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A number of techniques, used as remedy to the instability of the Galerkin finite element formulation for Stokes like problems,
are found in the literature. In this work we consider a coupled Stokes-Darcy problem, where in one part of the domain the fluid
motion is described by Stokes equations and for the other part the fluid is in a porous medium and described by Darcy law and the
conservation of mass. Such systems can be discretized by heterogeneous mixed finite elements in the two parts. A better method,
from a computational point of view, consists in using a unified approach on both subdomains. Here, the coupled Stokes-Darcy
problem is analyzed using equal-order velocity and pressure approximation combined with subgrid stabilization.We prove that the
obtained finite element solution is stable and converges to the classical solution with optimal rates for both velocity and pressure.

1. Introduction

The transport of substances between surface water and
groundwater has attracted a lot of interest into the coupling of
viscous flows and porous media flows [1–5]. In this work we
consider coupled problems in fluid dynamics where the fluid
in one part of the domain is described by the Stokes equations
and in the other, porous media part, by the Darcy equation
and mass conservation. Velocity and pressure on these two
parts are mutually coupled by interface conditions derived
in [6]. Such systems can be discretized by heterogeneous
finite elements as analyzed by Layton et al. [1]. In more
recent works, unified approaches become more popular. For
instance, discontinuous Galerkin methods were analyzed by
Girault and Rivière [3], mixed methods by Karper et al. [4],
and local pressure gradient stabilized methods by Braack and
Nafa [7].

In this work, we consider the 𝐿
2-formulation of the

coupled Stokes-Darcy problem as in [4], but we discretize
by equal-order finite elements and use subgrid method and
grad-div term to stabilize the pressure and control the natural
𝐻
1
(div) velocity norm on the Darcy subdomain.

2. Formulations of the Stokes-Darcy
Coupled Equations

2.1. Model Equations. Let Ω ⊂ 𝑅
𝑑, 𝑑 = 2 or 3, be a

bounded region with Lipschitz boundary 𝜕Ω.Ω
𝑆
andΩ

𝐷
are,

respectively, the fluid and porous media subdomains of Ω

such that Ω
𝑆
∩ Ω
𝐷

= 0. The subdomains have a common
interface Γ = Ω

𝑆
∩ Ω
𝐷
. We denote by k = (k

𝑆
, k
𝐷
) the

fluid velocity and by 𝑝 = (𝑝
𝑆
, 𝑝
𝐷
) the fluid pressure, where

k
𝑖
= k|
Ω𝑖
, 𝑝
𝑖
= 𝑝|
Ω𝑖
, 𝑖 = 𝑆, 𝐷. The flow in the domain Ω

𝑆
is

assumed to be of Stokes type and governed by the equations

−2] div (𝐷 (k
𝑆
)) + ∇𝑝

𝑆
= f , in Ω

𝑆

div k
𝑆
= 0, in Ω

𝑆

(1)

with symmetric strain tensor 𝐷(k
𝑆
) = (1/2)(∇k

𝑆
+ ∇k𝑇
𝑆
),

external force f, and constant viscosity ] > 0. In the porous
region Ω

𝐷
the filtration of an incompressible flow through

porous media is described by Darcy equations

𝐾
−1k
𝐷
+ ∇𝑝
𝐷

= f , in Ω
𝐷

div k
𝐷

= 𝑔, in Ω
𝐷
,

(2)
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where the permeability 𝐾 = 𝐾(𝑥) is a positive definite
symmetric tensor and 𝑔 denotes an external Darcy force.

2.2. Boundary Conditions. On Γ
𝑆

= 𝜕Ω
𝑆
\ Γ, we prescribe

homogeneous Dirichlet conditions for the velocity k
𝑆
.

k
𝑆
= 0, on Γ

𝑆
. (3)

The boundary of Ω
𝐷
is split into three parts 𝜕Ω

𝐷
= Γ ∪

Γ
𝐷,1

∪Γ
𝐷,2

.We prescribe zero flux on Γ
𝐷,1

and a homogeneous
Dirichlet condition for the pressure on Γ

𝐷,2
.

k
𝐷
⋅ n
𝐷

= 0, on Γ
𝐷,1

𝑝
𝐷

= 0, on Γ
𝐷,2

,

(4)

where n
𝐷
denotes the outer normal vector on the boundary

pointing from Ω
𝐷
into Ω

𝑆
. This boundary condition ensures

a zero mass flux.

2.3. The Beavers-Joseph-Saffman Condition. The flows in Ω
𝑆

and Ω
𝐷

are coupled across the interface Γ. Conditions
describing the interaction of the flows are as follows [6, 8]:

(i) The continuity of the normal velocity:

k
𝑆
⋅ n
𝑆
= −k
𝐷
⋅ n
𝐷
, on Γ (5)

(ii) The balance of normal forces:

− (−𝑝
𝑆
𝐼 + 2]𝐷(k

𝑆
))n
𝑆
⋅ n
𝑆
= 𝑝
𝐷
, on Γ (6)

(iii) The Beavers-Joseph-Saffman condition written in
terms of the strain tensor:

k
𝑆
⋅ 𝜏 = −

2√�̃�

𝛼
(𝐷 (k
𝑆
) ⋅ n
𝑆
) ⋅ 𝜏, (7)

where �̃� = ]𝐾𝜏 ⋅ 𝜏 and 𝛼 is a dimensionless param-
eter to be determined experimentally, this condition
relating the tangential slip velocity k

𝑆
⋅ 𝜏 to the normal

derivative of the tangential velocity component in the
Stokes region

3. Variational Formulation

As variational formulation we consider the so-called 𝐿
2-

formulation used by Karper et al. [4] and recently by [9, 10].
We denote

(k,w)
Ω

= ∫
Ω

kw 𝑑𝑥, k,w ∈ 𝐿
2
(Ω)
𝑑
,

⟨V, 𝑤⟩Γ = ∫
Γ

V𝑤𝑑𝑠, V, 𝑤 ∈ 𝐿
2
(Γ) ,

(8)

where 𝐿
2
(Ω) and𝐻

1
(Ω) denote the usual Sobolev spaces.

Next, we define the spaces

H1
Γ𝑆
(Ω
𝑆
) = {w ∈ (𝐻

1
(Ω
𝑆
))
𝑑

| w = 0 on Γ
𝑆
}

H1 (div, Ω
𝐷
) = {w ∈ 𝐿

2
(Ω
𝐷
)
𝑑

| divw ∈ 𝐿
2
(Ω
𝐷
)} ,

H1
Γ𝐷,1

(Ω
𝐷
) = {w ∈ H1 (div, Ω

𝐷
) | w ⋅ n

𝐷
= 0 on Γ

𝐷
} .

