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This paper addresses the development of the simulation of the low-level control system for the underwater remotely operated
vehicle Visor3. The 6-DOF mathematical model of Visor3 is presented using two coordinated systems: Earth-fixed and body-fixed
frames. The navigation, guidance, and control (NGC) structure is divided into three layers: the high level or the mission planner;
the mid-level or the path planner; and the low level formed by the navigation and control systems. The nonlinear model-based
observer is developed using the extended Kalman filter (EKF) which uses the linearization of the model to estimate the current
state.The behavior of the observer is verified through simulations using Simulink�. An experiment was conducted with a trajectory
that describes changes in the 𝑥 and 𝑦 and yaw components. To accomplish this task, two algorithms are compared: a multiloop
PID and PID with gravity compensation. These controllers and the nonlinear observer are tested using the 6-DOF mathematical
model of Visor3. The control and navigation systems are a fundamental part of the low-level control system that will allow Visor3’s
operators to take advantage of more advanced vehicle’s capabilities during inspection tasks of port facilities, hydroelectric dams,
and oceanographic research.

1. Introduction

Due to the growing interest around the world to perform
offshore and underwater operations, several researchers have
focused their interests on the construction of underwater
vehicles that allow one to explore the ocean from a surface
station. Underwater vehicles are used to perform differ-
ent tasks such as observation, sampling, and surveillance.
Regardless of whether they are operated by cable (ROVs) or
are autonomous (AUVs), it is necessary to develop control
strategies to achieve the desired vehicle movements [1, 2].

Several control schemes are based on the mathematical
model of the system. Hence, having accurate models for pre-
diction and control is desirable; however, this is not a simple
task due to the highly nonlinear behavior that appears with
the fluid-vehicle interaction [3]. The navigation, guidance,
and control (NGC) system for an underwater vehicle can have
different degrees of sophistication, depending on the type of
operation that is to be performed and the autonomy levels
that need to be achieved [1, 2, 4, 5].

The desired level of autonomy will determine what kinds
of algorithms are necessary to control the variables of interest,

which are normally given by the position, attitude (orienta-
tion), and velocity of the vehicle with respect to an inertial
reference system located at the surface [6]. Figure 1 shows
a three-level hierarchical NGC structure for an underwater
vehicle; this kind of structure is useful to control and stabilize
the vehicle [7].

One of the main components in the control structure’s
lower level is the navigation system. This system provides an
estimate of the position, velocity, and attitude of the vehicle
with respect to an inertial system located at the surface
control station at the harbor, from measurements made with
different sensors (IMU, magnetometer, depth, DVL, and
SSBL, among others). Given the characteristics of water, the
development of underwater localization systems is not trivial
and presents a number of challenges [8, 9].

The most common algorithm to achieve this task is the
Kalman filter (KF). It is an estimator, statistically optimal with
respect to a quadratic error function, which allows one to
estimate the state of the vehicle [10]. Several Kalman-filter-
based navigation systems have been developed for years,
and all of them depend on the instrumentation used in
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Figure 1: Control structure for an underwater vehicle.

the vehicle. Caccia et al. [11] developed a Kalman-filter-
based acoustic navigationmodule to control theUUVRoby2.
Caccia and Veruggio [12] used Kalman-filter techniques to
estimate the state using different sampling rates of a depth-
meter and altimeter. Drolet et al. [13] presented an integrated
sensor fusion strategy using multiple Kalman filters allowing
different combination of sensors. Blain et al. [14] developed
and tested a Kalman filter to merge data from an acoustic
positioning system, a bathymeter, and a DVL. Loebis et al.
[15] implemented an intelligent navigation system, based on
the integrated use of the global positioning system (GPS)
and several inertial navigation system (INS) sensors for
AUV. Kinsey et al. [16] presented a survey with advances in
underwater vehicle navigation and identified future research
challenges. Lee and Jun [17] presented a pseudo long baseline
(LBL) navigation algorithm using the EKF. Watanabe et al.
[18] proposed an accurate tracking method to estimate AUV
position by using a super-short baseline (SSBL) from the
ship. Geng and Sousa [19] presented a hybrid derivative-
free extended Kalman filter, taking advantage of both the
linear time propagation of the Kalman filter and nonlinear
measurement propagation of the derivative-free extended
Kalman filter.

The control system is another component of the lower
level of the control structure. It contains a set of algorithms
that stabilize the state of the vehicle, so it can follow the
commands generated in the path planning system. The
control of an underwater vehicle is complex because there
are highly nonlinear hydrodynamic effects resulting from the
interaction with the environment that cannot be quantified
[20]. Cohan [21] states that the development of control
systems for ROVs is a current and promising topic for future
developments; this can be verified with the number of papers
that can be found in literature.

