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We prove a version of Heisenberg-type uncertainty principle for the Dunkl-Wigner transform of magnitude s > 0; and we deduce

a local uncertainty principle for this transform.

1. Introduction

In this paper, we consider R? with the Euclidean inner

product (-,-) and norm |y| == +/(y, y). For a € R\ {0}, let
o0, be the reflection in the hyperplane H, RY orthogonal to
o

5. (1)

A finite set R ¢ R? \ {0} is called a root system, if R N
R.a = {-a,a} and 0, R = R for all « € R. We assume
that it is normalized by la> = 2 for all « € R. For a root
system R, the reflections o, « € R, generate a finite group
G. The Coxeter group G is a subgroup of the orthogonal group
O(d). All reflections in G correspond to suitable pairs of roots.
For a given 8 € R? \ |J, 5 H,» We fix the positive subsystem
R, = {a € R : («,B) > 0}. Then for each ¢ € R either
acR or-acR,.

Letk : R — Cbeamultiplicity function on R (a function
which is constant on the orbits under the action of G). As an
abbreviation, we introduce the index y = y; = Y pem, k(e).

Throughout this paper, we will assume that k(«) > 0
for all « € R. Moreover, let w, denote the weight function
w(y) = Hae&l(a,y)IZk(“), for all y € R¢, which is G-
invariant and homogeneous of degree 2y.

Let ¢ be the Mehta-type constant given by ¢ :=

(IW e_lylz/zwk(y)dy)fl. We denote by g, the measure on R?

given by du(y) = qwi(y)dy, by LP (), 1 < p < oo, the
space of measurable functions f on R?, such that

“f"m(yk) = (JRd If (J’)|P duy ()’))UP < 00,

1<p<oo, (2

"f"L“’(#k) = esssup | f (y)| < oo,
yeRd

and by Lf _a(t) the subspace of LP(y;) consisting of radial
functions.

For f € L'(w,) the Dunkl transform of f is defined (see
(1]) by

F(£) @ = | Bix) £ () d ), o

xERd,

where E; (—ix, y) denotes the Dunkl kernel. (For more details
see the next section.)

Many uncertainty principles have already been proved for
the Dunkl transform %, namely, by Rosler [2] and Shimeno
[3] who established the Heisenberg-type uncertainty inequal-
ity for this transform, by showing that for f € L*(u;),

2

2
”f"Lz(yk) £ 2y+d

Il fll 2 12 Foe (Ol 2y - @)



Recently, the author [4-7] proved general forms of the
Heisenberg-type inequality for the Dunkl transform .

The Dunkl translation operators 7,, x € R4, [8] are
defined on L*(y;) by

Fi () (7)

Let g € L?_;(¢4)- The Dunkl-Wigner transform V, is the
mapping defined for f € L*(y;) by

= B (ix,3) F (f) (), yeR (5)

V(&)= [ F 056, Cdm®,  ©

where

Ir,y (2) = F ( VT | Fk (g)|2> (2). (7)

This transform is studied in [9, 10] where the author
established some applications (Plancherel formula, inversion
formula, Calderén’s reproducing formula, extremal function,
etc.).

In this paper we use formula (4); we prove uncertainty
principle intervening & and V, of magnitudes a,b > 1; that

is, for every f € Lz(yk),

ERAGI izt Z (O

L (@) L2 ()

b b
= (v ) W ol

Next, we prove a Heisenberg-type uncertainty principle for
the Dunkl-Wigner transform V,; of magnitude s > 0; that is,

there exists a constant c(k, s) > 0 such that, for f € Lz(yk),

(8)

'“x's Vg (f) L2 () “|yl5 Vg (f) L* (@)

, , 9)
> c(k,s) “f”Lz(yk) ”g"LGd(yk) .

Finally, we prove a local uncertainty principle for the Dunkl-
Wigner transform V; that is, there exists a constant b(k, s) >
0 such that, for f € L*(y4) and for measurable subset E of
RY x R such that 0 < g ® i (E) < 0o,

||XEVg (f) L2 (@)

(10)
< b (k) (e ® e (B)) |2 )V, ()

L (@)’

where yy, is the indicator function of the set E.

