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This paper deals with the study of thermal stresses in thin rectangular plate subjected to point heat source which changes its place
along 𝑥-axis. Governing heat conduction equation has been solved by using integral transform technique. Results are obtained
in the form of infinite series. As a special case, aluminum plate has been considered and results for thermal stresses have been
computed numerically and graphically.

1. Introduction

Material properties are dependent on change in temperature.
The properties like elasticity and stresses at various temper-
atures have been studied. These nonisothermal problems of
theory of elasticity have attracted the attention of many. The
temperature dependent properties are focused on various
fields like aerodynamics heating which produces intense
thermal stresses reducing the strength of structure of high
velocity aircraft [1]. Steady state thermal stresses with axis
symmetric temperature distribution in a circular plate sub-
jected to the upper surface with respect to zero temperature
on the lower surface and thermally insulated circular edge
have been determined by [2]. On fixed and simply supported
edges [3] has calculated thermal deflection of associated axis
symmetrically heated circular plate. Reference [4] has consid-
ered quasi-static thermal stresses in a thin circular plate due
to transient temperature applied along the edge of a circle on
the upper face with respect to lower face at zero temperature
and a thermally insulated fixed circular edge. Reference [5]
studied an inverse unsteady state thermoelastic problem of
a thin rectangular plate. Quasi-static thermoelastic problem
of an infinitely long circular cylinder has been calculated
by [6]. Temperature distribution, thermal functions, and
displacement at any point of semi-infinite rectangular slab
with internal heat source using integral transform technique

are solved by [7]. Using integral transform technique and
Green’s theorem [8] has determined temperature distribu-
tion and thermal stresses by taking second kind boundary
condition in thin rectangular plate with moving line heat
source. Reference [9] has determined thermal stresses on thin
rectangular plate by integral transform with internal moving
point heat source. Reference [10] determines temperature
distribution, displacement, and thermal stresses of a thin
circular plate due to uniform internal energy generation using
Hankel transform technique graphically.

Integral transform technique is a powerful tool to solve
various new general purpose numerical methods and can be
applied to any multidimensional problem to get an approxi-
mate solution. This is the easiest way to find parameters like
variation of temperature, and so forth. This method is better
than other methods.

Attempt ismade to determine effective solution and study
of thermal stresses in a thin rectangular plate with internally
moving heat point source.

Present paper elaborates on determination of tempera-
ture and thermal stresses in a thin rectangular plate defined
as 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, and −ℎ ≤ 𝑧 ≤ ℎ where ℎ < 𝑏 < 𝑎 and
ℎ is thickness which is very small. Using integral transform
technique the governing heat conduction equation is solved.
Results are obtained in the form of infinite series. It has been
computed numerically and graphically.
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2. Formulation of the Problem

We consider three-dimensional thin rectangular plate under
steady state temperature defined in region 𝑅: 0 ≤ 𝑥 ≤ 𝑎,
0 ≤ 𝑦 ≤ 𝑏, and −ℎ ≤ 𝑧 ≤ ℎ, where ℎ < 𝑏 < 𝑎 and ℎ is
thickness which is very small. The plate is subjected to the
motion of moving point heat source at the point (𝑥, 0, 0).
Under these realistic prescribed conditions, temperature and
thermal stresses in a thin rectangular plate are required to be
determined.

The temperature distribution of the rectangular plate
defined in [11] is given by
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where 𝑘 is thermal conductivity and 𝛼 is thermal diffusivity
of the material of the plate.

Consider an instantaneous moving heat source at point
(𝑥

, 0, 0) and release its heat spontaneously at time 𝑡. Such

volumetric moving heat source in rectangular coordinates is
given by
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where 𝑔𝑖
𝑝
is instantaneous point heat source.
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Since plate is thin, 𝑧 is negligible and D = 𝑇 − 𝑇
0
, where 𝑇

0
is

initial temperature. Components of stress functions [12] are
given by
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with boundary conditions 𝜎
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= 0 and 𝜎

𝑥𝑦
= 0 at 𝑦 = 𝑏.

Equations (1) to (8) represent the statement of the prob-
lem.

