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This paper considers a retrial queueingmodel where a group of guard channels is reserved for priority and retrial customers. Priority
and normal customers arrive at the system according to two distinct Poisson processes. Priority customers are accepted if there is an
idle channel upon arrival while normal customers are accepted if and only if the number of idle channels is larger than the number
of guard channels. Blocked customers (priority or normal) join a virtual orbit and repeat their attempts in a later time. Customers
from the orbit (retrial customers) are accepted if there is an idle channel available upon arrival. We formulate the queueing system
using a level dependent quasi-birth-and-death (QBD) process. We obtain a Taylor series expansion for the nonzero elements of the
rate matrices of the level dependent QBD process. Using the expansion results, we obtain an asymptotic upper bound for the joint
stationary distribution of the number of busy channels and that of customers in the orbit. Furthermore, we develop an efficient
numerical algorithm to calculate the joint stationary distribution.

1. Introduction

In this paper, we consider multiserver retrial queues with
guard channels for priority and retrial customers. Retrial
queues are characterized by the fact that a blocked customer
repeats its request after a random time. During retrial inter-
vals, the customer is said to be in the orbit.This type of queue-
ing models is widely used in modelling and performance
analysis of communication and service systems, especially in
cellular networks [1–6]. For instance, Tran-Gia and Mandjes
[6] report the influence of retrials on the performance of
cellular networks using retrial queueingmodels.Marsan et al.
[3] carry out a fixed point approximation analysis for retrial
queueing models arising from cellular networks while some
extension is presented in [4]. Artalejo and Lopez-Herrero
analyze a multiserver queue for cellular networks operating
under a random environment using a four-dimensional
Markov chain.

The guard channel concept has been extensively used
in communication systems [1–3, 6]. This is also referred to
as trunk (or circuit or bandwidth) reservation in teletraffic

literature [7, 8]. Tran-Gia and Mandjes [6] propose some
multiserver retrial queues with fresh and handover calls and
guard channels for a base station in cellular networks. In [6],
the orbit size is assumed to be finite which simplifies the
analysis.

The analysis of multiserver retrial queues with infinite
orbit size is challenging due to the fact that the underlying
Markov chain is state dependent because the retrial rate is
proportional to the number of customers in the orbit. Thus,
even for the fundamental model with one type of traffic
and without guard channels, the stationary distribution is
expressed in terms of simple functions for only some special
cases, that is, one or two servers [9]. We refer to [9–11] for
some efforts in finding analytical expressions for the joint
stationary distribution for the cases of more than two servers.
For models with both retrial and guard channels, although
some numerical methods [1, 3, 6, 12–14] have been presented
for various models, there is no analytical result available.

This motivates us to consider a new model with both
retrials and guard channels for which we explore new ana-
lytical and numerical results. From the modelling point of
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view, the novelty is the priority given to retrial customers. It
should be noted that retrial customers are treated the same
as normal customers in [1–3, 5, 6] which is suitable for the
context of cellular networks since the base station might not
be able to recognize redial calls so as to give them some
priority. In [15], retrial customers are given a preemptive
priority overwaiting customers. To the best of our knowledge,
the current paper is the first to consider the priority for retrial
customers in the context of queueing models with guard
channels. Our model may also be fit for systems with human
servers where the service differentiation among two classes
of customers is needed. In such a service system, the server
can easily recognize retrial customers so as to give them some
priority over fresh customers who arrive at the system for the
first time. We formulate the queueing system using a level
dependent QBD process where the level and the phase are
referred to as the number of customers in the orbit and the
number of busy channels, respectively.

The stationary distribution of a level dependent QBD
process can be expressed in terms of a sequence of rate
matrices [16]. Thus, we can characterize the stationary dis-
tribution through the sequence of rate matrices. The QBD
process of our model possesses some special structure; that
is, only the last two rows are nonzero allowing us to get
some insights into the structure of the stationary distribution.
Liu and Zhao [17] use this property to obtain upper and
lower asymptotic bounds for the stationary distribution of
the fundamental retrial model without guard channels. Liu
et al. [18] further extend their analysis to the model with
nonpersistent customers. B. Kim and J. Kim [19] and Kim
et al. [20] refine the tail asymptotic results in Liu and Zhao
[17] and Liu et al. [18], respectively. Phung-Duc [21] presents
a perturbation analysis for a multiserver retrial queue with
two types of nonpersistent customers. In [21], the author
derives the Taylor series expansion formulae for the nonzero
elements of the rate matrices. The difference of our model in
comparison with the above work is that the last two rows of
the rate matrices are nonzero in our model while for those in
[17, 21] only the last row is nonzero. This makes the analysis
of our model more complex and challenging.

The main contribution of our paper is threefold. First,
using a censoring technique and a perturbation method, we
obtain the Taylor series expansion for the rate matrices in
terms of the number of customers in the orbit. Our formula
is general in the sense that we can obtain the expansion with
arbitrary number of terms. This was not reported in Liu and
Zhao [17]. Second, using this result we obtain an asymptotic
upper bound for the stationary distribution which is more
challenging compared to [17, 21] due to the denseness of
the rate matrices. It should be noted that this is the first
asymptotic result for multiserver retrial queue with guard
channels. Third, we present an efficient method to calculate
the stationary distribution of themodel whose computational
complexity is linear to the number of servers. An earlier
version of this paper was presented in [22].

The rest of our paper is organized as follows. Section 2
presents the model and some preliminary results on the level
dependent QBD formulation. Section 3 is devoted to the pre-
sentation of the Taylor series expansion for the rate matrices.

In Section 4, we show the asymptotic upper bound for the
joint stationary distribution while a numerical algorithm is
presented in Section 5. Section 6 provides some numerical
examples and Section 7 concludes our paper and presents
some future directions.

2. Model and Formulation

2.1. Model. In this paper, we consider a queueing model
with two types of customers (types 1 and 2). There are 𝑐

servers; among them𝑔 servers are assigned as guard channels.
Customers of type 1 (high priority) and type 2 (low priority)
arrive at the system according to two independent Poisson
processes with rates 𝜆

1
and 𝜆

2
, respectively. Customers of

type 1 can use all 𝑐 servers while those of type 2 cannot
use the guard channels. If there are 𝑐-𝑔 busy servers, the
rest of 𝑔 servers automatically become guard channels for
customers of type 1. Furthermore, we assume that a blocked
customer (both types 1 and 2) retries after some exponentially
distributed time with mean 1/𝜇. Upon retrial, if there is an
idle channel the retrial customer occupies it immediately;
otherwise it enters the orbit again. Thus, a retrial customer
has the same priority as that of a high priority one. As a result,
we may expect that decreasing the number of retrials by a
customer improves the quality of service (QoS). Service times
for both types 1 and 2 customers are assumed to follow the
same exponential distribution with mean 1/].

Remark 1. In this paper, we restrict ourselves to the case
of one guard channel; that is, 𝑔 = 1. This is because the
asymptotic analysis for case 𝑔 = 1 is complex enough and
is essentially different from case 𝑔 = 0. Asymptotic analysis
for case 𝑔 > 1 may need a new technique which will be left
for a future study. On the other hand, the stability condition
presented in this paper can be extended to case 𝑔 > 1 in a
straightforward manner while the numerical algorithm can
be adapted to case 𝑔 > 1.

Remark 2. From a theoretical point of view, the assumption
that retrial customers (both normal and priority) have the
same priority significantly simplifies the analysis. This is
because if retrial customers keep their initial priority, we need
to distinguish two types of retrial customers for which we
should have two orbits for priority and normal customers.

2.2. Level Dependent QBD Process. Let 𝐶(𝑡) and𝑁(𝑡) denote
the number of busy servers and the number of retrial cus-
tomers in the orbit at time 𝑡. Letting𝑋(𝑡) = (𝐶(𝑡),𝑁(𝑡)) (𝑡 ≥

0), the bivariate process {𝑋(𝑡), 𝑡 ≥ 0} is aMarkov chain in the
state space S = {0, 1, . . . , 𝑐} × Z

+
, where Z

+
= {0, 1, 2, . . .}.

We assume that {𝑋(𝑡)} is positive recurrent. The necessary
and sufficient condition for the positive recurrence of {𝑋(𝑡)}

is given in Lemma 3.

Lemma 3. {𝑋(𝑡)} is positive recurrent if and only if
𝜆

𝑐]
< 1, (1)

where 𝜆 = 𝜆
1
+ 𝜆
2
.

Proof. The proof is presented in Appendix A.
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It is easy to see that {𝑋(𝑡), 𝑡 ≥ 0} is a level dependentQBD
process whose infinitesimal generatorQ is given as follows:

Q =

(

(

(

(

(

Q(0)
1

Q(0)
0

O O ⋅ ⋅ ⋅

Q(1)
2

Q(1)
1

Q(1)
0

O ⋅ ⋅ ⋅

O Q(2)
2

Q(2)
1

Q(2)
0

⋅ ⋅ ⋅

O O Q(3)
2

Q(3)
1

⋅ ⋅ ⋅

.

.

.

.

.

.

.

.

.

.

.

. d

)

)

)

)

)

, (2)

where O is the zero matrix with an appropriate dimension
and {Q(𝑛)

0
,Q(𝑛)
1

, 𝑛 ∈ Z
+
} and {Q(𝑛)

2
, 𝑛 ∈ N} are square

matrices of size 𝑐 + 1. Furthermore, bearing in mind that𝑁 =
North, 𝑆 = South,𝑊 =West, and 𝐸 = East, these matrices are
given and partitioned as follows:

Q(𝑛)
0

=
(

(

(

0 ⋅ ⋅ ⋅ 0 0 0

.

.

. d
.
.
.

.

.

.

.

.

.

0 ⋅ ⋅ ⋅ 0 0 0

0 ⋅ ⋅ ⋅ 0 𝜆
2

0

0 ⋅ ⋅ ⋅ 0 0 𝜆

)

)

)

= (

Q(𝑛)
0,𝑁𝑊

Q(𝑛)
0,𝑁𝐸

Q(𝑛)
0,𝑆𝑊

Q(𝑛)
0,𝑆𝐸

) ,

Q(𝑛)
2

=

(

(

(

(

(

(

(

(

(

0 𝑛𝜇 0 ⋅ ⋅ ⋅ 0 0 0

0 0 𝑛𝜇 ⋅ ⋅ ⋅ 0 0 0

0 0 0 ⋅ ⋅ ⋅ 0 0 0

.

.

.

.

.

.

.

.

. d
.
.
.

.

.

.

.

.

.

0 0 0 ⋅ ⋅ ⋅ 0 𝑛𝜇 0

0 0 0 ⋅ ⋅ ⋅ 0 0 𝑛𝜇

0 0 0 ⋅ ⋅ ⋅ 0 0 0

)

)

)

)

)

)

)

)

)

= (

Q(𝑛)
2,𝑁𝑊

Q(𝑛)
2,𝑁𝐸

Q(𝑛)
2,𝑆𝑊

Q(𝑛)
2,𝑆𝐸

) ,

Q(𝑛)
1

=

(

(

(

(

(

(

(

(

(

(

(

(

𝑏
(𝑛)

0
𝜆 0 ⋅ ⋅ ⋅ 0 0 0

] 𝑏
(𝑛)

1
𝜆 ⋅ ⋅ ⋅ 0 0 0

0 2] 𝑏
(𝑛)

2
⋅ ⋅ ⋅ 0 0 0

.

.

.

.

.

.

.

.

. d
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. d 𝑏
(𝑛)

𝑐−2
𝜆 0

0 0 0 ⋅ ⋅ ⋅ 0 𝑏
(𝑛)

𝑐−1
𝜆
1

0 0 0 ⋅ ⋅ ⋅ 0 𝑐] 𝑏
(𝑛)

𝑐

)

)

)

)

)

)

)

)

)

)

)

)

= (

Q(𝑛)
1,𝑁𝑊

Q(𝑛)
1,𝑁𝐸

Q(𝑛)
1,𝑆𝑊

Q(𝑛)
1,𝑆𝐸

) ,

(3)

where N = {1, 2, . . .}, 𝑏(𝑛)
𝑖

= −(𝜆 + 𝑖] + 𝑛𝜇(1 − 𝛿
𝑖,𝑐
)) (𝑖 =

0, 1, 2, . . . , 𝑐) and 𝛿
𝑖,𝑐
is the Kronecker symbol; that is, 𝛿

𝑖,𝑐
=

1 if 𝑖 = 𝑐 and 0 otherwise. Let 𝜋
𝑖,𝑛

denote the stationary
probability that there are 𝑖 busy servers and 𝑛 customers in
the orbit; that is,
𝜋
𝑖,𝑛

= lim
𝑡→∞

P (𝐶 (𝑡) = 𝑖,𝑁 (𝑡) = 𝑛) ,

𝑖 = 0, 1, . . . , 𝑐, 𝑛 ∈ Z
+
.

(4)

Furthermore, let

𝜋
𝑛
= (𝜋
0,𝑛

, 𝜋
1,𝑛

, . . . , 𝜋
𝑐,𝑛
) , 𝜋 = (𝜋

0
,𝜋
1
, . . .) . (5)

We have

𝜋
0
Q(0)
1

+ 𝜋
1
Q(1)
2

= 0, 𝑛 = 0,

𝜋
𝑛−1

Q(𝑛−1)
0

+ 𝜋
𝑛
Q(𝑛)
1

+ 𝜋
𝑛+1

Q(𝑛+1)
2

= 0, 𝑛 ∈ N,

𝜋e = 1,

(6)

where e and 0 are vectors with appropriate dimensions
with all 1 elements and all zero elements, respectively. It is
established in [16] that the solution of (6) is given by

𝜋
𝑛
= 𝜋
𝑛−1

R(𝑛), 𝑛 ∈ N, (7)

where {R(𝑛), 𝑛 ∈ N} is the minimal nonnegative solution of

Q(𝑛−1)
0

+ R(𝑛)Q(𝑛)
1

+ R(𝑛)R(𝑛+1)Q(𝑛+1)
2

= O, 𝑛 ∈ N. (8)

Furthermore, 𝜋
0
is determined by

𝜋
0
(Q(0)
1

+ R(1)Q(1)
2

) = 0,

𝜋
0
(I + R(1) + R(1)R(2) + ⋅ ⋅ ⋅) e = 1.

(9)

Thus the problem of finding the stationary distribution is
equivalent to that of obtaining the rate matrices. However,
the rate matrices do not have closed forms in general leading
to algorithmic approaches for numerical calculation. To this
end, we present Lemmas 4 and 5.

Lemma 4 (Proposition 2.2 in [23]). Let M denote the set of
square matrices of size 𝑐 + 1. Furthermore, let 𝑅

𝑛
: M → M

denote the following function:

𝑅
𝑛
(X) = −Q(𝑛−1)

0
(Q(𝑛)
1

+ XQ(𝑛+1)
2

)

−1

, 𝑛 ∈ N. (10)

It is easy to see that {R(𝑛), 𝑛 ∈ N} satisfies

R(𝑛) = 𝑅
𝑛
(R(𝑛+1)) = 𝑅

𝑛
∘ 𝑅
𝑛+1

∘ 𝑅
𝑛+2

∘ ⋅ ⋅ ⋅ , 𝑛 ∈ N, (11)

where 𝑓(𝑔(⋅)) = 𝑓 ∘ 𝑔(⋅).

Lemma 5 (Proposition 2.4 in [23]). {R(𝑛)
𝑘

, 𝑘 ∈ Z
+
, 𝑛 ∈ N} is

defined by the following recursive formulae:

R(𝑛)
0

= O, 𝑘 = 0,

R(𝑛)
𝑘

= 𝑅
𝑛
(R(𝑛+1)
𝑘−1

) = ⋅ ⋅ ⋅

= 𝑅
𝑛
∘ 𝑅
𝑛+1

∘ ⋅ ⋅ ⋅ ∘ 𝑅
𝑛+𝑘−1

(O) , 𝑛, 𝑘 ∈ N.

(12)

One has
lim
𝑘→∞

R(𝑛)
𝑘

= R(𝑛), 𝑛 ∈ N. (13)
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Remark 6. Lemmas 4 and 5 allow us to derive a numerical
algorithm for calculating the rate matrices. They also imply
that the rate matrices are matrix continued fractions. Bright
and Taylor [24, 25] propose a recursive algorithm for com-
puting rate matrix R(𝑛). From Lemmas 4 and 5, we observe
that the first 𝑐 − 1 rows of R(𝑛) are zero. In Section 5, we
propose a method for calculating R(𝑛) with computational
complexity of 𝑂(𝑐) by exploiting this sparsity and Lemma 5.
It should be noted that the recursive algorithm in [24, 25] has
the computational complexity of 𝑂(𝑐

3
) due to the denseness

ofD-matrices (see Bright and Taylor [24, 25]).

It is easy to see that the first 𝑐 − 1 rows of R(𝑛) and R(𝑛)
𝑘

are
zeros. Similar to other block matrices, we also partition R(𝑛)
as

R(𝑛) = (

R(𝑛)
𝑁𝑊

R(𝑛)
𝑁𝐸

R(𝑛)
𝑆𝑊

R(𝑛)
𝑆𝐸

) . (14)

It is easy to see that R(𝑛)
𝑁𝑊

= O and R(𝑛)
𝑁𝐸

= O. Furthermore,
we denote the elements of R(𝑛)

𝑆𝑊
and R(𝑛)

𝑆𝐸
as follows:

R(𝑛)
𝑆𝑊

= (

𝑟
(𝑐−1,𝑛)

0
𝑟
(𝑐−1,𝑛)

1
⋅ ⋅ ⋅ 𝑟
(𝑐−1,𝑛)

𝑐−2

𝑟
(𝑐,𝑛)

0
𝑟
(𝑐,𝑛)

1
⋅ ⋅ ⋅ 𝑟

(𝑐,𝑛)

𝑐−2

) ,

R(𝑛)
𝑆𝐸

= (

𝑟
(𝑐−1,𝑛)

𝑐−1
𝑟
(𝑐−1,𝑛)

𝑐

𝑟
(𝑐,𝑛)

𝑐−1
𝑟
(𝑐,𝑛)

𝑐

) .

