of 𝐷𝑡 belong to the complement of 𝐷𝑠
1
, that is, to

𝐷
𝑠

2
. Thus 𝜔

𝑖
= 𝑧
𝑘𝐷−𝑖

.

A natural question is when a block design is friends with
itself.
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Example 8. A full block design D
𝑘
is friends with itself.

Indeed, in this case, 𝜑(D
𝑘
,D
𝑗

𝑘
) = (𝑧

0
, 𝑧
1
, . . . , 𝑧

𝑘
) is indepen-

dent of the choice of a block ofD
𝑘
since for all such partitions

we have

𝑧
𝑖
= (

𝑘

𝑖
)(

V − 𝑘

𝑘 − 𝑖
) . (9)

Here are some classes of block designs that are naturally
friends of themselves.

Theorem 9. Let 𝐷 be a block design with parameters (V, 𝑏, 𝑟,
𝑘, 𝜆).

(1) If 𝜆 = 1, then𝐷 is friends with itself.

(2) If 𝑘 = 3, then𝐷 is friends with itself.

(3) If 𝐷 is symmetric, that is, 𝑏 = V, then 𝐷 is friends with
itself.

Proof. (1) Let 𝐵 be an arbitrary block of 𝐷. As before, we
denote 𝜑(𝐷, 𝐵) = (𝑧

0
, 𝑧
1
, . . . , 𝑧

𝑘
), a partition of the number

𝑏 of blocks obtained by intersecting all blocks of 𝐷 with the
chosen block 𝐵. Given that every pair of elements appears in
only one block of𝐷 (𝜆 = 1), we know that no pair of elements
from the block 𝐵 will appear in some other block of 𝐷. Thus
there will be no blocks whose intersection with 𝐵 would give
a set of two or more elements with the only exception of the
set of 𝑘 elements produced by the intersection of 𝐵with itself.
Thus 𝑧

𝑖
= 0 for 2 ≤ 𝑖 ≤ 𝑘 − 1 and 𝑧

𝑘
= 1.

The remaining elements 𝑧
0
and 𝑧

1
can be found from

equations of Lemma 3.Thus the partition 𝜑(𝐷, 𝐵) is indepen-
dent of the choice of a block 𝐵.

(2) Let us first consider a block design𝐷with an arbitrary
𝑘. For some arbitrary block 𝐵 of 𝐷 denote 𝜑(𝐷, 𝐵) =

(𝑧
0
, 𝑧
1
, . . . , 𝑧

𝑘
). Lemma 3 with 𝑚 = 𝑘 gives three relations

for {𝑧
𝑗
}
𝑘

𝑗=0
. Our condition that no blocks are repeated implies

that 𝑧
𝑘
= 1. Thus we have four linear equations for 𝑘 + 1

partition elements 𝑧
0
, . . . , 𝑧

𝑘
. Therefore, when 𝑘 = 3, we

can find the partition starting from parameters of the block
design. This means, in particular, that the partition 𝜑(𝐷, 𝐵)
does not depend on the choice of a block 𝐵.

(3) This is a simple corollary of the well-known fact (see
[2, page 110]) that in a symmetric design every two distinct
blocks have 𝜆 points in common.

Corollary 10. Any finite projective plane is friends with itself.

Proof. Recall that a finite projective plane is a block design
with 𝑏 = V and 𝜆 = 1.

Example 11. Here is a design that is friends with itself. The
parameters are (V = 9, 𝑏 = 12, 𝑟 = 8, 𝑘 = 6, 𝜆 = 5), so this

example is not covered by Theorem 9. This design is taken
from [4, page 474]:

1 2 4 5 7 8

2 3 5 6 8 9

1 3 4 6 7 9

1 3 5 6 7 8

1 2 4 6 8 9

2 3 4 5 7 9

1 2 5 6 7 9

1 3 4 5 8 9

2 3 4 6 7 8

4 5 6 7 8 9

1 2 3 4 5 6

1 2 3 7 8 9

(10)

The corresponding partition of 12 is (0, 0, 0, 2, 9, 0, 1).

Although it is natural to suggest that every block design
is friends with itself, this is not true. For block designs which
are not friends with themselves, see Example 18.

Transitivity does not hold for the relationship of friend-
ship either. To see this we first prove the following simple
lemma.

Lemma 12. Let 𝐷 be a block design (V, 𝑏, 𝑟, 𝑘, 𝜆) built on a set
𝑉 such that 𝑘 < V − 1.Then 𝐷 is friends with the full design
DV−1.

