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The effects of milling atmosphere and mechanical alloying (MA) duration on the effective lattice parameter, crystallite size, lattice
strain, and amorphization rate of the W-0.5 wt.% Ti powders were investigated. W-0.5 wt.% Ti powders were mechanically alloyed
(MA’d) for 10 h and 20 h in a high energy ball mill. Moreover, morphology of the powders for various MA was analyzed using SEM
microscopy.Their powder density was also measured by helium pycnometer. The dry milled agglomerated powders have spherical
particle, while wet milled powders have layered morphology. Milling media and increasing of milling time significantly reduce the
crystallite size. The smallest crystallite size is 4.93 nm which belonged to the dry milled powders measured by Lorentzian method
after 20 hours’ MA. However, after 20 hours, MA’d powders show the biggest crystallite size, as big as 57.07 nm, measured with the
same method in ethanol.

1. Introduction

Tungsten (W) alloys are attractive candidate materials for
various high temperature structural applications due to their
excellent properties such as high melting point, high modu-
lus, high resistance of thermal shock, and low coefficient of
thermal expansions (CTE) [1, 2]. However, alloying of mon-
olithic W is mandatory for applications which require high
strengths at elevated temperatures since mechanical proper-
ties of monolithic W decrease significantly with increasing
temperatures [3–11]. Small amounts of nickel (Ni) added as a
transition element during mechanical milling (MM) and/or
mechanical alloying (MA) activate sintering and enable the
fabrication of fully dense W-based alloys and composites at
lower temperatures than the usual sintering temperatures of
W [7–13]. Similar to Ni, titanium (Ti) is probably a good
candidate in triggering activated-sintering mechanism in W;
however, its role as an activator inWhas not been investigated
yet. MM and MA are complex processes which involve the
optimization of a number of variables to achieve a desired
phase or microstructure. Milling media, milling time, ball to
powder ratio, milling speed, and starting powder size range

influence both the stages of milling and the quality of milled
product [14–16].

MAandMM in differentmillingmedia result in changing
of powder properties and consequently alter mechanical,
physical, and thermal properties of the final products. During
the MA/MM process, the flattened layers overlap and form
cold welds for soft powders which results in the formation
of layered composite powder particles consisting of various
combinations of the starting ingredients. On the other hand,
the work-hardened elements or composite powder particles
might be fractured at the same time. These competing events
of cold welding (with plastic deformation and agglomer-
ation) and fracturing (size reduction) continue repeatedly
throughout the milling period [17–19]. Finally, a refined
and homogenized microstructure will be obtained while the
composition of the powder particles is of the same proportion
of the starting constituent powders [20, 21]. Occasionally,
metal powders are milled in a liquid medium also named as
wet milling. However, if there is no liquid used during the
milling process it is called dry milling [22, 23]. During wet
milling, due to the low efficiency such as retarding crystallite
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refinement attributes to the decrease of the ball’s impact force
on powders [17, 18, 23].

Currently, there is no available information in the lit-
erature regarding W-Ti alloys MA’d in various media such
as Ar, ethanol, and isopropyl alcohol (IPA). Moreover, no
investigations have been reported on the measurement of the
lattice parameter, crystallite size, and lattice strain of theMA’d
W-0.5 wt.% Ti in different medium. The aim of the present
study is to investigate the combined effects of mechanical
alloying (MA) and various milling media on the W-0.5 wt.%
Ti powder alloy.

2. Experimental Procedure

Elemental tungsten (W) (Eurotungstene�, 99.9% purity,
45 𝜇m average particle size) and titanium (Ti) (Alfa Aesar�,
99.9% purity, 45 𝜇m average particle size) powders were used
in the current study. W powders were premilled for 10 h in
a Spex� Duo Mixer/Mill 8000D with a speed of 1425 rpm
in a tungsten carbide (WC) vial with 6.35mm diameter
(1/4 inches) WC balls. Loading and unloading of vials were
carried out inside a Plaslabs� glove box under purifiedAr gas
(99.995% purity) to prevent oxidation duringMA.The ball to
powder weight ratio (BPR) was 10 : 1.