(15)

Remark 7. It should be noted that, in comparison with a
previous version [22], some notations have been changed.
In particular, 𝑟(0,𝑛)

𝑖
and 𝑟

(1,𝑛)

𝑖
(𝑖 = 0, 1, 2, . . . , 𝑐) in [22] are

replaced by 𝑟
(𝑐−1,𝑛)

𝑖
and 𝑟
(𝑐,𝑛)

𝑖
in the current paper.

In Section 3, we show the Taylor series expansion of R(𝑛)
in terms of 1/𝑛. Comparing the last two rows on both sides of
(8) yields

R(𝑛)
𝑆𝑊

Q(𝑛)
1,𝑁𝑊

+ R(𝑛)
𝑆𝐸
Q(𝑛)
1,𝑁𝑊

+ R(𝑛)
𝑆𝐸
R(𝑛+1)
𝑆𝑊

Q(𝑛+1)
2,𝑁𝑊

= O,

Q(𝑛−1)
0,𝑆𝐸

+ R(𝑛)
𝑆𝑊

Q(𝑛)
1,𝑁𝐸

+ R(𝑛)
𝑆𝐸
Q(𝑛)
1,𝑁𝐸

+ R(𝑛)
𝑆𝐸
R(𝑛)
𝑆𝑊

Q(𝑛+1)
2,𝑁𝐸

+ R(𝑛)
𝑆𝐸
R(𝑛)
𝑆𝐸
Q(𝑛+1)
2,𝑆𝐸

= O.

(16)

Rewriting (16) in the scalar form, we obtain

𝑏
(𝑛)

0
𝑟
(𝑐−1,𝑛)

0
+ ]𝑟(𝑐−1,𝑛)
1

= 0, (17)

𝜆𝑟
(𝑐−1,𝑛)

𝑖−1
+ 𝑏
(𝑛)

𝑖
𝑟
(𝑐−1,𝑛)

𝑖
+ (𝑖 + 1) ]𝑟(𝑐−1,𝑛)

𝑖+1
+ �̃�
(𝑐−1,𝑛)

𝑖
= 0,

𝑖 = 1, 2, . . . , 𝑐 − 2,

(18)

𝜆𝑟
(𝑐−1,𝑛)

𝑐−2
+ 𝑏
(𝑛)

𝑐−1
𝑟
(𝑐−1,𝑛)

𝑐−1
+ 𝑐]𝑟(𝑐−1,𝑛)
𝑐

+ �̃�
(𝑐−1,𝑛)

𝑐−1
= −𝜆
2
, (19)

𝜆
1
𝑟
(𝑐−1,𝑛)

𝑐−1
+ 𝑏
(𝑛)

𝑐
𝑟
(𝑐−1,𝑛)

𝑐
+ �̃�
(𝑐−1,𝑛)

𝑐
= 0, (20)

𝑏
(𝑛)

0
𝑟
(𝑐,𝑛)

0
+ ]𝑟(𝑐,𝑛)
1

= 0, (21)

𝜆𝑟
(𝑐,𝑛)

𝑖−1
+ 𝑏
(𝑛)

𝑖
𝑟
(𝑐,𝑛)

𝑖
+ (𝑖 + 1) ]𝑟(𝑐,𝑛)

𝑖+1
+ �̃�
(𝑐,𝑛)

𝑖
= 0,

𝑖 = 1, 2, . . . , 𝑐 − 1,

(22)

𝜆
1
𝑟
(𝑐,𝑛)

𝑐−1
+ 𝑏
(𝑛)

𝑐
𝑟
(𝑐,𝑛)

𝑐
+ �̃�
(𝑐,𝑛)

𝑐
= −𝜆, (23)

where

�̃�
(𝑐−1,𝑛)

𝑖
= (𝑛 + 1) 𝜇 (𝑟

(𝑐−1,𝑛)

𝑐−1
𝑟
(𝑐−1,𝑛+1)

𝑖−1
+ 𝑟
(𝑐−1,𝑛)

𝑐
𝑟
(𝑐,𝑛+1)

𝑖−1
) ,

�̃�
(𝑐,𝑛)

𝑖
= (𝑛 + 1) 𝜇 (𝑟

(𝑐,𝑛)

𝑐−1
𝑟
(𝑐−1,𝑛+1)

𝑖−1
+ 𝑟
(𝑐,𝑛)

𝑐
𝑟
(𝑐,𝑛+1)

𝑖−1
) .

(24)

Lemma 8 (Lemma 2.1 in [17, 18] and Proposition 3 in [21]).
One has

(Q(𝑛−1)
2

+Q(𝑛−1)
1

+ R(𝑛)Q(𝑛)
2

) e = 0, 𝑛 ∈ N. (25)

Comparing the last two elements on both sides of (25) yields

𝑐−1

∑

𝑖=0

𝑟
(𝑐−1,𝑛)

𝑖
=

𝜆
2

𝑛𝜇

, 𝑛 ∈ N, (26)

𝑐−1

∑

𝑖=0

𝑟
(𝑐,𝑛)

𝑖
=

𝜆

𝑛𝜇

, 𝑛 ∈ N. (27)

Proof. This lemma follows from the fact that the following
matrix represents the infinitesimal generator of the ergodic
Markov chain {𝑋(𝑡), 𝑡 ≥ 0} censored in levels {𝑙(𝑖), 𝑖 =

0, 1, . . . , 𝑛 − 1}, where 𝑙(𝑖) = ((0, 𝑖), (1, 𝑖), . . . , (𝑐, 𝑖)). Let Q≤𝑛−1
denote the infinitesimal generator of the censored Markov
chain. We have

Q≤𝑛−1 =
(

(

(

(

(

(

(

Q(0)
1

Q(0)
0

O ⋅ ⋅ ⋅ O

Q(1)
2

Q(1)
1

Q(1)
0

d O

O Q(2)
2

Q(2)
1

d
.
.
.

.

.

. O d d Q(𝑛−2)
0

O ⋅ ⋅ ⋅ O Q(𝑛−1)
2

Q̂(𝑛−1)

)

)

)

)

)

)

)

, (28)

where

Q̂(𝑛−1) = Q(𝑛−1)
1

+ R(𝑛)Q(𝑛)
2

. (29)

Therefore,

(Q(𝑛−1)
2

+
̂Q(𝑛−1)) e = 0. (30)

By comparing the last two elements of both sides of this
equation, we obtain the announced result.

Corollary 9. For case 𝑐 = 2, explicit expressions for nonzero
elements of R(𝑛) are given as follows:

𝑟
(1,𝑛)

0
=

𝜆
2
]

𝑛𝜇 (𝜆 + ] + 𝑛𝜇)

,

𝑟
(1,𝑛)

1
=

𝜆
2
(𝜆 + 𝑛𝜇)

𝑛𝜇 (𝜆 + ] + 𝑛𝜇)

,

(31)
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due to (17) and (26) with 𝑐 = 2. It follows from (27) and (21)
with 𝑐 = 2 that

𝑟
(2,𝑛)

0
=

𝜆]
𝑛𝜇 (𝜆 + ] + 𝑛𝜇)

,

𝑟
(2,𝑛)

1
=

𝜆 (𝜆 + 𝑛𝜇)

𝑛𝜇 (𝜆 + ] + 𝑛𝜇)

.

(32)

Furthermore, substituting these explicit expressions into
(20) and (23) and arranging the results, we obtain

𝑟
(1,𝑛)

2
=

𝜆
2
(𝜆 + 𝑛𝜇) [𝜆

1
(𝜆 + ] + (𝑛 + 1) 𝜇) + 𝜆

2
]]

𝑛𝜇 (𝜆 + ] + 𝑛𝜇) (3𝜆 + 2] + 2 (𝑛 + 1) 𝜇) ]
,

𝑟
(2,𝑛)

2
=

𝜆

]
[

𝜆 + ] + (𝑛 + 1) 𝜇

3𝜆 + 2] + 2 (𝑛 + 1) 𝜇

+

(𝜆 + 𝑛𝜇) [𝜆 (𝜆 + (𝑛 + 1) 𝜇) + 𝜆
1
]]

𝑛𝜇 (𝜆 + ] + 𝑛𝜇) (3𝜆 + 2] + 2 (𝑛 + 1) 𝜇)

] .

(33)

Remark 10. It should be noted that the explicit results in
Corollary 9 cannot be obtained for case 𝑐 ≥ 3. Thus, in the
next section, we present an asymptotic expansion for the rate
matrices in the general case with an arbitrary value of 𝑐.

3. Taylor Series Expansion

In this section, we derive the Taylor series expansion for
all the nonzero elements of the rate matrices. In particular,
we find the Taylor series expansion of 𝑟(𝑐−1,𝑛)

𝑖
and 𝑟
(𝑐,𝑛)

𝑖
(𝑖 =

0, 1, . . . , 𝑐) in terms of 1/𝑛. We use {𝜃
(0,𝑘)

𝑚
, 𝑚 ∈ 𝑍

+
} and

{𝜃
(1,𝑘)

𝑚
, 𝑚 ∈ 𝑍

+
} to denote the coefficients of the Taylor series

expansion, where 𝑘 is the number of idle servers. We use
the convention that if 𝑘 < 0 or 𝑐 < 𝑘 then 𝜃

(0,𝑘)

𝑚
= 0 and

𝜃
(1,𝑘)

𝑚
= 0. Furthermore, 𝑜(𝑥) implies lim

𝑥→0
𝑜(𝑥)/𝑥 = 0 and

𝑂(𝑥) implies lim sup
𝑥→0

|𝑂(𝑥)/𝑥| < ∞, respectively.
In this section, Lemma 12 gives the one-term expansion

while Lemma 13 improves Lemma 12 by replacing small order
𝑜(⋅) by big order 𝑂(⋅). Furthermore, Theorem 14 provides the
general expansion formulae for the higher order Taylor series
expansions of 𝑟(𝑐−1,𝑛)

𝑖
and 𝑟
(𝑐,𝑛)

𝑖
(𝑖 = 0, 1, . . . , 𝑐).

Remark 11. In this section, we find the Taylor expansion
for nonzero components. The basic idea in a perturbation
approach is that the coefficient of (𝑚 + 1)th term is derived
based on the coefficients of the lower term expansions, that
is, 𝑖th term expansion (𝑖 = 𝑚,𝑚 − 1, . . . , 1). In this paper,
we find the coefficients of (𝑚 + 1)th term of 𝑟(𝑐−1,𝑛)

𝑐−𝑘
and 𝑟
(𝑐,𝑛)

𝑐−𝑘

for 𝑘 = 0, 1, . . . , 𝑐 in parallel. In principle, Lemmas 12 and 13
andTheorem 14 below could bemerged into one theorem; we
however present these separately in order for clarity.

Lemma 12. One has the one-term series expansion (𝑛 → ∞)
for nonzero elements of R(𝑛) as follows:

𝑟
(𝑐−1,𝑛)

𝑐−𝑘
= 𝜃
(0,𝑘)

0

1

𝑛
𝑘
+ 𝑜 (

1

𝑛
𝑘
) , 𝑘 = 0, 1, . . . , 𝑐,

𝑟
(𝑐,𝑛)

𝑐−𝑘
= 𝜃
(1,𝑘)

0

1

𝑛
𝑘
+ 𝑜 (

1

𝑛
𝑘
) , 𝑘 = 0, 1, . . . , 𝑐,

(34)

where the sequences {𝜃(0,𝑘)
0

, 𝑘 = 0, 1, . . . , 𝑐} and {𝜃
(1,𝑘)

0
, 𝑘 =

0, 1, . . . , 𝑐} are given as follows:

𝜃
(0,𝑘)

0
=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

0, 𝑘 = 0,

𝜆
2

𝜇

, 𝑘 = 1,

𝜆
2

𝜇

𝑘−1

∏

𝑖=1

(𝑐 − 𝑖) ]
𝜇

, 𝑘 = 2, . . . , 𝑐,

𝜃
(1,𝑘)

0
=

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

𝜆

𝑐]
, 𝑘 = 0,

𝜆

𝜇

, 𝑘 = 1,

𝜆

𝜇

𝑘−1

∏

𝑖=1

(𝑐 − 𝑖) ]
𝜇

, 𝑘 = 2, . . . , 𝑐.

(35)

Proof. The technical details are provided in Appendix B.

Lemma 13. The series expansion formulae (𝑛 → ∞) in
Lemma 12 can be improved as

𝑟
(𝑐−1,𝑛)

𝑐−𝑘
= 𝜃
(0,𝑘)

0

1

𝑛
𝑘
+ 𝑂(

1

𝑛
𝑘+1

) , 𝑘 = 0, 1, . . . , 𝑐, (36)

𝑟
(𝑐,𝑛)

𝑐−𝑘
= 𝜃
(1,𝑘)

0

1

𝑛
𝑘
+ 𝑂(

1

𝑛
𝑘+1

) , 𝑘 = 0, 1, . . . , 𝑐. (37)

Proof. The technical details are provided in Appendix C.

Theorem 14. The nonzero elements of R(𝑛) (𝑛 → ∞) can be
expanded as follows:

𝑟
(𝑐−1,𝑛)

𝑐−𝑘
=

𝑚

∑

𝑖=0

𝜃
(0,𝑘)

𝑖
(−1)
𝑖 1

𝑛
𝑘+𝑖

+ 𝑂(

1

𝑛
𝑘+𝑚+1

) , 𝑚 ∈ N, (38)

𝑟
(𝑐,𝑛)

𝑐−𝑘
=

𝑚

∑

𝑖=0

𝜃
(1,𝑘)

𝑖
(−1)
𝑖 1

𝑛
𝑘+𝑖

+ 𝑂(

1

𝑛
𝑘+𝑚+1

) , 𝑚 ∈ N, (39)

where {𝜃
(0,𝑘)

𝑚
, 𝜃
(1,𝑘)

𝑚
, 𝑘 = 0, 1, . . . , 𝑐, 𝑚 ∈ N} are recursively

defined as follows:

𝜃
(0,0)

𝑚
= −

𝜆
1

𝑐]
𝜃
(0,1)

𝑚−1
+

𝜇

𝑐]

𝑚−1

∑

𝑗=0

Φ
(0,0)

𝑗
𝜃
(0,1)

𝑚−𝑗−1
(−1)
𝑗+1

+

𝜇

𝑐]

𝑚

∑

𝑗=1

Φ̃

(1,0)

𝑗
𝜃
(0,0)

𝑚−𝑗
(−1)
𝑗
,

𝜃
(0,1)

𝑚
=

min(𝑐,𝑚+1)
∑

𝑗=2

𝜃
(0,𝑗)

𝑚+1−𝑗
(−1)
𝑗
,
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𝜃
(0,𝑘)

𝑚
=

(𝑐 − 𝑘 + 1) ]
𝜇

𝜃
(0,𝑘−1)

𝑚
+

𝜆

𝜇

𝜃
(0,𝑘+1)

𝑚−2

+

𝜆 + (𝑐 − 𝑘) ]
𝜇

𝜃
(0,𝑘)

𝑚−1

+

𝑚−2

∑

𝑗=0

Φ
(0,𝑘)

𝑗
𝜃
(0,1)

𝑚−𝑗−2
(−1)
𝑗

+

𝑚−1

∑

𝑗=0

Φ
(1,𝑘)

𝑗
𝜃
(0,0)

𝑚−𝑗−1
(−1)
𝑗+1

,

𝑘 = 2, 3, . . . , 𝑐,

𝜃
(1,0)

𝑚
= −

𝜆
1

𝑐]
𝜃
(1,1)

𝑚−1
+

𝜇

𝑐]

𝑚−1

∑

𝑗=0

Φ
(0,0)

𝑗
𝜃
(1,1)

𝑚−𝑗−1
(−1)
𝑗+1

+

𝜇

𝑐]

𝑚

∑

𝑗=1

Φ̃

(1,0)

𝑗
𝜃
(1,0)

𝑚−𝑗
(−1)
𝑗
,

𝜃
(1,1)

𝑚
=

min(𝑐,𝑚+1)
∑

𝑗=2

𝜃
(1,𝑗)

𝑚+1−𝑗
(−1)
𝑗
,

𝜃
(1,𝑘)

𝑚
=

(𝑐 − 𝑘 + 1) ]
𝜇

𝜃
(1,𝑘−1)

𝑚
+

𝜆

𝜇

𝜃
(1,𝑘+1)

𝑚−2

+

𝜆 + (𝑐 − 𝑘) ]
𝜇

𝜃
(1,𝑘)

𝑚−1

+

𝑚−2

∑

𝑗=0

Φ
(0,𝑘)

𝑗
𝜃
(1,1)

𝑚−𝑗−2
(−1)
𝑗

+

𝑚−1

∑

𝑗=0

Φ
(1,𝑘)

𝑗
𝜃
(1,0)

𝑚−𝑗−1
(−1)
𝑗+1

,

𝑘 = 2, 3, . . . , 𝑐.

(40)

Furthermore,

Φ
(0,𝑘)

𝑗
=

𝑗

∑

𝑖=0

𝜃
(0,𝑘+1)

𝑖
(−1)
𝑗
(𝑘 + 𝑖)

𝑗−𝑖

(𝑗 − 𝑖)!

,

Φ
(1,𝑘)

𝑗
=

𝑗

∑

𝑖=0

𝜃
(1,𝑘+1)

𝑖
(−1)
𝑗
(𝑘 + 𝑖)

𝑗−𝑖

(𝑗 − 𝑖)!

,

Φ̃

(1,0)

𝑗
=

𝑗

∑

𝑖=1

𝜃
(1,1)

𝑖
(−1)
𝑗

(𝑖)
𝑗−𝑖

(𝑗 − 𝑖)!

,

(41)

where (𝜙)
𝑛
(−∞ < 𝜙 < ∞, 𝑛 ∈ Z

+
) denotes the Pochhammer

symbol defined by

(𝜙)
𝑛
=

{

{

{

1, 𝑛 = 0,

𝜙 (𝜙 + 1) ⋅ ⋅ ⋅ (𝜙 + 𝑛 − 1) , 𝑛 ∈ N.

(42)

Proof. The technical details are provided in Appendix D.

