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Petrov Type D-Levi-Civita (DLC) space-time is considered in two different coordinates, that is, spherical and cylindrical. Noether
gauge symmetries and their corresponding conserved quantities for respective metric with the restricted range of parameters and
coordinates are discussed.

1. Introduction

Levi-Civita (LC) space-time is considered as the static, cyl-
indrically symmetric vacuum solutions of Einstein’s field
equations.The vacuum space-time Petrov Type DLC is taken
from Stephani et al. [1]. Ehlers and Kundt [2] studied this
metric in spherical and cylindrical coordinates with the
restricted range of parameters. Zinovyevich has been famous
for classification of Einstein space, which is known as the
Petrov classification. In 1954, theWeyl tensor which is related
to Petrov classification is published for first time by A. Z.
Petrov. In a Lorentzian manifold, the Weyl tensor having
all possible algebraic symmetries is described by the Petrov
classification in the field of theoretical physics and differential
geometry. Space-timewith different events has different types
of Petrov. With respect to the field of general relativity,
sometimes Petrov Types classification is called the gravita-
tional field classification. So, this metric plays an important
role in the field of general relativity; therefore, most of the
different solutions for Levi-Civita space-time are investigated
in recent years. The regions of Petrov Type D is related
to the massive objects of the gravitational field. However,
the characterization of mass and angular momentum of a
gravitating object field occurs as the field of Petrov Type
D. In some specific cases, a physical interpretation and
close correspondence were found between the constant of

symmetries and the Petrov Type. For instance, spherically
static space-time is just like Petrov Type D. In general, space-
time is special type of PetrovType I, but this space-timewhich
is not geodesically complete is Petrov Type D space-time.

Symmetry plays an important role in understanding
nature of the universe. Some of the stars are considered to
have sphere-like symmetry. Cylindrical and plane symme-
tries are helpful to compute the gravitational waves. Since the
field of general relativity and some other modified theories,
like 𝑓(𝑅) [3–10] and 𝑓(𝑅, 𝑇) [11–15] theories of gravity and
so forth, are assumed to be highly nonlinear, the solutions
of their field equations can be found by their symmetries.
Also in physics, symmetry has great significance to simplify
the solutions of many problems. Thus, we can say a concept
of symmetry is more helpful to describe the geometry of
the space-time. In physics, the connection between the sym-
metries and conservation laws has both the fascinating and
the fundamental significance.

In the 19th century, William Rowan Hamilton developed
some alternativemethods for calculating the conserved quan-
tities. Another important approach, that is, Hamilton-Jacobi
equation, is also helpful for finding the conserved quantities
of DEs. But, here in this paper, Noether approach is used
for finding the conserved quantities [16, 17] of the variational
problems.This approach is frequently used in the areas of the
theoretical physics. In this paper, we used Emmy Noether’s
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approach to calculate the conserved quantities of the respec-
tive metric. A mathematician Emmy Noether (1812–1935)
has been famous among the physicists. She has proved Noe-
ther’s theorem in 1915 and it has been published in 1918.
Noether’s theorem states that there is a connection between
the continuous symmetries of nature and the conserved
quantities [16]. So, according to that theorem, we related the
conservation energy to the time. In the field of modern theo-
retical physics and calculus of variations, Noether’s theorem
has great importance and it has also become a fundamental
practical calculational tool. It helps us to investigate the
(invariants) conserved quantities of a physical system. In
physics, this theorem is considered as a powerful tool which
states that every symmetry of a physical system provides a
conserved quantity of the system [17]. So, in simple words, we
can say that a one to one correspondence is found between
the symmetries of nature and the laws of conservation of a
physical system. When the symmetry is translation symmet-
ric, then the theorem leads us to the linear conservation of
momentum. If the physical system has rotational symmetry,
then it gives the conservation of angular momentum and
the symmetry in time provides the conservation of energy
[16, 17]. For the cosmological equation, we used systematic
Noether’s approach to obtain the exact solution of the
system. In the field of theoretical physics and the calculus
of variations, many applications of Noether’s theorem have
a vital role. The application of Noether’s theorem helps the
physicists to obtain the extremely powerful insights into any
general theory of relativity and physics, by just observing the
different transformations which has made the special form of
laws involved invariant. In the field theory, Noether’s theorem
is developed for Lagrange-Euler’s equation. However, from
Noether’s theorem, it is clear that generalized symmetries
give the complete identification between the continuous
symmetries and corresponding conserved quantities.