The premilledW and elemental Ti powders were blended
to constitute the W-0.5 wt.% Ti composition and the powder
blends were mechanically alloyed (MA’d) in argon atmos-
phere (dry milling media), in ethanol and isopropyl alco-
hol (wet milling media) for 10 and 20 h in a Spex� Duo
Mixer/Mill 8000D using the same conditions used for prem-
illing: loading and unloading of vials were carried out inside
a Plaslabs� glove box under purified Ar gas (99.995% purity)
and BPR was 10 : 1.

Morphological characterizations of MA’d W-0.5 wt.% Ti
powders were carried out in a Jeol� JCM-6000 Benchtop
Scanning Electron Microscope attached with a Jeol WX-
36210DPP EDS unit (Energy Dispersive Spectrometer) using
an accelerating voltage of 15 kV.Microstructural characteriza-
tions of MA’d W-0.5 wt.% Ti powders were performed using
a Bruker� D8 Advance X-ray diffractometer (XRD) (CuK

𝛼

radiation, 𝜆 = 1.542 Å). Crystallite size and strain rates were
measured and calculated using TOPAS 5 (Bruker AXS)
software using Lorentzian and Gaussian methods. Powder
particle size measurements were performed in a Malvern�
Master-sizer Laser particle size analyzer and in a Microtrac�
NANO-flex in situ particle size analyzer. True densities of
MA’d W-0.5 wt.% Ti powders were measured in a helium
Pycnometer Micromeritics AccuPyc� II 1340.

3. Results and Discussions

Figures 1(a)–1(f) are the SEM micrographs showing the
morphologies of W-0.5 wt.% Ti powders MA’d for 10 h and
20 h in different millingmedia: (a) in Ar (drymilling, Figures
1(a) and 1(b)), (b) in isopropyl alcohol (wet milling, Figures
1(c) and 1(d)), and (c) in ethanol (wetmilling, Figures 1(e) and
1(f)). As seen in Figures 1(a) and 1(b), powders MA’d in Ar
using dry milling conditions are in the form of agglomerates

comprising nearly spherical or spheroidal shaped powder
particles having a maximum particle size about 400 nm.
Further, MA duration in dry milling conditions has hardly
had any effect on the morphology and size of the particles
as can be clearly observed in Figures 1(a) and 1(b). On the
other hand, as seen in Figures 1(c) and 1(e), during wet
milling, layered morphologies formed after MA for 10 h.
When MA duration increased to 20 h, particles were shat-
tered into smaller fragments and consequently the particle
sizes were reduced (Figures 1(d) and 1(f)). It is interesting to
note that the powder particles fabricated during MA in IPA
are smaller than those milled in ethanol. Energy dispersive
spectroscopy (EDS) spectral analyses revealed the presence of
WC regions and/or WC particles in the wet milled powders.
In addition, EDS mapping analyses showed homogeneous Ti
distributions within W particles in all MA’d powders.

XRD patterns of MA’d W-0.5 wt.% Ti powders are illus-
trated in Figure 2. The XRD patterns of all MA’d W-0.5 wt.%
Ti powders revealed the presence of the characteristic peaks
of the W (Ti) solid solution phase denoted as the Ti

𝑥
W
(1−𝑥)

phase (Bravais lattice: b.c.c.; S.G.: Im-3m (229); 𝑎 = 0.316 nm;
ICDD #49-1440) and small amounts of the WC phase
(Bravais lattice: h.c.p.; S.G.: P-6m2 (187); 𝑎 = 0.290 nm, 𝑐 =
0.283 nm; ICDD #57-0939).