4. Asymptotic Upper Bound

In this section, we present an asymptotic upper bound for the
stationary distribution. To this end, we use Lemmas 15 and 16.

Lemma 15. For a square matrix A = (

𝑎
1,1
⋅⋅⋅ 𝑎
1,𝑛

.

.

. d
.
.
.

𝑎
𝑛,1
⋅⋅⋅ 𝑎
𝑛,𝑛

) and a

vector x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), one has

‖xA‖
1
≤ ‖x‖1 ‖A‖∞

, (43)

where ‖x‖
1
= ∑
𝑛

𝑖=1
|𝑥
𝑖
| and ‖A‖

∞
= max

1≤𝑖≤𝑛
∑
𝑛

𝑗=1
|𝑎
𝑖𝑗
|.

Lemma 16 (Fact 5 in [17]). For integers 𝑛(≥ 1) and �̂� > 0,
̂
𝑏

satisfying ̂𝑏 ̸= �̂�𝑚 − 𝑚
2
(𝑚 = 0, 1, . . .), one has

𝑛

∏

𝑗=𝑁

(1 +

�̂�

𝑗

+

̂
𝑏

𝑗
2
) = 𝑂(𝑛

�̂�
) , 𝑛 → ∞. (44)

Remark 17. In [17], only the last row of the rate matrices is
nonzero. This fact allows us to evaluate the tail probability
using the product of a sequence of scalars. However, since the
last two rows of the rate matrices are nonzero in our model,
we need to deal with the product of a sequence of matrices.
Thus, in order to apply the technique given in [17], that is,
Lemma 16, we need to use Lemma 15.

Theorem 18. One defines 𝜋𝐸
𝑛
= (𝜋
𝑐−1,𝑛

, 𝜋
𝑐,𝑛
). One then has






𝜋
𝐸

𝑛





1

= 𝑂(𝑛
𝑎
× (

𝜆

𝑐]
)

𝑛

) , 𝑛 → ∞, (45)

where 𝑎 = (𝑐
2] + 𝜆)/𝑐𝜇.

Proof. The proof uses Lemmas 15 and 16. We have

R(𝑛)
𝑆𝐸

= (

𝑟
(𝑐−1,𝑛)

𝑐−1
𝑟
(𝑐−1,𝑛)

𝑐

𝑟
(𝑐,𝑛)

𝑐−1
𝑟
(𝑐,𝑛)

𝑐

) , (46)

where

𝑟
(𝑐−1,𝑛)

𝑐−1
= 𝜃
(0,1)

0

1

𝑛

− 𝜃
(0,1)

1

1

𝑛
2
+ 𝑂(

1

𝑛
3
) ,

𝑟
(𝑐−1,𝑛)

𝑐
= −𝜃
(0,0)

1

1

𝑛

+ 𝜃
(0,0)

2

1

𝑛
2
+ 𝑂(

1

𝑛
3
) ,

𝑟
(𝑐,𝑛)

𝑐−1
= 𝜃
(1,1)

0

1

𝑛

− 𝜃
(1,1)

1

1

𝑛
2
+ 𝑂(

1

𝑛
3
) ,

𝑟
(𝑐,𝑛)

𝑐
= 𝜃
(1,0)

0
− 𝜃
(1,0)

1

1

𝑛

+ 𝜃
(1,0)

2

1

𝑛
2
+ 𝑂(

1

𝑛
3
) .

(47)

It follows from 𝜋
𝑛
= 𝜋
𝑛−1

R(𝑛) that 𝜋𝐸
𝑛
= 𝜋
𝐸

𝑛−1
R(𝑛)
𝑆𝐸
. Thus,

applying Lemma 15 repeatedly, we obtain






𝜋
𝐸

𝑛





1

≤






𝜋
𝐸

0





1






R(1)
𝑆𝐸





∞

⋅ ⋅ ⋅






R(𝑛−1)
𝑆𝐸





∞






R(𝑛)
𝑆𝐸





∞

. (48)
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For a sufficiently large 𝑛, ‖R(𝑛)
𝑆𝐸

‖
∞

is given by





R(𝑛)
𝑆𝐸





∞

=






𝑟
(𝑐,𝑛)

𝑐−1






+






𝑟
(𝑐,𝑛)

𝑐







= 𝜃
(1,0)

0
+ (𝜃
(1,1)

0
− 𝜃
(1,0)

1
)

1

𝑛

+ (𝜃
(1,0)

2
− 𝜃
(1,1)

1
)

1

𝑛
2
+ 𝑂(

1

𝑛
3
)

= 𝜃
(1,0)

0
(1 +

𝜃
(1,1)

0
− 𝜃
(1,0)

1

𝜃
(1,0)

0
𝑛

+

𝜃
(1,0)

2
− 𝜃
(1,1)

1

𝜃
(1,0)

0
𝑛
2

)

+ 𝑂(

1

𝑛
3
)

=

𝜆

𝑐]
(1 +

𝑎

𝑛

+

𝑏

𝑛
2
) + 𝑂(

1

𝑛
3
) ,

(49)

where

𝑎 =

𝜃
(1,1)

0
− 𝜃
(1,0)

1

𝜃
(1,0)

0

,

𝑏 =

𝜃
(1,0)

2
− 𝜃
(1,1)

1

𝜃
(1,0)

0

.

(50)

Thus, for the parameters that satisfy Lemma 16, we have






𝜋
𝐸

0





1

𝑛

∏

𝑖=1






R(𝑖)
𝑆𝐸





∞

= 𝑂(𝑛
𝑎
× (

𝜆

𝑐]
)

𝑛

) , 𝑛 → ∞, (51)

implying the desired result.

Corollary 19. One has

𝜋
𝑖,𝑛

= 𝑂(𝑛
𝑎−𝑐+𝑖

× (

𝜆

𝑐]
)

𝑛

) ,

𝑖 = 0, 1, . . . , 𝑐, 𝑛 → ∞.

(52)

Proof. From 𝜋
𝑛
= 𝜋
𝑛−1

R(𝑛), we have

𝜋
𝑖,𝑛

= 𝜋
𝑐−1,𝑛−1

𝑟
(𝑐−1,𝑛)

𝑖
+ 𝜋
𝑐,𝑛−1

𝑟
(𝑐,𝑛)

𝑖
, 𝑖 = 0, 1, . . . , 𝑐. (53)

It follows fromTheorem 14 that

𝑟
(𝑐−1,𝑛)

𝑖
= 𝑂(

1

𝑛
𝑐−𝑖

) ,

𝑟
(𝑐,𝑛)

𝑖
= 𝑂(

1

𝑛
𝑐−𝑖

) ,

𝑛 → ∞.

(54)

Theorem 18 yields






𝜋
𝐸

𝑛





1

= 𝑂(𝑛
𝑎
× (

𝜆

𝑐]
)

𝑛

) , 𝑛 → ∞. (55)

Thus,

𝜋
𝑖,𝑛

= 𝑂(𝑛
𝑎−𝑐+𝑖

× (

𝜆

𝑐]
)

𝑛

) , 𝑛 → ∞. (56)

5. Numerical Algorithm

In this section, we propose a computational algorithm for the
stationary distribution of our model extending that proposed
by Phung-Duc et al. [26] for the fundamentalM/M/𝑐/𝑐 retrial
queues without guard channels. In Section 5.1, we show some
results which are the basis for the algorithm. Section 5.2
presents the algorithms for the rate matrices and the sta-
tionary distribution. Section 5.3 proposes a simple method
for determining the truncation point used in Algorithm 2 in
Section 5.2 for the stationary distribution. Section 5.4 derives
some performance measures such as the blocking probability
for type 2 customers (low priority) and that for type 1 and
retrial calls.

5.1. Efficient Computation. Due to Lemma 4, we need to
compute 𝑘 inversematrices in order to obtainR(𝑛)

𝑘
. Itmay take

a long time when the number of servers is large.Thus, instead
of computing the inverse matrices, we propose a newmethod
exploiting the fact that only the last two rows are nonzero.The
computational complexity of our newmethod is only𝑂(𝑐). In
particular, the computational complexity in all the theorems
and lemmas below is 𝑂(𝑐).

It should be noted that the computation of R(𝑛) and R(𝑛)
𝑘

is equivalent to that of their last two rows r(𝑛) and r(𝑛)
𝑘
; that is,

r(𝑛) = (

r(𝑐−1,𝑛)

r(𝑐,𝑛)
) ,

r(𝑛)
𝑘

= (

r(𝑐−1,𝑛)
𝑘

r(𝑐,𝑛)
𝑘

) ,

(57)

where r(𝑖,𝑛) and r(𝑖,𝑛)
𝑘

(𝑖 = 0, 1) are the row vectors of 𝑐 + 1

elements.

Definition 20. We define the function 𝑟
𝑛
as follows. Let

X (x, y) = (

O
x
y
),

Lr (Y) = (

y
𝑐−1

y
𝑐

) ,

(58)

where y
𝑐−1

and y
𝑐
are the second last and the last rows of Y.

Furthermore,

𝑟
𝑛
(

x
y
) = Lr (𝑅

𝑛
(X (x, y))) , (59)

where x and y are vectors with an appropriate dimension.

It is easy to see that r(𝑛) and r(𝑛)
𝑘

satisfy the following
equations:

r(𝑛) = 𝑟
𝑛
(r(𝑛+1)) ,

r(𝑛)
𝑘

= 𝑟
𝑛
(r(𝑛+1)
𝑘−1

) = 𝑟
𝑛
∘ 𝑟
𝑛+1

∘ ⋅ ⋅ ⋅ ∘ 𝑟
𝑛+𝑘−1

(O) ,

(60)
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for 𝑛, 𝑘 ∈ N. Lemmas 21 and 22 compute r(𝑐−1,𝑛)
𝑘

and r(𝑐,𝑛)
𝑘

using r(𝑛+1)
𝑘−1

, respectively. Furthermore, Lemma 23 computes
the stationary distribution of the censored Markov chain on
level 0 using r(1).

Lemma 21. For arbitrary 𝑛, 𝑘, one has

𝑟
(𝑐−1,𝑛)

𝑘,𝑖
= 𝛼
𝑖
+ 𝛽
𝑖
𝑟
(𝑐−1,𝑛)

𝑘,𝑐
, 𝑖 = 0, 1, . . . , 𝑐 − 1, (61)

where {𝛼
𝑖
, 𝛽
𝑖
, 𝑖 = 0, 1, . . . , 𝑐} and 𝑟

(𝑐−1,𝑛)

𝑘,𝑐
are given as follows:

𝛼
𝑐
= 0,

𝛽
𝑐
= 1,

𝛼
𝑐−1

= 0,

𝛽
𝑐−1

= −

𝑏
(𝑛)

𝑐
+ (𝑛 + 1) 𝜇𝑟

(𝑐,𝑛+1)

𝑘−1,𝑐−1

𝜆
1
+ (𝑛 + 1) 𝜇𝑟

(𝑐−1,𝑛+1)

𝑘−1,𝑐−1

,

𝛼
𝑐−2

= −

𝜆
2

𝜆

,

𝛽
𝑐−2

= −

𝑏
(𝑛)

𝑐−1
𝛽
𝑐−1

+ 𝑐] + (𝑛 + 1) 𝜇𝑟
(𝑐−1,𝑛+1)

𝑘−1,𝑐−2
𝛽
𝑐−1

+ (𝑛 + 1) 𝜇𝑟
(𝑐,𝑛+1)

𝑘−1,𝑐−2

𝜆

,

𝛼
𝑖−1

= −

𝑏
(𝑛)

𝑖
𝛼
𝑖
+ (𝑖 + 1) ]𝛼

𝑖+1

𝜆

, 𝑖 = 𝑐 − 2, 𝑐 − 3, . . . , 1,

𝛽
𝑖−1

= −

𝑏
(𝑛)

𝑖
𝛽
𝑖
+ (𝑖 + 1) ]𝛽

𝑖+1
+ (𝑛 + 1) 𝜇𝑟

(𝑐−1,𝑛+1)

𝑘−1,𝑖−1
𝛽
𝑐−1

+ (𝑛 + 1) 𝜇𝑟
(𝑐,𝑛+1)

𝑘−1,𝑖−1

𝜆

, 𝑖 = 𝑐 − 2, 𝑐 − 3, . . . , 1,

𝑟
(𝑐−1,𝑛)

𝑘,𝑐
= −

𝑏
(𝑛)

0
𝛼
0
+ ]𝛼
1

𝑏
(𝑛)

0
𝛽
0
+ ]𝛽
1

.

(62)

Proof. The technical details are provided in Appendix E.

Lemma 22. For arbitrary 𝑛 and 𝑘, one has

𝑟
(𝑐,𝑛)

𝑘,𝑖
= 𝛼
𝑖
+ 𝛽
𝑖
𝑟
(𝑐,𝑛)

𝑘,𝑐
, 𝑖 = 0, 1, . . . , 𝑐 − 1, (63)

where {𝛼
𝑖
, 𝛽
𝑖
, 𝑖 = 0, 1, . . . , 𝑐} and 𝑟

(𝑐,𝑛)

𝑘,𝑐
are given as follows:

𝛼
𝑐
= 0,

𝛽
𝑐
= 1,

𝛼
𝑐−1

= −

𝜆

𝜆
1
+ (𝑛 + 1) 𝜇𝑟

(𝑐−1,𝑛+1)

𝑘−1,𝑐−1

,

𝛽
𝑐−1

= −

𝑏
(𝑛)

𝑐
+ (𝑛 + 1) 𝜇𝑟

(𝑐,𝑛+1)

𝑘−1,𝑐−1

𝜆
1
+ (𝑛 + 1) 𝜇𝑟

(𝑐−1,𝑛+1)

𝑘−1,𝑐−1

,

𝛼
𝑖−1

= −

𝑏
(𝑛)

𝑖
𝛼
𝑖
+ (𝑖 + 1) ]𝛼

𝑖+1
+ (𝑛 + 1) 𝜇𝑟

(𝑐−1,𝑛+1)

𝑘−1,𝑖−1
𝛼
𝑐−1

𝜆

, 𝑖 = 𝑐 − 1, 𝑐 − 2, . . . , 1,

𝛽
𝑖−1

= −

𝑏
(𝑛)

𝑖
𝛽
𝑖
+ (𝑖 + 1) ]𝛽

𝑖+1
+ (𝑛 + 1) 𝜇𝑟

(𝑐−1,𝑛+1)

𝑘−1,𝑖−1
𝛽
𝑐−1

+ (𝑛 + 1) 𝜇𝑟
(𝑐,𝑛+1)

𝑘−1,𝑖−1

𝜆

, 𝑖 = 𝑐 − 1, 𝑐 − 2, . . . , 1.

(64)
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Furthermore,

𝑟
(𝑐,𝑛)

𝑘,𝑐
= −

𝑏
(𝑛)

0
𝛼
0
+ ]𝛼
1

𝑏
(𝑛)

0
𝛽
0
+ ]𝛽
1

. (65)

Proof. This lemma can be proved using the same technique
as in Lemma 21.

Lemma 23. Solution x
0
= (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑐
) to

x
0
(Q(0)
1

+ R(1)Q(1)
2

) = 0, x
0
e = 1, (66)

is given by 𝑥
𝑖

= 𝛽
𝑖
𝑥
𝑐
(𝑖 = 0, 1, . . . , 𝑐), where {𝛽

𝑖
, 𝑖 =

0, 1, . . . , 𝑐 − 1, 𝑐} is recursively defined as

𝛽
𝑐
= 1,

𝛽
𝑐−1

=

𝜆 + 𝑐] − 𝜇𝑟
(1,1)

𝑐−1

𝜆
1
+ 𝜇𝑟
(0,1)

𝑐−1

,

𝛽
𝑖−1

=

(𝜆 + 𝑖]) 𝛽
𝑖
− (𝑖 + 1) ]𝛽

𝑖+1
− 𝜇 (𝑟

(0,1)

𝑖−1
𝛽
𝑐−1

+ 𝑟
(1,1)

𝑖−1
)

𝜆

,

𝑖 = 𝑐 − 1, 𝑐 − 2, . . . ,

(67)

and then

𝑥
𝑐
=

1

𝛽
0
+ 𝛽
1
+ 𝛽
2
+ ⋅ ⋅ ⋅ + 𝛽

𝑐

. (68)

Remark 24. x
0
is proportional to 𝜋

0
.

Remark 25. Computation of r(𝑐−1,𝑛)
𝑘

and r(𝑐,𝑛)
𝑘

using Lemmas
21 and 22 might be numerically unstable due to overflow.
Thus, we use recursive formulae in Theorem 26 to obtain a
numerically stable scheme.

Theorem 26. Sequence {𝑥
𝑖
, 𝑖 = 0, 1, . . . , 𝑐} represents either

{𝑟
(𝑐−1,𝑛)

𝑖,𝑘
, 𝑖 = 0, 1, . . . , 𝑐} or {𝑟

(𝑐,𝑛)

𝑖,𝑘
, 𝑖 = 0, 1, . . . , 𝑐}. {𝑥

𝑖
, 𝑖 =

0, 1, . . . , 𝑐 − 2} is calculated in terms of 𝑥
𝑐−1

and 𝑥
𝑐
as follows:

𝑥
𝑖
=

(𝑖 + 1) ]𝑥
𝑖+1

+ 𝐷
𝑖

𝐵
𝑖

, 𝑖 = 0, 1, . . . , 𝑐 − 2, (69)

where {𝐵
𝑖
, 𝐷
𝑖
, 𝑖 = 0, 1, . . . , 𝑐 − 2} are given as follows:

𝐵
0
= 𝜆 + 𝑛𝜇,

𝐷
0
= 0,

𝐵
𝑖
= (𝜆 + 𝑖] + 𝑛𝜇) −

𝜆𝑖]
𝐵
𝑖−1

, 𝑖 = 1, 2, . . . , 𝑐 − 2,

𝐷
𝑖
= (𝑛 + 1) 𝜇 (𝑟

(𝑐−1,𝑛+1)

𝑘−1,𝑖−1
𝑥
𝑐−1

+ 𝑟
(𝑐,𝑛+1)

𝑘−1,𝑖−1
𝑥
𝑐
) +

𝜆𝐷
𝑖−1

𝐵
𝑖−1

,

𝑖 = 1, 2, . . . , 𝑐 − 2.

