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We show that the Euler-Mascheroni constant 𝛾 and Euler’s number 𝑒 can both be represented as a product of a Riordan matrix and
certain row and column vectors.

Dedicated to David Harold Blackwell (April 24, 1919–July 8, 2010)

1. Introduction

It was shown by Kenter [1] that the Euler-Mascheroni con-
stant

𝛾 = lim
𝑛→∞

[( 𝑛∑
𝑚=1

1𝑚) − ln 𝑛] = 0.5772156649 ⋅ ⋅ ⋅ (1)

can be represented as a product of an infinite-dimensional
row vector, the inverse of a lower triangular matrix, and an
infinite-dimensional column vector:

(1 12 13 ⋅ ⋅ ⋅ 1𝑛 ⋅ ⋅ ⋅)
((((((((((((
(

112 113 12 1... ... ... d1𝑛 1𝑛 − 1 1𝑛 − 2 ⋅ ⋅ ⋅ 1... ... ... ⋅ ⋅ ⋅ ... d

))))))))))))
)

−1

⋅
((((((((((((
(

121314...1𝑛 + 1...

))))))))))))
)

.

(2)

Kenter’s proof uses induction, definite integrals, convergence
of power series, and Abel’s Theorem. In this paper, we recast
this statement using the language of Riordan matrices. We
exhibit another proof as well as a generalization. Our main
result is the following.

Theorem 1. Consider sequences {𝑎0, 𝑎1, . . . , 𝑎𝑛, . . .}, {𝑏0, 𝑏1,. . . , 𝑏𝑛, . . .}, and {𝑐0, 𝑐1, . . . , 𝑐𝑛, . . .} of complex numbers such
that 𝑎0, 𝑏0, 𝑐0 ̸= 0, as well as an integer exponent 𝑑. Assume
that
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(i) the power series 𝑎(𝑥) = ∑𝑛 𝑎𝑛𝑥𝑛, 𝑏(𝑥) = ∑𝑛 𝑏𝑛𝑥𝑛,𝑐(𝑥) = ∑𝑛 𝑐𝑛𝑥𝑛, and 𝑏(𝑥)𝑑 are convergent in the
interval |𝑥| < 1;

(ii) the following complex residue exists:

Res
𝑧=0

[[
𝑎 (𝑧) 𝑏 (𝑧−1)𝑑 𝑐 (𝑧−1)𝑧 ]]

= 12𝜋𝑖 ∮|𝑧|=1 𝑎 (𝑧) 𝑏 (𝑧−1)𝑑 𝑐 (𝑧−1) 1𝑧𝑑𝑧.
(3)

Then, the matrix product

(𝑎0 𝑎1 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑛 ⋅ ⋅ ⋅)(((((((
(

𝑏0𝑏1 𝑏0𝑏2 𝑏1 𝑏0... ... ... d𝑏𝑛 𝑏𝑛−1 𝑏𝑛−2 ⋅ ⋅ ⋅ 𝑏0... ... ... ⋅ ⋅ ⋅ ... d

)))))))
)

𝑑

⋅
(((((((((
(

𝑐0𝑐1𝑐2...𝑐𝑛...

)))))))))
)

(4)

is equal to the above residue.

The infinite-dimensional lower triangular matrix is an
example of a Riordan matrix. Specifically, it is that Riordan
matrix associated with the power series 𝑏(𝑥)𝑑. Kenter’s result
follows by careful analysis of the power series:

𝑎 (𝑥) = − log (1 − 𝑥)𝑥
= 1 + 12𝑥 + 13𝑥2 + ⋅ ⋅ ⋅ + 1𝑛 + 1𝑥𝑛 + ⋅ ⋅ ⋅ ,

𝑏 (𝑥)−1 = − 𝑥
log (1 − 𝑥)

= 1 − 12𝑥 − 112𝑥2 − 124𝑥3 − ⋅ ⋅ ⋅ − 𝐿𝑛𝑥𝑛 − ⋅ ⋅ ⋅ ,
𝑐 (𝑥) = 𝑎 (𝑥) − 1𝑥

= 12 + 13𝑥 + 14𝑥2 + ⋅ ⋅ ⋅ + 1𝑛 + 2𝑥𝑛 + ⋅ ⋅ ⋅ .

(5)

The coefficients 𝐿𝑛 are sometimes called the “logarithmic
numbers” or the “Gregory coefficients”; these are basically the
Bernoulli numbers of the second kind up to a choice of sign.
(Kenter employs the coefficients 𝑐𝑘 = −𝐿𝑘.) The idea of this
paper is that we have the matrix product

(((((((((((
(

112 113 12 1... ... ... d1𝑛 1𝑛 − 1 1𝑛 − 2 ⋅ ⋅ ⋅ 1... ... ... ⋅ ⋅ ⋅ ... d

)))))))))))
)

−1

((((((((((((((
(

121314...1𝑛 + 1...

))))))))))))))
)

=
(((((((((((((
(

12112124...𝐿𝑛...

)))))))))))))
)

,

(6)

which is equivalent to the recursive identity ∑𝑛−1𝑚=0 𝐿𝑚/(𝑛 −𝑚) = 0, which is valid whenever 𝑛 = 2, 3, 4, . . .. The matrix
product, and hence the recursive identity, can be derived from
properties of Riordan matrices. Kenter’s result follows from
the identity ∑∞𝑚=1 𝐿𝑚/𝑚 = 𝛾, which in turn follows from an
identity involving a definite integral.