3. Solution of the Problem

Applying finite Fourier cosine transform, finite Fourier sine
transform [13], and Marchi-Fasulo transform [14], using
boundary conditions (4), we get
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Taking inverse Marchi-Fasulo transform [14], finite
Fourier sine transform, and finite Fourier cosine transform
[13],
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As we change the values of 𝑙, 𝑚, and 𝑛 from 1 to∞we get
infinite terms of this solution which is nothing but infinite
series.

4. Determination of Stress Function

Using (15) in (6)–(8) we get
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𝑙,𝑚,𝑛=0

𝑝
𝑙
(𝑧)

𝜆
𝑙

{[𝑒
−𝛼𝑄𝑡

{∫ (𝑒
𝛼𝑄𝑡
+ 𝛼0) 𝑑𝑡 − ∫𝛼0 𝑑𝑡}]

⋅ cos(
𝑛𝜋𝑦

𝑏

)} sin(𝑚𝜋𝑥
𝑎

)(

𝑛
2
𝜋
2

𝑏
2
) ,

𝜎
𝑦𝑦
=

−𝑚
2
𝜋
2
𝑦

𝑎
2

{[

2𝛼𝐸𝑏𝜑 (−𝑎 + 𝑚𝜋𝑏)

𝜋
2
(𝑎
2
𝑛
2
+ 𝑏
2
𝑚
2
)

𝑒
−𝑚𝜋𝑏/𝑎

𝑒
𝑚𝜋𝑦/𝑎

−

2𝛼𝐸𝑏𝜑 (𝑎 + 𝑚𝜋𝑏)

𝜋
2
(𝑎
2
𝑛
2
+ 𝑏
2
𝑚
2
)

𝑒
𝑚𝜋𝑏/𝑎

𝑒
−𝑚𝜋𝑦/𝑎

] sin(𝑚𝜋𝑥
𝑎

)}

−

𝑚
2
𝜋
2

𝑎
2

4𝛼𝐸𝑎𝑏

𝜋
2
(𝑎
2
𝑛
2
+ 𝑏
2
𝑚
2
)

⋅

∞

∑

𝑙,𝑚,𝑛=0

𝑝
𝑙
(𝑧)

𝜆
𝑙

{[𝑒
−𝛼𝑄𝑡

{∫ (𝑒
𝛼𝑄𝑡
+ 𝛼0) 𝑑𝑡 − ∫𝛼0𝑑𝑡}]

⋅ cos(
𝑛𝜋𝑦

𝑏

)} sin(𝑚𝜋𝑥
𝑎

) ,

𝜎
𝑥𝑦
= {[−(1 +

𝑚𝜋𝑦

𝑎

)

2𝛼𝐸𝑏𝜑 (−𝑎 + 𝑚𝜋𝑏)

𝜋
2
(𝑎
2
𝑛
2
+ 𝑏
2
𝑚
2
)

⋅ 𝑒
−𝑚𝜋𝑏/𝑎

𝑒
𝑚𝜋𝑦/𝑎

+ (1 −

𝑚𝜋𝑦

𝑎

)

2𝛼𝐸𝑏𝜑 (𝑎 + 𝑚𝜋𝑏)

𝜋
2
(𝑎
2
𝑛
2
+ 𝑏
2
𝑚
2
)

⋅ 𝑒
𝑚𝜋𝑏/𝑎

𝑒
−𝑚𝜋𝑦/𝑎

](−

𝑚𝜋

𝑎

) cos(𝑚𝜋𝑥
𝑎

)} +

𝑛𝑚𝜋
2

𝑎𝑏

⋅

4𝛼𝐸𝑎𝑏

𝜋
2
(𝑎
2
𝑛
2
+ 𝑏
2
𝑚
2
)

⋅

∞

∑

𝑙,𝑚,𝑛=0

𝑝
𝑙
(𝑧)

𝜆
𝑙

{[𝑒
−𝛼𝑄𝑡

{∫ (𝑒
𝛼𝑄𝑡
+ 𝛼0) 𝑑𝑡 − ∫𝛼0 𝑑𝑡}]

⋅ sin(
𝑛𝜋𝑦

𝑏

)} cos(𝑚𝜋𝑥
𝑎

) .

