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We prove a version of Heisenberg-type uncertainty principle for the Dunkl-Wigner transform of magnitude 𝑠 > 0; and we deduce
a local uncertainty principle for this transform.

1. Introduction

In this paper, we consider R𝑑 with the Euclidean inner
product ⟨⋅, ⋅⟩ and norm |𝑦| fl √⟨𝑦, 𝑦⟩. For 𝛼 ∈ R𝑑 \ {0}, let
𝜎𝛼 be the reflection in the hyperplane𝐻𝛼 ⊂ R𝑑 orthogonal to
𝛼:

𝜎𝛼𝑦 fl 𝑦 −

2 ⟨𝛼, 𝑦⟩

|𝛼|
2

𝛼. (1)

A finite set R ⊂ R𝑑 \ {0} is called a root system, if R ∩

R. 𝛼 = {−𝛼, 𝛼} and 𝜎𝛼R = R for all 𝛼 ∈ R. We assume
that it is normalized by |𝛼|2 = 2 for all 𝛼 ∈ R. For a root
system R, the reflections 𝜎𝛼, 𝛼 ∈ R, generate a finite group
𝐺.TheCoxeter group𝐺 is a subgroup of the orthogonal group
𝑂(𝑑). All reflections in𝐺 correspond to suitable pairs of roots.
For a given 𝛽 ∈ R𝑑 \ ⋃

𝛼∈R𝐻𝛼, we fix the positive subsystem
R+ fl {𝛼 ∈ R : ⟨𝛼, 𝛽⟩ > 0}. Then for each 𝛼 ∈ R either
𝛼 ∈ R+ or −𝛼 ∈ R+.

Let 𝑘 : R → Cbe amultiplicity function onR (a function
which is constant on the orbits under the action of 𝐺). As an
abbreviation, we introduce the index 𝛾 = 𝛾𝑘 fl ∑

𝛼∈R
+

𝑘(𝛼).
Throughout this paper, we will assume that 𝑘(𝛼) ≥ 0

for all 𝛼 ∈ R. Moreover, let 𝑤𝑘 denote the weight function
𝑤𝑘(𝑦) fl ∏

𝛼∈R
+

|⟨𝛼, 𝑦⟩|
2𝑘(𝛼), for all 𝑦 ∈ R𝑑, which is 𝐺-

invariant and homogeneous of degree 2𝛾.
Let 𝑐𝑘 be the Mehta-type constant given by 𝑐𝑘 fl

(∫
R𝑑
𝑒
−|𝑦|
2
/2
𝑤𝑘(𝑦)d𝑦)

−1. We denote by 𝜇𝑘 the measure on R𝑑

given by d𝜇𝑘(𝑦) fl 𝑐𝑘𝑤𝑘(𝑦)d𝑦, by 𝐿
𝑝
(𝜇𝑘), 1 ≤ 𝑝 ≤ ∞, the

space of measurable functions 𝑓 on R𝑑, such that





𝑓



𝐿𝑝(𝜇

𝑘
)
fl (∫

R𝑑





𝑓 (𝑦)






𝑝 d𝜇𝑘 (𝑦))
1/𝑝

< ∞,

1 ≤ 𝑝 < ∞,





𝑓



𝐿∞(𝜇

𝑘
)
fl ess sup
𝑦∈R𝑑





𝑓 (𝑦)





< ∞,

(2)

and by 𝐿𝑝rad(𝜇𝑘) the subspace of 𝐿𝑝(𝜇𝑘) consisting of radial
functions.

For 𝑓 ∈ 𝐿
1
(𝜇𝑘) the Dunkl transform of 𝑓 is defined (see

[1]) by

F𝑘 (𝑓) (𝑥) fl ∫

R𝑑
𝐸𝑘 (−𝑖𝑥, 𝑦) 𝑓 (𝑦) d𝜇𝑘 (𝑦) ,

𝑥 ∈ R
𝑑
,

(3)

where 𝐸𝑘(−𝑖𝑥, 𝑦) denotes the Dunkl kernel. (For more details
see the next section.)

Many uncertainty principles have already been proved for
the Dunkl transformF𝑘, namely, by Rösler [2] and Shimeno
[3] who established theHeisenberg-type uncertainty inequal-
ity for this transform, by showing that for 𝑓 ∈ 𝐿

2
(𝜇𝑘),





𝑓





2

𝐿2(𝜇
𝑘
)
≤

2

2𝛾 + 𝑑





|𝑥| 𝑓




𝐿2(𝜇

𝑘
)










𝑦




F𝑘 (𝑓)




𝐿2(𝜇

𝑘
)
. (4)
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Recently, the author [4–7] proved general forms of the
Heisenberg-type inequality for the Dunkl transformF𝑘.

The Dunkl translation operators 𝜏𝑥, 𝑥 ∈ R𝑑, [8] are
defined on 𝐿2(𝜇𝑘) by

F𝑘 (𝜏𝑥𝑓) (𝑦) = 𝐸𝑘 (𝑖𝑥, 𝑦)F𝑘 (𝑓) (𝑦) , 𝑦 ∈ R
𝑑
. (5)

Let 𝑔 ∈ 𝐿
2

rad(𝜇𝑘). The Dunkl-Wigner transform 𝑉𝑔 is the
mapping defined for 𝑓 ∈ 𝐿

2
(𝜇𝑘) by

𝑉𝑔 (𝑓) (𝑥, 𝑦) fl ∫

R𝑑
𝑓 (𝑡) 𝜏𝑥𝑔𝑘,𝑦 (−𝑡)d𝜇𝑘 (𝑡) , (6)

where

𝑔𝑘,𝑦 (𝑧) fl F𝑘 (√𝜏𝑦




F𝑘 (𝑔)






2
) (𝑧) . (7)

This transform is studied in [9, 10] where the author
established some applications (Plancherel formula, inversion
formula, Calderón’s reproducing formula, extremal function,
etc.).