(9)

Then, multiplying the Stokes equations (1) by the test func-
tionsw

𝑆
∈ H1
Γ𝑆
(Ω
𝑆
), 𝑞
𝑆
∈ 𝐿
2
(Ω
𝑆
), respectively, and integrating

by part on the domainΩ
𝑆
, we obtain

(2]𝐷(k
𝑆
) , 𝐷 (w

𝑆
))
Ω𝑆

− ⟨2]𝐷(k
𝑆
)n
𝑆
,w
𝑆
⟩

− (𝑝
𝑆
, divw

𝑆
)
Ω𝑆

+ ⟨𝑝
𝑆
,w
𝑆
⋅ n
𝑆
⟩
Γ
= (f ,w

𝑆
)
Ω𝑆

,

(div k
𝑆
, 𝑞
𝑆
)
Ω𝑆

= 0.

(10)

Using the decompositionw
𝑆
= (w
𝑆
⋅n
𝑆
)n
𝑆
+(w
𝑆
⋅𝜏)𝜏, the fluid

normal stress condition (6), and the BJS interface condition
(7) in (10), we obtain the weak formulation of the Stokes
equations: find k

𝑆
∈ H1
Γ𝑆
(Ω
𝑆
), 𝑝
𝑆
∈ 𝐿
2
(Ω
𝑆
) such that

(2]𝐷(k
𝑆
) , 𝐷 (w

𝑆
))
Ω𝑆

+
]𝛼
√�̃�

⟨k
𝑆
⋅ 𝜏,w
𝑆
⋅ 𝜏⟩
Γ

− (𝑝
𝑆
, divw

𝑆
)
Ω𝑆

+ ⟨𝑝
𝐷
,w
𝑆
⋅ n
𝑆
⟩
Γ
= (f ,w

𝑆
)
Ω𝑆

,

(div k
𝑆
, 𝑞
𝑆
)
Ω𝑆

= 0,

(11)

∀w
𝑆
∈ H1
Γ𝑆
(Ω
𝑆
), 𝑞
𝑆
∈ 𝐿
2
(Ω
𝑆
).

Similarly, taking 𝛿 > 0 and testing theDarcy equations (2)
by w
𝐷

∈ H1
Γ𝐷,1

(Ω
𝐷
), 𝑞
𝐷

∈ 𝐿
2
(Ω
𝐷
), respectively, together with

the weighted grad-div term we obtain the weak formulation
of Darcy equations: find k

𝐷
∈ H1
Γ𝐷
(Ω
𝐷
), 𝑝
𝐷

∈ 𝐻
1

𝐷,2
(Ω
𝐷
) such

that

(𝐾
−1k
𝐷
,w
𝐷
)
Ω𝐷

+ (∇𝑝
𝐷
,w
𝐷
)
Ω𝐷

+ 𝛿 (div k
𝐷
, divw

𝐷
)
Ω𝐷

= 𝛿 (𝑔, divw
𝐷
)
Ω𝐷

,

− (k
𝐷
, ∇𝑞
𝐷
)
Ω𝐷

+ ⟨k
𝐷
⋅ n
𝐷
, 𝑞
𝐷
⟩
Γ
= (𝑔, 𝑞

𝐷
)
Ω𝐷

.

(12)

Summing up (11) and (12) the weak form of the coupled
problem is given by the following: find k

𝑆
∈ H1
Γ𝑆
(Ω
𝑆
), 𝑝
𝑆

∈

𝐿
2
(Ω
𝑆
), k
𝐷

∈ H1
Γ𝐷
(Ω
𝐷
), and 𝑝

𝐷
∈ 𝐿
2
(Ω
𝐷
) such that

(2]𝐷(k
𝑆
) , 𝐷 (w

𝑆
))
Ω𝑆

− (𝑝
𝑆
, divw

𝑆
)
Ω𝑆

+ (𝐾
−1k
𝐷
,w
𝐷
)
Ω𝐷

+ (∇𝑝
𝐷
,w
𝐷
)
Ω𝐷

+ 𝛿 (div k
𝐷
, divw

𝐷
)
Ω𝐷

+
]𝛼
√�̃�

⟨k
𝑆
⋅ 𝜏,w
𝑆
⋅ 𝜏⟩
Γ

+ ⟨𝑝
𝐷
,w
𝑆
⋅ n
𝑆
⟩
Γ
= (f ,w

𝑆
)
Ω𝑆

+ 𝛿 (𝑔, divw
𝐷
)
Ω𝐷

,

(div k
𝑆
, 𝑞
𝑆
)
Ω𝑆

− (k
𝐷
, ∇𝑞
𝐷
)
Ω𝐷

− ⟨k
𝑆
⋅ n
𝑆
, 𝑞
𝐷
⟩
Γ
= (𝑔, 𝑞

𝐷
)
Ω𝐷

.

(13)
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To analyze the weak formulation of the coupled problem
we introduce the following spaces

V = {k ∈ H (div, Ω) | k
𝑆
∈ (𝐻
1
(Ω
𝑆
))
𝑑

, k
𝑆

= 0 on Γ
𝑆
, k ⋅ n

𝐷
= 0 on Γ

𝐷,1
} ,

𝑄 = {𝑞 ∈ 𝐿
2
(Ω) | 𝑝

𝐷
∈ 𝐻
1
(Ω
𝐷
) , 𝑝 = 0 ∈ Γ

𝐷,2
} ,

𝑋 = V × 𝑄.

(14)

The velocity and pressure spaces V and 𝑄 are equipped with
the natural norms

‖k‖V = (‖∇k‖2
Ω𝑆

+ ‖k‖2
Ω𝐷

+ ‖div k‖2
Ω𝐷

)
1/2

,

𝑝
𝑄

= (
𝑝



2

Ω𝑆
+
∇𝑝



2

Ω𝐷
)
1/2

.

(15)

Further, due to the positive definiteness of𝐾with respect
to the 𝐿

2
(Ω
𝐷
) norm ‖ ⋅ ‖

Ω𝐷
, there exist positive real numbers

𝑘
1
and 𝑘
2
such that

𝑘
1 ‖k‖
2

Ω𝐷
≤ (𝐾
−1k, k)

Ω𝐷

≤ 𝑘
2 ‖k‖
2

Ω𝐷
, ∀k ∈ V. (16)

Next, we define the bilinear forms for k = (k
𝑆
, k
𝐷
), w =

(w
𝑆
,w
𝐷
) in V and 𝑝 = (𝑝

𝑆
, 𝑝
𝐷
), 𝑞 = (𝑞

𝑆
, 𝑞
𝐷
) in 𝑄 on the two

parts of the domain by

A
𝑆
(k, 𝑝;w, 𝑞) = (2]𝐷(k

𝑆
) , 𝐷 (w

𝑆
))
Ω𝑆

+
]𝛼
√�̃�

⟨k
𝑆
⋅ 𝜏,w
𝑆
⋅ 𝜏⟩
Γ

− (𝑝
𝑆
, divw

𝑆
)
Ω𝑆

+ (div k
𝑆
, 𝑞
𝑆
)
Ω𝑆

,

A
𝐷
(k, 𝑝;w, 𝑞) = (𝐾

−1k
𝐷
,w
𝐷
)
Ω𝐷

+ 𝛿 (div k
𝐷
, divw

𝐷
)
Ω𝐷

+ (∇𝑝
𝐷
,w
𝐷
)
Ω𝐷

− (k
𝐷
, ∇𝑞
𝐷
)
Ω𝐷

.