Caccia and Veruggio [12] implemented and tested a
guidance and control system for underwater vehicles using
programmed controllers to regulate speed at the low level in
a hierarchical three-level structure. Do et al. [22] developed
a robust adaptive control strategy to ensure that a six-
degree-of-freedom vehicle follows a prescribed path using
four actuators. Van de Ven et al. [23] presented a qualitative
assessment of the performance of control strategies using
neural networks, indicating the advantages, disadvantages,
and application recommendations. Hoang and Kreuzer [24]

designed an adaptive PD controller for dynamic positioning
of ROVs when the mission is executed in places near
submerged structures and requires great execution precision.
Bessa et al. [25] used slidingmode controllers, combinedwith
fuzzy adaptive algorithms for controlling depth in ROVs.
Alvarez et al. [26] developed a robust PID controller for
controlling AUV used in oceanographic sampling work.
Subudhi et al. [27] presented the design of a feedback
controller for tracking paths in vertical planes. Ishaque et
al. [28] presented a simplification of the conventional fuzzy
controller for an underwater vehicle. Herman [29] presented
a decoupled PD setpoint controller which is expressed in
terms of quasi-velocities for underwater vehicles. Petrich and
Stilwell [30] presented a robust control for an autonomous
underwater vehicle that suppresses pitch and yaw coupling.

Gutiérrez et al. [31] developed the underwater remotely
operated vehicle Visor3 for surveillance and maintenance
of ship hulls and underwater structures of Colombian port
facilities and oceanographic research. Visor3 has a three-layer
hardware architecture: instrumentation, communications,
and control [32]. Although much work has been done in
mechanics and electronics, a closed-loop control system was
not developed for the ROV Visor3, so the capabilities of the
vehicle are still completely dependent on the pilot skills.

This work addresses the first approach to develop the
low-level control system for the ROV Visor3 that will help
operators to maneuver and determine the position and
attitude of the vehicle under certain scenarios such as in ports
or dams inspection tasks. The second section presents the
mathematical model of the vehicle, the third section shows
the development of the nonlinear model-based observer,
and the fourth section presents the implemented control
algorithms; then, the simulation results are shown, and some
conclusions are presented.

2. Mathematical Model

To analyze themotion ofVisor3 in a three-dimensional space,
two coordinate frames are defined: an inertial Earth-fixed
frame (this reference frame is considered as the North-East-
Down (NED) frame, attached to a port facility), where the
motion of the vehicle is described, and a body-fixed frame,
which is conveniently fixed to the vehicle and moves with
it, Figure 2. The acceleration of the Earth due to rotation is
neglected for this work. The position and orientation of the
vehicle are described relative to the Earth-fixed frame as

𝜂 = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓]
T
, (1)

where 𝜂
1
= [𝑥 𝑦 𝑧]

T is the position and 𝜂
2
= [𝜙 𝜃 𝜓]

T

is the orientation. The linear and angular velocities of the
vehicle, relative to the body-fixed frame, are given by

^ = [𝑢 V 𝑤 𝑝 𝑞 𝑟]T , (2)

where ^
1
= [𝑢 V 𝑤]T and ^

2
= [𝑝 𝑞 𝑟]

T are the linear and
angular velocities, respectively.
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Figure 2: Coordinate frames and velocities (linear and angular
components).

The mathematical model that describes the 6-DOF dif-
ferential nonlinear equation of motion for an underwater
vehicle, stated in [6], is given by

M ̇^ + C (^) ^ +D (^) ^ + g (𝜂) = 𝜏,

�̇� = J (𝜂) ^,
(3)

where M ∈ R6×6 is the inertia matrix, which comprises the
mass of the rigid body and the added mass, M = MRB +

M
𝐴
; C ∈ R6×6 is the Coriolis and centripetal matrix, which

includes a term due to rigid body and a term due to the added
mass, C = CRB + C

𝐴
; D ∈ R6×6 is the damping matrix;

g ∈ R6×1 is the gravitational andmoments vector; 𝜏 ∈ R6×1 is
the force vector; and J ∈ R6×6 is the rotation matrix from the
body-fixed frame to the Earth-fixed frame. For this work, it is
assumed that the origin of the body-fixed frame is located at
the same point of the center of gravity of the vehicle.