In this paper we use formula (4); we prove uncertainty
principle interveningF𝑘 and 𝑉𝑔 of magnitudes 𝑎, 𝑏 ≥ 1; that
is, for every 𝑓 ∈ 𝐿

2
(𝜇𝑘),






|𝑥|
𝑎
𝑉𝑔 (𝑓)







𝑏

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)






|𝑧|
𝑏
F𝑘 (𝑓)







𝑎

𝐿2(𝜇
𝑘
)

≥ (𝛾 +

𝑑

2

)

𝑎𝑏




𝑓





𝑎+𝑏

𝐿2(𝜇
𝑘
)





𝑔





𝑏

𝐿2rad(𝜇𝑘)
.

(8)

Next, we prove a Heisenberg-type uncertainty principle for
the Dunkl-Wigner transform 𝑉𝑔 of magnitude 𝑠 > 0; that is,
there exists a constant 𝑐(𝑘, 𝑠) > 0 such that, for 𝑓 ∈ 𝐿

2
(𝜇𝑘),






|𝑥|
𝑠
𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)











𝑦





𝑠
𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)

≥ 𝑐 (𝑘, 𝑠)




𝑓





2

𝐿2(𝜇
𝑘
)





𝑔





2

𝐿2rad(𝜇𝑘)
.

(9)

Finally, we prove a local uncertainty principle for the Dunkl-
Wigner transform 𝑉𝑔; that is, there exists a constant 𝑏(𝑘, 𝑠) >
0 such that, for 𝑓 ∈ 𝐿

2
(𝜇𝑘) and for measurable subset 𝐸 of

R𝑑 ×R𝑑 such that 0 < 𝜇𝑘 ⊗ 𝜇𝑘(𝐸) < ∞,






𝜒𝐸𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)

≤ 𝑏 (𝑘, 𝑠) (𝜇𝑘 ⊗ 𝜇𝑘 (𝐸))
1/2 









(𝑥, 𝑦)






𝑠
𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)
,

(10)

where 𝜒𝐸 is the indicator function of the set 𝐸.
In the classical case, the Fourier-Wigner transforms are

studied by Weyl [11] and Wong [12]. In the Bessel-Kingman
hypergroups, these operators are studied by Dachraoui [13].

This paper is organized as follows. In Section 2, we
recall some properties of the Dunkl-Wigner transform𝑉𝑔. In
Section 3, we prove a Heisenberg-type uncertainty principle
for the Dunkl-Wigner transform 𝑉𝑔 of magnitude 𝑠 > 0; and
we deduce a local uncertainty principle for this transform.

2. The Dunkl-Wigner Transform

The Dunkl operatorsD𝑗, 𝑗 = 1, . . . , 𝑑, on R𝑑 associated with
the finite reflection group 𝐺 and multiplicity function 𝑘 are
given, for a function 𝑓 of class 𝐶1 on R𝑑, by

D𝑗𝑓 (𝑦) fl
𝜕

𝜕𝑦𝑗

𝑓 (𝑦) + ∑

𝛼∈R
+

𝑘 (𝛼) 𝛼𝑗

𝑓 (𝑦) − 𝑓 (𝜎𝛼𝑦)

⟨𝛼, 𝑦⟩

. (11)

For 𝑦 ∈ R𝑑, the initial value problem D𝑗𝑢(⋅, 𝑦)(𝑥) =

𝑦𝑗𝑢(𝑥, 𝑦), 𝑗 = 1, . . . , 𝑑, with 𝑢(0, 𝑦) = 1 admits a unique
analytic solution on R𝑑, which will be denoted by 𝐸𝑘(𝑥, 𝑦)
and called Dunkl kernel [14, 15]. This kernel has a unique
analytic extension to C𝑑 × C𝑑 (see [16]). The Dunkl kernel
has the Laplace-type representation [17]

𝐸𝑘 (𝑥, 𝑦) = ∫

R𝑑
𝑒
⟨𝑦,𝑧⟩dΓ𝑥 (𝑧) , 𝑥 ∈ R

𝑑
, 𝑦 ∈ C

𝑑
, (12)

where ⟨𝑦, 𝑧⟩ fl ∑
𝑑

𝑖=1
𝑦𝑖𝑧𝑖 and Γ𝑥 is a probability measure on

R𝑑, such that supp(Γ𝑥) ⊂ {𝑧 ∈ R𝑑 : |𝑧| ≤ |𝑥|}. In our case,





𝐸𝑘 (±𝑖𝑥, 𝑦)





≤ 1, 𝑥, 𝑦 ∈ R

𝑑
. (13)

The Dunkl kernel gives rise to an integral transform,
which is called Dunkl transform on R𝑑, and was introduced
by Dunkl in [1], where already many basic properties were
established. Dunkl’s results were completed and extended
later by de Jeu [15]. The Dunkl transform of a function 𝑓 in
𝐿
1
(𝜇𝑘) is defined by

F𝑘 (𝑓) (𝑥) fl ∫

R𝑑
𝐸𝑘 (−𝑖𝑥, 𝑦) 𝑓 (𝑦) d𝜇𝑘 (𝑦) ,

𝑥 ∈ R
𝑑
.