(17)

Hence, the bilinear form for the coupled problem is the sum
of A
𝑆
(k, 𝑝;w, 𝑞), A

𝐷
(k, 𝑝;w, 𝑞), and terms to enforce the

continuity of the normal part of the velocities across the
interface.

A (k, 𝑝;w, 𝑞) = A
𝑆
(k, 𝑝;w, 𝑞) +A

𝐷
(k, 𝑝;w, 𝑞)

+ ⟨𝑝
𝐷
,w
𝑆
⋅ n
𝑆
⟩
Γ
− ⟨𝑞
𝐷
, k
𝑆
⋅ n
𝑆
⟩
Γ
.

(18)

Assuming, for simplicity, that f and 𝑔 are extended by zero to
the whole domain, the variational formulation of the coupled
Stokes-Darcy system in compact form reads as follows: find
(k, 𝑝) ∈ V × 𝑄 solution of

A (k, 𝑝;w, 𝑞) = F (w, 𝑞) , ∀ (w, 𝑞) ∈ V × 𝑄, (19)

with

F (w, 𝑞) = (f ,w
𝑆
)
Ω
+ (𝑔, 𝑞

𝐷
)
Ω
+ 𝛿 (𝑔, divw

𝐷
)
Ω
. (20)

It can easily be shown that a sufficiently regular solution
(k, 𝑝) ∈ V × 𝑄 of (19) such that k

𝑆
∈ 𝐻
2
(Ω
𝑆
)
𝑑, k
𝐷

∈

𝐻
1
(Ω
𝐷
)
𝑑, 𝑝 ∈ 𝐻

1
(Ω
𝑆
∪ Ω
𝐷
) is also a classical solution of

(1) and (2). We note that there is an alternative variational
formulation to the one given here called𝐻(div)-formulation.
The latter uses the term −(𝑝, divw)

Ω𝐷
+ (div k, 𝑞)

Ω𝐷
instead

of (w, ∇𝑝)
Ω𝐷

− (k, ∇𝑞)
Ω𝐷

[4].
The existence and uniqueness of the solution of problem

(19) follows from Brezzi’s conditions for saddle point prob-
lems [11]; namely,

𝐴 (k, 𝑝; k, 𝑝) ≥ �̃�‹k‹2V,

∀V ∈ V, �̃� > 0,

(21)

inf
𝑞∈𝐿
2
(Ω𝑆)

sup
k∈𝐻1(Ω𝑆)𝑑

(div k, 𝑞)
Ω𝑆

‖∇k‖Ω𝑆
𝑞

Ω𝑆

≥ 𝛽
𝑆
, (22)

inf
𝑞∈𝐻
1
(Ω𝐷)

sup
k∈𝐿2(Ω𝐷)𝑑

− (k, ∇𝑞)
Ω𝐷

‖k‖Ω𝐷
∇𝑞

Ω𝐷

≥ 𝛽
𝐷
. (23)

with positive constants 𝛽
𝑆
and 𝛽

𝐷
[7].

The following lemma is needed in the analysis below and
is a consequence of the continuous inf-sup conditions (23)
[10].

Lemma 1. For every (v, 𝑝) ∈ 𝑋 there is w ∈ V such that w
𝑆
⋅

n
𝑆
= 0 on Γ, satisfying

A (k, 𝑝;w, 0) ≥ 𝑐
2

𝑝


2

𝑄
− 𝑐
1 ‖k‖
2

V ,

‖w‖V ≤ 𝑐
3

𝑝
𝑄

,

(24)

with positive constants 𝑐
1
, 𝑐
2
, and 𝑐

3
.

Proof. Let (k, 𝑝) ∈ 𝑋. Then, due to Stokes inf-sup condition
there exists w

𝑆
∈ 𝐻
1
(Ω
𝑆
)
𝑑 with w

𝑆
= 0 on Γ

𝑆
and w

𝑆
⋅ n = 0

on Γ such that

− (divw
𝑆
, 𝑝)
Ω𝑆

=
𝑝



2

Ω𝑆
,

∇w𝑆
Ω𝑆

≤ 𝑐
𝑆

𝑝
Ω𝑆

.

(25)

For the Darcy equation, due to the condition 𝑝 = 0 on Γ
𝐷,2

,
there exists w

𝐷
∈ 𝐻
1
(Ω
𝐷
)
𝑑 with w

𝐷
⋅ n = 0 on Γ

𝐷,2
and Γ,

such that

− (divw
𝐷
, 𝑝)
Ω𝐷

=
∇𝑝



2

Ω𝐷
,

∇w𝐷
Ω𝐷

≤ 𝑐
𝐷

∇𝑝
Ω𝐷

.

(26)

Define

w =

{

{

{

w
𝑆

in Ω
𝑆

w
𝐷

in Ω
𝐷
,

(27)
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and then
A (k, 𝑝;w, 0) = (2]𝐷 (k) , 𝐷 (w))

Ω𝑆
− (𝑝, divw)

Ω𝑆

+ (𝐾
−1k,w)

Ω𝐷

+ (∇𝑝,w)
Ω𝐷

+ 𝛿 (div k, divw)
Ω𝐷

≥ −2] ‖𝐷 (k)‖
Ω𝑆

‖𝐷 (w)‖
Ω𝑆

+
𝑝



2

Ω𝑆

− 𝑘
2 ‖k‖Ω𝐷

w𝐷
Ω𝐷

+
∇𝑝



2

Ω𝐷

− 𝛿 ‖div k‖Ω𝐷 ‖divw‖Ω𝐷

≥ −2] ‖∇k‖Ω𝑆 ‖∇w‖Ω𝑆
+
𝑝



2

Ω𝑆

− 𝑘
2 ‖k‖Ω𝐷

w𝐷
Ω𝐷

+
∇𝑝



2

Ω𝐷

− 𝛿 ‖div k‖Ω𝐷 ‖∇w‖Ω𝐷

≥ −2]𝑐
𝑆 ‖∇k‖Ω𝑆

𝑝
Ω𝑆

+
𝑝



2

Ω𝑆

− 𝑐
𝑝
𝑐
𝐷
𝑘
2 ‖k‖Ω𝐷

∇𝑝
Ω𝐷

+
∇𝑝



2

Ω𝐷

− 𝛿𝑐
𝐷 ‖div k‖Ω𝐷

∇𝑝
Ω𝐷

,

(28)

where 𝑐
𝑝
denote the Poincaré constant.