(70)

In addition,
𝐵
𝑖
> 𝜆,

𝐷
𝑖
> 0.

(71)

Proof. We prove Theorem 26 using mathematical induction.
Let {𝑥

𝑖
, 𝑖 = 0, 1, . . . , 𝑐}denote {𝑟(𝑐−1,𝑛)

𝑖,𝑘
, 𝑖 = 0, 1, . . . , 𝑐}defined

in (57). We have

𝑥
0
=

]
𝜆 + 𝑛𝜇

𝑥
1
. (72)

Thus, 𝐵
0
= 𝜆+𝑛𝜇 and𝐷

0
= 0. For 𝑖 = 1, 2, . . . , 𝑐−2, we prove

by mathematical induction. For 𝑗 = 1, 2, . . . , 𝑖 − 1, assuming
that

𝐵
𝑗
= (𝜆 + 𝑗] + 𝑛𝜇) −

𝜆𝑗]
𝐵
𝑗−1

,

𝐷
𝑗
= (𝑛 + 1) 𝜇 (𝑟

(𝑐−1,𝑛+1)

𝑘−1,𝑗−1
𝑥
𝑐−1

+ 𝑟
(𝑐,𝑛+1)

𝑘−1,𝑗−1
𝑥
𝑐
) +

𝜆𝐷
𝑗−1

𝐵
𝑗−1

(73)

are true, we show that it is also true for 𝑗 = 𝑖. Indeed, using
the assumption of mathematical induction, we have

𝜆

𝑖]𝑥
𝑖
+ 𝐷
𝑖−1

𝐵
𝑖−1

− (𝜆 + 𝑖] + 𝑛𝜇) 𝑥
𝑖
+ (𝑖 + 1) ]𝑥

𝑖+1
+ �̃�
𝑖

= 0,

(74)

where �̃�
𝑖
= (𝑛+1)𝜇(𝑟

(𝑐−1,𝑛+1)

𝑘−1,𝑖−1
𝑥
𝑐−1

+𝑟
(𝑐,𝑛+1)

𝑘−1,𝑖−1
𝑥
𝑐
). Arranging this

formula yields

𝑥
𝑖
=

(𝑖 + 1) ]𝑥
𝑖+1

+ (𝜆𝐷
𝑖−1

/𝐵
𝑖−1

+ �̃�
𝑖
)

(𝜆 + 𝑖] + 𝑛𝜇) − 𝜆𝑖]/𝐵
𝑖−1

=

(𝑖 + 1) ]𝑥
𝑖+1

+ 𝐷
𝑖

𝐵
𝑖

,

(75)

implying that case 𝑗 = 𝑖 is also true. Thus, for any 𝑖 =

1, 2, . . . , 𝑐 − 2, the desired result is established. We can show
similar result for {𝑟(𝑐,𝑛)

𝑖,𝑘
, 𝑖 = 0, 1, . . . , 𝑐}.

Remark 27. Using Theorem 26, we can calculate 𝑟
(𝑐−1,𝑛)

𝑘,𝑖
(𝑖 =

0, 1, . . . , 𝑐 − 2) in terms of 𝑟(𝑐−1,𝑛)
𝑘,𝑐−1

and 𝑟
(𝑐−1,𝑛)

𝑘,𝑐
and 𝑟
(𝑐,𝑛)

𝑘,𝑖
(𝑖 =

0, 1, . . . , 𝑐−2) in terms of 𝑟(𝑐,𝑛)
𝑘,𝑐−1

and 𝑟
(𝑐,𝑛)

𝑘,𝑐
. Furthermore, 𝑟(𝑐−1,𝑛)

𝑘,𝑐−1
,

𝑟
(𝑐−1,𝑛)

𝑘,𝑐
, 𝑟(𝑐,𝑛)
𝑘,𝑐−1

, and 𝑟
(𝑐,𝑛)

𝑘,𝑐
are obtained from Lemmas 21 and 22.

Remark 28. Tran-Gia andMandjes [6] propose somemodels
where blocked handover calls do not retry but are lost. The
results in Section 5.1 are easily adapted to these models.

5.2. Computational Algorithm. In this section, we present
an algorithm for computing the rate matrices and then a
procedure for the computation of the stationary distribution.
Algorithm 1 shows a method for r(𝑛) while Algorithm 2 com-
putes approximation �̂� = (�̂�

0
, �̂�
1
, . . . , �̂�

𝑁
) to the stationary

distribution, where {𝑘
𝑙
, 𝑙 ∈ Z

+
} is an arbitrary increasing

sequence and𝑁 is the truncation point given in advance. We
will discuss how to choose the truncation point in Section 5.3.

5.3. Determination of Truncation Point 𝑁. In Algorithm 2,
the truncation point is given in advance and it should be large
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Input: {Q(𝑛)
0
,Q(𝑛)
1
,Q(𝑛)
2
, 𝑘
𝑛
; 𝑛 ∈ Z

+
}, 𝜖

Output: {̂r(𝑛)}
𝑙 fl 1;
Compute r(𝑛)

𝑘1
and r(𝑛)
𝑘0

using Lemmas 21 and 22 andTheorem 26.
while ‖r(𝑛)

𝑘𝑙
− r(𝑛)
𝑘𝑙−1

‖
∞

> 𝜖 do
𝑙 fl 𝑙 + 1;
Compute r(𝑛)

𝑘𝑙
and r(𝑛)
𝑘𝑙−1

using Lemmas 21 and 22 andTheorem 26.
r̂(𝑛) fl r(𝑛)

𝑘𝑙
;

end while

Algorithm 1: Computation of r(𝑛).

Input: 𝜆, 𝜇, ], 𝑐, {𝑘
𝑛
; 𝑛 ∈ Z

+
}, 𝜖,𝑁

Output: {�̂�
𝑛
; 𝑛 = 0, 1, . . . , 𝑁}

Compute r̂(𝑁) using Algorithm 1.
for 𝑛 = 1 to𝑁 − 1 do
r̂(𝑁−𝑛) fl 𝑟

𝑁−𝑛
(r̂(𝑁−𝑛+1));

end for
Compute x

0
using Lemma 23.

for 𝑛 = 1 to𝑁 do
x
𝑛
fl 𝑥
𝑐−1,𝑛−1

r̂(𝑐−1,𝑛) + 𝑥
𝑐,𝑛−1

r̂(𝑐,𝑛);
end for
for 𝑛 = 0 to𝑁 do
�̂�
𝑛
fl

x
𝑛

∑
𝑁

𝑛=0
x
𝑛
e
;

end for

Algorithm 2: Stationary distribution.

enough such that the tail probability is sufficiently small; that
is,

∞

∑

𝑛=𝑁+1

𝜋
𝑛
e < 𝜖, (76)

where 𝜖 is given in advance.
However, since 𝜋

𝑛
is not explicitly obtained for general

M/M/𝑐/𝑐 retrial queues, a direct determination of such 𝑁 is
difficult. In this paper, we use the explicit results forM/M/1/1
retrial queue to determine this truncation point. In particular,
we consider M/M/1/1 retrial queue with arrival rate 𝜆/𝑐,
retrial rate 𝜇, and service rate ]. This queue is stable since
𝜌 = 𝜆/(𝑐]) < 1 due to the stability condition of our original
model.

Let 𝑝
𝑖,𝑛

(𝑖 = 0, 1, 𝑛 ∈ Z
+
) denote the probability that the

number of busy servers is 𝑖 and the number of customers in
the orbit is 𝑛 in M/M/1/1 retrial queue. It is shown in [26] that

𝑝
0,𝑛

=

𝜌
𝑛

𝑛!

(1 − 𝜌)
𝜆/𝑐𝜇+1

(

𝜆

𝑐𝜇

)

𝑛

,

𝑝
1,𝑛

=

𝜌
𝑛+1

𝑛!

(1 − 𝜌)
𝜆/𝑐𝜇+1

(1 +

𝜆

𝑐𝜇

)

𝑛

,

(77)

where 𝑛 ∈ Z
+
and (𝜙)

𝑛
(−∞ < 𝜙 < ∞, 𝑛 ∈ Z

+
) denotes the

Pochhammer symbol.
Using this result, we set the truncation point as follows:

𝑁 = inf {𝑛 |

𝑛

∑

𝑖=0

(𝑝
0,𝑖

+ 𝑝
1,𝑖
) > 1 − 𝜖} , 𝜖 > 0. (78)

We verify the accuracy of this choice using numerical results.

5.4. Blocking Probability. We derive blocking probabilities
as performance measures. In our model, priority (type 1)
and retrial customers are blocked when all the servers are
occupied while normal (type 2) customers are blocked when
at least 𝑐 − 1 servers are occupied. Thus, the blocking
probability of normal customers is given by

𝜋
𝑐−1

+ 𝜋
𝑐
fl
∞

∑

𝑛=0

𝜋
𝑐−1,𝑛

+

∞

∑

𝑛=0

𝜋
𝑐,𝑛
, (79)

and the blocking probability of priority and retrial customers
is given by

𝜋
𝑐
fl
∞

∑

𝑛=0

𝜋
𝑐,𝑛
. (80)

6. Numerical Results

In this section, we show some numerical examples. In
particular, in Section 6.1 we confirm the effectiveness of the
Taylor series expansion for the rate matrices. Section 6.2 is
devoted to the numerical investigation of the asymptotic
behavior for the joint stationary distribution. Section 6.3
presents the blocking probabilities for priority and normal
customers against the number of channels.

6.1. Accuracy of the Taylor Series Expansion. The rate matrix
is calculated using Algorithm 1 with 𝜖 = 10

−10 and 𝑘
𝑛
= 2
𝑛.

We call the rate matrix obtained by Algorithm 1 under this
setting exact result.

First, we present some numerical examples to show the
effectiveness of the Taylor series expansion. Tables 1 and 2
show numerical results of R(𝑛) (𝑛 = 100) for 𝜇 = 1 and 10,
respectively. Tables 3 and 4 show numerical results of R(𝑛)
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Table 1: Relative error for R(𝑛) (𝑛 = 100, 𝜇 = 1).

(𝜌) One term Two terms Three terms
0.1 0.0051053401 0.0003425140 0.0000228094
0.2 0.0086100661 0.0006446694 0.0000491957
0.3 0.0120849796 0.0009702635 0.0000821267
0.4 0.0155304303 0.0013188638 0.0001219509
0.5 0.0189467632 0.0016900430 0.0001690102
0.6 0.0223343192 0.0020833798 0.0002236397
0.7 0.0256934342 0.0024984580 0.0002861679
0.8 0.0290244403 0.0029348670 0.0003569166
0.9 0.0323276648 0.0033922015 0.0004362009

Table 2: Relative error for R(𝑛) (𝑛 = 100, 𝜇 = 10).

(𝜌) One term Two terms Three terms
0.1 0.0004109454 0.0000030629 0.0000000407
0.2 0.0008055339 0.0000063695 0.0000000804
0.3 0.0011997344 0.0000099832 0.0000001323
0.4 0.0015935474 0.0000139034 0.0000001977
0.5 0.0019869735 0.0000181294 0.0000002747
0.6 0.0023800133 0.0000226607 0.0000003638
0.7 0.0027726674 0.0000274965 0.0000004657
0.8 0.0031649363 0.0000326363 0.0000005807
0.9 0.0035568205 0.0000380794 0.0000007095

(𝑛 = 1000) for 𝜇 = 1 and 10, respectively. Other parameters
are given by 𝑐 = 5, ] = 1, and 𝜆

2
/𝜆
1
= 4 and 𝜆 is calculated

from traffic intensity 𝜌(= 𝜆/𝑐]). We obtain exact value
for the rate matrices using the matrix continued fraction
approach [23] with enough accuracy (relative error of the
order of 10−10). The one-, two-, and three-term expansions
(𝑚 = 1, 2, 3) are expressed by R(𝑛,1), R(𝑛,2), and R(𝑛,3),
respectively. In these tables, we show the relative errors, that
is, ‖R(𝑛,1) − R(𝑛)‖

∞
/‖R(𝑛)‖

∞
, ‖R(𝑛,2) − R(𝑛)‖

∞
/‖R(𝑛)‖

∞
, and

‖R(𝑛,3) − R(𝑛)‖
∞
/‖R(𝑛)‖

∞
.

We observe that the Taylor series expansion gives a good
approximation in the sense that the relative error is quite
small. The relative errors for case 𝑛 = 1000 are smaller than
those for case 𝑛 = 100. This fact agrees with the Taylor series
expansion formulae. We also observe that the relative error
increases with the traffic intensity. This suggests that we need
more computational effort for the cases of relatively heavy
load in comparison with those of relatively light load.

Furthermore, we observe that relative error in Tables 2
and 4 (𝜇 = 10) is smaller than the corresponding one in
Tables 1 and 2 (𝜇 = 1), respectively. This implies that the
Taylor series expansion gives good approximation for the case
of a relatively large retrial rate. This is the case of interest in
practice where customers are impatient.

Figure 1 represent 𝑟(𝑐−1,𝑛)
𝑐

against the number of expansion
terms. The parameters are given by 𝑛 = 1000, 𝑐 = 100,
𝜇 = 1, ] = 1, 𝜆

2
/𝜆
1

= 24, and 𝜌 = 0.9. We observe
that the Taylor series expansion converges to the exact value
after about 5 terms. Interestingly, we observe that the Taylor

Table 3: Relative error for R(𝑛) (𝑛 = 1000, 𝜇 = 1).

(𝜌) One term Two terms Three terms
0.1 0.0004109342 0.0000030754 0.0000000215
0.2 0.0008055116 0.0000063974 0.0000000500
0.3 0.0011997010 0.0000100293 0.0000000863
0.4 0.0015935030 0.0000139704 0.0000001309
0.5 0.0019869182 0.0000182201 0.0000001843
0.6 0.0023799470 0.0000227778 0.0000002472
0.7 0.0027725901 0.0000276429 0.0000003200
0.8 0.0031648480 0.0000328146 0.0000004033
0.9 0.0035567214 0.0000382924 0.0000004976

Table 4: Relative error for R(𝑛) (𝑛 = 1000, 𝜇 = 10).

(𝜌) One term Two terms Three terms
0.1 0.0000401092 0.0000000304 0.0000000000
0.2 0.0000800545 0.0000000640 0.0000000001
0.3 0.0001199958 0.0000001007 0.0000000001
0.4 0.0001599331 0.0000001406 0.0000000002
0.5 0.0001998664 0.0000001837 0.0000000003
0.6 0.0002397957 0.0000002300 0.0000000004
0.7 0.0002797210 0.0000002795 0.0000000005
0.8 0.0003196424 0.0000003321 0.0000000006
0.9 0.0003595598 0.0000003880 0.0000000007

series expansions for 𝑟
(𝑐−1,𝑛)

𝑐
oscillate and converge to the

exact values.

6.2. Asymptotic Behavior of 𝜋
𝑖,𝑛
/𝜌
𝑛. Figure 2 shows

𝜋
𝑖,𝑛
/𝜌
𝑛
(𝑛 ∈ Z

+
) against 𝑛 for some fixed 𝑖. Parameters

are given by 𝑐 = 100, 𝑁 = 1000, 𝜇 = 1, ] = 1/70, 𝜆
1
= 1/25,

and 𝜆
2

= 24/25. Joint probability 𝜋
𝑖,𝑛

is computed using
the algorithm presented in [23] (see [22] for details). We
observe that the five curves for 𝑖 = 100, 75, 50, 25, and 0 have
a negative slope. This implies that there should exist positive
𝐶
1,𝑖
, 𝐶
2,𝑖
, and 𝑏

𝑖
such that

𝐶
1,𝑖
𝜌
𝑛
𝑛
−𝑏
𝑖
≤ 𝜋
𝑖,𝑛

≤ 𝐶
2,𝑖
𝜌
𝑛
𝑛
−𝑏
𝑖
, 𝑛 → ∞. (81)

Thus, the asymptotic results obtained in this paper can be
further refined to be tighter.

6.3. Blocking Probability versus Number of Servers. We use
the following fixed parameters ] = 1, 𝜌 = 0.7, and
𝜆
2
/𝜆
1
= 24 while varying the number of servers from 1 to

100. Truncation point 𝑁 is determined using the method in
Section 5.3 with 𝜖 = 10

−10. Blocking probabilities are 𝜋
𝑐
and

𝜋
𝑐−1

+ 𝜋
𝑐
for high and low priority customers, respectively.

Figure 3 represents the blocking probabilities of two types of
customers for three values of 𝜇 (0.1, 1, and 10). Obviously,
for the same 𝜇, the blocking probability for low priority
customers is higher than that of high priority customers.
From Figure 3, we can observe a large difference between the
curve for type 1 customers and the corresponding one for type
2 customers. This implies that one guard channel is enough
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to guarantee the QoS of type 1 customers. Furthermore, the
blocking probabilities increasewith𝜇 because customerswho
retry in a short interval may suffer from the same congested
situation.

An important observation is that all the curves are
asymptotically linear when the number of servers is large.
Asymptotic analysis for the case of large number of servers
may be the topic of any future research. In this direction,
Avramet al. [27] consider the blocking probability under slow
retrials and Halfin-Whitt regime.

7. Concluding Remarks

In this paper, we have introduced a new queueing model
with a guard channel for retrial and priority customers. The
new queueingmodel is formulated using QBD process which
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Figure 3: Blocking probability versus the number of servers.

possesses a sparse structure allowing an efficient numerical
algorithm and the Taylor series expansion for all the nonzero
elements of the rate matrices. We have also derived an
asymptotic upper bound for the joint stationary distribution.
Numerical results have revealed that the upper bound can
be further improved. Future work includes finding the exact
asymptotic formulae for the joint stationary distribution.

Appendices

A. Proof of Lemma 3

We prove the sufficient condition in Lemma 3 using
Proposition A.1.