(14)

We notice thatF0 agrees with the Fourier transformF that
is given by

F (𝑓) (𝑥) fl (2𝜋)
−𝑑/2

∫

R𝑑
𝑒
−𝑖⟨𝑥,𝑦⟩

𝑓 (𝑦) d𝑦, 𝑥 ∈ R
𝑑
. (15)

The Dunkl transform of a function 𝑓 ∈ 𝐿
1

rad(𝜇𝑘)
which is radial is again radial and could be computed via
the associated Fourier-Bessel transform F𝐵

𝛾+𝑑/2−1
(see [18],

Proposition 4); that is,

F𝑘 (𝑓) (𝑥) = F
𝐵

𝛾+𝑑/2−1
(𝐹) (|𝑥|) , (16)

where 𝑓(𝑥) = 𝐹(|𝑥|) and

F
𝐵

𝛾+𝑑/2−1
(𝐹) (|𝑥|)

fl ∫

∞

0

𝐹 (𝑟)

𝑗𝛾+𝑑/2−1 (|𝑥| 𝑟)

2
𝛾+𝑑/2−1

Γ (𝛾 + 𝑑/2)

𝑟
2𝛾+𝑑−1 d𝑟.

(17)

Here 𝑗𝛾 is the spherical Bessel function (see [19]).
Some of the properties of Dunkl transform F𝑘 are

collected below (see [1, 15]).
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Theorem 1. (i) 𝐿1 − 𝐿
∞-Boundedness. For all 𝑓 ∈ 𝐿

1
(𝜇𝑘),

F𝑘(𝑓) ∈ 𝐿
∞
(𝜇𝑘), and





F𝑘 (𝑓)




𝐿∞(𝜇

𝑘
)
≤




𝑓



𝐿1(𝜇

𝑘
)
. (18)

(ii) Inversion Theorem. Let 𝑓 ∈ 𝐿
1
(𝜇𝑘), such that F𝑘(𝑓) ∈

𝐿
1
(𝜇𝑘). Then

𝑓 (𝑥) = F𝑘 (F𝑘 (𝑓)) (−𝑥) , 𝑎.𝑒. 𝑥 ∈ R
𝑑
. (19)

(iii) Plancherel Theorem. The Dunkl transform F𝑘 extends
uniquely to an isometric isomorphism of 𝐿2(𝜇𝑘) onto itself. In
particular, one has





𝑓



𝐿2(𝜇

𝑘
)
=




F𝑘 (𝑓)




𝐿2(𝜇

𝑘
)
. (20)

(iv) Parseval Theorem. For 𝑓, 𝑔 ∈ 𝐿
2
(𝜇𝑘), one has

⟨𝑓, 𝑔⟩
𝐿2(𝜇
𝑘
)
= ⟨F𝑘 (𝑓) ,F𝑘 (𝑔)⟩𝐿2(𝜇

𝑘
)
. (21)

TheDunkl transformF𝑘 allows us to define a generalized
translation operators on 𝐿2(𝜇𝑘) by setting

F𝑘 (𝜏𝑥𝑓) (𝑦) = 𝐸𝑘 (𝑖𝑥, 𝑦)F𝑘 (𝑓) (𝑦) , 𝑦 ∈ R
𝑑
. (22)

It is the definition of Thangavelu and Xu given in [8]. It plays
the role of the ordinary translation 𝜏𝑥𝑓 = 𝑓(𝑥 + ⋅) in R𝑑,
since the Euclidean Fourier transform satisfies F(𝜏𝑥𝑓)(𝑦) =

𝑒
𝑖⟨𝑥,𝑦⟩F(𝑓)(𝑦). Note that, from (13) and Theorem 1(iii),
relation (22) makes sense, and ‖𝜏𝑥𝑓‖𝐿2(𝜇

𝑘
) ≤ ‖𝑓‖𝐿2(𝜇

𝑘
), for all

𝑓 ∈ 𝐿
2
(𝜇𝑘).

Rösler [20] introduced the Dunkl translation operators
for radial functions. If 𝑓 are radial functions, 𝑓(𝑥) = 𝐹(|𝑥|),
then

𝜏𝑥𝑓 (𝑦) = ∫

R𝑑
𝐹(√|𝑥|

2
+




𝑦





2
+ 2 ⟨𝑦, 𝑧⟩) dΓ𝑥 (𝑧) ;

𝑥, 𝑦 ∈ R
𝑑
,

(23)

where Γ𝑥 is the representing measure given by (12).
This formula allows us to establish the following results

[8, 21].