Applying Newtonian laws of motion, the rigid body
equation of motion for the vehicle is given by

MRBk̇ + CRB (k) k = 𝜏RB. (4)

In (4), the rigid body inertia matrixMRB can be expressed as

MRB = [
𝑚I
3×3

−𝑚S (r
𝐺
)

𝑚S (r
𝐺
) I

0

] , (5)

where𝑚 is the mass of the vehicle, I
3×3

is the identity matrix,
I
0
is the inertia tensor with respect to the center of gravity,

r
𝐺
is the gravity vector in the body-fixed frame, and S(⋅) is a

skew symmetric matrix. The centripetal and Coriolis matrix
can be parametrized in the form of a skew symmetric matrix
as follows:

CRB = [
CRB
11

CRB
12

CRB
21

CRB
22

] , (6)

where
CRB
11

= 0
3×3
,

CRB
12

= −𝑚S (^
1
) − 𝑚S (^

2
) S (r
𝐺
) ,

CRB
21

= −𝑚S (^
1
) + 𝑚S (^

2
) S (r
𝐺
) ,

CRB
22

= −S (I
0
) ^
2
.

(7)

The added mass due to the inertia of the surrounding fluid is
given by

M
𝐴
= [

A
11

3×3 A
12

3×3

A
21

3×3 A
22

3×3
]

= −[

𝜕𝜏

𝜕�̇�

𝜕𝜏

𝜕V̇
𝜕𝜏

𝜕�̇�

𝜕𝜏

𝜕�̇�

𝜕𝜏

𝜕�̇�

𝜕𝜏

𝜕 ̇𝑟

] ,

(8)

where 𝜏 = [𝑋 𝑌 𝑍 𝐾 𝑀 𝑁] are the hydrodynamics
added-mass forces and moments in each direction. Finding
the 36 entries of M

𝐴
is a difficult task, but this can be

simplified by using symmetry properties of the vehicle. For
this work, Visor3 is assumed to be symmetric with respect to
𝑥𝑦, 𝑥𝑧, and 𝑦𝑧 planes. Therefore, the added-mass matrix can
be computed as

M
𝐴
= − diag {𝑋

�̇�
, 𝑌V̇, 𝑍�̇�, 𝐾�̇�,𝑀�̇�, 𝑁 ̇𝑟} . (9)

The hydrodynamic centripetal and Coriolis matrix can also
be parametrized as

C
𝐴
(^) = [

0
3×3

−S (A
11
^
1
+ A
12
^
2
)

−S (A
11
^
1
+ A
12
^
2
) −S (A

21
^
1
+ A
22
^
2
)

] . (10)

For underwater vehicles, damping is mainly caused by skin
friction and vortex shedding. One approximation commonly
used [6, 33, 34] is a term with linear and quadratic compo-
nents, given by

D (^) = − diag {𝑋
𝑢
, 𝑌V, 𝑍𝑤, 𝐾𝑝,𝑀𝑞, 𝑁𝑟}

− diag {𝑋
𝑢|𝑢| |
𝑢| , 𝑌V|V| |V| , 𝑍𝑤|𝑤| |𝑤| , 𝐾𝑝|𝑝|





𝑝




,

𝑀
𝑞|𝑞|





𝑞




, 𝑁
𝑟|𝑟| |
𝑟|} .

(11)

Restoring forces and moments, calculated from center of
gravity, are given by

g (𝜂) =

[

[

[

[

[

[

[

[

[

[

[

[

(𝑊 − 𝐵) sin 𝜃
− (𝑊 − 𝐵) cos 𝜃 sin𝜙
− (𝑊 − 𝐵) cos 𝜃 cos𝜙

𝑦
𝑏
𝐵 cos 𝜃 cos𝜙 − 𝑧

𝑏
𝐵 cos 𝜃 sin𝜙

−𝑧
𝑏
𝐵 sin 𝜃 − 𝑥

𝑏
𝐵 cos 𝜃 cos𝜙

𝑥
𝑏
𝐵 cos 𝜃 sin𝜙 + 𝑦

𝑏
𝐵 sin 𝜃

]

]

]

]

]

]

]

]

]

]

]

]

, (12)

where𝑊 = 𝑚𝑔 is the weight of the vehicle and 𝐵 = 𝜌𝑔∇ is
the buoyancy, 𝜌 is the density of the fluid, 𝑔 is the acceleration
of the gravity, and ∇ is the volume of fluid displaced by the
vehicle.