Proposition A.1 (Tweedie [28] or Statement 8, p. 97, in [29]).
Let {𝜒(𝑡), 𝑡 ≥ 0} denote a Markov chain with the infinitesimal
generator {𝑞

𝑠,𝑝
, 𝑠, 𝑝 ∈ 𝑆} on the state space 𝑆∑

𝑝∈𝑆
𝑞
𝑠,𝑝

=

0. Furthermore, if the following conditions (i) and (ii) are
satisfied, {𝜒(𝑡)} is positive recurrent:

(i) 𝜓(𝑠) (𝑠 ∈ 𝑆) is a test function bounded from below.

(ii) 𝑦
𝑠
fl ∑
𝑝 ̸=𝑠

𝑞
𝑠𝑝
(𝜓(𝑝) − 𝜓(𝑠)). For any 𝑠 ∈ 𝑆, 𝑦

𝑠
< ∞,

and for any 𝑠 ∈ 𝑆 except for a finite number of states,
there exists a positive 𝜖 such that 𝑦

𝑠
≤ −𝜖.

Proof of Lemma 3.

(i) {𝑋(𝑡)} Is Positive Recurrent ⇒ 𝜆/(𝑐]) < 1. Let 𝐶 denote
the number of busy servers in the steady state. It follows from
Little law that

𝜆

]
= E [𝐶] . (A.1)
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Thus, in order for𝑋(𝑡) to be positive recurrent we must have
E[𝐶] < 𝑐 or equivalently 𝜆/(𝑐]) < 1.

(ii) {𝑋(𝑡)} Is Positive Recurrent ⇐ 𝜆/(𝑐]) < 1. The transition
rate of {𝑋(𝑡), 𝑡 ≥ 0} is given by

𝑞
(𝑖,𝑗),(𝑛,𝑚)

, (𝑖, 𝑗) , (𝑛, 𝑚) ∈ S, (A.2)

where S = {0, 1, . . . , 𝑐} × Z
+
. First, for 𝑖 = 0, 1, . . . , 𝑐 − 2,

𝑞
(𝑖,𝑗),(𝑛,𝑚)

=

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝜆, (𝑛,𝑚) = (𝑖 + 1, 𝑗) ,

𝑖], (𝑛, 𝑚) = (𝑖 − 1, 𝑗) ,

𝑗𝜇, (𝑛,𝑚) = (𝑖 + 1, 𝑗 − 1) ,

− (𝜆 + 𝑗𝜇 + 𝑖]) , (𝑛, 𝑚) = (𝑖, 𝑗) ,

0, otherwise.

(A.3)

For 𝑖 = 𝑐 − 1,

𝑞
(𝑐−1,𝑗),(𝑛,𝑚)

=

{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜆
1
, (𝑛, 𝑚) = (𝑐, 𝑗) ,

(𝑐 − 1) ], (𝑛, 𝑚) = (𝑐 − 2, 𝑗) ,

𝜆
2
, (𝑛, 𝑚) = (𝑐 − 1, 𝑗 + 1) ,

𝑗𝜇, (𝑛,𝑚) = (𝑐, 𝑗 − 1) ,

− {𝜆 + 𝑗𝜇 + (𝑐 − 1) ]} , (𝑛, 𝑚) = (𝑐 − 1, 𝑗) ,

0, otherwise.

(A.4)

For 𝑖 = 𝑐,

𝑞
(𝑐,𝑗),(𝑛,𝑚)

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝜆, (𝑛,𝑚) = (𝑐, 𝑗 + 1) ,

𝑐], (𝑛, 𝑚) = (𝑐 − 1, 𝑗) ,

− (𝜆 + 𝑐]) , (𝑛, 𝑚) = (𝑐, 𝑗) ,

0, otherwise.

(A.5)

For 0 < 𝑎 < 1, we consider the test function 𝜙(𝑖, 𝑗) = 𝑎𝑖 + 𝑗.
We have 𝜙(𝑖, 𝑗) ≥ 0 (∀(𝑖, 𝑗)). Furthermore, ℎ(𝑖, 𝑗) is defined as
follows:

ℎ (𝑖, 𝑗)

= ∑

(𝑛,𝑚)∈S, (𝑛,𝑚) ̸=(𝑖,𝑗)

𝑞
(𝑖,𝑗),(𝑛,𝑚)

(𝜙 (𝑛,𝑚) − 𝜙 (𝑖, 𝑗)) .
(A.6)

It follows from (A.3), (A.4), and (A.5) that

ℎ (𝑖, 𝑗)

=

{
{
{
{

{
{
{
{

{

𝜆𝑎 − 𝑖]𝑎 + 𝑗𝜇 (𝑎 − 1) , 𝑖 = 0, 1, . . . , 𝑐 − 2,

𝜆
1
𝑎 − (𝑐 − 1) ]𝑎 + 𝑗𝜇 (𝑎 − 1) + 𝜆

2
, 𝑖 = 𝑐 − 1,

𝜆 − 𝑐]𝑎, 𝑖 = 𝑐.

(A.7)

Since 𝑎 < 1, for any (𝑖, 𝑗) we have ℎ(𝑖, 𝑗) < 𝜆. Furthermore,
since 𝑎 < 1 for 𝑖 = 0, 1, . . . , 𝑐−1we have lim

𝑗→∞
ℎ(𝑖, 𝑗) = −∞.

Thus, for any positive 𝜖, there exists 𝐽(𝜖) such that, for 𝑗 > 𝐽(𝜖)

and 𝑖 = 0, 1, . . . , 𝑐 − 1, we have ℎ(𝑖, 𝑗) < −𝜖.
Next, we prove that, except for a finite number of states,

there exists 𝜖 > 0 such that ℎ(𝑖, 𝑗) < −𝜖. In order that 𝜆−𝑐]𝑎 <

0 except for a finite number of states, we choose 𝑎 such that

𝜆 − 𝑐]𝑎 < 0 ⇐⇒ 𝜌 =

𝜆

(𝑐])
< 𝑎 < 1. (A.8)

Thus, from the above formula and Proposition A.1, if𝜆/(𝑐]) <
1 then {𝑋(𝑡)} is positive recurrent.

B. Proof of Lemma 12

Proof. We prove that, for 𝑘 = 0, 1, . . . , 𝑐,

𝑟
(𝑐−1,𝑛)

𝑐−𝑘
= 𝜃
(0,𝑘)

0

1

𝑛
𝑘
+ 𝑜 (

1

𝑛
𝑘
) , 𝑛 ∈ N,

𝑟
(𝑐,𝑛)

𝑐−𝑘
= 𝜃
(1,𝑘)

0

1

𝑛
𝑘
+ 𝑜 (

1

𝑛
𝑘
) , 𝑛 ∈ N,

𝑟
(𝑐−1,𝑛)

𝑖
= 𝑜 (

1

𝑛
𝑘
) , 𝑖 = 0, 1, . . . , 𝑐 − 𝑘 − 1,

𝑟
(𝑐,𝑛)

𝑖
= 𝑜 (

1

𝑛
𝑘
) , 𝑖 = 0, 1, . . . , 𝑐 − 𝑘 − 1,

(B.1)

by mathematical induction, where 𝑖 ∈ 0 if 𝑘 = 𝑐.

(i) Case 𝑘 = 1. According to Lemma 8, for 𝑖 = 0, 1, 2, . . . , 𝑐 − 1

𝑟
(𝑐−1,𝑛)

𝑖
= 𝑜 (1) ,

𝑟
(𝑐,𝑛)

𝑖
= 𝑜 (1) ,

(B.2)

𝑟
(𝑐−1,𝑛)

𝑖
≤

𝜆
2

𝑛𝜇

,

𝑟
(𝑐,𝑛)

𝑖
≤

𝜆

𝑛𝜇

.

(B.3)

Furthermore, it follows from (17) and (21) that

𝑟
(𝑐−1,𝑛)

0
=

1

𝑛𝜇

(−𝜆𝑟
(𝑐−1,𝑛)

0
+ ]𝑟(𝑐−1,𝑛)
1

) ,

𝑟
(𝑐,𝑛)

0
=

1

𝑛𝜇

(−𝜆𝑟
(𝑐,𝑛)

0
+ ]𝑟(𝑐,𝑛)
1

) .

(B.4)
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From (B.2) and (B.4), we obtain

𝑟
(𝑐−1,𝑛)

0
= 𝑜 (

1

𝑛

) ,

𝑟
(𝑐,𝑛)

0
= 𝑜 (

1

𝑛

) .

(B.5)

In addition, it follows from (20) and (23) that

(𝜆 + 𝑐]) 𝑟(𝑐−1,𝑛)
𝑐

= 𝜆
1
𝑟
(𝑐−1,𝑛)

𝑐−1

+ (𝑛 + 1) 𝜇 (𝑟
(𝑐−1,𝑛)

𝑐−1
𝑟
(𝑐−1,𝑛+1)

𝑐−1
+ 𝑟
(𝑐−1,𝑛)

𝑐
𝑟
(𝑐,𝑛+1)

𝑐−1
) ,

(𝜆 + 𝑐]) 𝑟(𝑐,𝑛)
𝑐

= 𝜆
1
𝑟
(𝑐,𝑛)

𝑐−1

+ (𝑛 + 1) 𝜇 (𝑟
(𝑐,𝑛)

𝑐−1
𝑟
(𝑐−1,𝑛+1)

𝑐−1
+ 𝑟
(𝑐,𝑛)

𝑐
𝑟
(𝑐,𝑛+1)

𝑐−1
) + 𝜆.

(B.6)

From (B.3), we obtain

(𝜆 + 𝑐]) 𝑟(𝑐−1,𝑛)
𝑐

≤ 𝜆
1
𝑟
(𝑐−1,𝑛)

𝑐−1
+ 𝜆
2
𝑟
(𝑐−1,𝑛)

𝑐−1
+ 𝜆𝑟
(𝑐−1,𝑛)

𝑐
,

(𝜆 + 𝑐]) 𝑟(𝑐,𝑛)
𝑐

≤ 𝜆
1
𝑟
(𝑐,𝑛)

𝑐−1
+ 𝜆
2
𝑟
(𝑐,𝑛)

𝑐−1
+ 𝜆𝑟
(𝑐,𝑛)

𝑐
+ 𝜆.

(B.7)

Deleting 𝜆𝑟
(𝑐−1,𝑛)

𝑐
and 𝜆𝑟

(𝑐,𝑛)

𝑐
from both sides yields

𝑐]𝑟(𝑐−1,𝑛)
𝑐

≤ 𝜆
1
𝑟
(𝑐−1,𝑛)

𝑐−1
+ 𝜆
2
𝑟
(𝑐−1,𝑛)

𝑐−1
,

𝑐]𝑟(𝑐,𝑛)
𝑐

≤ 𝜆
1
𝑟
(𝑐,𝑛)

𝑐−1
+ 𝜆
2
𝑟
(𝑐,𝑛)

𝑐−1
+ 𝜆.

(B.8)

From (B.2), we obtain

𝑟
(𝑐−1,𝑛)

𝑐
= 𝑜 (1) ,

𝑟
(𝑐,𝑛)

𝑐
= 𝑂 (1) .

(B.9)

From (18) and (B.3), we have

𝑟
(𝑐−1,𝑛)

𝑖
=

𝜆𝑟
(𝑐−1,𝑛)

𝑖−1
− (𝜆 + 𝑖]) 𝑟(𝑐−1,𝑛)

𝑖
+ (𝑖 + 1) ]𝑟(𝑐−1,𝑛)

𝑖+1
+ (𝑛 + 1) 𝜇 (𝑟

(𝑐−1,𝑛)

𝑐−1
𝑟
(𝑐−1,𝑛+1)

𝑖−1
+ 𝑟
(𝑐−1,𝑛)

𝑐
𝑟
(𝑐,𝑛+1)

𝑖−1
)

𝑛𝜇

≤

𝜆𝑟
(𝑐−1,𝑛)

𝑖−1
− (𝜆 + 𝑖]) 𝑟(𝑐−1,𝑛)

𝑖
+ (𝑖 + 1) ]𝑟(𝑐−1,𝑛)

𝑖+1
+ 𝜆
2
𝑟
(𝑐−1,𝑛)

𝑐−1
+ 𝜆𝑟
(𝑐−1,𝑛)

𝑐

𝑛𝜇

.

(B.10)

It follows from (B.2) and (B.9) that

𝑟
(𝑐−1,𝑛)

𝑖
= 𝑜 (

1

𝑛

) , 𝑖 = 1, 2, . . . , 𝑐 − 2. (B.11)

From Lemma 8 and (B.5) and (B.11), we obtain

𝑟
(𝑐−1,𝑛)

𝑐−1
=

𝜆
2

𝑛𝜇

+ 𝑜 (

1

𝑛

) . (B.12)

Thus, we obtain 𝑟
(𝑐−1,𝑛)

𝑖
= 𝑜(1/𝑛), 𝑖 = 0, 1, . . . , 𝑐 − 2, and

𝑟
(𝑐−1,𝑛)

𝑐−1
= 𝜃
(0,1)

0
/𝑛 + 𝑜(1/𝑛).

Arranging (22) yields

𝑛𝜇𝑟
(𝑐,𝑛)

𝑖
= 𝜆𝑟
(𝑐,𝑛)

𝑖−1
− (𝜆 + 𝑖]) 𝑟(𝑐,𝑛)

𝑖
+ (𝑖 + 1) ]𝑟(𝑐,𝑛)

𝑖+1

+ �̃�
(𝑐,𝑛)

𝑖
.

(B.13)

It follows from (B.2), (B.5), and (B.9) that

𝑟
(𝑐,𝑛)

0
= 𝑜 (

1

𝑛

) ,

𝑟
(𝑐,𝑛)

1
= 𝑜 (1) ,

𝑟
(𝑐,𝑛)

2
= 𝑜 (1) ,

𝑟
(𝑐−1,𝑛+1)

0
= 𝑜 (

1

𝑛 + 1

) ,

𝑟
(𝑐,𝑛+1)

0
= 𝑜 (

1

𝑛 + 1

) ,

𝑟
(𝑐,𝑛)

𝑐−1
= 𝑜 (1) ,

𝑟
(𝑐,𝑛)

𝑐
= 𝑂 (1) .

(B.14)

Substituting the above formulae into (B.13) with 𝑖 = 1 yields
𝑟
(𝑐,𝑛)

1
= 𝑜(1/𝑛). We assume that Lemma 12 is true for 𝑖 = 𝑗 − 1;

that is, 𝑟(𝑐,𝑛)
𝑗−1

= 𝑜(1/𝑛). From the preceding assumption, (B.2),
(B.5), and (B.9), we have

𝑟
(𝑐,𝑛)

𝑗−1
= 𝑜 (

1

𝑛

) ,

𝑟
(𝑐,𝑛)

𝑗
= 𝑜 (1) ,

𝑟
(𝑐,𝑛)

𝑗+1
= 𝑜 (1) ,

𝑟
(𝑐−1,𝑛+1)

𝑗−1
= 𝑜 (

1

𝑛 + 1

) ,

𝑟
(𝑐,𝑛+1)

𝑗−1
= 𝑜 (

1

𝑛 + 1

) ,

𝑟
(𝑐,𝑛)

𝑐−1
= 𝑜 (1) ,

𝑟
(𝑐,𝑛)

𝑐
= 𝑂 (1) .

(B.15)
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Substituting these formulae into (B.13) with 𝑖 = 𝑗, we obtain
𝑟
(𝑐,𝑛)

𝑗
= 𝑜(1/𝑛). Usingmathematical induction we have 𝑟(𝑐,𝑛)

𝑖
=

𝑜(1/𝑛) for 𝑖 = 1, 2, . . . , 𝑐−2, which togetherwith Lemma 8 and
(B.5) yield

𝑟
(𝑐,𝑛)

𝑐−1
=

𝜆

𝑛𝜇

+ 𝑜 (

1

𝑛

) . (B.16)

Thus, we obtain 𝑟
(𝑐,𝑛)

𝑖
= 𝑜(1/𝑛), 𝑖 = 0, 1, . . . , 𝑐−2, and 𝑟

(𝑐−1,𝑛)

𝑐−1
=

𝜃
(1,1)

0
/𝑛 + 𝑜(1/𝑛).

(ii) Case 𝑘 = 2, 3, . . . , 𝑐 − 1. It should be noted that the
derivations for 𝑟(𝑐−1,𝑛)

𝑐−𝑘
and 𝑟
(𝑐,𝑛)

𝑐−𝑘
are the same. Thus, we prove

(B.1) for 𝑟(𝑐−1,𝑛)
𝑐−𝑘

only. For 𝑘 = 1, 2, . . . , 𝑗, we assume that

𝑟
(𝑐−1,𝑛)

𝑐−𝑘
= 𝜃
(0,𝑘)

0

1

𝑛
𝑘
+ 𝑜 (

1

𝑛
𝑘
) , 𝑛 ∈ N, (B.17)

𝑟
(𝑐,𝑛)

𝑐−𝑘
= 𝜃
(1,𝑘)

0

1

𝑛
𝑘
+ 𝑜 (

1

𝑛
𝑘
) , 𝑛 ∈ N, (B.18)

𝑟
(𝑐−1,𝑛)

𝑖
= 𝑜 (

1

𝑛
𝑘
) , 𝑖 = 0, 1, . . . , 𝑐 − 𝑘 − 1, (B.19)

𝑟
(𝑐,𝑛)

𝑖
= 𝑜 (

1

𝑛
𝑘
) , 𝑖 = 0, 1, . . . , 𝑐 − 𝑘 − 1. (B.20)

We prove that the same expression is obtainable for case 𝑘 =

𝑗 + 1. Indeed, it follows from (B.4), (B.19), and (B.20) that

𝑟
(𝑐−1,𝑛)

0
= 𝑜 (

1

𝑛
𝑗+1

) ,

𝑟
(𝑐,𝑛)

0
= 𝑜 (

1

𝑛
𝑗+1

) .