Proof. It is straightforward to compute the partitions
𝜑(𝐷,D𝑖V−1) = (𝑧0, 𝑧1, . . . , 𝑧𝑘) and 𝜑(DV−1, 𝐷

𝑖
) = (𝑤

0
, 𝑤
1
, . . . ,

𝑤
𝑘
). One obtains 𝑧

𝑘−1
= 𝑟, 𝑧

𝑘
= 𝑏 − 𝑘, 𝑤

𝑘−1
= 𝑘, and

𝑤
𝑘
= V − 𝑘; all other entries vanish.

Corollary 13. The relationship of friendship is not transitive.

Proof. Consider two block designs built on the same set 𝑉
which are not friends of each other and such that their block
sizes are smaller than V−1. By the lemma they are both friends
withDV−1.

4. Friendly Families of Block Designs

In this section we consider a family of designs which are
pairwise friends of each other. Let us call such a family (or
set) friendly. For example, the set of full designs {D

𝑗
}
V
𝑗=0

is a
friendly family. Such a set admits a partial order as follows.

Definition 14. Let two block designs𝐷 and𝐷 be friends with
𝑘 < 𝑘, where 𝑘 and 𝑘 are the sizes of blocks of 𝐷 and 𝐷,
respectively, and 𝜑(𝐷,𝐷) = (𝑧

0
, 𝑧
1
, . . . , 𝑧

𝑘
). One says that

𝐷 < 𝐷 if 𝑧
𝑘
> 0.

We thus have two partially ordered sets: a friendly set
of block designs built on a set 𝑉 and the power set P(𝑉)
(ordered by inclusion). It turns out that there exists a map
between these two sets that preserves the ordering.

Proposition 15. LetD = {𝐷
𝑖
}
𝑖∈𝐼

be a friendly family of designs
built on 𝑉. Suppose that no two designs ofD share a block and
that the set of all blocks of all designs in D gives the power set
P(𝑉). Then there exists a map 𝛼 : P(𝑉) → D preserving the
partial order.
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Proof. Themap𝛼 : P(𝑉) → D is defined as follows. It sends a
subset𝑈 of𝑉 to the design inDwhich contains this subset𝑈
as a block. By the assumptions of the proposition, there exists
a unique block design for which 𝑈 is a block. Note that we
consider the empty set and the full set𝑉 as degenerate designs
included inD.

Now, suppose that 𝑋,𝑌 ∈ P(𝑉), 𝑋 ⊂ 𝑌, and 𝑋 ̸= 𝑌;
that is, 𝑋 < 𝑌. We want to show that 𝛼(𝑋) < 𝛼(𝑌). Since
|𝑋| ̸= |𝑌|, we have that 𝑋 and 𝑌 belong to two distinct block
designs from D, say, 𝑋 ∈ 𝐷, 𝑌 ∈ 𝐷 with 𝑘 < 𝑘, where 𝑘
and 𝑘 are block sizes of𝐷 and𝐷, respectively. Since𝐷 and𝐷
are friends and 𝑋 < 𝑌, then for 𝜑(𝐷,𝐷) = (𝑧

0
, 𝑧
1
, . . . , 𝑧

𝑘
) we

have 𝑧
𝑘
> 0, and therefore 𝛼(𝑋) < 𝛼(𝑌).

In the following example, we construct a friendly family
of designs that satisfies conditions of Proposition 15 and that
is different from the set of full designs {D

𝑗
}
V
𝑗=0

.

Example 16. All designs are built on the set 𝑉 = {1, 2, . . . , 7}.
Let P
3
= {𝐵
1
, . . . , 𝐵

7
} be the finite projective plane from

Example 5. Denote by 𝐷
3
the design with 𝑏 = 28 and 𝑘 = 3

whose blocks are given by all sets of three elements of𝑉which
are not blocks of P

3
.

Denote by 𝐷
4
the design with 𝑏 = 7 and 𝑘 = 4 whose

blocks are complements of the blocks of P
3
; that is, 𝐷

4
=

{𝐵
1
, . . . , 𝐵

7
}, where 𝐵

𝑖
= 𝑉 \ 𝐵

𝑖
. Similarly, by 𝐷

4
, we denote

the design with 𝑏 = 28 and 𝑘 = 4 whose blocks are the sets of
four elements which are not blocks of𝐷

4
.