4 International Journal of Navigation and Observation

2.1. Transformations. To obtain the linear velocity in the
Earth-fixed frame from the linear velocity in the body-
fixed frame, a linear transformation must be applied. The
transformation matrix is given by

J
1
(𝜂
2
)

=
[

[

[

c𝜓c𝜃 −s𝜓c𝜙 + c𝜓s𝜃s𝜙 s𝜓s𝜙 + c𝜓s𝜃c𝜙
s𝜓c𝜃 c𝜓c𝜙 + s𝜓s𝜃s𝜙 −c𝜓s𝜙 + s𝜓s𝜃c𝜙
−s𝜃 c𝜃s𝜙 c𝜃c𝜙

]

]

]

,

(13)

where s⋅ = sin(⋅) and c⋅ = cos(⋅). The angular velocity
transformation matrix is given by

J
2
(𝜂
2
) =

[

[

[

[

[

1 s𝜙t𝜃 c𝜙t𝜃
0 c𝜙 −s𝜙

0

s𝜙
c𝜃

c𝜙
c𝜃

]

]

]

]

]

, (14)

where t⋅ = tan(⋅).
Finally, the kinematic equations of the vehicle can be

expressed as

[

�̇�
1

�̇�
2

] = [

J
1
(𝜂
2
) 0
3×3

0
3×3

J
2
(𝜂
2
)

] [

^
1

^
2

] . (15)

3. Nonlinear Model-Based Observer

The development of the observer needs to account for the
ROV high nonlinearities and coupled dynamics. Therefore,
an extended 6-DOF Kalman filter (EKF) that considers
Coriolis, damping, and restoring forces has been developed.
Equations (3) can be written as a state-space realization, as
follows:

ẋ = 𝑓 (x, 𝑡) + Bk (𝑡) +m (𝑡) , (16)

z = ℎ (x, 𝑡) + n (𝑡) , (17)

where 𝑓(x, 𝑡) is a function of the state vector x = [^ 𝜂]T and
is given by

𝑓 (x, 𝑡) = [
M−1 (−C (^) ^ −D (^) ^ − g (𝜂))

J (𝜂) ^
] (18)

and B is the input coupling matrix given by

B = [
M−1

0
6×6

] . (19)

In (16), k(𝑡) is the input vector given by thrusters’ forces;
ℎ(x, 𝑡) is the measurement sensitivity matrix, which depends
on the ROV sensors; and m(𝑡) and n(𝑡) are plant and
measurement noises, respectively; they are assumed to be

zero-mean Gaussian white noise processes with covariance
matrixQ(𝑡) and R(𝑡) given by

𝐸 ⟨m (𝑡)⟩ = 0,

𝐸 ⟨m (𝑡)mT
(𝑠)⟩ = 𝛿 (𝑡 − 𝑠)Q (𝑡) ,

𝐸 ⟨n (𝑡)⟩ = 0,

𝐸 ⟨n (𝑡)nT
(𝑠)⟩ = 𝛿 (𝑡 − 𝑠)R (𝑡) .

(20)

The continuous-time model in (16) and (17) is discretized
using a 1st-order approximation Euler method as follows:

x
𝑘
= 𝑔
𝑘−1
(x
𝑘−1
) + Δk

𝑘−1
+m
𝑘−1
,

z
𝑘
= ℎ
𝑘
(x
𝑘
) + n
𝑘
,

(21)

where

𝑔
𝑘−1
(x
𝑘−1
) = x
𝑘−1
+ ℎ𝑓 (x

𝑘−1
, 𝑡
𝑘−1
) ,

Δ = ℎB,
(22)

and ℎ is the step time. The discretized system is given by

^
𝑘
= ^
𝑘−1
+ ℎM−1 [𝜏

𝑘−1
− C (^

𝑘−1
) ^
𝑘−1

−D (^
𝑘−1
) ^
𝑘−1
− g (𝜂

𝑘−1
)] ,

𝜂
𝑘
= 𝜂
𝑘−1
+ ℎ [J (𝜂

𝑘−1
) ^
𝑘
] .

(23)

The objective of the EKF is to estimate the current state
by using a linearized version of the system’s model. The
EKF is executed in two steps: the predictor which calculates
an approximation of the state and covariance matrix and
the corrector which improves the initial approximation. The
predictor equations for the EKF are

x̂
𝑘
(−) = 𝑔

𝑘−1
(x̂
𝑘−1
(+)) + Δk

𝑘−1
,

ẑ
𝑘
= ℎ
𝑘
(x̂
𝑘
(−)) ,

P
𝑘
(−) = Φ

𝑘−1
P
𝑘−1
(+)Φ

T
𝑘−1
+Q
𝑘−1
.