(B.21)

For 𝑖 = 1, 2, . . . , 𝑐 − 𝑗 − 2, assuming that 𝑟(𝑐−1,𝑛)
𝑖−1

= 𝑜(1/𝑛
𝑗+1

)

and 𝑟
(𝑐,𝑛)

𝑖−1
= 𝑜(1/𝑛

𝑗+1
), we prove that 𝑟(𝑐−1,𝑛)

𝑖
= 𝑜(1/𝑛

𝑗+1
) and

𝑟
(𝑐,𝑛)

𝑖
= 𝑜(1/𝑛

𝑗+1
). Indeed, arranging (18) and (22) yields

𝑟
(𝑐−1,𝑛)

𝑖

=

𝜆𝑟
(𝑐−1,𝑛)

𝑖−1
− (𝜆 + 𝑖]) 𝑟(𝑐−1,𝑛)

𝑖
+ (𝑖 + 1) ]𝑟(𝑐−1,𝑛)

𝑖+1
+ �̃�
(𝑐−1,𝑛)

𝑖

𝑛𝜇

,

(B.22)

𝑟
(𝑐,𝑛)

𝑖
=

𝜆𝑟
(𝑐,𝑛)

𝑖−1
− (𝜆 + 𝑖]) 𝑟(𝑐,𝑛)

𝑖
+ (𝑖 + 1) ]𝑟(𝑐,𝑛)

𝑖+1
+ �̃�
(𝑐,𝑛)

𝑖

𝑛𝜇

. (B.23)

Applying the preceding assumption, (B.9), (B.12), (B.19), and
(B.20) to (B.22) yields

𝑟
(𝑐−1,𝑛)

𝑖
= 𝑜 (

1

𝑛
𝑗+1

) , 𝑖 = 1, 2, . . . , 𝑐 − 𝑗 − 2. (B.24)

Similarly, substituting the preceding assumption, (B.9),
(B.16), (B.19), and (B.20) to (B.23), we obtain

𝑟
(𝑐,𝑛)

𝑖
= 𝑜 (

1

𝑛
𝑗+1

) , 𝑖 = 1, 2, . . . , 𝑐 − 𝑗 − 2. (B.25)

It follows from (B.17), (B.18), (B.22), (B.23), (B.24), and (B.25)
that

𝑟
(𝑐−1,𝑛)

𝑐−𝑗−1
= 𝜃
(0,𝑗+1)

0

1

𝑛
𝑗+1

+ 𝑜 (

1

𝑛
𝑗+1

) , 𝑛 ∈ N,

𝑟
(𝑐,𝑛)

𝑐−𝑗−1
= 𝜃
(1,𝑗+1)

0

1

𝑛
𝑗+1

+ 𝑜 (

1

𝑛
𝑗+1

) , 𝑛 ∈ N.

(B.26)

Thus, we have proven case 𝑘 = 𝑗 + 1. As a result, we have
proven (B.1) for 𝑘 = 2, 3, . . . , 𝑐 − 1.

(iii) Case 𝑘 = 𝑐. Substituting (B.17), (B.18), (B.19), and (B.20)
with 𝑘 = 𝑐 − 1 into (B.4), we obtain

𝑟
(𝑐−1,𝑛)

0
= 𝜃
(0,𝑐)

0

1

𝑛
𝑐
+ 𝑜 (

1

𝑛
𝑐
) , 𝑛 ∈ N,

𝑟
(𝑐,𝑛)

0
= 𝜃
(1,𝑐)

0

1

𝑛
𝑐
+ 𝑜 (

1

𝑛
𝑐
) , 𝑛 ∈ N.

(B.27)

(iv) Case 𝑘 = 0. Arranging (20) and (23), we obtain

(𝜆 + 𝑐]) 𝑟(𝑐−1,𝑛)
𝑐

= 𝜆
1
𝑟
(𝑐−1,𝑛)

𝑐−1

+ (𝑛 + 1) 𝜇 (𝑟
(𝑐−1,𝑛)

𝑐−1
𝑟
(𝑐−1,𝑛+1)

𝑐−1
+ 𝑟
(𝑐−1,𝑛)

𝑐
𝑟
(𝑐,𝑛+1)

𝑐−1
) ,

(𝜆 + 𝑐]) 𝑟(𝑐,𝑛)
𝑐

= 𝜆
1
𝑟
(𝑐,𝑛)

𝑐−1

+ (𝑛 + 1) 𝜇 (𝑟
(𝑐,𝑛)

𝑐−1
𝑟
(𝑐−1,𝑛+1)

𝑐−1
+ 𝑟
(𝑐,𝑛)

𝑐
𝑟
(𝑐,𝑛+1)

𝑐−1
) + 𝜆.

(B.28)

From (B.17) and (B.18) with 𝑘 = 1, we obtain

(𝑛 + 1) 𝑟
(𝑐−1,𝑛+1)

𝑐−1
=

𝜆
2

𝜇

+ 𝑜 (1) , 𝑛 ∈ N,

(𝑛 + 1) 𝑟
(𝑐,𝑛+1)

𝑐−1
=

𝜆

𝜇

+ 𝑜 (1) , 𝑛 ∈ N.

(B.29)

Substituting the above two formulae into (B.28) yields

(𝜆 + 𝑐]) 𝑟(𝑐−1,𝑛)
𝑐

= 𝜆
1
𝑟
(𝑐−1,𝑛)

𝑐−1
+ 𝜆
2
𝑟
(𝑐−1,𝑛)

𝑐−1
+ 𝜆𝑟
(𝑐−1,𝑛)

𝑐

+ 𝑜 (1) ,

(𝜆 + 𝑐]) 𝑟(𝑐,𝑛)
𝑐

= 𝜆
1
𝑟
(𝑐,𝑛)

𝑐−1
+ 𝜆
2
𝑟
(𝑐,𝑛)

𝑐−1
+ 𝜆𝑟
(𝑐,𝑛)

𝑐
+ 𝑜 (1)

+ 𝜆.

(B.30)

Deleting 𝜆𝑟
(𝑐−1,𝑛)

𝑐
and 𝜆𝑟

(𝑐,𝑛)

𝑐
from both sides yields

𝑐]𝑟(𝑐−1,𝑛)
𝑐

= 𝜆
1
𝑟
(𝑐−1,𝑛)

𝑐−1
+ 𝜆
2
𝑟
(𝑐−1,𝑛)

𝑐−1
+ 𝑜 (1) ,

𝑐]𝑟(𝑐,𝑛)
𝑐

= 𝜆
1
𝑟
(𝑐,𝑛)

𝑐−1
+ 𝜆
2
𝑟
(𝑐,𝑛)

𝑐−1
+ 𝑜 (1) + 𝜆.

(B.31)
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From these two formulae and the result for 𝑘 = 1, we obtain

𝑟
(𝑐−1,𝑛)

𝑐
= 𝜃
(0,0)

0
+ 𝑜 (1) , 𝑛 ∈ N,

𝑟
(𝑐,𝑛)

𝑐
= 𝜃
(1,0)

0
+ 𝑜 (1) , 𝑛 ∈ N,

(B.32)

where

𝜃
(0,0)

0
= 0,

𝜃
(1,0)

0
=

𝜆

𝑐]
.

(B.33)

C. Proof of Lemma 13

Proof. We prove Lemma 13 using mathematical induction.

(i) Case 𝑘 = 1. From Lemma 8, we have

𝑟
(𝑐−1,𝑛)

𝑐−1
=

𝜆
2

𝑛𝜇

− 𝑟
(𝑐−1,𝑛)

𝑐−2
−

𝑐

∑

𝑘=3

𝑟
(𝑐−1,𝑛)

𝑐−𝑘
,

𝑟
(𝑐,𝑛)

𝑐−1
=

𝜆

𝑛𝜇

− 𝑟
(𝑐,𝑛)

𝑐−2
−

𝑐

∑

𝑘=3

𝑟
(𝑐,𝑛)

𝑐−𝑘
.

(C.1)

Furthermore, from Lemma 12, we have

𝑟
(𝑐−1,𝑛)

𝑐−2
= 𝜃
(0,2)

0

1

𝑛
2
+ 𝑜 (

1

𝑛
2
) = 𝑂(

1

𝑛
2
) ,

𝑟
(𝑐,𝑛)

𝑐−2
= 𝜃
(1,2)

0

1

𝑛
2
+ 𝑜 (

1

𝑛
2
) = 𝑂(

1

𝑛
2
) ,

𝑐

∑

𝑘=3

𝑟
(𝑐−1,𝑛)

𝑐−𝑘
= 𝑂(

1

𝑛
2
) ,

𝑐

∑

𝑘=3

𝑟
(𝑐,𝑛)

𝑐−𝑘
= 𝑂(

1

𝑛
2
) .

(C.2)

Thus, we obtain

𝑟
(𝑐−1,𝑛)

𝑐−1
= 𝜃
(0,1)

0

1

𝑛

+ 𝑂(

1

𝑛
2
) ,

𝑟
(𝑐,𝑛)

𝑐−1
= 𝜃
(1,1)

0

1

𝑛

+ 𝑂(

1

𝑛
2
) .

(C.3)

(ii) Case 𝑘 = 2, 3, . . . , 𝑐 − 1. We assume (36) and (37) are true
for 𝑟(𝑐−1,𝑛)
𝑐−𝑗

with 𝑗 = 1, 2, . . . , 𝑘 − 1, and we prove that they are
also true for 𝑗 = 𝑘. Arranging (18) and (22) with 𝑖 = 𝑐 − 𝑘

yields

𝑟
(𝑐−1,𝑛)

𝑐−𝑘
=

𝜆𝑟
(𝑐−1,𝑛)

𝑐−𝑘−1
− {𝜆 + (𝑐 − 𝑘) ]} 𝑟(𝑐−1,𝑛)

𝑐−𝑘
+ (𝑐 − 𝑘 + 1) ]𝑟(𝑐−1,𝑛)

𝑐−𝑘+1
+ �̃�
(𝑐−1,𝑛)

𝑐−𝑘

𝑛𝜇

, (C.4)

𝑟
(𝑐,𝑛)

𝑐−𝑘
=

𝜆𝑟
(𝑐,𝑛)

𝑐−𝑘−1
− {𝜆 + (𝑐 − 𝑘) ]} 𝑟(𝑐,𝑛)

𝑐−𝑘
+ (𝑐 − 𝑘 + 1) ]𝑟(𝑐,𝑛)

𝑐−𝑘+1
+ �̃�
(𝑐,𝑛)

𝑐−𝑘

𝑛𝜇

. (C.5)

Applying the assumption of mathematical induction,
Lemma 12, and (36) with 𝑘 = 1, we obtain

𝑟
(𝑐−1,𝑛)

𝑐−𝑘−1
= 𝜃
(0,𝑘+1)

0

1

𝑛
𝑘+1

+ 𝑜 (

1

𝑛
𝑘+1

) ,

𝑟
(𝑐−1,𝑛)

𝑐−𝑘
= 𝜃
(0,𝑘)

0

1

𝑛
𝑘
+ 𝑜 (

1

𝑛
𝑘
) ,

𝑟
(𝑐−1,𝑛)

𝑐−𝑘+1
= 𝜃
(0,𝑘−1)

0

1

𝑛
𝑘−1

+ 𝑂(

1

𝑛
𝑘
) ,

(𝑛 + 1) 𝑟
(𝑐−1,𝑛+1)

𝑐−𝑘−1
= 𝜃
(0,𝑘+1)

0

1

(𝑛 + 1)
𝑘
+ 𝑜 (

1

𝑛
𝑘
)

= 𝜃
(0,𝑘+1)

0

1

𝑛
𝑘
+ 𝑜 (

1

𝑛
𝑘
) ,

(𝑛 + 1) 𝑟
(𝑐,𝑛+1)

𝑐−𝑘−1
= 𝜃
(1,𝑘+1)

0

1

(𝑛 + 1)
𝑘
+ 𝑜 (

1

𝑛
𝑘
)

= 𝜃
(1,𝑘+1)

0

1

𝑛
𝑘
+ 𝑜 (

1

𝑛
𝑘
) ,

𝑟
(𝑐−1,𝑛)

𝑐−1
= 𝜃
(0,1)

0

1

𝑛

+ 𝑂(

1

𝑛
2
) ,

𝑟
(𝑐−1,𝑛)

𝑐
= 0 + 𝑜 (1) .

(C.6)

Thus, substituting the above formulae into (C.4) yields

𝑟
(𝑐−1,𝑛)

𝑐−𝑘
=

(𝑐 − 𝑘 + 1) ]
𝜇

𝜃
(0,𝑘−1)

0

1

𝑛
𝑘
+ 𝑂(

1

𝑛
𝑘+1

)

= 𝜃
(0,𝑘)

0

1

𝑛
𝑘
+ 𝑂(

1

𝑛
𝑘+1

) .

(C.7)

Similarly, it follows from the assumption of mathematical
induction, Lemma 12, and (37) with 𝑘 = 1 that

𝑟
(𝑐,𝑛)

𝑐−𝑘−1
= 𝜃
(1,𝑘+1)

0

1

𝑛
𝑘+1

+ 𝑜 (

1

𝑛
𝑘+1

) ,

𝑟
(𝑐,𝑛)

𝑐−𝑘
= 𝜃
(1,𝑘)

0

1

𝑛
𝑘
+ 𝑜 (

1

𝑛
𝑘
) ,

𝑟
(𝑐,𝑛)

𝑐−𝑘+1
= 𝜃
(1,𝑘−1)

0

1

𝑛
𝑘−1

+ 𝑂(

1

𝑛
𝑘
) ,
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(𝑛 + 1) 𝑟
(𝑐−1,𝑛+1)

𝑐−𝑘−1
= 𝜃
(1,𝑘+1)

0

1

(𝑛 + 1)
𝑘
+ 𝑜 (

1

𝑛
𝑘
)

= 𝜃
(0,𝑘+1)

0

1

𝑛
𝑘
+ 𝑜 (

1

𝑛
𝑘
) ,

(𝑛 + 1) 𝑟
(𝑐,𝑛+1)

𝑐−𝑘−1
= 𝜃
(1,𝑘+1)

0

1

(𝑛 + 1)
𝑘
+ 𝑜 (

1

𝑛
𝑘
)

= 𝜃
(1,𝑘+1)

0

1

𝑛
𝑘
+ 𝑜 (

1

𝑛
𝑘
) ,

𝑟
(𝑐,𝑛)

𝑐−1
= 𝜃
(1,1)

0

1

𝑛

+ 𝑂(

1

𝑛
2
) ,

𝑟
(𝑐,𝑛)

𝑐
= 𝜃
(1,0)

0
+ 𝑜 (1) .

(C.8)

Thus, substituting these formulae into (C.5) yields

𝑟
(𝑐,𝑛)

𝑐−𝑘
=

(𝑐 − 𝑘 + 1) ]
𝜇

𝜃
(1,𝑘−1)

0

1

𝑛
𝑘
+ 𝑂(

1

𝑛
𝑘+1

)

= 𝜃
(1,𝑘)

0

1

𝑛
𝑘
+ 𝑂(

1

𝑛
𝑘+1

) .

(C.9)

Therefore, it follows from mathematical induction that (36)
and (37) are true for 𝑘 = 2, 3, . . . , 𝑐 − 1.

(iii) Case 𝑘 = 𝑐. Lemma 12 and (36) with 𝑘 = 𝑐 − 1 and (37)
yield

𝑟
(𝑐−1,𝑛)

1
= 𝜃
(0,𝑐−1)

0

1

𝑛
𝑐−1

+ 𝑂(

1

𝑛
𝑐
) ,

𝑟
(𝑐,𝑛)

1
= 𝜃
(0,𝑐−1)

0

1

𝑛
𝑐−1

+ 𝑂(

1

𝑛
𝑐
) ,

𝑟
(𝑐−1,𝑛)

0
= 𝜃
(0,𝑐)

0

1

𝑛
𝑐
+ 𝑜 (

1

𝑛
𝑐
) = 𝑂(

1

𝑛
𝑐
) ,

𝑟
(𝑐,𝑛)

0
= 𝜃
(1,𝑐)

0

1

𝑛
𝑐
+ 𝑜 (

1

𝑛
𝑐
) = 𝑂(

1

𝑛
𝑐
) .

(C.10)

Substituting the above formulae into (B.4), we obtain

𝑟
(𝑐−1,𝑛)

0
=

]
𝜇

𝜃
(0,𝑐−1)

0

1

𝑛
𝑐
+ 𝑂(

1

𝑛
𝑐+1

)

= 𝜃
(0,𝑐)

0

1

𝑛
𝑐
+ 𝑂(

1

𝑛
𝑐+1

) ,

𝑟
(𝑐,𝑛)

0
=

]
𝜇

𝜃
(1,𝑐−1)

0

1

𝑛
𝑐
+ 𝑂(

1

𝑛
𝑐+1

)

= 𝜃
(1,𝑐)

0

1

𝑛
𝑐
+ 𝑂(

1

𝑛
𝑐+1

) .

(C.11)

(iv) Case 𝑘 = 0. From (36) with 𝑘 = 1 and (37), we obtain

(𝑛 + 1) 𝑟
(𝑐−1,𝑛)

𝑐−1
= 𝜃
(0,1)

0
+ 𝑂(

1

𝑛

) ,

(𝑛 + 1) 𝑟
(𝑐,𝑛)

𝑐−1
= 𝜃
(1,1)

0
+ 𝑂(

1

𝑛

) .

(C.12)

Substituting the above two formulae into (B.28) yields

(𝜆 + 𝑐]) 𝑟(𝑐−1,𝑛)
𝑐

= 𝜆
1
𝑟
(𝑐−1,𝑛)

𝑐−1
+ 𝜆
2
𝑟
(𝑐−1,𝑛)

𝑐−1
+ 𝜆𝑟
(𝑐−1,𝑛)

𝑐

+ 𝑂(

1

𝑛

) ,

(𝜆 + 𝑐]) 𝑟(𝑐,𝑛)
𝑐

= 𝜆
1
𝑟
(𝑐,𝑛)

𝑐−1
+ 𝜆
2
𝑟
(𝑐,𝑛)

𝑐−1
+ 𝜆𝑟
(𝑐,𝑛)

𝑐

+ 𝑂(

1

𝑛

) + 𝜆.

