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We extend results of Favini, Nashed, and Zhao on singular differential equations using the 𝑔-Drazin inverse and the order of
a quasinilpotent operator in the sense of Miekka and Nevanlinna. Two classes of singularly perturbed differential equations are
studied using the continuity properties of the 𝑔-Drazin inverse obtained by Koliha and Rakočević.

1. Introduction

Let 𝐴 be a bounded or closed linear operator in a Banach
space 𝑋 and let 𝑓 be a 𝑋-valued function. The following
initial value problem

𝐴
𝑑𝑥 (𝑡)

𝑑𝑡
+ 𝑥 (𝑡) = 𝑓 (𝑡) 𝑥 (0) = 𝑥

0
, 𝑡 ∈ [0, 𝑇] (1)

is central to the analysis of the abstract singular equation

𝑑𝑀𝑥 (𝑡)

𝑑𝑡
+ 𝑁𝑥 (𝑡) = 𝑓 (𝑡)

lim
𝑡→0

𝑀𝑥(𝑡) = 𝑥
0
, 𝑡 ∈ (0,∞) ,

(2)

where 𝑀 and 𝑁 are closed linear operators from a Banach
space 𝑌 to 𝑋. Problem (2) and its variations were exten-
sively studied in [1–3] and the references therein. In [4–6],
Campbell studied (2) in matrix setting and applied his results
in optimal control problems. More recently, related singular
equations with delay are studied in [7–10]. Thus far problem
(1) has been considered when 𝐴 is singular (noninvertible)
but Drazin invertible in the classical sense. A bounded linear
operator is Drazin invertible in the classical sense if 0 is a pole
of the resolvent of 𝐴. In [11], Koliha generalized the concept
of Drazin invertibility to the case where 0 is only an isolated
spectral point of the spectrum of 𝐴. Drazin invertibility in

the generalized sense for closed linear operators was studied
in [12].

In this paper we study problem (1) for the case where
the bounded linear operator 𝐴 is singular but 𝑔-Drazin
invertible. Even though the case of𝐴 being closed can be dealt
with using the 𝑔-Drazin inverse for closed linear operators in
[12], we focus on the bounded case since it has been pointed
out in [1–3] that it is enough to consider problem (1) when
𝐴 is bounded. Following [11], a bounded linear operator 𝐴 is
𝑔-Drazin invertible if 0 is not an accumulated spectral point
of 𝐴. We write 𝜎(𝐴) for the spectrum of 𝐴. A bounded linear
operator 𝐵 is called a 𝑔-Drazin inverse of 𝐴 if

𝐵𝐴 = 𝐴𝐵,

𝐵𝐴𝐵 = 𝐵,

𝜎 (𝐴 (𝐼 − 𝐴𝐵)) = {0} .

(3)

Such an operator is unique, if it exists and is denoted by
𝐴
𝐷. It follows that if 𝐴 is 𝑔-Drazin invertible, then 𝐴 can be

decomposed to an invertible operator and a quasinilpotent
operator. This fact plays a crucial role in our analysis. Recall
that a bounded linear operator 𝑁 is quasinilpotent if the
spectrum of 𝑁 is identical to 0 and 𝑁 is nilpotent if there
is a positive integer 𝑘 such that 𝑁𝑘 = 0. The smallest such 𝑘

is the index of the nilpotency. The following result, which is
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due to Koliha [11], allows such decomposition of a 𝑔-Drazin
invertible operator.

Theorem1 (see [11,Theorem7.1]). If𝐴 is a𝑔-Drazin invertible
operator in a Banach space 𝑋, then 𝑋 = 𝑅(𝐴

𝐷
𝐴) ⊕ 𝑁(𝐴

𝐷
𝐴),

𝐴 = 𝐴
1
⊕𝐴
2
, where𝐴

1
is invertible,𝐴

2
is quasinilpotent with

respect to this direct sum, and

𝐴
𝐷

= 𝐴
−1

1
⊕ 0. (4)

Moreover, if𝑃 is the spectral projection corresponding to 0, then
𝑃 = 𝐼 − 𝐴𝐴

𝐷.