(24)

x̂
𝑘
(−) is the a priori estimate of the state, x̂

𝑘
(+) is the a

posteriori estimate of the state, ẑ
𝑘
is the predicted measure-

ment, P
𝑘
(−) is the a priori covariance matrix, P

𝑘
(+) is the a

posteriori covariance matrix, and Φ
𝑘−1

is the state transition
matrix defined by the following Jacobian matrix:

Φ
𝑘−1
≈

𝜕𝑔
𝑘

𝜕x








x=x̂
𝑘−1
(−)

. (25)

The corrector equations for the EKF algorithm are

x̂
𝑘
(+) = x̂

𝑘
(−) + K

𝑘
(z
𝑘
− ẑ
𝑘
) ,

P
𝑘
(+) = [I − K

𝑘
H
𝑘
]P
𝑘
(−) ,

(26)

where K
𝑘
is the Kalman-filter gain calculated as

K
𝑘
= P
𝑘
(−)HT

𝑘
[H
𝑘
P
𝑘
(−)HT

𝑘
+ R
𝑘
]

−1

. (27)



International Journal of Navigation and Observation 5

Open-loop control system ROV dynamics ROV kinematics

Environmental
perturbations

Pilot Joystick B
+

− −

u
∑

g

C + D

J∫ ∫M−1Thruster
allocation

𝜂𝜏 ^

Figure 3: Open-loop control system implemented in Visor3.

The observation matrix is defined by the following Jacobian
matrix:

H
𝑘
≈

𝜕ℎ
𝑘

𝜕x








x=x̂
𝑘
(−)

. (28)

It is important to state that the EKF is not an optimal filter,
due to the linearization process of the system. Furthermore,
the matrices Φ

𝑘−1
and H

𝑘
depend on the previous state

estimation and the measurement noise. Therefore, the EKF
may diverge if consecutive linearizations are not a good
approximation of the linear model in the whole domain.
However, with good knowledge of the system’s dynamics, bias
and noise compensation, and an appropriate configuration
sampling time, this algorithm is good enough for application
in control systems in marine vehicles.

4. Control Algorithms

Thecontrol of an underwater vehicle is complex because there
are highly nonlinear hydrodynamic effects resulting from the
interaction with the environment that cannot be quantified
[20]. Additionally, disturbances from the environment may
appear. Problems such as obtaining all the state variables for
the vehicle can limit the design of such control algorithms.

Currently, the ROV Visor3 is driven through a joystick
that sends power commands to a main-board installed in the
vehicle; this board translates commands into input signals for
each motor. Figure 3 shows the current open-loop control
system implemented in Visor3.

4.1. Thruster Allocation. The task which consists in generat-
ing a particular command to be sent to each individual actu-
ator according to the control law and thrusters configuration
is called control allocation [33].

The thrust vector that describes the force 𝑓
𝑖
generated by

the thruster 𝑖 is given by

f = [𝑓1 𝑓2 ⋅ ⋅ ⋅ 𝑓𝑟]
T
, (29)

where 𝑟 is the total number of thrusters. The total force and
moment generated by the thrusters will be

𝜏 = Tf , (30)

where T is the thruster configuration matrix, which is a
function of the thrusters position r𝑏

𝑡𝑖/𝑏
, as well as the azimuth

and elevation angles, 𝛼 and 𝛽, respectively. This vector is ref-
erenced to the body-fixed frame. The thruster configuration
matrix describes how the thrust of each motor contributes to
the force or moment in each direction. The matrix T is given
by

T = [t1 t
2
⋅ ⋅ ⋅ t
𝑟] , (31)

where t
𝑖
is the column vector of the 𝑖th thruster and is

computed as

t
𝑖
= [

I
3×3

−ST (r𝑏
𝑡𝑖/𝑏
)

]R (𝛼, 𝛽)[[
[

1

0

0

]

]

]

𝑓
𝑖
. (32)

The rotation matrix R(𝛼, 𝛽) is defined by the product of two
rotation matrices:

R (𝛼, 𝛽) = R
𝑧,𝛼
R
𝑦,𝛽
, (33)

where R
𝑧,𝛼

and R
𝑦,𝛽

are described by

R
𝑧,𝛼
=
[

[

[

c𝛼 −s𝛼 0
s𝛼 c𝛼 0
0 0 1

]

]

]

, (34)

R
𝑦,𝛽
=
[

[

[

c𝛽 0 s𝛽
0 1 0

−s𝛽 0 c𝛽

]

]

]

, (35)

respectively; Visor3 has fixed heading and pitch angles for
each thruster.
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Now that the thrust provided by each thruster is known
using (30), the input that must be sent to each motor has to
be computed. The input could be the revolution speed of the
motor or a voltage signal for the driver. Equation (30) is then
rewritten as