To the family {P
3
, 𝐷


3
, 𝐷
4
, 𝐷


4
} we also add the empty set

D
0
andD

1
,D
2
,D
5
,D
6
,D
7
= 𝑉, whereD

𝑘
is the full design

of block size 𝑘.
In this family all designs are pairwise friends. Moreover,

we have D
1
< D
2
, D
2
< P
3
and D

2
< 𝐷


3
, 𝐷
3
< 𝐷
4
and

𝐷


3
< 𝐷


4
, P
3
< 𝐷


4
,𝐷
4
< D
5
, and𝐷

4
< D
5
< D
6
< D
7
.

In this section we presented a new way of constructing
a partially ordered set (a poset) given by a full (satisfying
conditions of Proposition 15) friendly family of block designs.
The condition of pairwise friendship seems to be a very
strong one; therefore we expect such families to possess
interesting properties.There arise a few interesting questions,
for example, to say how many different full friendly sets of
block designs one can construct on a given set 𝑉 and to find
analogues of the result of [5, 6] for such friendly families.

5. Constructing Friends of Block Designs

In this section we use the procedure of intersecting blocks of
a design by various sets to form block designs starting with a
given one.

LetD be a design built on a set𝑉 whose blocks are of size
𝑘. Now, for every 𝑛 = 1, 2, . . . , V consider the set N

𝑛
of all

subsets of 𝑉 of size 𝑛.
We now subdivide the set N

𝑛
into classes of subsets 𝐷(𝑛)

𝑗

as follows. Consider the map Φ from the setN
𝑛
to the set of

partitions of V which for a set 𝑆 ∈ N
𝑛
gives Φ(𝑆) = 𝜑(D, 𝑆).

In this way, we obtain a number of partitions in the image:
Φ(N
𝑛
) = {𝜑

(𝑛)

1
, . . . , 𝜑

(𝑛)

𝑠𝑛
}. Denote by 𝐷(𝑛)

𝑗
the class of sets

from N
𝑛
given by the inverse image of 𝜑(𝑛)

𝑗
; that is, 𝐷(𝑛)

𝑗
=

Φ
−1
(𝜑
(𝑛)

𝑗
).

The family of these classes forms a special subdivision
of the power set P(𝑉) into nonintersecting equivalence
classes. In other words, we may say that two subsets of 𝑉 are
equivalent if and only if they belong to the same class𝐷(𝑛)

𝑗
for

some 𝑛 and 𝑗. Let us denote this subdivision ofP(𝑉) byM.
If the original design is a projective plane on seven

elements with blocks of size three, D = P
3
, this subdivision

coincides with the one described in Example 16; that is,M =

{D
0
,D
1
,D
2
,P
3
, 𝐷


3
, 𝐷
4
, 𝐷


4
,D
5
,D
6
,D
7
}. For a projective

plane with 𝑘 = 4 it is easy to verify that all 𝐷(𝑛)
𝑗

are block
designs and that the family M is again friendly and satisfies
conditions of Proposition 15.

We conjecture that if the original designD is a Desargues
projective plane, the above construction yields a friendly
family of designs.

The next theorem gives some cases when the described
procedure results in block designs that are friends with the
original one.

Theorem 17. Let D be a block design with parameters
(V, 𝑏, 𝑟, 𝑘 = 3, 𝜆). Then one has the following:

(i) There are two classes of sets 𝐷(3)
1

= D and 𝐷(3)
2

with
the upper index (3). Both of them are block designs and
both are friends with D.

(ii) If 𝜆 = 1, there are two classes of sets𝐷(4)
1

and𝐷(4)
2

with
the upper index (4). In this case, both of them are block
designs and both are friends with D.

Proof. (i) Define𝐷(3)
2

to be the set of all 3 subsets of 𝑉 which
are not blocks ofD and define𝐷(3)

1
to coincide withD. As it is

easy to see, all 3 subsets of𝑉 are covered by these two classes.
Then 𝐷(3)

1
= D is trivially a block design and is friends with

itself by Theorem 9.
To prove that 𝐷(3)

2
is a block design, we need to find its

parameters (V(3)
2
𝑏
(3)

2
, 𝑟
(3)

2
, 𝑘
(3)

2
, 𝜆
(3)

2
). Two of these parameters

are known: V(3)
2
= V and 𝑘(3)

2
= 3. The remaining parameters

are obtained easily knowing that the blocks of𝐷(3)
2

and those
ofD exhaust all triples of elements of𝑉, we have 𝑏(3)

2
= (

V
3 )−𝑏,

𝑟
(3)

2
= (

V−1
2
) − 𝑟, and 𝜆(3)

2
= V − 2 − 𝜆.