(19)

5. Numerical Results

Let 𝑘 = 0.5330, 𝛼 = 23.8×10−6, 𝐸 = 0.675 × 1011, and 𝑎 =
5 cm, 𝑏 = 1 cm, ℎ = 0.2 cm, and

𝜎
𝑥𝑥
=

∞

∑

𝑚=1

{[(

2𝜋

5

+ 𝑦)

⋅

2 × 23.8 × 10
−6
× 0.675 × 10

11
× 𝜑 (−5 + 𝜋)

26𝜋
2

𝑒
−𝜋/5
𝑒
𝜋𝑦/5

+ (

2𝜋

5

− 𝑦)

2 × 23.8 × 10
−6
× 0.675 × 10

11
× 𝜑 (5 + 𝜋)

26𝜋
2

⋅ 𝑒
𝜋/5
𝑒
−𝜋𝑦/5

] sin(𝜋𝑥
5

)} +

20 × 23.8 × 10
−6
× 0.675 × 10

11

26𝜋
2

⋅

∞

∑

𝑙,𝑚,𝑛=0

𝑝
𝑙
(0.2)

𝜆
𝑙

{[𝑒
−23.8×10

−6

𝑄𝑡
{∫ (𝑒

𝛼𝑄𝑡
+ 𝛼0) 𝑑𝑡 − ∫𝛼0 𝑑𝑡}]

⋅ cos (𝜋𝑦)} sin(𝜋𝑥
𝑎

)(

𝑛
2
𝜋
2

𝑏
2
) ,

𝜎
𝑦𝑦
=

−𝜋
2
𝑦

25

{[

2 × 23.8 × 10
−6
× 0.675 × 10

11
× 𝜑 (−5 + 𝜋)

26𝜋
2

⋅ 𝑒
−𝜋/5
𝑒
𝜋𝑦/5

−

2 × 23.8 × 10
−6
× 0.675 × 10

11
× 𝜑 (5 + 𝜋)

26𝜋
2

⋅ 𝑒
𝜋/5
𝑒
−𝜋𝑦/5

] sin(𝜋𝑥
5

)} −

𝜋
2

25

⋅

20 × 23.8 × 10
−6
× 0.675 × 10

11

26𝜋
2

2.3562

15.5485

{cos (𝜋𝑦)}

⋅ sin(𝜋𝑥
5

) ,

𝜎
𝑥𝑦
= {[(−(1 +

𝜋𝑦

5

)

⋅

2 × 23.8 × 10
−6
× 0.675 × 10

11
× 𝜑 (−5 + 𝜋)

26𝜋
2

𝑒
−𝜋/5
𝑒
𝜋𝑦/5

− (1 −

𝜋𝑦

5

)

2 × 23.8 × 10
−6
× 0.675 × 10

11
× 𝜑 (5 + 𝜋)

26𝜋
2

⋅ 𝑒
𝜋/5
𝑒
−𝜋𝑦/5

)](−

𝜋

5

) cos(𝜋𝑥
5

)} +

𝜋
2

5

⋅

20 × 23.8 × 10
−6
× 0.675 × 10

11

26𝜋
2

⋅

𝑝
𝑙
(0.2)

𝜆
𝑙

{[𝑒
−23.8×10

−6

𝑄𝑡
{∫ (𝑒

𝛼𝑄𝑡
+ 𝛼0) 𝑑𝑡 − ∫𝛼0 𝑑𝑡}]

⋅ sin (𝜋𝑦)} cos(𝜋𝑥
5

) ,

𝜑 =

2.3562

15.5485

𝑒
−23.8×10

−6

×12.4912𝑡
{∫ (𝑒

23.8×10
−6

×12.4912𝑡
+ 23.8

×10
−6

(−0.9721 − 1.2639𝑡)) 𝑑𝑡 − ∫ 23.8

×10
−6

((−0.9721 − 1.2639𝑡)) 𝑑𝑡} ,

(20)
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Figure 1: Temperature versus time.