𝜏 = TKu, (36)

where K = diag {𝐾1 𝐾2 ⋅ ⋅ ⋅ 𝐾𝑟} is a diagonal matrix with
the thrust coefficients described by the equation

𝐾
𝑖
= 𝐾
𝑇
(𝐽) 𝜌𝐷

4
. (37)

u is a column vector with elements 𝑢
𝑖
= |𝑛|𝑛, where 𝑛 is the

propeller velocity rate, 𝜌 is the water density, and 𝐷 is the
propeller diameter. The thruster allocation problem is solved
finding u as

u = K−1T−1𝜏. (38)

Although Tmay not be square or invertible, it can be solved
using the Moore-Penrose pseudo inverse given by

T† = TT
(TTT

)

−1

. (39)

Substituting (38) into (39) yields

u = K−1T†𝜏. (40)

The voltage for each driver calculated from u is given by

V
𝑖
= (

1

𝐺
𝑚
𝑖

)(

1

𝐺
𝑑
𝑖

) sgn (𝑢
𝑖
)√




𝑢
𝑖





, (41)

where 𝐺
𝑚
𝑖

and 𝐺
𝑑
𝑖

are the gain of the 𝑖th motor and
driver, respectively. This last equation fails when saturation
occurs in the actuators. Figure 4 shows how to change V

𝑖

according to 𝑢
𝑖
, with different values from multiplication

𝑀
𝑔
= (1/𝐺

𝑚
𝑖

)(1/𝐺
𝑑
𝑖

).

4.2. Multivariable PID Control. The parallel noninteracting
structure of the PID is given by

𝜏PID = K𝑝e (𝑡) + K𝑑ė (𝑡) + K𝑖 ∫
𝑡

0

e (𝜏) 𝑑𝜏, (42)

where K
𝑝
is the proportional gain, K

𝑑
is the derivative gain,

K
𝑖
is the integral gain, and e(𝑡) is the error defined by

e = 𝜂
𝑑
− 𝜂. (43)

For Visor3, each controller is designed for the control of
one DOF; this implies that K

𝑝
, K
𝑖
, and K

𝑑
are diagonal and

positive matrices. In this work, heuristic methods were used
to tune the gains of the PID controller. A high proportional
gain acts rapidly to correct changes in the references. Due
to the vehicle’s dynamics and the interaction with the fluid,
a high derivative action is used to provide damping to the
motion of the vehicle, when it is reaching the setpoint. Finally,
it is decided that a small integral action can correct the steady-
state error. This PID control can be improved, according

� i
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Figure 4: Change of voltage according to 𝑢
𝑖
in the thruster

allocation problem.

to Fossen [6], by using gravity compensation and vehicle’s
kinematics. The PID control signal is transformed by

𝜏 = JT (𝜂) 𝜏PID + g (𝜂) . (44)

Figure 5 shows the implementation of (44). The controller
needs the error and the position estimation to calculate the
output.

5. Simulation and Results

The simulation of the ROV dynamics, the observer algo-
rithm, and the controller were implemented in Simulink.
Additionally, several functions can be constructed using
conventional MATLAB code, providing great flexibility for
high-level programming.

Visor3 parameters were obtained using CAD models
(Solid-Edge� software) and CFD simulation (ANSYS� soft-
ware). Table 1 contains all the model parameters used in the
simulation to represent the dynamics of the vehicle.

The thruster simulation is divided into three steps: the
driver, the motor dynamics, and the propeller dynamics. The
low-level control of the system is managed by the driver. The
driver regulates the torque by increasing or decreasing the
current in order to maintain the velocity of the motor shaft.
For this work, it is assumed that load changes generated for
the propellers are regulated by the driver. In that order, only
thrust is considered.

For this work, motors’ dynamics are not considered, since
they present a fast time response in comparison with the
dynamics of the vehicle. Figure 6 shows the dynamic response
of the MAXON DC motor. The steady-state value is reached
in less than 40ms. The simulation model is represented only
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Figure 5: Closed-loop control system implemented in Visor3.

Table 1: ROV Visor3 parameters for simulation.