Then, using Young’s inequality we obtain

A (k, 𝑝;w, 0) ≥ −
]𝑐
𝑆

𝜀
1

‖∇k‖2
Ω𝑆

+ (1 − ]𝑐
𝑆
𝜀
1
)
𝑝



2

Ω𝑆

−

𝑐
𝑝
𝑐
𝐷
𝑘
2

2𝜀
2

‖k‖2
Ω𝐷

+ (1 −

𝑐
𝑝
𝑐
𝐷
𝑘
2
𝜀
2

2
−

𝛿𝑐
𝐷
𝜀
3

2
)

∇𝑝


2

Ω𝐷

−
𝛿𝑐
𝐷

2𝜀
3

‖div k‖2
Ω𝐷

.

(29)

Choosing 𝜀
1
, 𝜀
2
, 𝜀
3
positive constants such that

𝜀
1
<

1

]𝑐
𝑆

,

𝜀
2
<

2

𝑐
𝑝
𝑐
𝐷
𝑘
2

,

𝜀
3
<

2 − 𝑐
𝑝
𝑐
𝐷
𝑘
2
𝜀
2

𝛿𝑐
𝐷

,

(30)

we obtain the required result

A (k, 𝑝;w, 0) ≥ 𝑐
2

𝑝


2

𝑄
− 𝑐
1 ‖k‖
2

V , (31)

where

𝑐
1
= max{

]𝑐
𝑆

𝜀
1

,

𝑐
𝑝
𝑐
𝐷
𝑘
2

2𝜀
2

,
𝛿𝑐
𝐷

2𝜀
3

} ,

𝑐
2
= min{1 − ]𝑐

𝑆
𝜀
1
, 1 −

𝑐
𝑝
𝑐
𝐷
𝑘
2
𝜀
2

2
−

𝛿𝑐
𝐷
𝜀
3

2
} .

(32)

In addition, we also have

‖w‖
2

V = ‖∇w‖
2

Ω𝑆
+ ‖w‖

2

Ω𝐷
+ ‖divw‖

2

Ω𝐷

≤ 𝑐
2

𝑆

𝑝


2

Ω𝑆
+ 𝑐
2

𝐷
(𝑐
2

𝑝
+ 1)

∇𝑝


2

Ω𝐷
≤ 𝑐
3

𝑝
𝑄

,

(33)

where 𝑐
2

3
= max{𝑐2

𝑆
, 𝑐
2

𝐷
(𝑐
2

𝑝
+ 1)}.

4. Finite Element Discretization

LetT
ℎ
be a shape-regular partition of quadrilaterals for 𝑑 =

2 or hexahedra for 𝑑 = 3 [12, 13]. The diameter of element
𝑇 ∈ T

ℎ
will be denoted by ℎ

𝑇
and the global mesh size is

defined by ℎ fl max{ℎ
𝑇

: 𝑇 in T
ℎ
}. Let �̂� fl (−1; 1)

𝑑 be
the reference element, 𝐹

𝑇
the mapping from �̂� to element 𝑇,

and 𝑄
𝑟
(�̂�) the space of all polynomials on �̂� with maximal

degree 𝑟 ≥ 0 in each coordinate.We assume that themeshT
ℎ

is obtained from a coarser mesh T
2ℎ

by global refinement.
Hence,T

2ℎ
consists of patches of elements ofT

ℎ
. We define

the finite element space

𝑋
𝑟

ℎ
fl {V ∈ 𝐶 (Ω

𝑆
) ∪ 𝐶 (Ω

𝐷
) : V|𝑇

∘ 𝐹
𝑇
in 𝑄
𝑟
(�̂�) , ∀𝑇 ∈ T

ℎ
} .

(34)

For the discrete spaces V
ℎ
and 𝑄

ℎ
we use the equal-order

finite element functions that are continuous in Ω
𝑆
and Ω

𝐷

and piecewise polynomials of degree 𝑟 ≥ 1.

V
ℎ
= (𝑋
𝑟

ℎ
)
𝑑

∩ V,

𝑄
ℎ
= 𝑋
𝑟

ℎ
∩ 𝑄 ∩ 𝐻

1
(Ω) .

(35)

We define the Scott-Zhang interpolation operator which
preserves the boundary condition [13], as 𝑗ℎ

𝑟
: 𝐻
1
(Ω) → 𝑋

𝑟

ℎ

with stability and interpolation properties, respectively, as

∇𝑗
ℎ

𝑟
𝜙
Ω

≤ 𝑐
𝑠

𝜙
1,Ω

, 𝜙 ∈ 𝐻
1
(Ω) . (36)


𝜙 − 𝑗
ℎ

𝑟
𝜙
𝑚,Ω

≤ 𝑐
𝑖
ℎ
𝑟+1−𝑚 𝜙

𝑟+1,Ω
,

𝜙 ∈ 𝐻
𝑟+1

(Ω) , 𝑚 = 0 or 1,

(37)

where 𝑐
𝑖
, 𝑐
𝑠
are positive constants.

We will also use the inverse inequality

( ∑

𝑇∈Tℎ

ℎ
2

𝑇

∇𝜙
𝑇

)

1/2

≤ 𝑐
𝐼

𝜙
Ω

, ∀𝜙 ∈ 𝐻
1
(Ω) . (38)

Similarly, for vector functions we define the interpolation
operator

jℎ
𝑟
: 𝐻
1
(Ω)
𝑑
→ (𝑋

𝑟

ℎ
)
𝑑

, (39)

with interpolation and stability properties as above.
It is known that the standard Galerkin discretizations of

theDarcy system are not stable for equal-order elements.This
instability stems from the violation of the discrete analogue
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on to the inf-sup condition.One possibility to circumvent this
condition is to work with a modified bilinear formA

ℎ
(⋅; ⋅) by

adding a stabilization term S
ℎ
(⋅; ⋅); that is,

A
ℎ
(k
ℎ
, 𝑝
ℎ
;w, 𝑞) = A (k

ℎ
, 𝑝
ℎ
;w, 𝑞) +S

ℎ
(𝑝
ℎ
; 𝑞) , (40)

such that the stabilized discrete problem reads

A
ℎ
(k
ℎ
, 𝑝
ℎ
;w, 𝑞) = F (w, 𝑞) ∀ (w, 𝑞) ∈ V

ℎ
× 𝑄
ℎ
. (41)

Unlike in [10] where a combination of a generalized mini
element and local projection (LPS) is analyzed and in [14]
where a method based on two local Gauss integrals for the
Stokes equations is used, here we will analyze the problem
using a subgrid method [12, 15, 16].

For this method the filter, with respect to the global
Lagrange interpolant 𝐼

2ℎ
, onto a coarser mesh T

2ℎ
is used.