We will show that, under certain condition on the rate
of which the powers of the quasinilpotent part decay, the
solution to problem (1) exists and is given by an explicit
formula. A function 𝑢(⋅) is a solution to problem (1) if it is
differentiable and satisfies the differential equation in [0, 𝑇]

and the initial condition 𝑥(0) = 𝑥
0
.

In Section 3we study two classes of the so-called “singular
singularly perturbed initial value problem”:

𝐴 (𝜀)
𝑑𝑥
𝜀
(𝑡)

𝑑𝑡
+ 𝑥
𝜀
(𝑡) = 𝑓

𝜀
(𝑡)

𝑥
𝜀
(0) = 𝑥

(𝜀)

0
, 𝜀 ∈ [0, 𝜀

0
) , 𝑡 ∈ [0, 𝑇] ,

(5)

𝜀𝐴 (𝜀)
𝑑𝑥
𝜀
(𝑡)

𝑑𝑡
+ 𝑥
𝜀
(𝑡) = 𝑓

𝜀
(𝑡)

𝑥
𝜀
(0) = 𝑥

(𝜀)

0
, 𝜀 ∈ [0, 𝜀

0
) , 𝑡 ∈ [0, 𝑇] .

(6)

Problem (5) was extensively studied by Campbell [4, 6] in
matrix setting. We will show that if the continuity of the 𝑔-
Drazin inverse is assumed, then the solution to (5) converges
to the solution of the reduced system when 𝜀 converges to
0
+. We will also show that the solution to (6) converges to 0

as 𝜀 → 0
+, assuming the continuity of the 𝑔-Drazin inverse

and the appropriate location of the spectrum of 𝐴(0). The
operators 𝐴(𝜀) under consideration are a family of bounded
linear operators on a Banach space 𝑋. For properties of the
continuity of the classical Drazin inverse and the 𝑔-Drazin
inverse, see [13–15].

In the sequel we will use the following definition, which
is attributed to to Miekkala and Nevanlinna [16].

Definition 2. A quasinilpotent operator 𝐴 is of finite order 𝜔
if the resolvent of 𝐴 is of finite order 𝜔 as an entire function
in 1/𝜆. The value of 𝜔 is a nonnegative number for which

‖𝑅 (𝜆, 𝐴)‖ ≤ 𝑒
1/|𝜆|
𝜔+𝜀

(7)

holds for 𝜀 > 0 with small enough |𝜆| but fails for 𝜀 < 0.

Nilpotent operators are quasinilpotent of order zero but
the converse is not true since a quasinilpotent is nilpotent of
order 𝑛 if and only if the resolvent is a polynomial in 1/𝜆

of order 𝑛. The following result in [16] is important for our
analysis.

Theorem 3 (see [16, Proposition 3.5]). A quasinilpotent oper-
ator 𝐴 is of finite order if

𝜇 fl lim sup
𝑛→∞

𝑛 log 𝑛
log (1/ ‖𝐴𝑛‖)

(8)

is finite, and then the order 𝜔 is equal to 𝜇.

Using Theorem 1, we say that a 𝑔-Drazin invertible
operator 𝐴 is of order 𝜔 if the quasinilpotent part of 𝐴 is not
0 and of order 𝜔.

2. Singular Initial Value Problem

In this section we extend the results on singular differential
equations in [1,Theorem 3.1] and [3,Theorem 4.1] for the case
where 𝐴 is Drazin invertible in the classical sense to the case
where 𝐴 is 𝑔-Drazin invertible. The next theorem shows that
when the function 𝑓 is analytic in [0, 𝑇], problem (1) can be
solved when 𝐴 is quasinilpotent of order 𝜔 < 1. This result
extends [1, Lemma 3.1].