Parameter Value
𝑚 64.5 kg
𝐼
𝑥𝑥

2.9 kgm2

𝐼
𝑦𝑦

2.5 kgm2

𝐼
𝑧𝑧

3.0 kgm2

𝐼
𝑥𝑦

−7.0 × 10
−3 kgm2

𝐼
𝑥𝑧

−2.1 × 10
−3 kgm2

𝐼
𝑦𝑧

−7.2 × 10
−3 kgm2

∇ 1.8 × 10
−2m3

[𝑥
𝑔
, 𝑦
𝑔
, 𝑧
𝑔
] [0, 0, 0]m

[𝑥
𝑏
, 𝑦
𝑏
, 𝑧
𝑏
] [1.7, 1.8, 68] × 10

−3m
𝑋
�̇�

6.5 kg
𝑌V̇ 59.8 kg
𝑍
�̇�

59.8 kg
𝐾
�̇�

0 kgm2

𝑀
�̇�

2.2 kgm2

𝑁
̇𝑟

2.2 kgm2

𝑋
𝑢|𝑢|

−10.3 kg/m
𝑌V|V| −100.8 kg/m
𝑍
𝑤|𝑤|

−100.8 kg/m
𝐾
𝑝|𝑝|

−400.3 kgm2

𝑀
𝑞|𝑞|

−100.8 kgm2

𝑁
𝑟|𝑟|

−100.8 kgm2

by a constant gain 𝐺
𝑚
, which is the relationship between the

maximum velocity Velmax and the nominal voltage 𝑉nom and
is described by

𝐺
𝑚
=

Velmax
𝑉nom

. (45)

The motor used is a MAXON EC motor 136201 with a
planetary gearhead GP 42C-203113. The nominal speed,
reduction, and the nominal voltage are taken from [35, 36]
and used in (45) to obtain 𝐺

𝑚
.
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Figure 6: Time response for a MAXON DCmotor.

The driver’s function is to regulate the velocity when
there are changes in the load. The driver receives an input
voltage between 0 and 5V (saturation) and transforms it to
0–48V. Additionally, the driver can be configured to follow
a prescribed acceleration curve, in order to decrease the
current consumed by the motor in the initial operation.

The propellers used inVisor3 are theHarborModels 3540
from the Wageningen B-series with four blades. The coeffi-
cients 𝐾

𝑇
and 𝐾

𝑄
can be approximated using polynomials

[37], given by

𝐾
𝑇
= ∑

𝑠,𝑡,𝑢,V
𝐶
𝑇

𝑠,𝑡,𝑢,V (𝐽)
𝑠
(

𝑃

𝐷

)

𝑡

(

𝐴
𝐸

𝐴
𝑜

) (𝑧)
V
, (46)

𝐾
𝑄
= ∑

𝑠,𝑡,𝑢,V
𝐶
𝑄

𝑠,𝑡,𝑢,V (𝐽)
𝑠
(

𝑃

𝐷

)

𝑡

(

𝐴
𝐸

𝐴
𝑜

) (𝑧)
V
. (47)
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Table 2: Visor3’s thruster parameters.

Parameter Value
Motor and driver

High/low voltage driver saturation ±5V
Slew rate 1200V s
Driver gain 9.6

Motor gain 22.48 rpm/V
Seawater density 1027 kg/m3

Propeller
Diameter 8.8 cm
Pitch 10.16 cm
Blade area ratio 0.7

Pitch ratio 1.1

Thrust coefficients 0.5

Torque coefficients 0.08
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Figure 7: Coefficients 𝐾
𝑇
and 𝐾

𝑄
for Visor3’s propellers.

Figure 7 shows 𝐾
𝑇
and 𝐾

𝑄
curves for Visor3’s propellers. In

order to obtain the thrust and torque coefficients, a nominal
advance speed of 1.5m/s for the vehicle was assumed. The
parameters for a thruster are shown in Table 2.

Visor3 has four controllable DOFs: surge, sway, heave,
and yaw. Figure 8 shows the thruster location in Visor3 and
Table 3 summarizes the parameters from thrusters position
and orientation in Visor3.

The ROV dynamics were implemented as a continuous-
time model, and the EKF runs in discrete time with a 0.05 s
fixed sample time. The implementation was done using four
main functions; see Figure 9:

(i) ROV Nolinear Discrete: it calculates the next state
of the ROV described by (23).

Table 3: Thruster allocation.

Thruster Vector position 𝛼 𝛽

𝑇1 [−0.31, −0.22, 0.025]m 0 0
𝑇2 [−0.31, 0.22, 0.025]m 0 0
𝑇3 [0, 0, 0]m 0 𝜋/2

𝑇4 [0.11, 0, 0]m 𝜋/2 0

0.11

0.
02
5

0.22 0.22

0.31

Y0

Z0 X0

X0

Figure 8: Thrusters position. Note that all units are in meters.

(ii) ROVSal Nolinear Discrete: it calculates the out-
put of the ROV according to the sensors.

(iii) ROV linear Discrete: it evaluates the Jacobian in
each state estimation described by (25).