Proposition 2. (i) For all 𝑝 ∈ [1, 2] and for all 𝑥 ∈ R𝑑,
the Dunkl translation 𝜏𝑥 : 𝐿

𝑝

𝑟𝑎𝑑
(𝜇𝑘) → 𝐿

𝑝
(𝜇𝑘) is a bounded

operator, and for 𝑓 ∈ 𝐿
𝑝

𝑟𝑎𝑑
(𝜇𝑘), one has





𝜏𝑥𝑓




𝐿𝑝(𝜇

𝑘
)
≤




𝑓



𝐿
𝑝

𝑟𝑎𝑑
(𝜇
𝑘
)
. (24)

(ii) Let 𝑓 ∈ 𝐿
1

𝑟𝑎𝑑
(𝜇𝑘). Then, for all 𝑥 ∈ R𝑑, one has

∫

R𝑑
𝜏𝑥𝑓 (𝑦) d𝜇𝑘 (𝑦) = ∫

R𝑑
𝑓 (𝑦) d𝜇𝑘 (𝑦) . (25)

The Dunkl convolution product ∗𝑘 of two functions 𝑓
and 𝑔 in 𝐿2(𝜇𝑘) is defined by

𝑓∗𝑘𝑔 (𝑥) fl ∫

R𝑑
𝜏𝑥𝑓 (−𝑦) 𝑔 (𝑦) d𝜇𝑘 (𝑦) , 𝑥 ∈ R

𝑑
. (26)

We notice that ∗𝑘 generalizes the convolution ∗ that is given
by

𝑓 ∗ 𝑔 (𝑥) fl (2𝜋)
−𝑑/2

∫

R𝑑
𝑓 (𝑥 − 𝑦) 𝑔 (𝑦) d𝑦,

𝑥 ∈ R
𝑑
.

(27)

Proposition 2 allows us to establish the following proper-
ties for the Dunkl convolution on R𝑑 (see [8]).

Proposition 3. (i) Assume that 𝑝 ∈ [1, 2] and 𝑞, 𝑟 ∈ [1,∞]

such that 1/𝑝 + 1/𝑞 = 1 + 1/𝑟. Then the map (𝑓, 𝑔) → 𝑓∗𝑘𝑔

extends to a continuous map from 𝐿
𝑝

𝑟𝑎𝑑
(𝜇𝑘) ×𝐿

𝑞
(𝜇𝑘) to 𝐿𝑟(𝜇𝑘),

and




𝑓∗𝑘𝑔




𝐿𝑟(𝜇

𝑘
)
≤




𝑓



𝐿
𝑝

𝑟𝑎𝑑
(𝜇
𝑘
)





𝑔



𝐿𝑞(𝜇

𝑘
)
. (28)

(ii) For all 𝑓 ∈ 𝐿
1

𝑟𝑎𝑑
(𝜇𝑘) and 𝑔 ∈ 𝐿

2
(𝜇𝑘), one has

F𝑘 (𝑓∗𝑘𝑔) = F𝑘 (𝑓)F𝑘 (𝑔) . (29)

(iii) Let 𝑓 ∈ 𝐿
2

𝑟𝑎𝑑
(𝜇𝑘) and 𝑔 ∈ 𝐿

2
(𝜇𝑘). Then 𝑓∗𝑘𝑔 belongs to

𝐿
2
(𝜇𝑘) if and only ifF𝑘(𝑓)F𝑘(𝑔) belongs to 𝐿2(𝜇𝑘), and

F𝑘 (𝑓∗𝑘𝑔) = F𝑘 (𝑓)F𝑘 (𝑔) ,

in the 𝐿2 (𝜇𝑘)—case.
(30)

(iv) Let 𝑓 ∈ 𝐿
2

𝑟𝑎𝑑
(𝜇𝑘) and 𝑔 ∈ 𝐿

2
(𝜇𝑘). Then

∫

R𝑑





𝑓 ∗ 𝑔 (𝑥)






2 d𝜇𝑘 (𝑥)

= ∫

R𝑑





F𝑘 (𝑓) (𝑧)






2 



F𝑘 (𝑔) (𝑧)






2 d𝜇𝑘 (𝑧) ,
(31)

where both sides are finite or infinite.

Let 𝑔 ∈ 𝐿
2

rad(𝜇𝑘) and 𝑦 ∈ R𝑑. The modulation of 𝑔 by 𝑦 is
the function 𝑔𝑘,𝑦 defined by

𝑔𝑘,𝑦 (𝑧) fl F𝑘 (√𝜏𝑦




F𝑘 (𝑔)






2
) (𝑧) , 𝑧 ∈ R

𝑑
. (32)

Thus,





𝑔𝑘,𝑦





𝐿2(𝜇

𝑘
)
=




𝑔



𝐿2rad(𝜇𝑘)

. (33)

Let 𝑔 ∈ 𝐿
2

rad(𝜇𝑘). The Fourier-Wigner transform associ-
ated with the Dunkl operators is the mapping 𝑉𝑔 defined for
𝑓 ∈ 𝐿

2
(𝜇𝑘) by

𝑉𝑔 (𝑓) (𝑥, 𝑦) fl ∫

R𝑑
𝑓 (𝑡) 𝜏𝑥𝑔𝑘,𝑦 (−𝑡)d𝜇𝑘 (𝑡) ,

𝑥, 𝑦 ∈ R
𝑑
.

(34)

In the following we recall some properties of the Dunkl-
Wigner transform (Plancherel formula, inversion formula,
reproducing inversion formula of Calderón’s type, etc.).
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Proposition 4 (see [10]). Let (𝑓, 𝑔) ∈ 𝐿2(𝜇𝑘) ×𝐿2𝑟𝑎𝑑(𝜇𝑘). Then

(i) 𝑉𝑔(𝑓)(𝑥, 𝑦) = 𝑔𝑘,𝑦∗𝑘𝑓(𝑥).