Theorem 4. If the operator 𝐴 is quasinilpotent of order 𝜔 < 1

and 𝑓 is analytic in [0, 𝑇], then problem (1) has a unique
solution if and only if 𝑥

0
= ∑
∞

𝑛=0
(−1)
𝑛
𝐴
𝑛
𝑓
(𝑛)

(0), and the
solution is given by

𝑥 (𝑡) =

∞

∑

𝑛=0

(−1)
𝑛
𝐴
𝑛
𝑓
(𝑛)

(𝑡) . (9)

Proof. By direct verification it is clear that if 𝑥(𝑡) =

∑
∞

𝑛=0
(−1)
𝑛
𝐴
𝑛
𝑓
(𝑛)

(𝑡) converges uniformly on [0, 𝑇], then 𝑥(𝑡)

is a solution of (1) if and only if 𝑥
0

= ∑
∞

𝑛=0
(−1)
𝑛
𝐴
𝑛
𝑓
(𝑛)

(0).
Our proof of the existence of the solution is therefore reduced
to showing that the infinite series converges uniformly on
[0, 𝑇]. Observe that ∑∞

𝑛=0
(−1)
𝑛
𝐴
𝑛
𝑓
(𝑛)

(𝑡) converges pointwise
in 𝑋 if it converges absolutely. Since each 𝑓

(𝑛) is continuous
on [0, 𝑇], there exists 𝜏

𝑛
∈ [0, 𝑇] such that ‖𝑓

(𝑛)
(𝑡)‖ ≤

‖𝑓
(𝑛)

(𝜏
𝑛
)‖ for all 𝑡 ∈ [0, 𝑇]. Hence by the Weierstrass 𝑀-

test, for uniform convergence it is sufficient to show that
∑
∞

𝑛=0
‖𝐴
𝑛
𝑓
(𝑛)

(𝜏
𝑛
)‖ converges.

For each 𝜏
𝑛
∈ [0, 𝑇],

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑛
𝑓
(𝑛)

(𝜏
𝑛
)
󵄩󵄩󵄩󵄩󵄩

1/𝑛

≤ lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑛!𝐴
𝑛󵄩󵄩󵄩󵄩
1/𝑛 lim sup
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓
(𝑛)

(𝜏
𝑛
)

𝑛!

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1/𝑛

.

(10)

Since the quasinilpotent 𝐴 is of order 𝜔 < 1, by Theorem 3
there exist 𝜀 > 0 and 𝑛 > 𝑁(𝜀) such that

𝑛 log 𝑛
log (1/ ‖𝐴𝑛‖)

< 𝜔 + 𝜀 < 1, (11)

which implies that 𝑛 log 𝑛 < log(1/‖𝐴𝑛‖)𝜔+𝜀. Since log 𝑛! =

𝑂(𝑛 log 𝑛), for sufficiently large 𝑛,

log 𝑛! < log( 1

‖𝐴𝑛‖
)

𝜔+𝜀

so (𝑛!)
1/𝑛

<
󵄩󵄩󵄩󵄩𝐴
𝑛󵄩󵄩󵄩󵄩
−(𝜔+𝜀)/𝑛

, (12)
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which implies ‖𝑛!𝐴𝑛‖1/𝑛 < (‖𝐴
𝑛
‖
1/𝑛

)
1−(𝜀+𝜔). Since 𝜔 + 𝜀 < 1,

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑛!𝐴
𝑛󵄩󵄩󵄩󵄩
1/𝑛

≤ lim
𝑛→∞

(
󵄩󵄩󵄩󵄩𝐴
𝑛󵄩󵄩󵄩󵄩
1/𝑛

)
1−(𝜀+𝜔)

= ( lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐴
𝑛󵄩󵄩󵄩󵄩
1/𝑛

)
1−(𝜔+𝜀)

= 0.