Thus, it would be interesting to study the Petrov Type
D-Levi-Civita space-time from classification point of view
in spherical and cylindrical coordinates. Ponce discussed
the Levi-Civita space-time in multidimensional theories and
also constructed the family of Levi-Civita-Kasner vacuum
solutions in (4 + 𝑁) dimensions [18]. da Silva et al. [19]
investigated two exact solutions of Einstein’s field equations
corresponding to a cylinder of dust with net zero angular
momentum. He observed that the dust distribution is homo-
geneous in one of the cases, while, in the other, the angular
velocity of dust particles is constant. The same authors [20]
investigated themain properties of Levi-Civita solutions with
the cosmological constant. Weinstein developed correspon-
dence between Einstein and Levi-Civita [21]. Konkowski et al.
[22] worked on the quantum singularity of Levi-Civita
space-time. Miguelote et al. discussed the local and global
properties of the Levi-Civita solutions coupled with an elec-
tromagnetic field [23].

Noether symmetries play an important role in recovering
some lost conservation laws and the symmetry generators
of space-time [24–26]. Sharif and Waheed [27] explored the
energy contents of colliding plane waves by using the approx-
imate Noether symmetry approach. It has been observed
that there does not exist any nontrivial first-order symmetry

generator for plane electromagnetic and gravitational waves.
The same authors [28] investigated the energy contents of
Bardeen model and stringy charged black hole type solutions
using approximate Lie symmetries method. Shamir et al.
[29] calculated 𝑓(𝑅) theory of gravity in the presence of
gauge term through Noether symmetries approach. For
this purpose, they considered Noether symmetry genera-
tors for spherically symmetric space-time and Friedmann-
Robertson-Walker universe. Capozziello et al. [5] established
𝑓(𝑅) gravity for spherically symmetric space-time using
approximate Noether symmetries. In [30], a new class of
Noether symmetries has been observed for spherical sym-
metry in 𝑓(𝑅) gravity. Using the Lie and Noether point
operators, Paliathanasis et al. [31] discussed the modified
𝑓(𝑅) gravity models.

The pattern of paper is organized as follows: Section 1.1
is devoted to present the fundamental operators. Section 2
presents the Noether gauge operators and conserved quan-
tities of the Petrov Type DLC in spherical and cylindrical
coordinates by using Noether’s approach. The last section of
the paper contains the summary and conclusion.

1.1. Fundamental Operators. The method for calculating the
Noether symmetries by using the Lagrangian is defined as
follows [32, 33]. We consider a vector field𝑋 as

𝑋 = 𝜉 (𝑠, 𝑥𝑎)
𝜕

𝜕𝑠
+ 𝜂𝑏 (𝑠, 𝑥𝑎)

𝜕

𝜕𝑥𝑏
. (1)

Then 𝑋 is said to be the Noether point symmetry of the
Lagrangian that satisfied this relation:

𝑋[1] (𝐿) + 𝐿𝐷
𝑠
(𝜉) = 𝐷

𝑠
(𝐴) , (2)

where𝑋[1] is the first-order prolongation [34].𝐴 is said to be
gauge terms and the total derivative operator𝐷 is defined as

𝐷
𝑠
=
𝜕

𝜕𝑠
+ 𝑥̇𝑎

𝜕

𝜕𝑥𝑎
. (3)

The first integral of motion associated with𝑋 is defined as

𝐼 = 𝜉𝐿 + (𝜂𝑎 − 𝜉𝑥̇𝑎)
𝜕𝐿

𝜕𝑥̇𝑎
− 𝐴. (4)

2. Noether Gauge Operators and
Conserved Quantities

In this section, Noether gauge operators and conserved quan-
tities of the Petrov Type DLC in spherical and cylindrical
coordinates are computed by using the Noether approach.

2.1. Petrov Type DLC in Spherical Coordinates

2.1.1. Type 1. Levi-Civita space-time in spherical coordinates,
(𝑡, 𝑟, 𝜃, 𝜙), is

𝑑𝑠2 = 𝑟2 (𝑑𝜃2 + sin2𝜃𝑑𝜙2) + ( 𝑟

𝑟 − 𝑏
) 𝑑𝑟2

− (
𝑟 − 𝑏

𝑟
) 𝑑𝑡2.

(5)
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The coordinates and parameters are restricted as 𝑡 ∈ 𝑅, 0 <
𝜃 < 𝜋, 𝜙 ∈ [0, 2𝜋), and (0 < 𝑏 < 𝑟) ∨ (𝑏 < 0 < 𝑟).