(C.13)

Deleting 𝜆𝑟
(𝑐−1,𝑛)

𝑐
and 𝜆𝑟

(𝑐,𝑛)

𝑐
from both sides of the above

formulae, we obtain

𝑐]𝑟(𝑐−1,𝑛)
𝑐

= 𝜆
1
𝑟
(𝑐−1,𝑛)

𝑐−1
+ 𝜆
2
𝑟
(𝑐−1,𝑛)

𝑐−1
+ 𝑂(

1

𝑛

) ,

𝑐]𝑟(𝑐,𝑛)
𝑐

= 𝜆
1
𝑟
(𝑐,𝑛)

𝑐−1
+ 𝜆
2
𝑟
(𝑐,𝑛)

𝑐−1
+ 𝑂(

1

𝑛

) + 𝜆.

(C.14)

From the result for 𝑘 = 1, we obtain

𝑟
(𝑐−1,𝑛)

𝑐
= 𝜃
(0,0)

0
+ 𝑂(

1

𝑛

) , 𝑛 ∈ N,

𝑟
(𝑐,𝑛)

𝑐
= 𝜃
(1,0)

0
+ 𝑂(

1

𝑛

) , 𝑛 ∈ N.

(C.15)

D. Proof of Theorem 14

Proof. We prove Theorem 14 using mathematical induction.
First, we show that Theorem 14 is true for𝑚 = 1.

(i) Case 𝑘 = 1. From Lemma 8, we have

𝑟
(𝑐−1,𝑛)

𝑐−1
=

𝜆
2

𝑛𝜇

−

𝑐−2

∑

𝑖=0

𝑟
(𝑐−1,𝑛)

𝑖
,

𝑟
(𝑐,𝑛)

𝑐−1
=

𝜆

𝑛𝜇

−

𝑐−2

∑

𝑖=0

𝑟
(𝑐,𝑛)

𝑖
.

(D.1)

Lemma 13 yields

𝑟
(𝑐−1,𝑛)

𝑐−2
= 𝜃
(0,2)

0

1

𝑛
2
+ 𝑂(

1

𝑛
3
) ,

𝑟
(𝑐,𝑛)

𝑐−2
= 𝜃
(1,2)

0

1

𝑛
2
+ 𝑂(

1

𝑛
3
) ,

𝑐−3

∑

𝑖=0

𝑟
(𝑐−1,𝑛)

𝑖
= 𝑂(

1

𝑛
3
) ,

𝑐−3

∑

𝑖=0

𝑟
(𝑐,𝑛)

𝑖
= 𝑂(

1

𝑛
3
) .

(D.2)

Thus,

𝑟
(𝑐−1,𝑛)

𝑐−1
=

𝜃
(0,1)

0

𝑛

−

𝜃
(0,1)

1

𝑛
2

+ 𝑂(

1

𝑛
3
) ,

𝑟
(𝑐,𝑛)

𝑐−1
=

𝜃
(1,1)

0

𝑛

−

𝜃
(1,1)

1

𝑛
2

+ 𝑂(

1

𝑛
3
) ,

(D.3)

where 𝜃(0,1)
1

= 𝜃
(0,2)

0
and 𝜃
(1,1)

1
= 𝜃
(1,2)

0
.
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(ii) Case 𝑘 = 2, 3, . . . , 𝑐 − 1. Assuming that (38) and (39) in
Theorem 14 are true for 𝑟(𝑐−1,𝑛)

𝑐−𝑗
and 𝑟
(𝑐,𝑛)

𝑐−𝑗
with 𝑗 = 1, 2, . . . , 𝑘 −

1, we prove that they are also true for 𝑗 = 𝑘. Using the
assumption of mathematical induction and Lemma 13, we
obtain

𝑟
(𝑐−1,𝑛)

𝑐−𝑘−1
= 𝜃
(0,𝑘+1)

0

1

𝑛
𝑘+1

+ 𝑂(

1

𝑛
𝑘+2

) ,

𝑟
(𝑐−1,𝑛)

𝑐−𝑘
= 𝜃
(0,𝑘)

0

1

𝑛
𝑘
+ 𝑂(

1

𝑛
𝑘+1

) ,

𝑟
(𝑐−1,𝑛)

𝑐−𝑘+1
= 𝜃
(0,𝑘−1)

0

1

𝑛
𝑘−1

− 𝜃
(0,𝑘−1)

1

1

𝑛
𝑘

+ 𝑂(

1

𝑛
𝑘+1

) ,

(𝑛 + 1) 𝑟
(𝑐−1,𝑛+1)

𝑐−𝑘−1
= 𝜃
(0,𝑘+1)

0

1

(𝑛 + 1)
𝑘
+ 𝑂(

1

𝑛
𝑘+1

)

= 𝜃
(0,𝑘+1)

0

1

𝑛
𝑘
+ 𝑂(

1

𝑛
𝑘+1

) ,

(𝑛 + 1) 𝑟
(𝑐,𝑛+1)

𝑐−𝑘−1
= 𝜃
(1,𝑘+1)

0

1

(𝑛 + 1)
𝑘
+ 𝑂(

1

𝑛
𝑘+1

)

= 𝜃
(1,𝑘+1)

0

1

𝑛
𝑘
+ 𝑂(

1

𝑛
𝑘+1

) ,

𝑟
(𝑐−1,𝑛)

𝑐−1
= 𝜃
(0,1)

0

1

𝑛

− 𝜃
(0,1)

1

1

𝑛
2
+ 𝑂(

1

𝑛
3
) ,

𝑟
(𝑐−1,𝑛)

𝑐
= 0 + 𝑂(

1

𝑛

) .

(D.4)

Substituting these formulae into (C.4), we obtain

𝑟
(𝑐−1,𝑛)

𝑐−𝑘
=

(𝑐 − 𝑘 + 1) ]
𝜇

𝜃
(0,𝑘−1)

0

1

𝑛
𝑘

− {

𝜆 + (𝑐 − 𝑘) ]
𝜇

𝜃
(0,𝑘)

0
+

(𝑐 − 𝑘 + 1) ]
𝜇

𝜃
(0,𝑘−1)

1
}

⋅

1

𝑛
𝑘+1

+ 𝑂(

1

𝑛
𝑘+2

) = 𝜃
(0,𝑘)

0

1

𝑛
𝑘
− 𝜃
(0,𝑘)

1

1

𝑛
𝑘+1

+ 𝑂(

1

𝑛
𝑘+2

) ,

(D.5)

where

𝜃
(0,𝑘)

1
=

𝜆 + (𝑐 − 𝑘) ]
𝜇

𝜃
(0,𝑘)

0
+

(𝑐 − 𝑘 + 1) ]
𝜇

𝜃
(0,𝑘−1)

1
. (D.6)

Similarly, using the same methodology, we obtain

𝑟
(𝑐,𝑛)

𝑐−𝑘
= 𝜃
(1,𝑘)

0

1

𝑛
𝑘
− 𝜃
(1,𝑘)

1

1

𝑛
𝑘+1

+ 𝑂(

1

𝑛
𝑘+2

) , (D.7)

where

𝜃
(1,𝑘)

1
=

𝜆 + (𝑐 − 𝑘) ]
𝜇

𝜃
(1,𝑘)

0
+

(𝑐 − 𝑘 + 1) ]
𝜇

𝜃
(1,𝑘−1)

1

− 𝜃
(1,0)

0
𝜃
(1,𝑘+1)

0
.

(D.8)

(iii) Case 𝑘 = 𝑐. Equations (38) and (39) with 𝑘 = 𝑐 − 1 and
Lemma 13 yield

𝑟
(𝑐−1,𝑛)

1
= 𝜃
(0,𝑐−1)

0

1

𝑛
𝑐−1

− 𝜃
(0,𝑐−1)

1

1

𝑛
𝑐
+ 𝑂(

1

𝑛
𝑐+1

) ,

𝑟
(𝑐,𝑛)

1
= 𝜃
(0,𝑐−1)

0

1

𝑛
𝑐−1

− 𝜃
(1,𝑐−1)

1

1

𝑛
𝑐
+ 𝑂(

1

𝑛
𝑐+1

) ,

𝑟
(𝑐−1,𝑛)

0
= 𝜃
(0,𝑐)

0

1

𝑛
𝑐
+ 𝑜 (

1

𝑛
𝑐
) = 𝑂(

1

𝑛
𝑐
) ,

𝑟
(𝑐,𝑛)

0
= 𝜃
(1,𝑐)

0

1

𝑛
𝑐
+ 𝑜 (

1

𝑛
𝑐
) = 𝑂(

1

𝑛
𝑐
) .

(D.9)

Thus, (B.4) are written as follows:

𝑟
(𝑐−1,𝑛)

0
=

]
𝜇

𝜃
(0,𝑐−1)

0

1

𝑛
𝑐
− (

𝜆𝜃
(0,𝑐)

0
+ ]𝜃(0,𝑐−1)
1

𝜇

)

1

𝑛
𝑐+1

+ 𝑂(

1

𝑛
𝑐+2

)

= 𝜃
(0,𝑐)

0

1

𝑛
𝑐
− 𝜃
(0,𝑐)

1

1

𝑛
𝑐+1

+ 𝑂(

1

𝑛
𝑐+2

) ,

𝑟
(𝑐,𝑛)

0
=

]
𝜇

𝜃
(1,𝑐−1)

0

1

𝑛
𝑐
− (

𝜆𝜃
(1,𝑐)

0
+ ]𝜃(1,𝑐−1)
1

𝜇

)

1

𝑛
𝑐+1

+ 𝑂(

1

𝑛
𝑐+2

)

= 𝜃
(1,𝑐)

0

1

𝑛
𝑐
− 𝜃
(1,𝑐)

1

1

𝑛
𝑐+1

+ 𝑂(

1

𝑛
𝑐+2

) ,

(D.10)

where

𝜃
(0,𝑐)

1
=

𝜆𝜃
(0,𝑐)

0
+ ]𝜃(0,𝑐−1)
1

𝜇

,

𝜃
(1,𝑐)

1
=

𝜆𝜃
(1,𝑐)

0
+ ]𝜃(1,𝑐−1)
1

𝜇

.

(D.11)

(iv) Case 𝑘 = 0. We use the same methodology as in
Lemma 13. Equations (38) and (39) with 𝑘 = 1 and Lemma 13
yield

𝑟
(𝑐−1,𝑛)

𝑐−1
= 𝜃
(0,1)

0

1

𝑛

− 𝜃
(0,1)

1

1

𝑛
2
+ 𝑂(

1

𝑛
3
) ,

𝑟
(𝑐,𝑛)

𝑐−1
= 𝜃
(1,1)

0

1

𝑛

− 𝜃
(1,1)

1

1

𝑛
2
+ 𝑂(

1

𝑛
3
) ,

𝑟
(𝑐−1,𝑛)

𝑐
= 0 + 𝑂(

1

𝑛

) ,

𝑟
(𝑐,𝑛)

𝑐
=

𝜆

𝑐]
+ 𝑂(

1

𝑛

) .

(D.12)
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Thus, (20) and (23) are written as follows:

𝑟
(𝑐−1,𝑛)

𝑐
= 0 +

𝜆
1
𝜃
(0,1)

0
+ 𝜇𝜃
(0,1)

0
𝜃
(0,1)

0

𝑐]
1

𝑛

+ 𝑂(

1

𝑛
2
)

= 𝜃
(0,0)

0
− 𝜃
(0,0)

1

1

𝑛

+ 𝑂(

1

𝑛
2
) ,

𝑟
(𝑐,𝑛)

𝑐
=

𝜆

𝑐]

+

𝜆
1
𝜃
(1,1)

0
+ 𝜇𝜃
(1,1)

0
𝜃
(0,1)

0
− 𝜇𝜃
(1,0)

0
𝜃
(1,1)

1

𝑐]
1

𝑛

+ 𝑂(

1

𝑛
2
) = 𝜃
(1,0)

0
− 𝜃
(1,0)

1

1

𝑛

+ 𝑂(

1

𝑛
2
) .

(D.13)

Therefore, Theorem 14 is established for 𝑚 = 1 and 𝑘 =

0, 1, . . . , 𝑐.
Next, assuming thatTheorem 14 is true for𝑚−1 (𝑚 terms

expansion), we prove that it is also true for 𝑚 (𝑚 + 1 terms
expansion).

(v) Case 𝑘 = 1. Lemma 8 and mathematical induction yield

𝑟
(𝑐−1,𝑛)

𝑐−1
=

𝜆
2

𝑛𝜇

−

𝑐

∑

𝑘=2

𝑟
(𝑐−1,𝑛)

𝑐−𝑘

=

𝜆
2

𝑛𝜇

−

𝑐

∑

𝑘=2

{

{

{

𝑚−1

∑

𝑗=0

𝜃
(0,𝑘)

𝑗
(−1)
𝑗 1

𝑛
𝑘+𝑗

+ 𝑂(

1

𝑛
𝑘+𝑚

)

}

}

}

=

𝜆
2

𝑛𝜇

−

𝑐

∑

𝑘=2

𝑚−1

∑

𝑗=0

𝜃
(0,𝑘)

𝑗
(−1)
𝑗 1

𝑛
𝑘+𝑗

+ 𝑂(

1

𝑛
𝑚+2

)

=

𝑚

∑

𝑖=0

𝜃
(0,1)

𝑖
(−1)
𝑖 1

𝑛
1+𝑖

+ 𝑂(

1

𝑛
𝑚+2

) ,

(D.14)

where

𝜃
(0,1)

𝑖
=

min(𝑐,𝑖+1)
∑

𝑗=2

𝜃
(0,𝑗)

𝑖+1−𝑗
(−1)
𝑗
. (D.15)

Similarly, we have

𝑟
(𝑐,𝑛)

𝑐−1
=

𝜆

𝑛𝜇

−

𝑐

∑

𝑘=2

𝑟
(𝑐,𝑛)

𝑐−𝑘

=

𝜆

𝑛𝜇

−

𝑐

∑

𝑘=2

{

{

{

𝑚−1

∑

𝑗=0

𝜃
(1,𝑘)

𝑗
(−1)
𝑗 1

𝑛
𝑘+𝑗

+ 𝑂(

1

𝑛
𝑘+𝑚

)

}

}

}

=

𝜆

𝑛𝜇

−

𝑐

∑

𝑘=2

𝑚−1

∑

𝑗=0

𝜃
(1,𝑘)

𝑗
(−1)
𝑗 1

𝑛
𝑘+𝑗

+ 𝑂(

1

𝑛
𝑚+2

)

=

𝑚

∑

𝑖=0

𝜃
(1,1)

𝑖
(−1)
𝑖 1

𝑛
1+𝑖

+ 𝑂(

1

𝑛
𝑚+2

) ,

(D.16)

where

𝜃
(1,1)

𝑖
=

min(𝑐,𝑖+1)
∑

𝑗=2

𝜃
(1,𝑗)

𝑖+1−𝑗
(−1)
𝑗
. (D.17)

(vi) Case 𝑘 = 2, 3, . . . , 𝑐 − 1. Assuming that (38) and (39) in
Theorem 14 are true for 𝑟(𝑐−1,𝑛)

𝑐−𝑗
and 𝑟
(𝑐,𝑛)

𝑐−𝑗
with 𝑗 = 1, 2, . . . , 𝑘 −

1, we prove that they are also true for 𝑗 = 𝑘. Applying the
assumption of mathematical induction and (38) for 𝑘 = 1

yields

𝑟
(𝑐−1,𝑛)

𝑐−𝑘−1
=

𝑚−1

∑

𝑖=0

𝜃
(0,𝑘+1)

𝑖
(−1)
𝑖 1

𝑛
𝑘+𝑖+1

+ 𝑂(

1

𝑛
k+𝑚+1 ) ,

𝑟
(𝑐−1,𝑛)

𝑐−𝑘
=

𝑚−1

∑

𝑖=0

𝜃
(0,𝑘)

𝑖
(−1)
𝑖 1

𝑛
𝑘+𝑖

+ 𝑂(

1

𝑛
𝑘+𝑚

) ,

𝑟
(𝑐−1,𝑛)

𝑐−𝑘+1
=

𝑚

∑

𝑖=0

𝜃
(0,𝑘−1)

𝑖
(−1)
𝑖 1

𝑛
𝑘+𝑖−1

+ 𝑂(

1

𝑛
𝑘+𝑚

) ,

𝑟
(𝑐−1,𝑛)

𝑐−1
=

𝑚

∑

𝑖=0

𝜃
(0,1)

𝑖
(−1)
𝑖 1

𝑛
𝑘+𝑖

+ 𝑂(

1

𝑛
𝑚+2

) ,

𝑟
(𝑐−1,𝑛)

𝑐
=

𝑚−1

∑

𝑖=0

𝜃
(0,0)

𝑖
(−1)
𝑖 1

𝑛
𝑘+𝑖

+ 𝑂(

1

𝑛
𝑚
) ,

(𝑛 + 1) 𝑟
(𝑐−1,𝑛+1)

𝑐−𝑘−1
=

𝑚−1

∑

𝑖=0

𝜃
(0,𝑘+1)

𝑖
(−1)
𝑖 1

(𝑛 + 1)
𝑘+𝑖

+ 𝑂(

1

𝑛
𝑘+𝑚

)

=

𝑚−1

∑

𝑗=0

Φ
(0,𝑘)

𝑗

1

𝑛
𝑘+𝑗

+ 𝑂(

1

𝑛
𝑘+𝑚

) ,

(𝑛 + 1) 𝑟
(𝑐,𝑛+1)

𝑐−𝑘−1
=

𝑚−1

∑

𝑖=0

𝜃
(1,𝑘+1)

𝑖
(−1)
𝑖 1

(𝑛 + 1)
𝑘+𝑖

+ 𝑂(

1

𝑛
𝑘+𝑚

)

=

𝑚−1

∑

j=0
Φ
(1,𝑘)

𝑗

1

𝑛
𝑘+𝑗

+ 𝑂(

1

𝑛
𝑘+𝑚

) .