(13)

On the other hand, if a function 𝑔 is analytic in an open set
𝐷 (in the set of real numbers), for every compact set 𝐾 ⊂ 𝐷,
there exists a constant 𝐶 such that for every 𝑡 ∈ 𝐾 and every
nonnegative integer 𝑘 the following bound holds (see [17]):

󵄩󵄩󵄩󵄩󵄩
𝑔
(𝑘)

(𝑡)
󵄩󵄩󵄩󵄩󵄩
≤ 𝐶
𝑘+1

𝑘!. (14)

Using the above result and the condition that 𝑓 is analytic in
[0, 𝑇], there exists a constant 𝐶 independent of 𝜏

𝑛
∈ [0, 𝑇]

and 𝑛 such that
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑛)

(𝜏
𝑛
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝐶
𝑛+1

𝑛!. (15)

Dividing both sides of the above inequality by 𝑛! and raising
it to the power of 1/𝑛, we get lim sup

𝑛→∞
‖(𝑛!)
−1
𝑓
(𝑛)

(𝜏
𝑛
)‖
1/𝑛

≤

𝐶. Therefore lim sup
𝑛→∞

‖𝐴
𝑛
𝑓
(𝑛)

(𝜏
𝑛
)‖
1/𝑛

= 0, which con-
cludes that ∑∞

𝑛=0
‖𝐴
𝑛
𝑓
(𝑛)

(𝜏
𝑛
)‖ converges.

For the uniqueness of the solution, it is enough to show
that 0 is the only solution of (1) with 𝑥

0
= 0 and 𝑓(𝑡) = 0.

Taking the Laplace transform of (1) with 𝑥(0) = 0 and 𝑓(𝑡) =

0, we obtain

(𝑠𝐴 + 𝐼)𝑋 (𝑠) = 0, (16)

where 𝑋(𝑠) denotes the Laplace transform of 𝑥(𝑡). Since the
operator 𝑠𝐴 + 𝐼 is invertible for every complex number 𝑠, we
can conclude that𝑋(𝑠) = 0, which implies that 𝑥(𝑡) = 0 is the
only solution.

We are now in a position to show our main result.

Theorem 5. If 𝐴 is 𝑔-Drazin invertible operator of order 𝜔 <

1, then problem (1) has a unique solution if and only if 𝑃𝑥
0
=

∑
∞

𝑛=0
(−1)
𝑛
𝐴
𝑛
𝑃𝑓
(𝑛)

(0), and the solution is given by

𝑥 (𝑡) = 𝐴
𝐷 exp (−𝐴

𝐷
𝑡) (𝐼 − 𝑃) 𝑥0

+ ∫

𝑡

0

𝐴
𝐷 exp (−𝐴

𝐷
(𝑡 − 𝑠)) (𝐼 − 𝑃) 𝑓 (𝑠) 𝑑𝑠

+

∞

∑

𝑛=0

(−1)
𝑛
𝐴
𝑛
𝑃𝑓
(𝑛)

(𝑡) ,

(17)

where 𝑃 = 𝐼 − 𝐴𝐴
𝐷.

Proof. Since 𝐴 is 𝑔-Drazin invertible of order 𝜔 < 1, by
Theorem 1, 𝑋 = 𝑅(𝐼 − 𝑃) ⊕ 𝑁(𝐼 − 𝑃), 𝐴 = 𝐴

1
⊕ 𝐴
2
, where

𝐴
1
is invertible and 𝐴

2
is quasinilpotent of order 𝜔 < 1

with respect to the direct sum. Therefore problem (1) has a
unique solution if and only if each of the following two initial

value problems has a unique solution on (𝐼 − 𝑃)𝑋 and 𝑃𝑋,
respectively:

𝐴
1

𝑑𝑥
1
(𝑡)

𝑑𝑡
+ 𝑥
1
(𝑡) = 𝑓

1
(𝑡) , 𝑥

1
(0) = (𝐼 − 𝑃) 𝑥

0
, (18)

𝐴
2

𝑑𝑥
2 (𝑡)