Let us now prove that D and 𝐷(3)
2

are friends. Let 𝐵𝑖

be a block of 𝐷(3)
2

and consider the partition 𝜑(D, 𝐵𝑖) =

(𝑧
0
, 𝑧
1
, 𝑧
2
, 𝑧
3
). By the definition of 𝐷(3)

2
we have 𝑧

3
= 0. The

three remaining 𝑧
𝑖
are found from the three equations of

Lemma 3. By switching the roles of D and 𝐷(3)
2

in the above
calculation, we obtain that 𝜑(𝐷(3)

2
,D𝑖) is also independent of

𝑖.
(ii) Define now𝐷(4)

1
= {𝑇 ⊂ 𝑉, |𝑇| = 4, such that ∃ D𝑖 ⊂

𝑇} to be the set of all 4 subsets of 𝑉 which contain at
least one block of D. And define 𝐷(4)

2
= {𝑇 ⊂ 𝑉, |𝑇| =

4, such that D𝑖 ̸⊂ 𝑇 ∀𝑖} to be the set of all 4 subsets of 𝑉
which do not contain any block of D. All 4 subsets of 𝑉 are
covered by these two classes.
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Assuming that 𝜆 = 1, let us first prove that 𝐷(4)
1

and 𝐷(4)
2

are block designs. We do this by computing their parameters
V(4)
𝑗
, 𝑏(4)
𝑗
, 𝑟(4)
𝑗
, 𝑘(4)
𝑗
, 𝜆(4)
𝑗

for 𝑗 = 1, 2. We know that V(4)
𝑗

= V
and 𝑘(4)

𝑗
= 4. To find 𝑏(4)

𝑗
, let us note that the blocks of 𝐷(4)

1

are obtained by taking a block of D and upending to it one
element not already contained in the block. In this way, for
every block of D, we get (V − 3) new sets in𝐷(4)

1
. Since 𝜆 = 1,

sets obtained from different blocks of D will intersect by at
most two elements. Thus they will all be distinct and we have
𝑏
(4)

1
= 𝑏(V−3).Now, 𝑟(4)

1
= 𝑟(V−3)+(𝑏−𝑟).This is because, for

a given element for each of the 𝑟 blocks inD that contain it, we
get (V−3) blocks in𝐷(4)

1
; similarly, for each of the (𝑏−𝑟) blocks

ofD that do not contain the given element we can upend this
element to obtain a block of 𝐷(4)

1
that contains it. Reasoning

analogously, we obtain 𝜆(4)
1
= V − 3 + 2(𝑟 − 1). Parameters of

𝐷
(4)

2
are determined knowing that the blocks of𝐷(4)

1
and𝐷(4)

2

exhaust all quadruples of elements of 𝑉.
Let us now prove that 𝐷(4)

𝑗
and D are friends. We need

to see that all four partitions 𝜑(𝐷(4)
𝑗
,D𝑖) and 𝜑(D, (𝐷(4)

𝑗
)
𝑖
)

are independent of 𝑖. All of the partitions contain four parts
(𝑧
0
, 𝑧
1
, 𝑧
2
, 𝑧
3
); thus, by Lemma 3, it is enough to determine

one of the parts. As is easy to see, if 𝜆 = 1, the 𝑧
3
part of

𝜑(𝐷
(4)

1
,D𝑖) is equal to V − 3 and that of 𝜑(𝐷(4)

2
,D𝑖) vanishes.

Similarly we find that the 𝑧
3
part of 𝜑(D, (𝐷(4)

1
)
𝑖
) is equal to

one and that of 𝜑(D, (𝐷(4)
2
)
𝑖
) vanishes by definition.

Example 18. Consider the following two Steiner triple sys-
tems STS(13), that is, two block designs with parameters (V =
13, 𝑏 = 26, 𝑟 = 6, 𝑘 = 3, 𝜆 = 1). We denote them by 𝑆

1
and 𝑆
2

and list all their blocks. The blocks are such that 𝑆𝑖
1
= 𝑆
𝑖

2
for

𝑖 = 1, . . . , 22, and the four remaining blocks are different in
the two STS. Here is the list of the blocks:

𝑆
1

𝑗
= (1, 2, 3) ,

𝑆
2

𝑗
= (1, 4, 5) ,

𝑆
3

𝑗
= (1, 6, 7) ,

𝑆
4

𝑗
= (1, 8, 9) ,

𝑆
5

𝑗
= (1, 10, 11) ,

𝑆
6

𝑗
= (1, 12, 13) ,

𝑆
7

𝑗
= (2, 4, 6) ,

𝑆
8

𝑗
= (2, 5, 7) ,

𝑆
9

𝑗
= (2, 8, 10) ,

𝑆
10

𝑗
= (2, 9, 12) ,

𝑆
11

𝑗
= (2, 11, 13) ,

𝑆
12

𝑗
= (4, 3, 8) ,

𝑆
13

𝑗
= (4, 7, 9) ,

𝑆
14

𝑗
= (4, 10, 13) ,

𝑆
15

𝑗
= (4, 11, 12) ,

𝑆
16

𝑗
= (7, 3, 11) ,

𝑆
17

𝑗
= (7, 8, 13) ,

𝑆
18

𝑗
= (7, 10, 12) ,

𝑆
19

𝑗
= (8, 5, 11) ,

𝑆
20

𝑗
= (8, 6, 12) ,

𝑆
21

𝑗
= (6, 9, 11) ,

𝑆
22

𝑗
= (3, 5, 12)

(11)

and the four remaining blocks in each STS are

𝑆
23

1
= (3, 6, 10) ,

𝑆
24

1
= (3, 9, 13) ,

𝑆
25

1
= (5, 6, 13) ,

𝑆
26

1
= (5, 9, 10) ,

𝑆
23

2
= (3, 6, 13) ,

𝑆
24

2
= (3, 9, 10) ,

𝑆
25

2
= (5, 6, 10) ,

𝑆
26

2
= (5, 9, 13) .

(12)

On these two block designs we perform the procedure
described in the beginning of this section and find the sets
𝐷
(𝑛)

𝑗
for 𝑛 = 3, 4, 5, 6.The corresponding sets for other values

of 𝑛 can be obtained using Proposition 7.

(i) For both 𝑆
1
and 𝑆

2
, the set Φ(N

3
) contains two

partitions,𝜑(3)
1
= (10, 15, 0, 1) and𝜑(3)

2
= (11, 12, 3, 0).

The number of blocks in𝐷(3)
1

is 26 and the number of
blocks in𝐷(3)

2
is 260.

(ii) For both 𝑆
1
and 𝑆

2
, the set Φ(N

4
) contains two

partitions, 𝜑(4)
1

= (7, 15, 3, 1) corresponding to 260
blocks in 𝐷(4)

1
and 𝜑(4)

2
= (8, 12, 6, 0) corresponding

to 455 blocks in𝐷(4)
2
.

(iii) For both 𝑆
1
and 𝑆

2
, the set Φ(N

5
) contains three

partitions: 𝜑(5)
1

= (5, 13, 7, 1) corresponding to 780
blocks in 𝐷(5)

1
, then 𝜑(5)

2
= (4, 16, 4, 2) corresponding

to 195 blocks in 𝐷
(5)

2
, and 𝜑

(5)

3
= (6, 10, 10, 0)

corresponding to 312 blocks in𝐷(5)
3
.
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(iv) For both 𝑆
1
and 𝑆

2
, the set Φ(N

6
) contains five

partitions: 𝜑(6)
1

= (2, 15, 6, 3), 𝜑(6)
2

= (1, 18, 3, 4),
𝜑
(6)

3
= (4, 9, 12, 1), 𝜑(6)

4
= (3, 12, 9, 2), and 𝜑(6)

5
=

(5, 6, 15, 0). However the number of blocks in the
corresponding sets𝐷(6)

𝑗
differs for 𝑆

1
and 𝑆
2
. Namely,

the sets 𝐷(6)
1

contain 208 and 228 blocks for 𝑆
1
and

𝑆
2
, respectively.The numbers of blocks for𝐷(6)

2
are 13

and 8, for 𝐷(6)
3

are 468 and 488, for 𝐷(6)
4

are 988 and
958, and for𝐷(6)

5
are 39 and 34, respectively.

It turns out that for 𝑛 = 3, 4, 5 all the obtained sets 𝐷(𝑛)
𝑗

are
block designs; moreover for 𝑛 = 3 and 𝑛 = 4, we obtain
friendly families of block designs. For 𝑛 = 5 the obtained
block designs are not friends of one another nor are they
friends with themselves. They are, however, friends with the
original Steiner triple system. For 𝑛 = 6 none of the sets 𝐷(6)

𝑗

is a block design.
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