(iv) ROVSal linear Discrete: it evaluates the output
of the ROV given the Jacobian described by (28).

For the measurement matrix, it was considered that Visor3
has a MEMSENSE� IM05-0300C050A35 triaxial micro iner-
tial measurement unit (𝜇IMU) that provides three linear
acceleration measurements and three angular velocities, with
noise of 5.0mg and 0.5∘/s. In this work, all measurements are
assumed to be made in the body-fixed frame and a standard
INS solution is proposed; that is, attitude and position are
obtained through integration of signals from the IMU. The
measurement matrix is given by

H
𝑘
= [I6×6 0

6×6] . (48)

To test the performance of the EKF algorithm and its
implementation, two different position references were com-
manded to the ROV: in the surge direction a position of 2m
(see Figure 10) and in sway 1m (see Figure 10). Figure 10
shows the estimation of the position in the Earth-fixed frame.

A simulation experiment was conducted with a trajectory
that describes changes in the 𝑥 and 𝑦 and yaw directions.
Figure 11 shows the result of the controller. The experiment
was conducted with the following gain matrices:

K
𝑝
= diag {10, 10, 10, 0, 0, 10} ,

K
𝑖
= diag {0.01, 0.01, 0.01, 0, 0, 0.01} ,

K
𝑑
= diag {50, 50, 50, 0, 0, 50} .

(49)
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PID gains were obtained by trial and error; a high pro-
portional gain generates fast but aggressive response; hence,

a high derivative gain was added to increase damping and
decrease oscillations in spite of having a slower time response.
A small integral gain was used to eliminate the steady-state
error. The PID with gravity compensation cancels the effects
of restoring forces while the vehicle is moving.This PID with
compensation has a better performance, but it requires a good
estimation of the vehicle’s attitude. Additionally, Figure 12
shows that the regular PID is less energy-efficient, due to
the high changes in the control signal. This change in the
control signal can reduce duty life of the thrusters. Finally, the
regular PID structure is unstable when the vehicle moves far
away from the origin, due to restoring forces and propagation
error.

6. Conclusions

The dynamic model of the underwater remotely operated
vehicle Visor3 has been presented. This model considers
forces and moments generated by the movement of the
vehicle within the fluid, damping, and restoring forces.
The model was defined using body-fixed and Earth-fixed
coordinate systems, and Visor3’s parameters were obtained
using CAD models and CFD simulations.

The full ROV system and the EKF were simulated to
compare the performance of the navigation system with the
use of a PID + gravity compensation control algorithm that
depends on a good estimation of the state. It is important
to state that the estimation in large periods of time can
diverge due to integration of the noise present in acceleration
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Figure 11: PID controllers with and without compensation—planar motion control.

measurements to obtain the velocity of the vehicle in the
body-fixed frame. More sensors (such as SSBL and DVL) can
be used in Visor3 to overcome such a problem; this will allow
the navigation system to get the position of the vehicle in a
more precise way, which is required for its regular operations:
maintenance purposes can be performed in ships hulls and
underwater structures within Colombian ports facilities.

As it was shown, the EKF-based navigation system is
capable of filtering the noise in measurements and accurately
estimates the state of the vehicle; this is important since a
noisy signal that enters into the feedback system can cause
greater efforts in the thrusters andmore energy consumption.
However, more simulations have to be carried out in order
to determine how critical is the divergence in the position
estimation caused by phenomena such as biases and losses
in the communications.

Two different control algorithms were tested with the
simulation of the ROV: PID and PID + gravity compensation.
The PID with gravity compensation is capable of stabilizing
the system in less time compared to the PID and decreases

the energy consumption. On the other hand, the PIDwithout
gravity compensation loses tracking at different times; this
may be caused by the force exerted from thrusters in order
to compensate oscillations from the vehicle. In Visor3, the
forward/backward thrusters are nonaligned with the body
frame; therefore, they can cause pitch and roll oscillations.
Finally, the simple PID goes unstable after some time period.
However, the PID with gravity compensation needs a good
estimation of the position and attitude. This PID strategy is a
first approach to the motion control of the vehicle.

Implementing the proposed navigation system and the
controller inVisor3’s digital system requires the knowledge of
the dynamic response of the vehicle and appropriate selection
of the sample time since it affects the EKF algorithm’s con-
vergence. Moreover, many operations are in matrix form and
with floating-point format, so the implementation of such
navigation system and controllers requires a high computa-
tion capacity of the on-board processor.These algorithms are
the first approximation to the real closed-loop control system
that will be implemented in Visor3.
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