𝑑𝑡
+ 𝑥
2
(𝑡) = 𝑓

2
(𝑡) , 𝑥

2
(0) = 𝑃𝑥

0
, (19)

where 𝑓
1
(𝑡) = (𝐼 − 𝑃)𝑓(𝑡) and 𝑓

2
(𝑡) = 𝑃𝑓(𝑡). Applying

Theorem 4 to (19),

𝑥
2 (𝑡) =

∞

∑

𝑛=0

(−1)
𝑛
𝐴
𝑛

2
𝑓
(𝑛)

2
(𝑡) (20)

is the unique solution of (19) if and only if 𝑃𝑥
0

=

∑
∞

𝑛=0
(−1)
𝑛
𝐴
𝑛

2
𝑓
(𝑛)

2
(0).

Since 𝐴
1
is invertible, (18) has a unique solution given by

𝑥
1
(𝑡) = 𝐴

−1

1
exp (−𝐴

−1

1
𝑡) (𝐼 − 𝑃) 𝑥

0

+ ∫

𝑡

0

𝐴
−1

1
exp (−𝐴

−1

1
(𝑡 − 𝑠)) 𝑓1 (𝑠) 𝑑𝑠.

(21)

Since 𝐴𝐷(𝐼 − 𝑃) = 𝐴
−1

1
(𝐼 − 𝑃) and 𝐴

𝑛
𝑃 = 𝐴

𝑛

2
𝑃, we obtain

𝑥 (𝑡) = 𝐴
𝐷 exp (−𝐴

𝐷
𝑡) (𝐼 − 𝑃) 𝑥

0

+ ∫

𝑡

0

𝐴
𝐷 exp (−𝐴

𝐷
(𝑡 − 𝑠)) (𝐼 − 𝑃) 𝑓 (𝑠) 𝑑𝑠

+

∞

∑

𝑛=0

(−1)
𝑛
𝐴
𝑛
𝑃𝑓
(𝑛)

(𝑡) .

(22)

On modifying the proof of Theorem 5, we can extend
[3, Theorem 4.1] for the case where 𝐴 is a closed linear
operator. This can be done by replacing the 𝑔-Drazin inverse
for bounded linear operators by that of closed linear operators
using Definition 2.1 in [12] and by replacing Theorem 1 by
Theorem 2.3 in [12].

3. Singularly Perturbed Differential Equations

In this section we use the results in previous sections and
the continuity of the 𝑔-Drazin inverse to study two classes
of singularly perturbed differential equations in the forms of
(5) and (6).

We first show the stability of (6) under some Lyapunov-
type conditions. Let𝐻− and𝐻

+ denote the open left half- and
right half-plane of the complex plane, respectively. In the next
two results, we write 𝐴 and 𝑃 for 𝐴(0) and 𝑃(0), respectively.

Theorem 6. Let 𝐴(𝜀) be a 𝑔-Drazin invertible operator of
order 𝜔 < 1, let 𝐴𝐷(𝜀) be the corresponding Drazin inverse,
and let 𝑓

𝜀
(𝑡) be analytic function in [0, 𝑇] for each 𝜀 ∈ [0, 𝜀

0
).

Equation (6) has a unique solution for each 𝜀 ∈ [0, 𝜀
0
) if
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and only if 𝑃(𝜀)𝑥(𝜀)
0

= ∑
∞

𝑛=0
(−1)
𝑛
𝜀
𝑛
𝐴
𝑛
(𝜀)𝑃(𝜀)𝑓

(𝑛)

𝜀
(0), and the

solution is given by

𝑥
𝜀
(𝑡) = 𝜀

−1
𝐴
𝐷
(𝜀) exp (−𝜀

−1
𝐴
𝐷
(𝜀) 𝑡) (𝐼 − 𝑃 (𝜀)) 𝑥

(𝜀)