(ii) 𝑉𝑔(𝑓)(𝑥, 𝑦) = ∫
R𝑑
𝐸𝑘(𝑖𝑥, 𝑧)F𝑘(𝑓)(𝑧)√𝜏𝑦|F𝑘(𝑔)|

2
(𝑧)

d𝜇𝑘(𝑧).
(iii) The function 𝑉𝑔(𝑓) belongs to 𝐿∞(𝜇𝑘 ⊗ 𝜇𝑘), and






𝑉𝑔 (𝑓)





𝐿∞(𝜇

𝑘
⊗𝜇
𝑘
)
≤




𝑓



𝐿2(𝜇

𝑘
)





𝑔



𝐿2
𝑟𝑎𝑑
(𝜇
𝑘
)
. (35)

Theorem 5 (see [10]). Let 𝑔 ∈ 𝐿
2

𝑟𝑎𝑑
(𝜇𝑘) be a nonzero function.

Then one has the following.

(i) Plancherel formula: for every 𝑓 ∈ 𝐿
2
(𝜇𝑘), one has






𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)
=




𝑓



𝐿2(𝜇

𝑘
)





𝑔



𝐿2
𝑟𝑎𝑑
(𝜇
𝑘
)
. (36)

(ii) Parseval formula: for every 𝑓, ℎ ∈ 𝐿2(𝜇𝑘), one has

⟨𝑉𝑔 (𝑓) , 𝑉𝑔 (ℎ)⟩𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)
=




𝑔





2

𝐿2
𝑟𝑎𝑑
(𝜇
𝑘
)
⟨𝑓, ℎ⟩

𝐿2(𝜇
𝑘
)
. (37)

(iii) Inversion formula: for all 𝑓 ∈ 𝐿
1
∩ 𝐿
2
(𝜇𝑘) such that

F𝑘(𝑓) ∈ 𝐿
1
(𝜇𝑘), one has

𝑓 (𝑧) =

1





𝑔





2

𝐿2
𝑟𝑎𝑑
(𝜇
𝑘
)

⋅ ∬

R𝑑
𝑉𝑔 (𝑓) (𝑥, 𝑦) 𝜏𝑧𝑔𝑘,𝑦 (−𝑥)d𝜇𝑘 (𝑥) d𝜇𝑘 (𝑦) .

(38)

Theorem 6 (Calderón’s reproducing inversion formula; see
[10]). Let Δ = ∏

𝑑

𝑗=1
[𝑎𝑗, 𝑏𝑗], −∞ < 𝑎𝑗 < 𝑏𝑗 < ∞, and let 𝑔 ∈

𝐿
2

𝑟𝑎𝑑
(𝜇𝑘) be a nonzero function, such that F𝑘(𝑔) ∈ 𝐿

∞
(𝜇𝑘).

Then, for 𝑓 ∈ 𝐿
2
(𝜇𝑘), the function 𝑓Δ given by

𝑓Δ (𝑧) =

1





𝑔



𝐿2
𝑟𝑎𝑑
(𝜇
𝑘
)

⋅ ∫

Δ

∫

R𝑑
𝑉𝑔 (𝑓) (𝑥, 𝑦) 𝜏𝑧𝑔𝑘,𝑦 (−𝑥)d𝜇𝑘 (𝑥) d𝜇𝑘 (𝑦)

(39)

belongs to 𝐿2(𝜇𝑘) and satisfies

lim
𝑎
𝑗
→−∞

𝑏
𝑗
→+∞





𝑓Δ − 𝑓




𝐿2(𝜇

𝑘
)
= 0.

(40)

3. Uncertainty Principles for the Mapping 𝑉𝑔

In this section we establish Heisenberg-type uncertainty
principle for the Dunkl-Wigner transform 𝑉𝑔. We begin by
the following theorem.

Theorem 7. Let 𝑔 ∈ 𝐿
2

𝑟𝑎𝑑
(𝜇𝑘) be a nonzero function.Then, for

𝑓 ∈ 𝐿
2
(𝜇𝑘), one has






|𝑥| 𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)





|𝑧|F𝑘 (𝑓)




𝐿2(𝜇

𝑘
)

≥ (𝛾 +

𝑑

2

)




𝑓





2

𝐿2(𝜇
𝑘
)





𝑔



𝐿2
𝑟𝑎𝑑
(𝜇
𝑘
)
.

(41)

Proof. Let 𝑓 ∈ 𝐿
2
(𝜇𝑘). Assume that ‖|𝑥|𝑉𝑔(𝑓)‖𝐿2(𝜇

𝑘
⊗𝜇
𝑘
) +

‖|𝑧|F𝑘(𝑓)‖𝐿2(𝜇
𝑘
) < ∞. Inequality (4) leads to

∫

R𝑑






𝑉𝑔 (𝑓) (𝑥, 𝑦)







2

d𝜇𝑘 (𝑥)

≤

2

2𝛾 + 𝑑

(∫

R𝑑
|𝑥|
2 



𝑉𝑔 (𝑓) (𝑥, 𝑦)







2

d𝜇𝑘 (𝑥))
1/2

(∫

R𝑑
|𝑧|
2 



F𝑘 (𝑉𝑔 (𝑓) (⋅, 𝑦)) (𝑧)







2

d𝜇𝑘 (𝑧))
1/2

.