The Lagrangian for Levi-Civita space-time in spherical
coordinates (5) is

𝐿 = 𝑟2 (𝜃̇
2

+ sin2𝜃𝜙̇2) + ( 𝑟

𝑟 − 𝑏
) ̇𝑟2 − (

𝑟 − 𝑏

𝑟
) ̇𝑡
2

. (6)

Now substituting (6) in (2) and after somemanipulations, we
get the following system of linear PDEs:

(i) 𝜉
𝜙
= 0,

(ii) 𝜉
𝜃
= 0,

(iii) 𝜉
𝑟
= 0,

(iv) 𝜉
𝑡
= 0,

(v) 𝐴
𝑠
= 0,

(7)

(i) − 2 (
𝑟 − 𝑏

𝑟
) 𝜂1
𝑠
= 𝐴
𝑡
,

(ii) (
2𝑟

𝑟 − 𝑏
) 𝜂2
𝑠
= 𝐴
𝑟
,

(iii) 2𝑟2𝜂3
𝑠
= 𝐴
𝜃
,

(8)

(i) 2𝑟2sin2𝜃𝜂4
𝑠
= 𝐴
𝜙
,

(ii) (
𝑟 − 𝑏

𝑟
) 𝜂1
𝑟
− (

𝑟

𝑟 − 𝑏
) 𝜂2
𝑡
= 0,

(iii) (
𝑟 − 𝑏

𝑟
) 𝜂1
𝜃
− 𝑟2𝜂3
𝑡
= 0,

(9)

(i) (
𝑟 + 𝑏

𝑟
) 𝜂1
𝜙
+ 𝑟2sin2𝜃𝜂4

𝑡
= 0,

(ii) (
1

𝑟 − 𝑏
) 𝜂2
𝜃
+ 𝑟𝜂3
𝑟
= 0,

(iii) (
1

𝑟 − 𝑏
) 𝜂2
𝜙
+ 𝑟 sin2𝜃𝜂4

𝑟
= 0,

(10)

(i) 𝜂3
𝜙
+ sin2𝜃𝜂4

𝜃
= 0,

(ii) 𝑟𝜉
𝑠
− 2𝜂2 − 2𝑟𝜂3

𝜃
= 0,

(iii) (𝑟 − 𝑏) 𝜉
𝑠
− (

𝑏

𝑟
) 𝜂2 − 2 (𝑟 − 𝑏) 𝜂

1

𝑡
= 0,

(11)

(i) 𝑟𝜉
𝑠
+ (

𝑏

𝑟 − 𝑏
) 𝜂2 − 2𝑟𝜂2

𝑟
= 0,

(ii) 𝑟𝜉
𝑠
− 2𝑟𝜂4
𝜙
− 2𝜂2 − 2𝑟 cot 𝜃𝜂3 = 0.

(12)

For this case, the solution is
𝜉 = 𝑐
1
,

𝜂1 = 𝑐
3
,

𝜂𝑖 = 0, 𝑖 = 2, 3, 4,

𝐴 = 𝑐
2
.

(13)

Thus, the approximateNoether operators are𝑋
1
= 𝜕/𝜕𝑠,𝑋

2
=

𝜕/𝜕𝑡. The first integrals of motion associated with approx-
imate Noether point symmetries𝑋

1
and𝑋

2
are

𝐼
1
= (

𝑟 − 𝑏

𝑟
) ̇𝑡
2

− (
𝑟

𝑟 − 𝑏
) ̇𝑟2 − 𝑟2𝜃̇

2

− 𝑟2𝜙̇
2sin2𝜃 − 𝑐

2
,

𝐼
2
= −2(

𝑟 − 𝑏

𝑟
) ̇𝑡 − 𝑐

2
.

(14)

2.1.2. Type 2. The metric is given by the line element in the
spherical coordinates (𝑡, 𝑟, 𝜃, 𝜙):

𝑑𝑠2 = 𝑟2 (𝑑𝜃2 − sin2𝜃𝑑𝑡2) + ( 𝑟

𝑟 − 𝑏
) 𝑑𝑟2

+ (
𝑟 − 𝑏

𝑟
) 𝑑𝜙2.

(15)

The coordinates and parameters are restricted to 𝑡 ∈ 𝑅, 0 <
𝜃 < 𝜋, 𝜙 ∈ [0, 2𝜋), and (0 < 𝑏 < 𝑟) ∨ (𝑏 < 0 < 𝑟).