0

+ ∫

𝑡

0

𝜀
−1
𝐴
𝐷
(𝜀) exp (−𝜀

−1
𝐴
𝐷
(𝜀) (𝑡 − 𝑠)) (𝐼 − 𝑃 (𝜀))

⋅ 𝑓
𝜀
(𝑠) 𝑑𝑠 +

∞

∑

𝑛=0

(−1)
𝑛
𝜀
𝑛
𝐴
𝑛
(𝜀) 𝑃 (𝜀) 𝑓

(𝑛)

𝜀
(𝑡) ,

(23)

where 𝑃(𝜀) is the spectral projection of 𝐴(𝜀) corresponding to
0. Furthermore, if 𝜎(𝐴) ⊂ 𝐻

+
∪ 0, 𝐴(𝜀) → 𝐴, 𝑓

𝜀
(𝑡) → 𝑓

0
(𝑡),

𝑥
(𝜀)

0
→ 𝑥
0
, and 𝑃(𝜀) → 𝑃 as 𝜀 → 0

+, then

lim
𝜀→0
+

𝑥
𝜀
(𝑡) = 0. (24)

Proof. The fact that the solution of (6) exists and that 𝑥
𝜀
(𝑡)

is given by (23) follows from Theorem 5. Since 𝑃(𝜀) → 𝑃,
𝐴(𝜀) → 𝐴, and 𝑓

𝜀
(𝑡) → 𝑓

0
(𝑡) as 𝜀 → 0

+, we can show
that ∑

∞

𝑛=0
(−1)
𝑛
𝜀
𝑛
𝐴
𝑛
(𝜀)𝑃(𝜀)𝑓

(𝑛)

𝜀
(𝑡) converges uniformly in a

compact set of [0, 𝜀
0
); hence it converges to zero as 𝜀 → 0

+.
Since 𝐴(𝜀) → 𝐴 and 𝑃(𝜀) → 𝑃, it follows that 𝐴𝐷(𝜀) → 𝐴

𝐷

as 𝜀 → 0
+ (see [15, Theorem 2.4]). By [11, Theorem 4.4],

𝜎(𝐴
𝐷
) \ {0} = {𝜆

−1
; 𝜆 ∈ 𝜎(𝐴)\{0}} ⊂ 𝐻

+, and 𝜎(−𝐴
𝐷
) \ {0} ⊂

𝐻
−. Since 0 is an isolated spectral point, there are disjoint

open sets 𝑈
1
and 𝑈

0
such that

𝜎 (−𝐴
𝐷
) \ {0} ⊂ 𝑈

1
⊂ 𝐻
−
, 0 ∈ 𝑈

0
. (25)

By the upper semicontinuity of the spectrum there is 0 < 𝜀
1
<

𝜀
0
such that

𝜎 (−𝐴
𝐷
(𝜀)) \ {0} ⊂ 𝑈

1
if 𝜀 < 𝜀

1
< 𝜀
0
, (26)

and there are a bounded open set𝐻
1
such that 𝜎(−𝐴𝐷)\{0} ⊂

𝐻
1
⊂ 𝐻
1
⊂ 𝑈
1
and a Cauchy cycle 𝛾 with respect to (𝑈

1
, 𝐻
1
).

Since 𝐴
𝐷
(𝜀) → 𝐴

𝐷 as 𝜀 → 0
+, it follows that

lim
𝜀→0
+

(𝜆𝐼 + 𝐴
𝐷
(𝜀))
−1

= (𝜆𝐼 + 𝐴
𝐷
)
−1

(27)

uniformly for 𝜆 ∈ 𝛾. Therefore there exists a constant 𝑐 such
that

sup
𝜆∈𝛾

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜆𝐼 + 𝐴

𝐷
(𝜀))
−1󵄩󵄩󵄩󵄩󵄩󵄩

= 𝑐 (28)

for all 𝜀 < 𝜀
1
. Let ] = −sup{Re𝜆 : 𝜆 ∈ 𝛾}. Then ] > 0 as

𝛾 ∈ 𝐻
− and

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

exp(−
𝐴
𝐷
(𝜀)