It is evident from Figure 2 that mechanical alloying,
regardless of the milling conditions (wet or dry milling and
milling duration), caused the decrease of the peak inten-
sities of W (Ti) solid solution phase and increased peak
line broadening. MA’d powders underwent deformation and
cold welding caused by continuous collision and fractur-
ing between balls and powders. Thus, the intensity of the
diffraction peaks decreased with increasing milling time and
became wider due to severe lattice distortion and grain size
refinement. However, peak broadening of the W-0.5 wt.% Ti
powders MA’d in dry milling conditions (in Ar) is much
more than those MA’d in wet milling conditions (in both
IPA and ethanol). This is an expected observation since
conditions employed during dry milling are more severe
than those during wet milling. In other words, most of the
kinetic energy generated by the ball-to-ball and ball-to-vial
collisions is absorbed by the liquid media during wet milling
as opposed to dry milling where almost all kinetic energy is
directly transferred to the powders. As a consequence, it is
expected that the crystallite sizes of the dry milled powders
are to bemuch smaller and their lattice deformation amounts
are higher than those milled in wet conditions. It is also
seen in Figure 2 that, due to the effects of MA, intensive
WC contamination appeared afterMA [8]. Presumably, these
peaks arose from the milling media (vial and balls) owing to
the excessive impact energy accumulated during mechanical
alloying at a longer duration of 20 h [13]. Comparing wet and
dryMA shows thatWCpeaks aremore intense inwetmilling,
particularly in IPA [8]. In Ar atmosphere, powders covered
whole surface ofWCballs and they became smaller. However,
in wet milling, the surfaces of the WC balls were clean and
during colliding these balls were eroded probably leading to
WC contamination in the powders. As shown in Figure 1,
small particles of WC are seen in wet MA’d powders and EDS
results supported the WC contamination in the long-time
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Figure 1: SEMmicrographs of MA’dW-0.5 wt.% Ti powders in different milling media: (a) MA’d for 10 h and (b) MA’d for 20 h in Ar, (c) MA’d
for 10 h and (d) MA’d for 20 h in isopropyl alcohol (IPA), and (e) MA’d for 10 h and (f) MA’d for 20 h in ethanol.

Table 1: Crystallite size and lattice strain values of MA’d W-0.5 wt.% Ti powders in different milling media.

Milling media Pure W Ethanol IPA Ar
MA time (h) 10 20 10 20 10 20
Crystallite size L (nm) 510.47 61.00 57.07 41.30 17.27 6.53 4.93
Crystallite size G (nm) 436.90 31.17 30.13 20.67 13.30 5.73 5.57
Lattice strain L 0.0029 0.0357 0.3409 0.3402 1.4823 2.1784 3.4140
Lattice strain G 0.0024 0.0436 0.6308 0.4636 1.8015 2.5255 3.5669

milling. Interestingly, these particles were not found in the
SEMmicrographs of dry milled powders.

Crystallite size and lattice internal strain determination
are the most two important applications in powder X-ray dif-
fractometry for materials characterization. Table 1 shows the
variation of the crystallite sizeswithmilling time (10 and 20 h)

in three different milling media calculated by Lorentzian and
Gaussian methods. High speed ball milling powders result
in peak intensity reduction as well as a broadening in full
width at half maximum (FWHM). This happens due to a
reduction in the crystallite size and an accumulation of the
lattice strain.These changes were prominent with variation of
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Figure 2: XRD patterns of MA’d W-0.5 wt.% Ti powders in different milling media after 10 h and 20 h MA.

milling time andmillingmedia.There was a rapid decrease in
crystallite size ofW-0.5 wt.% Ti powders that occurs from the
blended powders and powders mechanically alloyed for 10 h.
However, after 10 h of MA, only a slight further reduction in
crystallite size occurs. According to Zuhailawati and Mahani
[24] crystallite size measurement in this study was per-
formed using Lorentzian and Gaussian methods. The results
indicate that selected MA media were highly effective in
reducing crystallite size by increasing milling time. As shown
in Table 1, the smallest crystallite sizes belong to the dried
milled powders, whereas powders MA’d in ethanol have the
largest crystallite sizes. This can be also confirmed with
peak broadening shown in Figure 1. Interestingly, Gaussian
method shows slightly smaller crystallite sizes compared to
Lorentzian method. However, the strain values calculated by
Gaussian method are slightly higher than those measured by
Lorentzian method.