(42)

Integrating with respect to d𝜇𝑘(𝑦) and using the Schwarz
inequality, we get






𝑉𝑔 (𝑓)







2

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)
≤

2

2𝛾 + 𝑑

(∬

R𝑑
|𝑥|
2 



𝑉𝑔 (𝑓)

⋅ (𝑥, 𝑦)







2

d𝜇𝑘 (𝑥) d𝜇𝑘 (𝑦))
1/2

⋅ (∬

R𝑑
|𝑧|
2 



F𝑘 (𝑉𝑔 (𝑓) (⋅, 𝑦))

⋅ (𝑧)







2

d𝜇𝑘 (𝑧) d𝜇𝑘 (𝑦))
1/2

.

(43)

But by Proposition 4(ii), Fubini-Tonelli’s theorem, (16),
Proposition 2(ii), andTheorem 1(iii), we have

∬

R𝑑
|𝑧|
2 



F𝑘 (𝑉𝑔 (𝑓) (⋅, 𝑦)) (𝑧)







2

d𝜇𝑘 (𝑧) d𝜇𝑘 (𝑦)

= ∬

R𝑑
|𝑧|
2
𝜏𝑦





F𝑘 (𝑔)






2
(𝑧)





F𝑘 (𝑓)

⋅ (𝑧)





2 d𝜇𝑘 (𝑧) d𝜇𝑘 (𝑦)

=




𝑔





2

𝐿2rad(𝜇𝑘)
∫

R𝑑
|𝑧|
2 



F𝑘 (𝑓) (𝑧)






2 d𝜇𝑘 (𝑧) .

(44)

This yields the result and completes the proof of the theorem.

Theorem8. Let𝑔 ∈ 𝐿
2

𝑟𝑎𝑑
(𝜇𝑘) be a nonzero function and 𝑠 ≥ 1.

Then, for 𝑓 ∈ 𝐿
2
(𝜇𝑘), one has






|𝑥|
𝑠
𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)





|𝑧|
𝑠
F𝑘 (𝑓)




𝐿2(𝜇

𝑘
)

≥ (𝛾 +

𝑑

2

)

𝑠




𝑓





2

𝐿2(𝜇
𝑘
)





𝑔



𝐿2
𝑟𝑎𝑑
(𝜇
𝑘
)
.

(45)

Proof. Let 𝑠 ≥ 1 and let 𝑓 ∈ 𝐿
2
(𝜇𝑘), 𝑓 ̸= 0, such that

‖|𝑥|
𝑠
𝑉𝑔(𝑓)‖𝐿2(𝜇

𝑘
⊗𝜇
𝑘
) + ‖|𝑧|

𝑠F𝑘(𝑓)‖𝐿2(𝜇
𝑘
) < ∞. Then, for 𝑠 > 1,

we have






|𝑥|
𝑠
𝑉𝑔 (𝑓)







2/𝑠

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)






𝑉𝑔 (𝑓)







2/𝑠


𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)

=









|𝑥|
2 



𝑉𝑔 (𝑓)







2/𝑠




𝐿𝑠(𝜇

𝑘
⊗𝜇
𝑘
)














𝑉𝑔 (𝑓)







2/𝑠






𝐿𝑠


(𝜇
𝑘
⊗𝜇
𝑘
)

,

(46)
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where 𝑠 is defined as usual by 1/𝑠 + 1/𝑠

= 1. By Hölder’s

inequality we get





|𝑥|
𝑠
𝑉𝑔 (𝑓)







1/𝑠

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)






𝑉𝑔 (𝑓)







1/𝑠


𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)

≥






|𝑥| 𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)
.

(47)

Thus, for all 𝑠 ≥ 1, we have






|𝑥|
𝑠
𝑉𝑔 (𝑓)







1/𝑠

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)
≥






|𝑥| 𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)






𝑉𝑔 (𝑓)







1−1/𝑠

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)

, (48)

with equality if 𝑠 = 1. In the same manner and using
Theorem 1(iii), we have, for 𝑠 ≥ 1,





|𝑧|
𝑠
F𝑘 (𝑓)






1/𝑠

𝐿2(𝜇
𝑘
)
≥





|𝑧|F𝑘 (𝑓)




𝐿2(𝜇

𝑘
)





F𝑘 (𝑓)






1−1/𝑠

𝐿2(𝜇
𝑘
)

, (49)

with equality if 𝑠 = 1. By (48) and (49), for all 𝑠 ≥ 1, we have





|𝑥|
𝑠
𝑉𝑔 (𝑓)







1/𝑠

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)





|𝑧|
𝑠
F𝑘 (𝑓)






1/𝑠

𝐿2(𝜇
𝑘
)

≥






|𝑥| 𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)





|𝑧|F𝑘 (𝑓)




𝐿2(𝜇

𝑘
)

(




𝑓





2

𝐿2(𝜇
𝑘
)





𝑔



𝐿2rad(𝜇𝑘)

)

1−1/𝑠
,

(50)

with equality if 𝑠 = 1. ApplyingTheorem 7, we obtain





|𝑥|
𝑠
𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)





|𝑧|
𝑠
F𝑘 (𝑓)




𝐿2(𝜇

𝑘
)

≥ (𝛾 +

𝑑

2

)

𝑠




𝑓





2

𝐿2(𝜇
𝑘
)





𝑔



𝐿2rad(𝜇𝑘)

,

(51)

which completes the proof of the theorem.