where 𝑥𝐼 = 1.5, 𝑔𝑖
𝑝
= 1, 𝑡 = 1, 𝑡𝐼 = 1.5 𝜆

𝑙
= 15.5485, 𝑝

𝑙
(0.2) =

2.3562 𝜑 = 0.2056 𝑄 = 12.4912 0 = −4.5920, and

𝑇 = 29.3083 {[𝑒
−2.9729𝑒−04𝑡

4.4206𝑒
4.4594𝑒−04

] cos (𝜋𝑦)}

⋅ sin(𝜋𝑥
5

) ,

𝑇 = 40.4676 {[𝑒
−0.7369𝑡

] cos (𝜋𝑦)} sin(𝜋𝑥
5

) ,

𝜎
𝑦𝑦
= 𝑦{[10.2767 × 0.2056𝑒

𝜋𝑦/5
+ 45.0219

× 0.2056𝑒
−𝜋𝑦/5

] − 5.9124 {cos (𝜋𝑦)} sin(𝜋𝑥
5

)} ,

𝜎
𝑥𝑦
= [(−231.8346 + 145.6616𝑦) 𝑒

𝜋𝑦/5
+ (71.6544

− 45.0205𝑦) 𝑒
−𝜋𝑦/5

+ 55.5858 {sin (𝜋𝑦)}] cos(𝜋𝑥
5

) ,

𝜎
𝑥𝑥
= {[(−463.7527 + −369.0536𝑦) 𝑒

𝜋𝑦/5

+ (143.3047 − 114.0416𝑦) 𝑒
−𝜋𝑦/5

+ 277.9289]

⋅ sin(𝜋𝑥
5

)} .

(21)

6. Graphical Interpretation

See Figures 1–7.

7. Discussion

In this article the three-dimensional nonhomogeneous heat
conduction issue in a thin rectangular plate is studied.We did
numerical computations for a thin rectangular plate made up
of aluminum.The heat source 𝑔(𝑥, 𝑦, 𝑧, 𝑡) is an instantaneous
point heat source of strength 𝑔

𝑖
. The thermoelastic behavior

is examined such as temperature and thermal stresses.
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Figure 5: 𝜎
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Figure 6: 𝜎
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versus 𝑦.
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versus 𝑦.

From Figure 1, it is found that at first when time is
zero, temperature is shrinking. But as time increases
temperature develops as much as precise restriction
and it turns out to be regular.
From Figure 2, interatomic distance grew to be
extensive up to precise value of𝑥 after specific value of
𝑥 interatomic distance in a plate takes its function as it
is. When we provide temperature to aluminium plate,
initially atoms in a plate get disturbed; that is, short
stress increases along 𝑥-axis.Thermal stress increases
initially, but it is observed that it remains constant and
again slightly decreases.
From Figure 3, as temperature rises molecule begins
to vibrate more rapidly and push away from one
another to increase separation between the atoms that
cause expansion in atoms. In a plate, position of atoms
gets separated along 𝑥-axis.Thermal stress ofmaterial
changes from minimum of 𝑥 to maximum, that is,
variation observed along both 𝑥-axis and 𝑦-axis.
From Figure 4, initially when 𝑥 is zero stress is zero;
that is, in a plate interatomic constitution is constant
but when we change the worth of 𝑥 atomic distance
gets compressed and at 𝑥 = 2.5 it turns into extra
compression and again interatomic distance slowly
separated. Then it gets its customary position.
From Figure 5, at first interatomic distance could be
much closed as altering the worth of 𝑦 that distance
grew to be vast; that is, stress rises.
From Figure 6, stress alongside 𝑦-axis atomic struc-
ture in a plate is rapidly changing its positions as we
change the value of 𝑦.
From Figure 7, it shows that originally at 𝑦 = 0 stress
is incredibly minimum suggesting that interatomic
distance is compressed as value of 𝑦 changes; it comes
to its original interatomic distance so that it acquires
its original position.

8. Conclusion

In this paper we carried out the nonhomogeneous thermoe-
lastic problem solved using integral transform techniques
numerically. Results are obtained dependent on values of 𝑙,
𝑚, and 𝑛 which vary from 1 to ∞. Hence variation of heat
by moving heat sources in a body changes infinitely. From
graphical study when a body is provided with heat, it affects
it in all directions. Hence material shows expansion along 𝑥-
axis, 𝑦-axis, and 𝑧-axis, respectively. We conclude that if time
increases temperature will also increase. Interatomic distance
becamewide along𝑦-axis. As thin rectangular plate subjected
to point heat source which changes its place along 𝑥-axis,
interatomic distance became narrow.

The outcomes got here basically applicable in engineering
problems, especially for industrial machines subjected to
the heating, such as the main shaft of a machine, turbines,
the roll of rolling mill, and practical applications in aircraft
structures.
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