𝜀
) (𝐼 − 𝑃 (𝜀))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

2𝜋𝑖
∫
𝛾

𝑒
𝜆/𝜀

(𝜆𝐼 + 𝐴
𝐷
(𝜀))
−1

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑐 ⋅ 𝑙 (𝛾)

2𝜋
𝑒
−]/𝜀

,

(29)

which implies ‖ exp(−𝐴𝐷(𝜀)/𝜀)(𝐼 − 𝑃(𝜀))‖ = 𝑂(𝑒
−]/𝜀

). On the
other hand, 𝐴𝐷(𝜀)/𝜀 = 𝑂(𝜀

−1
) since 𝐴

𝐷
(𝜀) → 𝐴

𝐷 as 𝜀 → 0
+.

Therefore the first two terms of (23) converge to zero as 𝜀 →

0
+. We conclude 𝑥

𝜀
(𝑡) → 0 as 𝜀 → 0

+.

We can now easily show that the solution of (5) converges
to the solution of the associated reduced equation as 𝜀 → 0

+

if the continuity of the 𝑔-Drazin inverse is assumed.

Theorem 7. Let 𝐴(𝜀) be 𝑔-Drazin invertible operator of order
𝜔 < 1 and let 𝐴𝐷(𝜀) be the corresponding Drazin inverse for
each 𝜀 ∈ [0, 𝜀

0
). Equation (5) has a unique solution for each

𝜀 ∈ [0, 𝜀
0
) if and only if𝑃(𝜀)𝑥(𝜀)

0
= ∑
∞

𝑛=0
(−1)
𝑛
𝐴
𝑛
(𝜀)𝑃(𝜀)𝑓

(𝑛)

𝜀
(0),

and the solution is given by

𝑥
𝜀
(𝑡) = 𝐴

𝐷
(𝜀) exp (−𝐴

𝐷
(𝜀) 𝑡) (𝐼 − 𝑃 (𝜀)) 𝑥

(𝜀)

0

+ ∫

𝑡

0

𝐴
𝐷
(𝜀) exp (−𝐴

𝐷
(𝜀) (𝑡 − 𝑠)) (𝐼 − 𝑃 (𝜀))

⋅ 𝑓
𝜀
(𝑠) 𝑑𝑠 +

∞

∑

𝑛=0

(−1)
𝑛
𝐴
𝑛
(𝜀) 𝑃 (𝜀) 𝑓

(𝑛)

𝜀
(𝑡) ,

(30)

where 𝑃(𝜀) is the spectral projection of 𝐴(𝜀) corresponding to
0. Furthermore, if 𝐴(𝜀) → 𝐴, 𝑓

𝜀
(𝑡) → 𝑓

0
(𝑡), 𝑥(𝜀)
0

→ 𝑥
0
, and

𝑃(𝜀) → 𝑃 as 𝜀 → 0
+, then

lim
𝜀→0
+

𝑥
𝜀
(𝑡) = 𝑥 (𝑡) , (31)

where 𝑥(𝑡) is the solution of the associated reduced equation

𝐴
𝑑𝑥 (𝑡)

𝑑𝑡
+ 𝑥 (𝑡) = 𝑓

0 (𝑡) 𝑥 (0) = 𝑥
0
, 𝑡 ∈ [0, 𝑇] . (32)

Proof. The proof follows from Theorem 5 and [15, Theorem
2.4].

4. Conclusions

We have obtained some results on abstract singular differ-
ential equations on a Banach space using the generalized
Drazin inverse. In particular, the associated singular operator
is assumed to have a generalized Drazin inverse instead
of a classical one. Furthermore, two classes of singularly
perturbed system have been studied. Under the continuity
conditions of the generalized Drazin inverses, we have shown
that the solution to the singularly perturbed differential
equation converges to the solution of the reduced equation.
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