In the classical case, the Fourier-Wigner transforms are
studied by Weyl [11] and Wong [12]. In the Bessel-Kingman
hypergroups, these operators are studied by Dachraoui [13].

This paper is organized as follows. In Section 2, we
recall some properties of the Dunkl-Wigner transform V. In
Section 3, we prove a Heisenberg-type uncertainty principle
for the Dunkl-Wigner transform V of magnitude s > 0; and

g
we deduce a local uncertainty principle for this transform.
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2. The Dunkl-Wigner Transform

The Dunkl operators 9, j = 1,...,d, on R? associated with
the finite reflection group G and multiplicity function k are
given, for a function f of class C' on RY, by

f () - flowy)
2,f(y) = fy)+ k() «; . m
j Zm W
For y € R, the initial value problem 2 Ul y)(x) =
yjulx,y) j = 1,....d, with u(0, y) = 1 admits a unique

analytic solution on RY, which will be denoted by E,(x, y)
and called Dunkl kernel [14, 15]. This kernel has a unique
analytic extension to C? x C? (see [16]). The Dunkl kernel
has the Laplace-type representation [17]

Ei(x,y) = JRd e<y’z)dl“x (z), xeR? y € c, 1)

where (y,z) = Zle y;z; and I, is a probability measure on
R, such that supp(I,) c {z € R% : |z| < |x|}. In our case,

|Ei (xix, y)| <1, x,y€ RY, (13)

The Dunkl kernel gives rise to an integral transform,
which is called Dunkl transform on R%, and was introduced
by Dunkl in [1], where already many basic properties were
established. Dunkl’s results were completed and extended
later by de Jeu [15]. The Dunkl transform of a function f in

L'(w) is defined by

F (N0 = | Bim0) £ () e (),
K (14)

x e RY,

We notice that F, agrees with the Fourier transform & that

is given by

F (f) (x) = (2m) ¥ J[R“ e f(y)dy, xeR% (15)

The Dunkl transform of a function f € L' ,(w)
which is radial is again radial and could be computed via
the associated Fourier-Bessel transform 9/75 d)2-1 (see [18],
Proposition 4); that is,

Fi(f) (x) =
= F(]x]) and

Fyap (F) (xD), (16)

where f(x)

FE gyt (F) (1)

Jy+dpe-1 (Ix]7) (17)

— F 2y+d—ld
Jo ) 2r+d/271T (o 4 d/z)r

Here j,, is the spherical Bessel function (see [19]).
Some of the properties of Dunkl transform &% are
collected below (see [1, 15]).
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Theorem 1. (i) L' — L-Boundedness. For all f € L'(w),
F i (f) € L®(4y.), and

"gk (f)llL"o(yk) < "f”Ll(#k) : (18)

(ii) Inversion Theorem. Let f € Ll(yk), such that F,(f) €
L' (). Then
fx) = F (Fi(f)) (%),

(iii) Plancherel Theorem. The Dunkl transform &, extends
uniquely to an isometric isomorphism of L*(w) onto itself. In
particular, one has

1 iy = 15k 2y - (20)

ae. x€R%. 19)

(iv) Parseval Theorem. For f, g € Lz(yk), one has

(f g>L2(,uk) =(F(f), F& (g»LZ(Mk) : (21)

The Dunkl transform %, allows us to define a generalized
translation operators on L*(y;) by setting

Fi (1) (9) = B (i%,3) F (f) (), yeR (22)

It is the definition of Thangavelu and Xu given in [8]. It plays
the role of the ordinary translation 7, f = f(x + -) in R%,
since the Euclidean Fourier transform satisfies #(t, f)(y) =
e F( f)(y). Note that, from (13) and Theorem 1(iii),
relation (22) makes sense, and ”Txf”Lz(yk) < ”f”LZ(M)) for all
feLl*(w).