From (48) and (49) we deduce the following remark.

Remark 9. Let 𝑔 ∈ 𝐿
2

rad(𝜇𝑘) be a nonzero function and 𝑎, 𝑏 ≥
1. Then, for 𝑓 ∈ 𝐿

2
(𝜇𝑘), we have






|𝑥|
𝑎
𝑉𝑔 (𝑓)







𝑏

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)






|𝑧|
𝑏
F𝑘 (𝑓)







𝑎

𝐿2(𝜇
𝑘
)

≥ (𝛾 +

𝑑

2

)

𝑎𝑏




𝑓





𝑎+𝑏

𝐿2(𝜇
𝑘
)





𝑔





𝑏

𝐿2rad(𝜇𝑘)
.

(52)

For 𝜆 > 0, we define the dilation of 𝑓 ∈ 𝐿
2
(𝜇𝑘) by

𝑓𝜆 (𝑥) fl
1

𝜆
𝛾+𝑑/2

𝑓(

𝑥

𝜆

) , 𝑥 ∈ R
𝑑
. (53)

Then




𝑓𝜆




𝐿2(𝜇

𝑘
)
=




𝑓



𝐿2(𝜇

𝑘
)
, (54)

F𝑘 (𝑓𝜆) (𝑧) = 𝜆
𝛾+𝑑/2

F𝑘 (𝑓) (𝜆𝑧) ,

𝜏𝑥 (𝑓𝜆) (𝑦) =

1

𝜆
𝛾+𝑑/2

𝜏𝑥/𝜆𝑓(

𝑦

𝜆

) .

(55)

Let us now turn to establishing Heisenberg-type uncer-
tainty principle for the Dunkl-Wigner transform 𝑉𝑔 of mag-
nitude 𝑠 > 0. Thus, we consider the following lemma.

Lemma 10. Let 𝜆 > 0 and let 𝑔 ∈ 𝐿
2

𝑟𝑎𝑑
(𝜇𝑘) be a nonzero

function. Then, for 𝑓 ∈ 𝐿
2
(𝜇𝑘), one has

𝑉𝑔
𝜆

(𝑓𝜆) (𝑥, 𝑦) = 𝑉𝑔 (𝑓) (

𝑥

𝜆

, 𝜆𝑦) , 𝑥, 𝑦 ∈ R
𝑑
. (56)

Proof. From Proposition 4(ii), we have

𝑉𝑔
𝜆

(𝑓𝜆) (𝑥, 𝑦) = ∫

R𝑑
𝐸𝑘 (𝑖𝑥, 𝑧)F𝑘 (𝑓𝜆) (𝑧)

⋅ √𝜏𝑦





F𝑘 (𝑔𝜆)






2
(𝑧)d𝜇𝑘 (𝑧) .

(57)

But by (55) we have

𝜏𝑦





F𝑘 (𝑔𝜆)






2
(𝑧) = 𝜆

2𝛾+𝑑
𝜏𝜆𝑦





F𝑘 (𝑔)






2
(𝜆𝑧) . (58)

Thus,

𝑉𝑔
𝜆

(𝑓𝜆) (𝑥, 𝑦) = 𝜆
2𝛾+𝑑

∫

R𝑑
𝐸𝑘 (𝑖𝑥, 𝑧)F𝑘 (𝑓) (𝜆𝑧)

⋅ √𝜏𝜆𝑦





F𝑘 (𝑔)






2
(𝜆𝑧)d𝜇𝑘 (𝑧) = ∫

R𝑑
𝐸𝑘 (𝑖𝑥,

𝑧

𝜆

)

⋅F𝑘 (𝑓) (𝑧)√𝜏𝜆𝑦




F𝑘 (𝑔)






2
(𝑧)d𝜇𝑘 (𝑧) = 𝑉𝑔 (𝑓)

⋅ (

𝑥

𝜆

, 𝜆𝑦) ,

(59)

which gives the result.

Theorem 11 (Heisenberg-type uncertainty principle for 𝑉𝑔).
Let 𝑠 > 0. Then there exists a constant 𝑐(𝑘, 𝑠) > 0 such that, for
all 𝑓 ∈ 𝐿

2
(𝜇𝑘) and 𝑔 ∈ 𝐿

2

𝑟𝑎𝑑
(𝜇𝑘), one has






|𝑥|
𝑠
𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)











𝑦





𝑠
𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)

≥ 𝑐 (𝑘, 𝑠)




𝑓





2

𝐿2(𝜇
𝑘
)





𝑔





2

𝐿2
𝑟𝑎𝑑
(𝜇
𝑘
)
.

(60)

Proof. Let 𝑠, 𝑟0 > 0 and 𝐵𝑟
0

fl {(𝑥, 𝑦) ∈ R𝑑 × R𝑑 :

|(𝑥, 𝑦)| < 𝑟0}, where |(𝑥, 𝑦)| = (|𝑥|
2
+ |𝑦|
2
)
1/2. Fix 𝑟0 such

that 𝜇𝑘 ⊗ 𝜇𝑘(𝐵𝑟
0

) < 1. We write






𝑉𝑔 (𝑓)







2

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)
=








𝜒𝐵
𝑟
0

𝑉𝑔 (𝑓)








2

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)

+








𝜒R𝑑\𝐵
𝑟
0

𝑉𝑔 (𝑓)








2

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)

≤








𝜒𝐵
𝑟
0

𝑉𝑔 (𝑓)








2

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)

+ 𝑟
−2𝑠

0











(𝑥, 𝑦)






𝑠
𝑉𝑔 (𝑓)







2

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)
.