Figure 3 shows that lattice parameter of the W (Ti)
solid solution phase, that is, “𝑎” values, is maximum after
10 h MA. Maximum lattice parameters are 3.175, 3.163, and
3.158 nm, respectively, for the W (Ti) solid solution phase
of the powders MA’d for 10 h in Ar, ethanol, and IPA. Also
shown from Figure 3 is that the crystallization rate decreased
linearly with increment of MA time from 10 h to 20 h. The
maximum and minimum crystallite rates were measured as
65% and 91% after 20 h MA, respectively, in Ar and ethanol
media.

Pycnometer densities (true densities)MA’dW-0.5 wt.%Ti
powders are presented in Table 2. The MA’d W-0.5 wt.% Ti
powdersmilled in ethanol have the highest densities.This can
be also explainedwith sharpXRDpeaks shown in Figure 2(c).
On the contrary, the powders MA’d in IPA have the lowest
densities.This can be attributed to collisions between vial and
balls resulting in continuous increment of WC impurities,
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Figure 3: Crystallization rates, lattice parameters, and 2𝜃 (110) degrees of MA’d W-0.5 wt.% Ti powders in different milling media after 10 h
and 20 h MA.

Table 2: Pycnometer powder densities of the MA’d W-0.5 wt.% Ti
powders.

Milling media Milling time
10 h 20 h

Ethanol 18.23 ± 0.020 18.15 ± 0.032
Argon 15.38 ± 0.026 14.87 ± 0.022
IPA 12.88 ± 0.025 12.24 ± 0.020

relative to MA time. This is particularly true for the powders
milled in IPA media and confirmed by Figure 2 which shows
that powders MA’d in IPA have more intense WC peaks than
the others. Probably, increment of the WC particles might
decrease density of the MA’d W-0.5 wt.% Ti powders [17, 18,
25].

4. Conclusions

The morphological and structural changes of MA’d W-
0.5 wt.% Ti powders were studied. From this study the fol-
lowing conclusions can be drawn:

(1) The powders MA’d produced by dry milling method
for both 10 h and 20 h have spherical particle, while
wet milling results in layered morphology. Particles
whichMA’d powders in IPA have are smaller than the
ones milled in ethanol. On the other hand, the MA’d
powders in argon have the smallest particles.

(2) There was a rapid reduction in crystallite size of
W-0.5 wt.% Ti powders between the as-blended pow-
ders (0 h) to 10 h of MA, while after 10 h of MA
only a slight further reduction in crystallite size was
measured by Lorentzian and Gaussian methods.

(3) Milling media were highly effective in reducing crys-
tallite size by increasing milling time. The smallest
crystallite size belonged to the dried milled powders.
Meanwhile, powders MA’d in ethanol have the largest
crystallite sizes.

(4) Crystallization rate decreased linearly with MA time.
The maximum and minimum crystallite rates meas-
ured were 65% and 91%, respectively, in Ar and
ethanol media after MA for 20 h.
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(5) MA’d W-0.5 wt.% Ti powders milled in ethanol have
the highest densities, and the powders MA’d in IPA
have the lowest.
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Al
2
O
3
addition on the microstructure and properties of Ni

activated sintered W matrix composites,” International Journal
of RefractoryMetals andHardMaterials, vol. 32, pp. 33–38, 2012.
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[10] A. Genç and M. L. Öveçoglu, “Characterization investigations
duringmechanical alloying and sintering ofNi-W solid solution
alloys dispersed with WC and Y

2
O
3
particles,” Journal of Alloys

and Compounds, vol. 508, no. 1, pp. 162–171, 2010.
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