Rosler [20] introduced the Dunkl translation operators
for radial functions. If f are radial functions, f(x) = F(|x|),
then

wf 0)= [ F(VP + P +2(n2) ) dr @)

(23)
X,y € RY,

where T, is the representing measure given by (12).
This formula allows us to establish the following results
(8, 21].

Proposition 2. (i) For all p € [1,2] and for all x € RY,
the Dunkl translation T, : Lfad(yk) — LP(w) is a bounded
operator, and for f € qud(yk), one has

||Txf”m(,4k) < |l ) (24)

rad

(i) Let f € L} (). Then, for all x € R, one has

J[Rd of (7) dp () = JW fdm (). @5

The Dunkl convolution product s, of two functions f
and g in L*(y;) is defined by

frig (x) = JRd 7f (7)) g () dm (), xeR% (26)

We notice that #; generalizes the convolution * that is given
by

fxg)=@m" de flx=y)g(»dy,

Proposition 2 allows us to establish the following proper-
ties for the Dunkl convolution on R? (see [8]).

Proposition 3. (i) Assume that p € [1,2] and g,r € [1, 0]
such that 1/p +1/q = 1 + 1/r. Then the map (f,g) — f*,9
extends to a continuous map from Lfad(yk) x LI(p.) to L (14y,),
and

"f*kg

Vi) S “f"Lfad(yk) lglzoqu, - (28)
(i) Forall f € L} ;(w) and g € L* (), one has
Fi(frr9) = Fi (f) Fi (9)- (29)

(iii) Let f € L2 ,(u) and g € L*(w). Then f+,g belongs to
L*(w,) if and only if F.(f)F (g) belongs to L* (i), and

Fi(f9) = F (f) Fi(9)
(30)
in the L* () —case.

(iv) Let f € L2, ,(w) and g € L*(w). Then

JRd If *9 (x)lz dt“k (x)
(31)

= JW 17 () @I |#4 (9) @I dpe (2),

where both sides are finite or infinite.

Let g € > ;() and y € R?. The modulation of g by y is
the function gy ,, defined by

Gk, (2) = Fy (\/Ty E (g)|2> (z), zeR% (32)

Thus,
"gk,y”LZ(Hk) = ||9||L§ad(,4k)- (33)

Letg € Lzrad(yk). The Fourier-Wigner transform associ-
ated with the Dunkl operators is the mapping V,; defined for

f € L(w) by
Vy(F) )= [ | 5070, Codi 0,
! (34)
X,y € RY.
In the following we recall some properties of the Dunkl-

Wigner transform (Plancherel formula, inversion formula,
reproducing inversion formula of Calderdn’s type, etc.).



Proposition 4 (see [10]). Let (f, g) € Lz(yk) X Liad(yk). Then
(i) V()% ) = Gy i f ).

(ii) Vy(N)(x%, ) = [oa Ex(ix, 2)F (@)1, |F1(9) 2 (2)
dyy(2).
(iil) The function Vg(f) belongs to L™ (yy, ® ), and

"Vg (f)"Lw(ﬂk@”k) < ||f"L2 ) "9“L2ud(yk (35)

Theorem 5 (see [10]). Let g € Lzmd(yk) be a nonzero function.
Then one has the following.

(i) Plancherel formula: for every f € L*(w,), one has

IV, (f)

L(uou) 11122y "9"L2md(,4k) : (36)

(i) Parseval formula: for every f,h € L*(w,), one has

<Vg ( Y, (h)>L2 (U ®he) “g”izmd(ﬂk) <f’ h>LZ(Mk) - (7

(iii) Inversion formula: for all f € L' 0 L*(u) such that
Fi(f) e Ll(yk), one has

fle)= —r—

la ||L2md<,4k> (38)

” V, () (% ¥) .61, (—x)duy () dpy (3) -

Theorem 6 (Calderon’s reproducing inversion formula; see
[10]). Let A =[], la; by),
Lzmd(;,tk) be a nonzero function, such that F,(g) € L™ (u).
Then, for f € L*(w,), the function f, given by

—00 < a; < b; < 0o, andlet g €

1
ST
g Liud(/"k) (39)
Ve () 6o T, 0 (0 i )
A JRd
belongs to L* () and satisfies
all}nw Ifs - f”Lz(yk) (40)

bj—+00

3. Uncertainty Principles for the Mapping V,

In this section we establish Heisenberg-type uncertainty
principle for the Dunkl-Wigner transform V. We begin by
the following theorem.