(61)

But from Hölder’s inequality and Proposition 4(iii) we have







𝜒𝐵
𝑟
0

𝑉𝑔 (𝑓)








2

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)

≤ 𝜇𝑘 ⊗ 𝜇𝑘 (𝐵𝑟
0

)






𝑉𝑔 (𝑓)







2

𝐿∞(𝜇
𝑘
⊗𝜇
𝑘
)

≤ 𝜇𝑘 ⊗ 𝜇𝑘 (𝐵𝑟
0

)




𝑓





2

𝐿2(𝜇
𝑘
)





𝑔





2

𝐿2rad(𝜇𝑘)
.

(62)
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Therefore, by Theorem 5(i),

𝑟
2𝑠

0
(1 − 𝜇𝑘 ⊗ 𝜇𝑘 (𝐵𝑟

0

))




𝑓





2

𝐿2(𝜇
𝑘
)





𝑔





2

𝐿2rad(𝜇𝑘)

≤











(𝑥, 𝑦)






𝑠
𝑉𝑔 (𝑓)







2

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)
.

(63)

Using the fact that |(𝑥, 𝑦)|𝑠 = (|𝑥|
2
+ |𝑦|
2
)
𝑠/2

≤ 2
𝑠/2
(|𝑥|
𝑠
+ |𝑦|
𝑠
)

we deduce that
2𝑐 (𝑘, 𝑠)





𝑓





2

𝐿2(𝜇
𝑘
)





𝑔





2

𝐿2rad(𝜇𝑘)

≤






|𝑥|
𝑠
𝑉𝑔 (𝑓)







2

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)
+











𝑦





𝑠
𝑉𝑔 (𝑓)







2

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)
,

(64)

where

𝑐 (𝑘, 𝑠) =

𝑟
2𝑠

0

2
𝑠+1

(1 − 𝜇𝑘 ⊗ 𝜇𝑘 (𝐵𝑟
0

)) . (65)

Replacing 𝑓 and 𝑔 by 𝑓𝜆 and 𝑔𝜆, respectively, in the previous
inequality, we obtain by Lemma 10 and by a suitable change
of variables

2𝑐 (𝑘, 𝑠)




𝑓





2

𝐿2(𝜇
𝑘
)





𝑔





2

𝐿2rad(𝜇𝑘)

≤ 𝜆
2𝑠 



|𝑥|
𝑠
𝑉𝑔 (𝑓)







2

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)

+ 𝜆
−2𝑠 









𝑦





𝑠
𝑉𝑔 (𝑓)







2

𝐿2(𝜇
𝑘
⊗𝜇
𝑘
)
.

(66)

By setting 𝜆 = (‖|𝑦|
𝑠
𝑉𝑔(𝑓)‖𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)/‖|𝑥|
𝑠
𝑉𝑔(𝑓)‖𝐿2(𝜇

𝑘
⊗𝜇
𝑘
))
1/2𝑠

in the right-hand side of the previous inequality we obtain
the desired result.

We will now prove a local uncertainty principle for the
Dunkl-Wigner transform𝑉𝑔, which extends the result of Faris
[22].

Theorem 12 (local uncertainty principle for 𝑉𝑔). Let 𝑠 > 0.
Then there exists a constant 𝑏(𝑘, 𝑠) > 0 such that, for all 𝑓 ∈

𝐿
2
(𝜇𝑘) and 𝑔 ∈ 𝐿

2

𝑟𝑎𝑑
(𝜇𝑘) and for all measurable subset 𝐸 of

R𝑑 ×R𝑑 such that 0 < 𝜇𝑘 ⊗ 𝜇𝑘(𝐸) < ∞, one has





𝜒𝐸𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)

≤ 𝑏 (𝑘, 𝑠) (𝜇𝑘 ⊗ 𝜇𝑘 (𝐸))
1/2 









(𝑥, 𝑦)






𝑠
𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)
.

(67)

Proof. Let 𝑠 > 0 and let 𝐸 be a measurable subset of R𝑑 × R𝑑

such that 0 < 𝜇𝑘 ⊗ 𝜇𝑘(𝐸) < ∞. From Hölder’s inequality and
Proposition 4(iii) we have






𝜒𝐸𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)

≤ (𝜇𝑘 ⊗ 𝜇𝑘 (𝐸))
1/2 




𝑉𝑔 (𝑓)





𝐿∞(𝜇

𝑘
⊗𝜇
𝑘
)

≤ (𝜇𝑘 ⊗ 𝜇𝑘 (𝐸))
1/2 




𝑓



𝐿2(𝜇

𝑘
)





𝑔



𝐿2rad(𝜇𝑘)

.

(68)

From (63) there exists 𝑏(𝑘, 𝑠) > 0 such that




𝑓



𝐿2(𝜇

𝑘
)





𝑔



𝐿2rad(𝜇𝑘)

≤ 𝑏 (𝑘, 𝑠)











(𝑥, 𝑦)






𝑠
𝑉𝑔 (𝑓)





𝐿2(𝜇

𝑘
⊗𝜇
𝑘
)
.

(69)

Therefore we obtain the desired result.
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