The Lagrangian for (15) is defined as

𝐿 = 𝑟2 (𝜃̇
2

− sin2𝜃 ̇𝑡2) + ( 𝑟

𝑟 − 𝑏
) ̇𝑟2 + (

𝑟 − 𝑏

𝑟
) 𝜙̇
2

. (16)

Lagrangian (16) with (2) yields

(i) 𝜉
𝜙
= 0,

(ii) 𝜉
𝜃
= 0,

(iii) 𝜉
𝑟
= 0,

(iv) 𝜉
𝑡
= 0,

(v) 𝐴
𝑠
= 0,

(17)

(i) − 2𝑟2sin2𝜃𝜂1
𝑠
= 𝐴
𝑡
,

(ii) (
2𝑟

𝑟 − 𝑏
) 𝜂2
𝑠
= 𝐴
𝑟
,

(iii) 2𝑟2𝜂3
𝑠
= 𝐴
𝜃
,

(18)

(i) 2 (
𝑟 − 𝑏

𝑟
) 𝜂4
𝑠
= 𝐴
𝜙
,

(ii) 𝑟 sin2𝜃𝜂1
𝑟
− (

1

𝑟 − 𝑏
) 𝜂2
𝑡
= 0,

(iii) sin2𝜃𝜂1
𝜃
− 𝜂3
𝑡
= 0,

(19)

(i) 𝑟2sin2𝜃𝜂1
𝜙
− (

𝑟 − 𝑏

𝑟
) 𝜂4
𝑡
= 0,

(ii) (
1

𝑟 − 𝑏
) 𝜂2
𝜃
+ 𝑟𝜂3
𝑟
= 0,

(iii) (
𝑟

𝑟 − 𝑏
) 𝜂2
𝜙
+ 𝜂4
𝑟
− (

𝑏

𝑟
) 𝜂4
𝑟
= 0,

(20)
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(i) 𝑟2𝜂3
𝜙
+ (

𝑟 − 𝑏

𝑟
) 𝜂4
𝜃
= 0,

(ii) 𝑟𝜉
𝑠
− 2𝜂2 − 2𝑟𝜂3

𝜃
= 0,

(iii) 𝑟𝜉
𝑠
+ (

𝑏

𝑟 − 𝑏
) 𝜂2 − 2𝑟𝜂2

𝑟
= 0,

(21)

(i) 𝑟𝜉
𝑠
− 2𝜂2 − 2𝑟𝜂1

𝑡
− 2𝑟 cot 𝜃𝜂3 = 0,

(ii) (𝑟 − 𝑏) 𝜉
𝑠
− (

𝑏

𝑟
) 𝜂2 − 2 (𝑟 − 𝑏) 𝜂

4

𝜙
= 0.

(22)

For this case, the solution of the above equation will be

𝜉 = 𝑐
1
,

𝜂4 = 𝑐
3
,

𝜂𝑖 = 0, 𝑖 = 1, 2, 3,

𝐴 = 𝑐
2
.

(23)

Thus, the approximate Noether operators will be 𝑋
1
= 𝜕/𝜕𝑠,

𝑋
2
= 𝜕/𝜕𝜙. Corresponding first integrals of motion for ap-

proximate Noether point symmetries are

𝐼
1
= 𝑟2sin2𝜃 ̇𝑡2 − ( 𝑟

𝑟 − 𝑏
) ̇𝑟2 − 𝑟2𝜃̇

2

− (
𝑟 − 𝑏

𝑟
) 𝜙̇ − 𝑐

2
,

𝐼
2
= 2(

𝑟 − 𝑏

𝑟
) 𝜙̇ − 𝑐

2
.

(24)

2.2. Petrov Type DLC in Cylindrical Coordinates

2.2.1. Type 1. In cylindrical coordinates, Levi-Civita space-
time is defined as

𝑑𝑠2 = 𝑧2 (𝑑𝑟2 + sinh2𝑟𝑑𝜙2) + ( 𝑧

𝑏 − 𝑧
) 𝑑𝑧2

− (
𝑏 − 𝑧

𝑧
)𝑑𝑡2,

(25)

with the restrictions on coordinates and parameters as 𝑡 ∈ 𝑅,
0 < 𝑟, 𝜙 ∈ [0, 2𝜋), and (0 < 𝑧 < 𝑏).

The Lagrangian for (25) is

𝐿 = 𝑧2 ( ̇𝑟2 + sinh2𝑟𝜙̇2) + ( 𝑧

𝑏 − 𝑧
) 𝑧̇2 − (

𝑧 − 𝑏

𝑧
) ̇𝑡
2

. (26)

Equation (26) with the help of (2) gives

(i) 𝜉
𝜙
= 0,

(ii) 𝜉
𝑧
= 0,

(iii) 𝜉
𝑟
= 0,

(iv) 𝜉
𝑡
= 0,

(v) 𝐴
𝑠
= 0,

(27)

(i) 2 (
𝑧 − 𝑏

𝑧
) 𝜂1
𝑠
= 𝐴
𝑡
,

(ii) 2𝑧2𝜂2
𝑠
= 𝐴
𝑟
,

(iii) (
2𝑧

𝑏 − 𝑧
) 𝜂3
𝑠
= 𝐴
𝑧
,

(28)