Theorem 7. Let g € L2, ,(y;) be a nonzero function. Then, for
f € L*(w), one has

|11V, ()

1zl F (N2

L* (i ®pi)

d 2
= (v D) Dl

(41)
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Proof. Let f € Lz(yk). Assume that |||x|Vg(f)||Lz

ew) T
Nzl F (2, < co. Inequality (4) leads to o
KTz () quality

[ 17 (9 Gof a0

2
<
2y +d

(] el

Integrating with respect to dyy(y) and using the Schwarz
inequality, we get

2 2 2
L () = 2y + d (,”[M %] .Vg (f)

5 12
(% y)| du (x) dys (y)>

([, 1 s () o ) a2

1/2
)(3) @) due (z))

Ve ()

(43)

(Jf Pl (v () 69)

2 1/2
@ d @ ()

But by Proposition 4(ii), Fubini-Tonelli’s theorem, (16),
Proposition 2(ii), and Theorem 1(iii), we have

[, 127175 (v (D ) @ o 2 b ()
=[] 1P o 7 O @1 (1)

: (Z)| duy (2) duy (y)

ol g |, 1215 (D @ dic @

(44)

This yields the result and completes the proof of the theorem.
O

Theorem 8. Letg € L2, (i) be anonzero function and s > 1.
Then, for f € L*(w,), one has
128 Vg ()] 200 00, 121 F ()

i @) ”LZ(W)

a\, e
> (v 5) 1 ol -

Proof. Lets > 1andlet f € L*(w), f # 0, such that
Vo (N2 o) + 121 F (2 < 00. Then, for s > 1,
we have

(45)

2/5/
LZ(Hk®Hk)

IV, ()

|1t v, (f

Mo Ve
LZ(Hk®Hk) g
(46)

2/s 2/s'

- |||x|2 IV, ()

! bl
L¥ (@) | L ()
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where s’ is defined as usual by 1/s + 1/s’ = 1. By Holder’s
inequality we get

1/5 l/s
”|X|$V 1}(;4,(@4,( “ g LZ(#k®!4k (47)
2 "|x| Vg (f)”Lz(yk@#k) '
Thus, for all s > 1, we have
||| Ve (Mg sm
[ERAG] P )
L(ueop) = " v, (f) ;;:@W

with equality if s = 1. In the same manner and using
Theorem 1(iii), we have, for s > 1,

|||Z| F (f)"Lz(yk)

B e — L (49)
“1F Dl
with equality if s = 1. By (48) and (49), for all s > 1, we have
s 1/s S o /s
"lxl Vg (f) L2 (e ®uyc) ”l l 4 ||]1~2(14k)
N |||x| Ve (f) L (o) Izt F 5 (Ol 2,0, (50)

2 1-1/s
(1122 N9l )

with equality if s = 1. Applying Theorem 7, we obtain

|||x|s Vo (f) L2 (@) 1=t 7 (f)"LZ(.“k)
IO (51)
> (14 5) Ul ol
which completes the proof of the theorem. O

From (48) and (49) we deduce the following remark.

Remark 9. Let g € L?, () be a nonzero function and a, b >
1. Then, for f € L*(y;), we have

[EIRACH! N AT .

(52)

> v+ ) LA ol -

For A > 0, we define the dilation of f € L*(;) by
fr(x) = W/zf( ), xem (53)
Then

1Al 2y = 12y - (54)

Fi(H) @) = NP F () (Aa),
(55)

() 0) = mrenf (3):

Let us now turn to establishing Heisenberg-type uncer-
tainty principle for the Dunkl-Wigner transform V, of mag-
nitude s > 0. Thus, we consider the following lemma.