Defining 𝜅
2ℎ

= 𝐼 − 𝐼
2ℎ
the subgrid stabilization term reads

S
ℎ
(𝑝
ℎ
; 𝑞) = ∑

𝑀∈T2ℎ

ℎ
𝑀

(𝛾∇𝜅
2ℎ
𝑝
ℎ
, ∇𝜅
2ℎ
𝑞)
𝑀

, 𝑟 ≥ 1, (42)

where 𝛾 is patchwise constant.
A more attractive method from the computational point

is obtained using only the fine mesh with smaller stencil.
Defining 𝜅

ℎ
= 𝐼 − 𝐼

ℎ
the subgrid stabilization term reads

S
ℎ
(𝑝
ℎ
; 𝑞) = ∑

𝐾∈Tℎ

ℎ
𝐾
(𝛾∇𝜅
ℎ
𝑝
ℎ
, ∇𝜅
ℎ
𝑞)
𝐾
, 𝑟 ≥ 2. (43)

Next, we prove the stability of the discrete coupled Stokes-
Darcy problem with respect to the norm

‹ (k, 𝑝) ‹
ℎ
= (‖k‖2V +

𝑝


2

𝑄
+S
ℎ
(𝑝; 𝑝))

1/2

. (44)

5. Stability

Theorem 2. Let T
ℎ
be a quasi-regular partition [13]. Then,

the following discrete inf-sup condition holds for some positive
constant �̃� independent of the mesh size ℎ.

inf
(kℎ ,𝑝ℎ)∈Vℎ×𝑄ℎ\{0,0}

sup
(wℎ ,𝑞ℎ)∈Vℎ×𝑄ℎ\{0,0}

A (k
ℎ
, 𝑝
ℎ
;w
ℎ
, 𝑞
ℎ
)

‹ (k
ℎ
, 𝑝
ℎ
) ‹
ℎ
‹ (w
ℎ
, 𝑞
ℎ
) ‹
ℎ

≥ �̃�.

(45)

Proof. First, let (k
ℎ
, 𝑝
ℎ
) ∈ V

ℎ
× 𝑄
ℎ
, and then the diagonal

testing combined with Korn’s inequality and the positivity of
𝐾
−1 give

A
ℎ
(k
ℎ
, 𝑝
ℎ
; k
ℎ
, 𝑝
ℎ
) = A (k

ℎ
, 𝑝
ℎ
; k
ℎ
, 𝑝
ℎ
) +S
ℎ
(𝑝
ℎ
; 𝑝
ℎ
)

≥ �̃� ‖k‖2V + S
ℎ
(𝑝
ℎ
; 𝑝
ℎ
) .

(46)

In addition, let w be as in Lemma 1, corresponding to
(k
ℎ
, 𝑝
ℎ
) ∈ V
ℎ
× 𝑄
ℎ
, and set z = jℎ

𝑟
w − w. Then,

A (k
ℎ
, 𝑝
ℎ
; jℎ
𝑟
w, 0) = A (k

ℎ
, 𝑝
ℎ
;w, 0) +A (k

ℎ
, 𝑝
ℎ
; z, 0)

≥ 𝑐
2

𝑝ℎ


2

𝑄
− 𝑐
1

kℎ


2

V

+A
𝑆
(k
ℎ
, 𝑝
ℎ
; z, 0)

+A
𝐷
(k
ℎ
, 𝑝
ℎ
; z, 0) .

(47)

Next, we estimate A
𝑆
(k
ℎ
, 𝑝
ℎ
; z, 0) and A

𝐷
(k
ℎ
, 𝑝
ℎ
; z, 0) as

follows:

A
𝑆
(k
ℎ
, 𝑝
ℎ
; z, 0) = (2]𝐷(k

ℎ
) , 𝐷 (z))

Ω𝑆
+ (∇𝑝

ℎ
, z)
Ω𝑆

+
]𝛼
√�̃�

⟨k
ℎ𝑆

⋅ 𝜏, z
𝑆
⋅ 𝜏⟩
Γ
,

(48)

where the first two terms are bounded using Cauchy inequal-
ity together with the interpolation, stability, and inverse
inequalities


(]𝐷(k

ℎ
) , 𝐷 (z))

Ω𝑆


≤ ] 𝐷 (k

ℎ
)
Ω𝑆

‖𝐷 (z)‖Ω𝑆

≤ ] kℎ
V ‖∇z‖Ω𝑆 ≤ ]𝑐

𝑖

kℎ
V ‖∇w‖Ω𝑆

≤ ]𝑐
3
𝑐
𝑖

kℎ
V

𝑝ℎ
𝑄

,

(∇𝑝
ℎ
, z)
Ω𝑆

≤ ( ∑

𝑇∈Tℎ,𝑇⊂Ω𝑆

ℎ
−2

𝑇
‖z‖2
𝑇
)

1/2

⋅ ( ∑

𝑇∈Tℎ,𝑇⊂Ω𝑆

ℎ
2

𝑇

∇𝑝
ℎ



2

𝑇
)

1/2

≤ ( ∑

𝑇∈Tℎ,𝑇⊂Ω𝑆

ℎ
−2

𝑇
ℎ
2𝑟

𝑇
‖∇w‖
2

𝑇
)

1/2

𝑐
𝐼

𝑝ℎ
Ω𝑆

≤ 𝑐𝑐
𝑖
𝑐
𝐼 ‖∇w‖Ω𝑆

𝑝ℎ
Ω𝑆

≤ 𝑐𝑐
𝑖
𝑐
𝐼
𝑐
3

𝑝ℎ


2

𝑄
.

(49)

The boundary term is bounded using the trace theorem and
the𝐻

1- stability by



]𝛼
√�̃�

⟨k
ℎ𝑆

⋅ 𝜏, z
𝑆
⋅ 𝜏⟩
Γ



≤ 𝑐
2

Γ

]𝛼
√�̃�

kℎ
V ‖∇z‖Ω𝑆

≤ 𝑐
2

Γ
𝑐
𝑠
𝑐
3

]𝛼
√�̃�

kℎ
V

𝑝ℎ
𝑄

.