(i) 2𝑧2sinh2𝑟𝜂4
𝑠
= 𝐴
𝜙
,

(ii) (
𝑧 − 𝑏

𝑧
) 𝜂1
𝑟
+ 𝑧2𝜂2
𝑡
= 0,

(iii) (
𝑧 − 𝑏

𝑧
) 𝜂1
𝑧
+ (

𝑧

𝑏 − 𝑧
) 𝜂3
𝑡
= 0,

(29)

(i) (
𝑧 − 𝑏

𝑧
) 𝜂1
𝜙
+ 𝑧2sinh2𝑟𝜂4

𝑡
= 0,

(ii) 𝑧𝜂2
𝑧
+ (

1

𝑏 − 𝑧
) 𝜂3
𝑟
= 0,

(iii) 𝜂2
𝜙
+ sinh2𝑟𝜂4

𝑟
= 0,

(30)

(i) (
1

𝑏 − 𝑧
) 𝜂3
𝜙
+ 𝑧 sinh2𝑟𝜂4

𝑧
= 0,

(ii) 𝑧𝜉
𝑠
− 2𝜂3 − 2𝑧𝜂2

𝑟
= 0,

(31)

(i) (𝑧 − 𝑏) 𝜉
𝑠
− (

𝑏

𝑧
) 𝜂3 − 2 (𝑧 − 𝑏) 𝜂

1

𝑡
= 0,

(ii) 𝑧𝜉
𝑠
− (

𝑏

𝑏 − 𝑧
) 𝜂3 − 2𝑧𝜂3

𝑧
= 0,

(32)

𝑧𝜉
𝑠
− 2𝑧𝜂4

𝜙
− 2𝜂3 − 2𝑧 coth 𝑟𝜂2 = 0. (33)

In this case, the solution is
𝜉 = 𝑐
1
,

𝜂1 = 𝑐
3
,

𝜂2 = −𝑐
4
cos𝜙 + 𝑐

5
sin𝜙,

𝜂3 = 0,

𝜂4 =
1

sinh 𝑟
[𝑐
4
sin𝜙 + 𝑐

5
cos𝜙 cosh 𝑟 + 𝑐

6
sinh 𝑟] ,

𝐴 = 𝑐
2
.

(34)

We obtained these five Noether operators:

𝑋
1
=
𝜕

𝜕𝑠
,

𝑋
2
=
𝜕

𝜕𝑡
,

𝑋
3
= − cos𝜙 𝜕

𝜕𝑟
+

sin𝜙
sinh 𝑟

𝜕

𝜕𝜙
,

𝑋
4
= sin𝜙 𝜕

𝜕𝑟
+
cos𝜙 cosh 𝑟

sinh 𝑟
𝜕

𝜕𝜙
,

𝑋
5
=

𝜕

𝜕𝜙
.

(35)
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The above solution gave five symmetries, while three sym-
metries were the same as the symmetries in spherical coor-
dinates.

The first integrals of motion associated with approximate
Noether point symmetries 𝑋

1
, 𝑋
2
, 𝑋
3
, 𝑋
4
, and 𝑋

5
by using

(4) as follows:

𝐼
1
= 2𝑧2 ̇𝑟 − 𝑐

2
,

𝐼
2
= 2𝑧2sin2ℎ𝑟𝜙̇ − 𝑐

2
,

𝐼
3
= (

𝑏 − 𝑧

𝑧
) ̇𝑡
2

− 𝑧2 ̇𝑟2 − (
𝑧

𝑏 − 𝑧
) 𝑧̇2 − 𝑧2𝜙̇

2sin2ℎ𝑟

− 𝑐
2
,

𝐼
4
= −2𝑧2 cos𝜙 ̇𝑟 + 2𝑧2 sin𝜙 sinh 𝑟𝜙̇ − 𝑐

2
,

𝐼
5
= 2𝑧2 sin𝜙 ̇𝑟 + 2𝑧2 cos𝜙 cosh 𝑟 sinh 𝑟𝜙̇ − 𝑐

2
.

(36)

2.2.2. Type 2. The Levi-Civita metric in the cylindrical coor-
dinates (𝑡, 𝑟, 𝑧, 𝜙) is given as

𝑑𝑠2 = 𝑧2 (𝑑𝑟2 + 𝑟2𝑑𝜙2) + 𝑧𝑑𝑧2 −
1

𝑧
𝑑𝑡2, (37)

where the restriction of coordinates is 𝑡 ∈ 𝑅, 0 < 𝑟, 𝜙 ∈ [0,
2𝜋), and 0 < 𝑧.