(D.18)
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Substituting these formulae into (C.4) and attracting the
coefficient of 1/𝑛𝑘+𝑚 of (C.4) and arranging the result, we
obtain

𝜃
(0,𝑘)

𝑚
fl

𝜆

𝜇

𝜃
(0,𝑘+1)

𝑚−2
+

𝜆 + (𝑐 − 𝑘) ]
𝜇

𝜃
(0,𝑘)

𝑚−1

+

(𝑐 − 𝑘 + 1) ]
𝜇

𝜃
(0,𝑘−1)

𝑚

+

𝑚−1

∑

𝑗=0

Φ
(0,𝑘)

𝑗
𝜃
(0,1)

𝑚−𝑗−2
(−1)
𝑗

+

𝑚−1

∑

𝑗=0

Φ
(1,𝑘)

𝑗
𝜃
(0,0)

𝑚−𝑗−1
(−1)
𝑗+1

.

(D.19)

Similarly, using the assumption of mathematical induction
and (39) with 𝑘 = 1, we obtain

𝑟
(𝑐,𝑛)

𝑐−𝑘−1
=

𝑚−1

∑

𝑖=0

𝜃
(1,𝑘+1)

𝑖
(−1)
𝑖 1

𝑛
𝑘+𝑖+1

+ 𝑂(

1

𝑛
𝑘+𝑚+1

) ,

𝑟
(𝑐,𝑛)

𝑐−𝑘
=

𝑚−1

∑

𝑖=0

𝜃
(1,𝑘)

𝑖
(−1)
𝑖 1

𝑛
𝑘+𝑖

+ 𝑂(

1

𝑛
𝑘+𝑚

) ,

𝑟
(𝑐,𝑛)

𝑐−𝑘+1
=

𝑚

∑

𝑖=0

𝜃
(1,𝑘−1)

𝑖
(−1)
𝑖 1

𝑛
𝑘+𝑖−1

+ 𝑂(

1

𝑛
𝑘+𝑚

) ,

𝑟
(𝑐,𝑛)

𝑐−1
=

𝑚

∑

𝑖=0

𝜃
(1,1)

𝑖
(−1)
𝑖 1

𝑛
𝑘+𝑖

+ 𝑂(

1

𝑛
𝑚+2

) ,

𝑟
(𝑐,𝑛)

𝑐
=

𝑚−1

∑

𝑖=0

𝜃
(1,0)

𝑖
(−1)
𝑖 1

𝑛
𝑘+𝑖

+ 𝑂(

1

𝑛
𝑚
) ,

(𝑛 + 1) 𝑟
(𝑐−1,𝑛+1)

𝑐−𝑘−1
=

𝑚−1

∑

𝑖=0

𝜃
(0,𝑘+1)

𝑖
(−1)
𝑖 1

(𝑛 + 1)
𝑘+𝑖

+ 𝑂(

1

𝑛
𝑘+𝑚

) ,

=

𝑚−1

∑

𝑗=0

Φ
(0,𝑘)

𝑗

1

𝑛
𝑘+𝑗

+ 𝑂(

1

𝑛
𝑘+𝑚

) ,

(𝑛 + 1) 𝑟
(𝑐,𝑛+1)

𝑐−𝑘−1
=

𝑚−1

∑

𝑖=0

𝜃
(1,𝑘+1)

𝑖
(−1)
𝑖 1

(𝑛 + 1)
𝑘+𝑖

+ 𝑂(

1

𝑛
𝑘+𝑚

) ,

=

𝑚−1

∑

𝑗=0

Φ
(1,𝑘)

𝑗

1

𝑛
𝑘+𝑗

+ 𝑂(

1

𝑛
𝑘+𝑚

) .

(D.20)

Substituting these formulae into (C.5) and extracting the
coefficient of 1/𝑛𝑘+𝑚 in (C.5) and arranging the result yield

𝜃
(1,𝑘)

𝑚
fl

𝜆

𝜇

𝜃
(1,𝑘+1)

𝑚−2
+

𝜆 + (𝑐 − 𝑘) ]
𝜇

𝜃
(1,𝑘)

𝑚−1

+

(𝑐 − 𝑘 + 1) ]
𝜇

𝜃
(1,𝑘−1)

𝑚

+

𝑚−1

∑

𝑗=0

Φ
(0,𝑘)

𝑗
𝜃
(1,1)

𝑚−𝑗−2
(−1)
𝑗

+

𝑚−1

∑

𝑗=0

Φ
(1,𝑘)

𝑗
𝜃
(1,0)

𝑚−𝑗−1
(−1)
𝑗+1

.

(D.21)

Thus, we obtain the result for case 𝑘 = 2, 3, . . . , 𝑐 − 1.

(vii) Case 𝑘 = 𝑐. Using Lemma 13, (38), and (39) with 𝑘 = 𝑐−1,
we obtain

𝑟
(𝑐−1,𝑛)

1
=

𝑚

∑

𝑖=0

𝜃
(0,𝑐−1)

𝑖
(−1)
𝑖 1

𝑛
𝑐+𝑖−1

+ 𝑂(

1

𝑛
𝑐+𝑚

) ,

𝑟
(𝑐,𝑛)

1
=

𝑚

∑

𝑖=0

𝜃
(1,𝑐−1)

𝑖
(−1)
𝑖 1

𝑛
𝑐+𝑖−1

+ 𝑂(

1

𝑛
𝑐+𝑚

) ,

𝑟
(𝑐−1,𝑛)

0
=

𝑚−1

∑

𝑖=0

𝜃
(0,𝑐)

𝑖
(−1)
𝑖 1

𝑛
𝑐+𝑖

+ 𝑂(

1

𝑛
𝑐+𝑚

) ,

𝑟
(𝑐,𝑛)

0
=

𝑚−1

∑

𝑖=0

𝜃
(1,𝑐)

𝑖
(−1)
𝑖 1

𝑛
𝑐+𝑖

+ 𝑂(

1

𝑛
𝑐+𝑚

) .

(D.22)

Attracting the coefficient of 1/𝑛𝑐+𝑚 in (B.4) and arranging the
result yield

𝜃
(0,𝑐)

𝑚
fl

𝜆

𝜇

𝜃
(0,𝑐)

𝑚−1
+

]
𝜇

𝜃
(0,𝑐−1)

𝑚
,

𝜃
(1,𝑐)

𝑚
fl

𝜆

𝜇

𝜃
(1,𝑐)

𝑚−1
+

]
𝜇

𝜃
(1,𝑐−1)

𝑚
.

(D.23)

Thus, we obtain the desired result for case 𝑘 = 𝑐.
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(viii) Case 𝑘 = 0. We can prove Lemma 13 using the same
methodology. Equations (38) and (39) with 𝑘 = 1 and
Lemma 13 yield

𝑟
(𝑐−1,𝑛)

𝑐−1
=

𝑚

∑

𝑖=0

𝜃
(0,1)

𝑖
(−1)
𝑖 1

𝑛
1+𝑖

+ 𝑂(

1

𝑛
𝑚+2

) ,

𝑟
(𝑐,𝑛)

𝑐−1
=

𝑚

∑

𝑖=0

𝜃
(1,1)

𝑖
(−1)
𝑖 1

𝑛
1+𝑖

+ 𝑂(

1

𝑛
𝑚+2

) ,

𝑟
(𝑐−1,𝑛)

𝑐
=

𝑚−1

∑

𝑖=0

𝜃
(0,0)

𝑖
(−1)
𝑖 1

𝑛
𝑖
+ 𝑂(

1

𝑛
𝑚
) ,

𝑟
(𝑐,𝑛)

𝑐
=

𝑚−1

∑

𝑖=0

𝜃
(1,0)

𝑖
(−1)
𝑖 1

𝑛
𝑖
+ 𝑂(

1

𝑛
𝑚
) ,

(𝑛 + 1) 𝑟
(𝑐−1,𝑛+1)

𝑐−1
=

𝑚

∑

𝑖=0

𝜃
(0,1)

𝑖
(−1)
𝑖 1

(𝑛 + 1)
𝑖

+ 𝑂(

1

𝑛
𝑚+1

)

=

𝑚

∑

𝑗=0

Φ
(0,1)

𝑗
(−1)
𝑖 1

𝑛
𝑗
+ 𝑂(

1

𝑛
𝑚+1

) ,

(𝑛 + 1) 𝑟
(𝑐,𝑛+1)

𝑐−1
=

𝑚

∑

𝑖=0

𝜃
(1,1)

𝑖
(−1)
𝑖 1

(𝑛 + 1)
𝑖

+ 𝑂(

1

𝑛
𝑚+1

)

=

𝑚

∑

𝑗=1

Φ̃

(1,1)

𝑗
(−1)
𝑖 1

𝑛
𝑗
+ 𝑂(

1

𝑛
𝑚+1

) .

(D.24)

Using these formulae and attracting the coefficient of 1/𝑛𝑚 in
(B.28), we obtain

𝜃
(0,0)

𝑚
fl −

𝜆
1

𝑐]
𝜃
(0,1)

𝑚−1
+

𝜇

𝑐]

𝑚

∑

𝑗=0

Φ
(0,0)

𝑗
𝜃
(0,1)

𝑚−𝑗−1
(−1)
𝑗+1

+

𝜇

𝑐]

𝑚

∑

𝑗=1

Φ̃

(1,0)

𝑗
𝜃
(0,0)

𝑚−𝑗
(−1)
𝑗
,

𝜃
(1,0)

𝑚
fl −

𝜆
1

𝑐]
𝜃
(1,1)

𝑚−1
+

𝜇

𝑐]

𝑚

∑

𝑗=0

Φ
(0,0)

𝑗
𝜃
(1,1)

𝑚−𝑗−1
(−1)
𝑗+1

+

𝜇

𝑐]

𝑚

∑

𝑗=1

Φ̃

(1,0)

𝑗
𝜃
(1,0)

𝑚−𝑗
(−1)
𝑗
.

(D.25)

E. Proof of Lemma 21

Proof. Let

U(𝑛)
𝑘

= Q(𝑛)
1

+ R(𝑛+1)
𝑘−1

Q(𝑛+1)
2

, 𝑛, 𝑘 ∈ N. (E.1)

From Lemma 4, we have R(𝑛)
𝑘
U(𝑛)
𝑘

= −Q(𝑛−1)
0

, 𝑛, 𝑘 ∈ N.
Because the first 𝑐 − 1 rows in both sides are zeros, we obtain

(

r(𝑐−1,𝑛)
𝑘

r(𝑐,𝑛)
𝑘

)U(𝑛)
𝑘

= (

0, 0, . . . , −𝜆
2
, 0

0, 0, . . . , 0, −𝜆

) . (E.2)

Since rank(U(𝑛)
𝑘

) = 𝑐 + 1, r(𝑐−1,𝑛)
𝑘

and r(𝑐,𝑛)
𝑘

are uniquely
determined. For simplicity, let r(𝑐−1,𝑛)

𝑘
= (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑐
) and

r(𝑐,𝑛)
𝑘

= (𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑐
). Comparing both sides of (E.2) yields

𝑏
(𝑛)

0
𝑥
0
+ ]𝑥
1
= 0, 𝑖 = 0, (E.3)

𝜆𝑥
𝑖−1

+ 𝑏
(𝑛)

𝑖
𝑥
𝑖
+ (𝑖 + 1) ]𝑥

𝑖+1
+ �̃�
𝑖
= 0,

𝑖 = 1, 2, . . . , 𝑐 − 2,

(E.4)

𝜆𝑥
𝑐−2

+ 𝑏
(𝑛)

𝑐−1
𝑥
𝑐−1

+ 𝑐]𝑥
𝑐
+ �̃�
𝑐−1

= −𝜆
2
, 𝑖 = 𝑐 − 1, (E.5)

𝜆
1
𝑥
𝑐−1

+ 𝑏
(𝑛)

𝑐
𝑥
𝑐
+ �̃�
𝑐
= 0, 𝑖 = c, (E.6)

where �̃�
𝑖
= (𝑛 + 1)𝜇(𝑥

𝑐−1
𝑟
(𝑐−1,𝑛+1)

𝑘−1,𝑖−1
+ 𝑥
𝑐
𝑟
(𝑐,𝑛+1)

𝑘−1,𝑖−1
). Furthermore,

𝑏
(𝑛)

0
𝑦
0
+ ]𝑦
1
= 0, 𝑖 = 0,

𝜆𝑦
𝑖−1

+ 𝑏
(𝑛)

𝑖
𝑦
𝑖
+ (𝑖 + 1) ]𝑦

𝑖+1
+ �̃�
𝑖
= 0,

𝑖 = 1, 2, . . . , 𝑐 − 1,

𝜆
1
𝑦
𝑐−1

+ 𝑏
(𝑛)

𝑐
𝑦
𝑐
+ �̃�
𝑐
= −𝜆, 𝑖 = 𝑐,

(E.7)

where �̃�
𝑖
= (𝑛 + 1)𝜇(𝑦

𝑐−1
𝑟
(𝑐−1,𝑛+1)

𝑘−1,𝑖−1
+ 𝑦
𝑐
𝑟
(𝑐,𝑛+1)

𝑘−1,𝑖−1
).

For arbitrary 𝑛 and 𝑘, we express 𝑥
𝑖
as follows:

𝑥
𝑖
= 𝛼
𝑖
+ 𝛽
𝑖
𝑥
𝑐
, 𝑖 = 0, 1, . . . , 𝑐. (E.8)

It is obvious that for 𝑖 = 𝑐we have 𝛼
𝑐
= 0 and 𝛽

𝑐
= 1. For case

𝑖 = 𝑐 − 1, substituting 𝑥
𝑐−1

= 𝛼
𝑐−1

+ 𝛽
𝑐−1

𝑥
𝑐
into (E.6) yields

− 𝑏
(𝑛)

𝑐
𝑥
𝑐

= 𝜆
1
(𝛼
𝑐−1

+ 𝛽
𝑐−1

𝑥
𝑐
)

+ (𝑛 + 1) {(𝛼
𝑐−1

+ 𝛽
𝑐−1

𝑥
𝑐
) 𝑟
(𝑐−1,𝑛+1)

𝑘−1,𝑐−1
+ 𝑥
𝑐
𝑟
(𝑐,𝑛+1)

𝑘−1,𝑐−1
} .

(E.9)

The above formula is rewritten as follows:

0 = {𝜆
1
+ (𝑛 + 1) 𝜇𝑟

(𝑐−1,𝑛+1)

𝑘−1,𝑐−1
} 𝛼
𝑐−1

,

− 𝑏
(𝑛)

𝑐
− (𝑛 + 1) 𝑟

(𝑐,𝑛+1)

𝑘−1,𝑐−1

= {𝜆
1
+ (𝑛 + 1) 𝑟

(𝑐−1,𝑛+1)

𝑘−1,𝑐−1
} 𝛽
𝑐−1

.

(E.10)
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Therefore,

𝛼
𝑐−1

= 0,

𝛽
𝑐−1

= −

𝑏
(𝑛)

𝑐
+ (𝑛 + 1) 𝑟

(𝑐,𝑛+1)

𝑘−1,𝑐−1

𝜆
1
+ (𝑛 + 1) 𝑟

(𝑐−1,𝑛+1)

𝑘−1,𝑐−1

.

(E.11)

For case 𝑖 = 𝑐 − 2, substituting 𝑥
𝑐−2

= 𝛼
𝑐−2

+ 𝛽
𝑐−2

𝑥c and
𝑥
𝑐−1

= 𝛼
𝑐−1

+ 𝛽
𝑐−1

𝑥
𝑐
into (E.5) yields

− 𝑏
(𝑛)

𝑐−1
(𝛼
𝑐−1

+ 𝛽
𝑐−1

𝑥
𝑐
)

= 𝜆 (𝛼
𝑐−2

+ 𝛽
𝑐−2

𝑥
𝑐
) + 𝑐]𝑥

𝑐
+ �̃�
𝑐−1

+ 𝜆
2
.

(E.12)

Rewriting this equation we obtain

𝜆𝛼
𝑐−2

+ 𝜆
2
= 0,

𝜆𝛽
𝑐−2

+ 𝑏
(𝑛)

𝑐
𝛽
𝑐−1

+ 𝑐] + (𝑛 + 1) 𝜇𝑟
(𝑐−1,𝑛+1)

𝑐−2
𝛽
𝑐−1

+ (𝑛 + 1) 𝜇𝑟
(𝑐,𝑛+1)

𝑐−2
= 0.

(E.13)

Thus,

𝛼
𝑐−2

= −

𝜆
2

𝜆

,

𝛽
𝑐−2

= −

𝑏
(𝑛)

𝑐−1
𝛽
𝑐−1

+ 𝑐] + (𝑛 + 1) 𝜇𝑟
(𝑐−1,𝑛+1)

𝑘−1,𝑐−2
𝛽
𝑐−1

+ (𝑛 + 1) 𝜇𝑟
(𝑐,𝑛+1)

𝑘−1,𝑐−2

𝜆

.

(E.14)

Case 𝑖 = 0, 1, . . . , 𝑐 − 3 is also obtained by transforming (E.4)
using the same manner:

𝛼
𝑖−1

= −

𝑏
(𝑛)

𝑖
𝛼
𝑖
+ (𝑖 + 1) ]𝛼

𝑖+1

𝜆

, 𝑖 = 𝑐 − 2, 𝑐 − 3, . . . , 1,

𝛽
𝑖−1

= −

𝑏
(𝑛)

𝑖
𝛽
𝑖
+ (𝑖 + 1) ]𝛽

𝑖+1
+ (𝑛 + 1) 𝜇𝑟

(𝑐−1,𝑛+1)

𝑘−1,𝑖−1
𝛽
𝑐−1

+ (𝑛 + 1) 𝜇𝑟
(𝑐,𝑛+1)

𝑘−1,𝑖−1

𝜆

, 𝑖 = 𝑐 − 2, 𝑐 − 3, . . . , 1.

(E.15)

Furthermore, substituting 𝑥
0
= 𝛼
0
+ 𝛽
0
𝑥
𝑐
and 𝑥

1
= 𝛼
1
+ 𝛽
1
𝑥
𝑐

into (E.3) and arranging the result, we obtain

𝑥
𝑐
= −

𝑏
(𝑛)

0
𝛼
0
+ ]𝛼
1

𝑏
(𝑛)

0
𝛽
0
+ ]𝛽
1

. (E.16)
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