(50)

Hence, by Young inequality with

𝜖
1
=

𝑐
2

8]𝑐
𝑖
𝑐
3

,

𝜖
2
=

𝑐
2
√�̃�

8]𝛼𝑐2
Γ
𝑐
𝑠
𝑐
3

(51)

we obtain

A
𝑆
(k
ℎ
, 𝑝
ℎ
; z, 0) ≤

𝑐
2

8
𝑐
4

𝑝ℎ


2

𝑄
+ 𝑐
4

kℎ


2

V , (52)

where 𝑐
4
= (4(]𝑐

3
𝑐
𝑖
)
2
+ 0.25(𝑐

2

Γ
𝑐
𝑠
𝑐
3
)
2
)/𝑐
2
.
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For the Darcy bilinear form we have

A
𝐷
(k
ℎ
, 𝑝
ℎ
; z, 0) = (𝐾

−1k
ℎ
, z)
Ω𝐷

+ 𝛿 (div k
ℎ
, div z)

Ω𝐷

+ (∇𝑝
ℎ
, z)
Ω𝐷

= (𝐾
−1k
ℎ
, z)
Ω𝐷

+ 𝛿 (div k
ℎ
, div z)

Ω𝐷

+ (∇ (𝑝
ℎ
− 𝜅
2ℎ
𝑝
ℎ
) , z)
Ω𝐷

+ (∇𝜅
2ℎ
𝑝
ℎ
, z)
Ω𝐷

≤

𝐾
−1k
ℎ

Ω𝐷
‖z‖Ω𝐷

+ 𝛿
div kℎ

Ω𝐷
‖z‖Ω𝐷

+
∇ (𝑝
ℎ
− 𝜅
2ℎ
𝑝
ℎ
)
Ω𝐷

‖z‖Ω𝐷

+
∇𝜅
2ℎ
𝑝
ℎ

Ω𝐷
‖z‖Ω𝐷

≤ 𝑘
2

kℎ
Ω𝐷

𝑐
𝑖 ‖w‖Ω𝐷

+ 𝛿
div kℎ

Ω𝐷
(1 + 𝑐
𝑠
) ‖w‖Ω𝐷

+
∇ (𝑝
ℎ
− 𝜅
2ℎ
𝑝
ℎ
)
Ω𝐷

𝑐
𝑖 ‖w‖Ω𝐷

+ 𝑐
𝑠

∇𝑝
ℎ

Ω𝐷

≤ 𝑘
2
𝑐
𝑖
𝑐
3

𝑝ℎ
𝑄

+ 𝛿𝑐
3
(1 + 𝑐
𝑠
)
div kℎ

Ω𝐷

𝑝ℎ
𝑄

+ 𝑐
𝑖
𝑐
3

∇ (𝑝
ℎ
− 𝜅
2ℎ
𝑝
ℎ
)
Ω𝐷

+ 𝑐
𝑠

𝑝ℎ
𝑄

.

(53)

Then, by Young inequality and (52) we obtain

A
ℎ
(k
ℎ
, 𝑝
ℎ
; jℎ
𝑟
w, 0) ≥

5𝑐
2

8

𝑝ℎ


2

𝑄

− 𝐶 (
kℎ



2

V +S
ℎ
(𝑝
ℎ
; 𝑝
ℎ
)) .

(54)

Scaling jℎ
𝑟
w we obtain

A
ℎ
(k
ℎ
, 𝑝
ℎ
; jℎ
𝑟
w, 0) ≥

𝑝ℎ


2

𝑄

− 𝐶
1
(
kℎ



2

V +S
ℎ
(𝑝
ℎ
; 𝑝
ℎ
)) .

(55)

Choosing (w
ℎ
, 𝑞
ℎ
) = (k

ℎ
, 𝑝
ℎ
) + (1/(1 + 𝐶

1
))(jℎ
𝑟
w, 0) we obtain

A
ℎ
(k
ℎ
, 𝑝
ℎ
;w
ℎ
, 𝑞
ℎ
) ≥

kℎ


2

V +
1

1 + 𝐶
1

𝑝ℎ


2

𝑄

−
𝐶
1

1 + 𝐶
1

kℎ


2

V

=
1

1 + 𝐶
1

(
kℎ



2

V +
𝑝ℎ



2

𝑄
)

=
1

1 + 𝐶
1

‹ (k
ℎ
, 𝑝
ℎ
) ‹2
ℎ
,

‹w
ℎ
, 𝑞
ℎ
‹
ℎ
≤ ‹ (k

ℎ
, 𝑝
ℎ
) ‹
ℎ

+
1

1 + 𝐶
1

‹ (jℎ
𝑟
w, 0) ‹

ℎ

≤ ‹ (k
ℎ
, 𝑝
ℎ
) ‹
ℎ
+ 𝐶
2


∇jℎ
𝑟
wΩ

≤ 𝐶
3
‹ (k
ℎ
, 𝑝
ℎ
) ‹
ℎ

(56)

which implies the required result

inf
(kℎ ,𝑝ℎ)∈Vℎ×𝑄ℎ\{0}

sup
(wℎ,𝑞ℎ)∈Vℎ×𝑄ℎ\{0}

A
ℎ
(k
ℎ
, 𝑝
ℎ
;w
ℎ
, 𝑞
ℎ
)

‹ (k
ℎ
, 𝑝
ℎ
) ‹
ℎ
‹ (w
ℎ
, 𝑞
ℎ
) ‹
ℎ

≥ �̃�, (57)

with �̃� = 𝐶
−1

3
/(1 + 𝐶

1
).

6. Error Analysis

Theorem 3. Assume that the solution (v, 𝑝) of the Stokes-
Darcy problem (19) is such that (v

𝑆
, 𝑝
𝑆
) ∈ V

𝑆
∩ 𝐻
𝑟+1

(Ω
𝑆
)
𝑑
×

𝑄 ∩ 𝐻
𝑙+1

(Ω
𝑆
), (v
𝐷
, 𝑝
𝐷
) ∈ V
𝐷
∩ 𝐻
𝑟+1

(Ω
𝐷
)
𝑑
× 𝑄 ∩ 𝐻

𝑙+1
(Ω
𝐷
),

and (v
ℎ
, 𝑝
ℎ
) is the solution of the stabilized problem (41).Then,

the following error estimate holds with constants 𝑐
1
, 𝑐
2
, . . . , 𝑐

7

independent of ℎ:

‹ (k − k
ℎ
, 𝑝 − 𝑝

ℎ
) ‹
ℎ
≤ {(𝑐
1
] + 𝑐
2
)
2

ℎ
2𝑟

‖k‖2
𝑟+1,Ω𝑆

+ (𝑐
3
ℎ + 𝑐
4
𝛿)
2

ℎ
2𝑟

‖k‖2
𝑟+1,Ω𝐷

+ (𝑐
5
+ 𝑐
6
𝛾
1/2

ℎ
1/2

+ 𝑐
7
ℎ)
2

ℎ
2𝑙 𝑝



2

𝑙+1,Ω𝑆

+ (𝑐
5
+ 𝑐
6
𝛾
1/2

ℎ
1/2

+ 𝑐
7
ℎ)
2

ℎ
2𝑙 𝑝



2

𝑙+1,Ω𝐷
}

1/2

.