The Lagrangian for (37) is defined as

𝐿 = 𝑧2 ( ̇𝑟2 + 𝑟2𝜙̇
2

) + 𝑧𝑧̇2 −
1

𝑧
̇𝑡
2

. (38)

Lagrangian (38) with (2) gives the following system of
determining equations:

(i) 𝜉
𝜙
= 0,

(ii) 𝜉
𝑧
= 0,

(iii) 𝜉
𝑟
= 0,

(iv) 𝜉
𝑡
= 0,

(v) 𝐴
𝑠
= 0,

(39)

(i) − (
2

𝑧
) 𝜂1
𝑠
= 𝐴
𝑡
,

(ii) 2𝑧2𝜂2
𝑠
= 𝐴
𝑟
,

(iii) 2𝑧𝜂3
𝑠
= 𝐴
𝑧
,

(40)

(i) 2𝑟2𝑧2𝜂4
𝑠
= 𝐴
𝜙
,

(ii) (
1

𝑧
) 𝜂1
𝑟
− 𝑧2𝜂2
𝑡
= 0,

(iii) (
1

𝑧
) 𝜂1
𝑧
− 𝑧𝜂3
𝑡
= 0,

(41)

(i) (
1

𝑧
) 𝜂1
𝜙
− 𝑧2𝑟2𝜂4

𝑡
= 0,

(ii) 𝑧𝜂2
𝑧
+ 𝜂3
𝑟
= 0,

(iii) 𝜂2
𝜙
+ 𝑟2𝜂4
𝑟
= 0,

(42)

(i) 𝜂3
𝜙
+ 𝑧𝑟2𝜂4

𝑧
= 0,

(ii) 𝑧𝜉
𝑠
− 2𝜂3 − 2𝜂2

𝑟
= 0,

(iii) 𝜉
𝑠
− 2𝜂1
𝑡
+ (

1

𝑧
) 𝜂3 = 0,

(43)

(i) 𝑧𝜉
𝑠
− 𝜂3 − 2𝑧𝜂3

𝑧
= 0,

(ii) 𝑧𝑟𝜉
𝑠
− 2𝑧𝜂2 − 2𝑟𝜂3 − 2𝑟𝑧𝜂4

𝜙
= 0.

(44)

For this case, the above equations yield the solution

𝜉 = 𝑐
1
𝑠 + 𝑐
2
,

𝜂1 =
2

3
𝑐
1
𝑡 + 𝑐
4
,

𝜂2 =
1

6
𝑟𝑐
1
− 𝑐
5
cos𝜙 + 𝑐

6
sin𝜙,

𝜂3 =
1

3
𝑧𝑐
1
,

𝜂4 =
1

𝑟
[𝑐
7
𝑟 + 𝑐
5
sin𝜙 + 𝑐

6
cos𝜙] ,

𝐴 = 𝑐
3
.

(45)

The Noether operators are

𝑋
1
= 𝑠

𝜕

𝜕𝑠
+
2

3
𝑡
𝜕

𝜕𝑡
+
1

6
𝑟
𝜕

𝜕𝑟
+
1

3
𝑧
𝜕

𝜕𝑧
,

𝑋
2
=
𝜕

𝜕𝑠
,

𝑋
3
=
𝜕

𝜕𝑡
,

𝑋
4
= − cos𝜙 𝜕

𝜕𝑟
+
1

𝑟
sin𝜙 𝜕

𝜕𝜙
,

𝑋
5
= sin𝜙 𝜕

𝜕𝑟
+
1

𝑟
cos𝜙 𝜕

𝜕𝜙
,

𝑋
6
=

𝜕

𝜕𝜙
.

(46)

Then, the first integrals of motion corresponding to the above
Noether operators by using (4) are

𝐼
1
= −

2

𝑧
̇𝑡 − 𝑐
3
,

𝐼
2
= 2𝑧2𝑟2𝜙̇ − 𝑐

3
,
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𝐼
3
=
1

𝑧
̇𝑡
2

− 𝑧2 ̇𝑟2 − 𝑧𝑧̇2 − 2𝑧2𝑟2𝜙̇
2

−
4𝑡

3𝑧
̇𝑡 +
𝑟𝑧2

3
̇𝑟

+
2𝑧2

3
𝑧̇ − 𝑐
3
,

𝐼
4
=
1

𝑧
̇𝑡
2

− 𝑧2 ̇𝑟2 − 𝑧𝑧̇2 − 2𝑧2𝑟2𝜙̇
2

− 𝑐
3
,

𝐼
5
= −2𝑧2 cos𝜙 ̇𝑟 + 2𝑟𝑧2 sin𝜙𝜙̇ − 𝑐

3
,

𝐼
6
= 2𝑧2 sin𝜙 ̇𝑟 + 2𝑟𝑧2 cos𝜙𝜙̇ − 𝑐

3
.