Lemma 10. Let A > 0 and let g € L? () be a nonzero
function. Then, for f € L*(w), one has

Vo () ) =V, (N (F0). xyer’  Go)

Proof. From Proposition 4(ii), we have

Vo, () () = [ Bl 74 (£) @

_— (57)
: \/Ty |F« (gh)lz (2)dyy (2).
But by (55) we have

7, |F (0] (@) = A7 |4 (9] (A2). (58)
Thus,

Vo (1) () = 07 [ By ti2) 7, (1) 02

Ny 17 @ Q2 (2= [ B (ix.5)

(59)
F1. () @\, 174 (9)f @ (2) =V, ()
x
(7))
which gives the result. O

Theorem 11 (Heisenberg-type uncertainty principle for V).
Let s > 0. Then there exists a constant c(k, s) > 0 such that, for
all f € L*(w) and g € L2, ;(14), one has

1=t v, ()

lyI v, ()

L (@) L (@)

, , (60)
> c(k,s) "f“Lz(,uk) “9||L§ad(,4k) .

Proof. Let s,r, > 0 and B, = {xy) € RY x R?

|(x, )| < 1o}, where |(x, )| = (IxI> + [y*)"/%. Fix r, such
that ¢ ® p (B, ) < 1. We write
2
“Vﬂ (f) L2y 8p) ”XB (f) L2 (ue®psy)
2
+ows, Vo (Do
, (61)
< s, Vo Do
_ 2
+ry” )

But from Hoélder’s inequality and Proposition 4(iii) we have

s, v, ]

L* (ie®)

W) IVe (f

< Ui ® iy (Bro) "f"iz(pk) "9“23“(‘%) :

(62)

< e ® . (B )"Lm(uk@m)



Therefore, by Theorem 5(i),

72 (1= 10 b (B)) L g el

< Ie Vs D

Using the fact that |(x, )I° = (|x[> + | y1*)"? < 22(|x* + |y[)
we deduce that

2¢(k,s) || f ||12<,4k> lg “iiad(w

(63)

)

) . ) (64)
< otV (O ey *+ I8 Ve )i
where
2s
c(k,s) = 21;(:1 (1 — Uy ® Yy (B,O)). (65)

Replacing f and g by f, and g,, respectively, in the previous
inequality, we obtain by Lemma 10 and by a suitable change
of variables

2¢ (k; s) “f”iz(‘uk) ”g"ifad(yk)

2

2s
<A
L (@)

<"V, (f)

(66)

-2 2
27 |V () L2 (uep)

By setting A = (I1y1°Vy ()Ml 2o/ N Vol 2 o))
in the right-hand side of the previous inequality we obtain
the desired result. O

We will now prove a local uncertainty principle for the
Dunkl-Wigner transform Vi, which extends the result of Faris
[22].

Theorem 12 (local uncertainty principle for V). Let s > 0.
Then there exists a constant b(k,s) > 0 such that, for all f €

L*(w) and g € L>_,(w.) and for all measurable subset E of
RY x R such that 0 < py, ® . (E) < 00, one has

"XEVg (f )"Lz(y,c@yk)
1/2 s (67)
<b(k,s) (@ i (B) |1 )"V, ()

Proof. Lets > 0 and let E be a measurable subset of R? x R?
such that 0 < . ® y(E) < co. From Hoélder’s inequality and
Proposition 4(iii) we have

L (medm)

HXEVg (f) Lz(ﬂk®["k)
/
< (1 ® piye (E))l ’ "Vg (f)"LDQ(ﬂk@plk) (68)
2
< (e ® i (B)" [ Fll iz N9z -
From (63) there exists b(k, s) > 0 such that
"f”Lz(ﬂk) HQHL{ad(yk)
. (69)
<b(k9) [|Go NIV, (D] 20
Therefore we obtain the desired result. O
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