(58)

Proof. Using the stability estimate of Theorem 3, there exists
(w
ℎ
, 𝑞
ℎ
) ∈ V
ℎ
× 𝑄
ℎ
, with ‹(w

ℎ
, 𝑞
ℎ
)‹
ℎ

≤ �̃� satisfying

‹ (jℎ
𝑟
k − k
ℎ
, 𝑗
ℎ

𝑙
𝑝 − 𝑝
ℎ
) ‹
ℎ

≤
1

�̃�

A
ℎ
(jℎ
𝑟
k − k
ℎ
, 𝑗
ℎ

𝑙
𝑝 − 𝑝;w

ℎ
, 𝑞
ℎ
)

‹ (w
ℎ
, 𝑞
ℎ
) ‹
ℎ

≤
1

�̃�

A
ℎ
(k − k

ℎ
, 𝑝 − 𝑝

ℎ
;w
ℎ
, 𝑞
ℎ
)

‹ (w
ℎ
, 𝑞
ℎ
) ‹
ℎ

+
1

�̃�

A
ℎ
(jℎ
𝑟
k − k, 𝑗ℎ

𝑙
𝑝 − 𝑝;w

ℎ
, 𝑞
ℎ
)

‹ (w
ℎ
, 𝑞
ℎ
) ‹
ℎ

.

(59)

Then, by Galerkin orthogonality property, the first term of
(59) is bounded by

A
ℎ
(k − k

ℎ
, 𝑝 − 𝑝

ℎ
;w
ℎ
, 𝑞
ℎ
)

‹ (w
ℎ
, 𝑞
ℎ
) ‹
ℎ

=
S
ℎ
(𝑝; 𝑞
ℎ
)

‹ (w
ℎ
, 𝑞
ℎ
) ‹
ℎ

≤
S
ℎ
(𝑝; 𝑝)

1/2

S
ℎ
(𝑞
ℎ
; 𝑞
ℎ
)
1/2

‹ (w
ℎ
, 𝑞
ℎ
) ‹
ℎ

≤ S
ℎ
(𝑝; 𝑝)

1/2

.

(60)
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Hence, the approximation properties of 𝜅
2ℎ
and 𝜅
ℎ
imply

1

�̃�

A
ℎ
(k − k

ℎ
, 𝑝 − 𝑝

ℎ
;w
ℎ
, 𝑞
ℎ
)

‹ (w
ℎ
, 𝑞
ℎ
) ‹
ℎ

≤
1

�̃�

𝛾∇𝜅
2ℎ
𝑝
Ω

∇𝜅
2ℎ
𝑝
Ω

≤ 𝑐
1
�̃�
−1

𝛾
1/2

ℎ
𝑙+1/2 𝑝

𝑙+1,Ω
.

(61)

To estimate the second term of (59) we consider separately
each individual term of the bilinear form (1/�̃�)A

ℎ
(jℎ
𝑟
k −

k, 𝑗ℎ
𝑙
𝑝 − 𝑝;w

ℎ
, 𝑞
ℎ
).

Next, Cauchy schwarz and Poincaré inequality for the
boundary terms imply

1

�̃�

A
𝑆
(jℎ
𝑟
k − k, 𝑗ℎ

𝑙
𝑝 − 𝑝;w

ℎ
, 𝑞
ℎ
)

≤ �̃�
−1

[]

∇ (jℎ
𝑟
k − k)

Ω𝑆

∇wℎ
Ω𝑆

+

𝑗
ℎ

𝑙
𝑝 − 𝑝

Ω𝑆

∇wℎ
Ω𝑆


∇ (jℎ
𝑟
k − k)

Ω𝑆

𝑞ℎ
Ω𝑆

+
]𝛼𝑐2
Γ

√�̃�


∇ (jℎ
𝑟
k − k)

Ω𝑆

∇wℎ
Ω𝑆

]

≤ �̃�
−1

𝑐
𝑖
�̃� []ℎ𝑟 ‖k‖𝑟+1,Ω𝑆 + ℎ

𝑙+1 𝑝
𝑙,Ω𝑆

+ ℎ
𝑟
‖k‖𝑟+1,Ω𝑆 +

]𝛼𝑐2
Γ

√�̃�

ℎ
𝑟
‖k‖𝑟+1,Ω𝑆] ,

1

�̃�

A
𝐷
(jℎ
𝑟
k − k, 𝑗ℎ

𝑙
𝑝 − 𝑝;w

ℎ
, 𝑞
ℎ
)

≤ �̃�
−1

[𝑘
2


jℎ
𝑟
k − k

Ω𝐷

wℎ
Ω𝐷

+ 𝛿

∇ (jℎ
𝑟
k − k)

Ω𝐷

divwℎ
Ω𝐷

+

∇ (𝑗
ℎ

𝑙
𝑝 − 𝑝)

Ω𝐷

wℎ
Ω𝐷

+
∇𝑞
ℎ

Ω𝐷


jℎ
𝑟
k − k

Ω𝐷
]

≤ �̃�
−1

𝑐
𝑖
�̃� [𝑘
2
ℎ
𝑟+1

‖k‖𝑟+1,Ω𝐷 + 𝛿ℎ
𝑟
‖k‖𝑟+1,Ω𝐷

+ ℎ
𝑙 𝑝

𝑙+1,Ω𝐷
+ ℎ
𝑟+1

‖k‖𝑟+1,Ω𝐷] .

(62)

Thus,

‹ (jℎ
𝑟
k − k
ℎ
, 𝑗
ℎ

𝑙
𝑝 − 𝑝
ℎ
) ‹
ℎ

≤ (�̃�
1
] + �̃�
2
) ℎ
𝑟
‖k‖𝑟+1,Ω𝑆 + (�̃�

3
ℎ + �̃�
4
𝛿) ℎ
𝑟
‖k‖𝑟+1,Ω𝐷

+ (�̃�
5
+ �̃�
6
𝛾
1/2

ℎ
1/2

+ �̃�
7
ℎ) ℎ
𝑙 𝑝

𝑙+1,Ω𝑆

+ (�̃�
5
+ �̃�
6
𝛾
1/2

ℎ
1/2

+ �̃�
7
ℎ) ℎ
𝑙 𝑝

𝑙+1,Ω𝐷
.

(63)

Squaring the norm and applying Young inequality we obtain

‹ (jℎ
𝑟
k − k
ℎ
, 𝑗
ℎ

𝑙
𝑝 − 𝑝
ℎ
) ‹2
ℎ

≤ 4 (�̃�
1
] + �̃�
2
)
2

ℎ
2𝑟

‖k‖2
𝑟+1,Ω𝑆

+ 4 (�̃�
3
ℎ + �̃�
4
𝛿)
2

ℎ
2𝑟

‖k‖2
𝑟+1,Ω𝐷

+ 4 (�̃�
5
+ �̃�
6
𝛾
1/2

ℎ
1/2

+ �̃�
7
ℎ)
2

ℎ
2𝑙 𝑝



2

𝑙+1,Ω𝑆

+ 4 (�̃�
5
+ �̃�
6
𝛾
1/2

ℎ
1/2

+ �̃�
7
ℎ)
2

ℎ
2𝑙 𝑝



2

𝑙+1,Ω𝐷
.