(47)

2.2.3. Type 3. The metric is given by the line element in cyl-
indrical coordinates:

𝑑𝑠2 = 𝑧2 (𝑑𝑟2 − sinh2𝑟𝑑𝑡2) + ( 𝑧

𝑏 − 𝑧
) 𝑑𝑧2

+ (
𝑏 − 𝑧

𝑧
)𝑑𝜙2,

(48)

and the restrictions are 𝑡 ∈ 𝑅, 𝜙 ∈ [0, 2𝜋), (0 < 𝑧 < 𝑏), and
0 < 𝑟.

The Lagrangian for (48) is defined as

𝐿 = 𝑧2 ( ̇𝑟2 − sinh2𝑟 ̇𝑡2) + ( 𝑧

𝑏 − 𝑧
) 𝑧̇2 + (

𝑧 − 𝑏

𝑧
) 𝜙̇
2

. (49)

Now, for (49) by using (2), we get the following system of
linear PDEs:

(i) 𝜉
𝜙
= 0,

(ii) 𝜉
𝑧
= 0,

(iii) 𝜉
𝑟
= 0,

(iv) 𝜉
𝑡
= 0,

(v) 𝐴
𝑠
= 0,

(50)

(i) − 2𝑧2sinh2𝑟𝜂1
𝑠
= 𝐴
𝑡
,

(ii) 2𝑧2𝜂2
𝑠
= 𝐴
𝑟
,

(iii) (
2𝑧

𝑏 − 𝑧
) 𝜂3
𝑠
= 𝐴
𝑧
,

(51)

(i) − 2 (
𝑧 − 𝑏

𝑧
) 𝜂4
𝑠
= 𝐴
𝜙
,

(ii) sinh2𝑟𝜂1
𝑟
− 𝜂2
𝑡
= 0,

(iii) 𝑧 sinh2𝑟𝜂1
𝑧
− (

1

𝑏 − 𝑧
) 𝜂3
𝑡
= 0,

(52)

(i) 𝑧2sinh2𝑟𝜂1
𝜙
+ (

𝑧 − 𝑏

𝑧
) 𝜂4
𝑡
= 0,

(ii) 𝑧𝜂2
𝑧
+ (

1

𝑏 − 𝑧
) 𝜂3
𝑟
= 0,

(iii) 𝑧2𝜂2
𝜙
− 𝜂4
𝑟
+ (

𝑏

𝑧
) 𝜂4
𝑟
= 0,

(53)

(i) (
𝑧

𝑏 − 𝑧
) 𝜂3
𝜙
− (

𝑧 − 𝑏

𝑧
) 𝜂4
𝑧
= 0,

(ii) 𝑧𝜉
𝑠
− 2𝜂3 − 2𝑧𝜂2

𝑟
= 0,

(iii) 𝑧𝜉
𝑠
− 2𝑧𝜂1

𝑡
− 2 coth 𝑟𝜂2 − 2𝜂3 = 0,

(54)

(i) 𝑧𝜉
𝑠
− (

𝑏

𝑏 − 𝑧
) 𝜂3 − 2𝑧𝜂3

𝑧
= 0,

(ii) (𝑧 − 𝑏) 𝜉
𝑠
− (

𝑏

𝑧
) 𝜂3 − 2 (𝑧 − 𝑏) 𝜂

4

𝜙
= 0.

(55)

For this case, (50)–(55) yield the solution

𝜉 = 𝑐
1
,

𝜂1 = 𝑐
3
,

𝜂2 = 0,

𝜂3 = 0,

𝜂4 = 𝑐
4
,

𝐴 = 𝑐
2
.

(56)

The Noether operators are

𝑋
1
=
𝜕

𝜕𝑠
,

𝑋
2
=
𝜕

𝜕𝑡
,

𝑋
3
=

𝜕

𝜕𝜙
.

(57)

And the first integrals of motion for these approximate
Noether operators by using (4) are

𝐼
1
= −𝑧2sinh2𝑟 ̇𝑡2 − 𝑧2 ̇𝑟2 − ( 𝑧

𝑏 − 𝑧
) 𝑧̇2 − (

𝑏 − 𝑧

𝑧
) 𝜙̇
2

− 𝑐
2
,

𝐼
2
= −2𝑧2sinh2𝑟 ̇𝑡 − 𝑐

2
,

𝐼
3
= 2(

𝑏 − 𝑧

𝑧
) 𝜙̇ − 𝑐

2
.

(58)

2.2.4. Type 4. The metric in the cylindrical coordinates is
defined as

𝑑𝑠2 = 𝑧2 (𝑑𝑟2 − 𝑟2𝑑𝑡2) + 𝑧𝑑𝑧2 +
1

𝑧
𝑑𝜙2. (59)
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The coordinates and parameters are restricted to 𝑡 ∈ 𝑅, 𝜙 ∈
[0, 2𝜋), 0 < 𝑧, and 0 < 𝑟.