(64)

Next, we estimate the interpolation error by

‹ (k − jℎ
𝑟
k, 𝑝 − 𝑗

ℎ

𝑙
𝑝) ‹2
ℎ

=

∇ (k − jℎ

𝑟
k)



2

Ω𝑆

+

(k − jℎ

𝑟
k)



2

Ω𝐷

+

div (k − jℎ

𝑟
k)



2

Ω𝐷

+

𝑝 − 𝑗
ℎ

𝑙
𝑝


2

Ω𝑆

+

∇ (𝑝 − 𝑗

ℎ

𝑙
𝑝)



2

Ω𝐷

+ S
ℎ
(𝜅
2ℎ
𝑝, 𝜅
2ℎ
𝑝)

≤ 𝑐
2

𝑖
ℎ
2𝑟

‖k‖2
𝑟+1,Ω𝑆

+ 𝑐
2

𝑖
ℎ
2𝑟

(ℎ
2
+ 1) ℎ

2𝑟
‖k‖2
𝑟+1,Ω𝐷

+ (�̃�
2

𝑖
ℎ
2
+ 𝛾ℎ) ℎ

2𝑙 𝑝


2

𝑙+1,Ω𝑆

+ (�̃�
2

𝑖
+ 𝛾ℎ) ℎ

2𝑙 𝑝


2

𝑙+1,Ω𝐷
.

(65)

Adding the interpolation error (64) to the projection
error (65) we obtain the required result

‹ (k − k
ℎ
, 𝑝 − 𝑝

ℎ
) ‹
ℎ
≤ {(𝑐
1
] + 𝑐
2
)
2

ℎ
2𝑟

‖k‖2
𝑟+1,Ω𝑆

+ (𝑐
3
ℎ + 𝑐
4
𝛿)
2

ℎ
2𝑟

‖k‖2
𝑟+1,Ω𝐷

+ (𝑐
5
+ 𝑐
6
𝛾
1/2

ℎ
1/2

+ 𝑐
7
ℎ)
2

ℎ
2𝑙 𝑝



2

𝑙+1,Ω𝑆

+ (𝑐
5
+ 𝑐
6
𝛾
1/2

ℎ
1/2

+ 𝑐
7
ℎ)
2

ℎ
2𝑙 𝑝



2

𝑙+1,Ω𝐷
}

1/2

.

(66)

Remark 4. We note that the analysis above holds true for the
triangular subgrid interpolation 𝑃

𝑟
− 𝑃
𝑟
− 𝑃
𝑟
.

Remark 5. Because of the presence of divergence of the
velocity and the gradient of the pressure in the discrete
norm, the velocity and pressure solutions are𝑂(ℎ

𝑟
) and𝑂(ℎ

𝑙
),

respectively. So, we expect the 𝐿
2
-asymptotic rates to be

𝑂(ℎ
𝑟+1

) and 𝑂(ℎ
𝑙+1

).

7. Numerical Results

As a test model problem we take Ω = (0, 1) × (0, 1) and split
it into Ω

𝑆
= (0, 1/2) × (0, 1) and Ω

𝐷
= (1/2, 1) × (0, 1). The

interface boundary is Γ = {(0.5, 𝑦) | 0 < 𝑦 < 1}. We take
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Table 1: Rates of convergence for velocity and pressure solution in
the Stokes subdomain.

u − u
ℎ

0,Ω𝑆

∇ (u − u
ℎ
)
0,Ω𝑆

𝑝 − 𝑝
ℎ

0,Ω𝑆

ℎ = 1

8
— — —

ℎ = 1

16
1.9303 1.0284 0.8480

ℎ = 1

32
1.9735 1.0208 0.9149

ℎ = 1

64
1.9890 1.0119 0.9511

ℎ = 1

128
1.9951 1.0055 0.9725

Table 2: Rates of convergence for velocity and pressure solution in
the Darcy subdomain.

u − u
ℎ

0,Ω𝐷

div (u − u
ℎ
)
0,Ω𝐷

𝑝 − 𝑝
ℎ

0,Ω𝐷

ℎ = 1

8
— — —

ℎ = 1

16
0.8813 0.8412 1.0416

ℎ = 1

32
0.9534 0.9235 1.0318

ℎ = 1

64
0.9642 0.9514 1.0167

ℎ = 1

128
0.9857 0.9657 1.0085

] = 1, 𝛼 = 1, �̃� = 1, and 𝐾 = 𝐼 and the right hand sides
f , 𝑔 such that the velocity and pressure solution in the two
subdomains are given by

u
𝑆
= (𝑦
4
𝑒
𝑥
, 𝑒
𝑦 cos (2𝑥)) , (𝑥, 𝑦) ∈ Ω

𝑆

u
𝐷

= (𝑦
4
𝑒
𝑥
, 4𝑦
3
𝑒
𝑥
) , (𝑥, 𝑦) ∈ Ω

𝐷

𝑝 = 𝑦
4
𝑒
𝑥
, (𝑥, 𝑦) ∈ Ω.

(67)

Note that for this problem forcing terms are needed to balance
the equations; notably additional terms are added to the
interface conditions in (6) and (7) as follows:

− (−𝑝
𝑆
𝐼 + 2]𝐷(k

𝑆
))n
𝑆
⋅ n
𝑆
= 𝑝
𝐷
+ 𝑔
1
, on Γ,

k
𝑆
⋅ 𝜏 = −

2√�̃�

𝛼
(𝐷 (k
𝑆
) ⋅ n
𝑆
) ⋅ 𝜏

on Γ,

(68)

where𝑔
1
= −2𝑦

4
𝑒
𝑥, and𝑔

2
= 𝑒
𝑦 cos(2𝑥)+4𝑦

3
𝑒
𝑥
−2𝑒
𝑦 sin(2𝑥).

The problem is solved using a 𝑄
1
− 𝑄
1
velocity-pressure

approximation with a two-level subgrid stabilization on a
uniform mesh with 𝛿 = 0.4. Rates of convergence for the
velocity and pressure errors for ℎ = 1/8, 1/16, 1/32, 1/64, and
1/128 are displayed in Tables 1 and 2.

In Table 1, we see clearly that the velocity field in the
Stokes subdomain is of second-order accuracy with respect
to the 𝐿

2
-norm and first-order accuracy with respect to

𝐻
1-seminorm, and the pressure is of first-order accuracy.

In addition, In Table 2, we observe that the velocity field
and its divergence are of first-order accuracy in the Darcy
subdomain, and the pressure is of first-order accuracy with
respect to the 𝐿

2
-norm. So, clearly these results are in

agreement with the theoretical results of the previous section
and are comparable to the ones found in [2, 5].
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