The Lagrangian for Levi-Civita space-time in (59) is
defined as

𝐿 = 𝑧2 ( ̇𝑟2 − 𝑟2 ̇𝑡
2

) + 𝑧𝑧̇2 +
1

𝑧
𝜙̇
2

. (60)

Now substituting (60) in (2), we get the following system of
linear PDEs:

(i) 𝜉
𝜙
= 0,

(ii) 𝜉
𝑧
= 0,

(iii) 𝜉
𝑟
= 0,

(iv) 𝜉
𝑡
= 0,

(v) 𝐴
𝑠
= 0,

(61)

(i) − 2𝑟2𝑧2𝜂1
𝑠
= 𝐴
𝑡
,

(ii) 2𝑧2𝜂2
𝑠
= 𝐴
𝑟
,

(iii) 2𝑧𝜂3
𝑠
= 𝐴
𝑧
,

(62)

(i) (
2

𝑧
) 𝜂4
𝑠
= 𝐴
𝜙
,

(ii) 𝑟2𝜂1
𝑟
− 𝜂2
𝑡
= 0,

(iii) 𝑟2𝑧𝜂1
𝑧
− 𝜂3
𝑡
= 0,

(63)

(i) 𝑟2𝑧2𝜂1
𝜙
− (

1

𝑧
) 𝜂4
𝑡
= 0,

(ii) 𝑧𝜂2
𝑧
+ 𝜂3
𝑟
= 0,

(iii) 𝑧2𝜂2
𝜙
+ (

1

𝑧
) 𝜂4
𝑟
= 0,

(64)

(i) 𝑧𝜂3
𝜙
+ (

1

𝑧
) 𝜂4
𝑧
= 0,

(ii) 𝑧𝜉
𝑠
− 2𝜂3 − 2𝑧𝜂2

𝑟
= 0,

(iii) 𝑟𝑧𝜉
𝑠
− 2𝑟𝑧𝜂1

𝑡
− 2𝑧𝜂2 − 2𝑟𝜂3 = 0,

(65)

(i) 𝑧𝜉
𝑠
− 𝜂3 − 2𝑧𝜂3

𝑧
= 0,

(ii) 𝜉
𝑠
− 2𝜂4
𝜙
+ (

1

𝑧
) 𝜂3 = 0.

(66)

After some manipulations, we get the solution
𝜉 = 𝑐
1
𝑠 + 𝑐
2
,

𝜂1 = 0,

𝜂2 =
1

6
𝑟𝑐
1
,

𝜂3 =
1

3
𝑧𝑐
1
,

𝜂4 =
2

3
𝑐
1
𝜙,

𝐴 = 𝑐
3
.

(67)

The Noether operators obtained are

𝑋
1
= 𝑠

𝜕

𝜕𝑠
+
1

6
𝑟
𝜕

𝜕𝑟
+
1

3
𝑧
𝜕

𝜕𝑧
+
2

3
𝜙
𝜕

𝜕𝜙
,

𝑋
2
=
𝜕

𝜕𝑠
.

(68)

Then, the first integrals of motion associated with Noether
operators𝑋

1
and𝑋

2
by using (4) are

𝐼
1
= 𝑠𝑟2𝑧2 ̇𝑡

2

− 𝑠𝑧2 ̇𝑟2 − 𝑠𝑧𝑧̇2 −
𝑠

𝑧
𝜙̇
2

+
𝑟𝑧2

3
̇𝑟 +
2𝑧2

3
𝑧̇

+
4𝑧

3
𝜙𝜙̇ − 𝑐

3
,

𝐼
2
= 𝑟2𝑧2 ̇𝑡

2

− 𝑧2 ̇𝑟2 − 𝑧𝑧̇2 −
1

𝑧
𝜙̇
2

− 𝑐
3
.

(69)

3. Conclusion

In this paper, we computed the Noether symmetries of Pet-
rov Type DLC space-time in different coordinates in the
presence of gauge term. For both spherical and cylindrical
coordinates, we got an overdetermined system of nineteen
linear partial differential equations. We found two Noether
generators for first solution in the spherical coordinates, that
is, 𝜕/𝜕𝑠 and 𝜕/𝜕𝑡, and for second solution we also got two
symmetries. One symmetry 𝜕/𝜕𝑠 obtained in first solution
is common and the additional symmetry is 𝜕/𝜕𝜙. Similarly,
we investigated the Noether symmetries of all solutions
in cylindrical coordinates. Further, corresponding energy
contents are also discussed for each generator.
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