As another consequence of our main result, we can also
show that Euler’s number

𝑒 = lim
𝑛→∞

(1 + 1𝑛)𝑛 = 2.7182818284 ⋅ ⋅ ⋅ (7)

can be represented as a product of an infinite-dimensional
row vector, a lower triangular matrix, and an infinite-
dimensional column vector.

Corollary 2. For any integers 𝑝, 𝑞, and 𝑑 with 𝑝𝑞 > 1, the
number

𝑝𝑞𝑝𝑞 − 1 𝑝√𝑒𝑑 = lim
𝑛→∞

[ 𝑝𝑞𝑝𝑞 − 1 (1 + 1𝑝𝑛)𝑑𝑛] (8)

is equal to the matrix product
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(1 1𝑝 1𝑝2 ⋅ ⋅ ⋅ 1𝑝𝑛 ⋅ ⋅ ⋅)
(((((((((((
(

111! 112! 11! 1... ... ... d1𝑛! 1(𝑛 − 1)! 1(𝑛 − 2)! ⋅ ⋅ ⋅ 1... ... ... ⋅ ⋅ ⋅ ... d

)))))))))))
)

𝑑

(((((((((((
(

11𝑞1𝑞2...1𝑞𝑛...

)))))))))))
)

. (9)

In the process of proving these generalizations, we present
a representation theoretic view of Riordan matrices. That is,
we consider the matrices as representations 𝜋 : 𝐺 → 𝐺𝐿(𝑉)
of a certain group𝐺, namely, the Riordan group, acting on an
infinite-dimensional vector space𝑉, namely, the collection of
those formal power series ℎ(𝑥) in C⟦𝑥⟧, where ℎ(0) = 0.
2. Introduction to Riordan Matrices

We wish to list several key results in the theory of Riordan
matrices. To do so, we recast this theory using techniques
from representation theory very much in the spirit of Bacher
[2]. Our ultimate goal in this section is to explain how Rior-
dan matrices are connected to a permutation representation𝜋 : 𝐺 → 𝐺𝐿(𝑉) of a certain group 𝐺 acting on an infinite-
dimensional vector space 𝑉. Some of the notation in the
sequel will differ from standard notation such as that given
by Shapiro et al. [3] and Sprugnoli [4, 5], but we will explain
the connection.

2.1. Group Actions. Before developing the representation
theoretic view, we give the definition of a Riordan matrix and
few related useful properties. Let 𝑘 be a field; it is customary
to set 𝑘 = C as the set of complex numbers, but, in practice,𝑘 = Q is the set of rational numbers. Set 𝑘⟦𝑥⟧ as the collection
of formal power series in an indeterminate𝑥; wewill view this
as a 𝑘-vector space with countable basis {1, 𝑥, 𝑥2, . . . , 𝑥𝑛, . . .}.
Formost of this article, we will not be concerned with regions
of convergence for these series.

There are three binary operations 𝑘⟦𝑥⟧ × 𝑘⟦𝑥⟧ → 𝑘⟦𝑥⟧
which will be of importance to us, namely, multiplication ∙,
composition ∘, and addition +. Explicitly, if we write

𝑓 (𝑥) = ∞∑
𝑛=0

𝑓𝑛𝑥𝑛,
𝑔 (𝑥) = ∞∑

𝑛=0

𝑔𝑛𝑥𝑛, (10)

then we have the formal power series

(𝑓 ∙ 𝑔) (𝑥) = ∞∑
𝑛=0

[ 𝑛∑
𝑚=0

𝑓𝑚𝑔𝑛−𝑚]𝑥𝑛,

(𝑓 ∘ 𝑔) (𝑥) = ∞∑
𝑛=0

[ ∞∑
𝑚=0

𝑓𝑚( ∑
𝑛1+⋅⋅⋅+𝑛𝑚=𝑛

𝑔𝑛1 ⋅ ⋅ ⋅ 𝑔𝑛𝑚)]𝑥𝑛,
(𝑓 + 𝑔) (𝑥) = ∞∑

𝑛=0

[𝑓𝑛 + 𝑔𝑛] 𝑥𝑛.
(11)

There are three subsets of the vector space 𝑘⟦𝑥⟧which will be
of interest to us in the sequel.

Proposition 3. Define the subsets𝐻 = {𝑓 (𝑥) ∈ 𝑘 ⟦𝑥⟧ | 𝑓 (0) ̸= 0} ,𝐾 = {𝑔 (𝑥) ∈ 𝑘 ⟦𝑥⟧ | 𝑔 (0) = 0 yet 𝑔󸀠 (0) ̸= 0} ,𝑉 = {ℎ (𝑥) ∈ 𝑘 ⟦𝑥⟧ | ℎ (0) = 0} . (12)

(i) 𝐻 is a group under multiplication ∙,𝐾 is a group under
composition ∘, and 𝑉 is a group under addition +. In
particular, 𝑉 is a 𝑘-vector space with countable basis{𝑥, 𝑥2, . . . , 𝑥𝑛, . . .}.

(ii) The map 𝜑 : 𝐾 → Aut (𝐻) which sends 𝑔(𝑥) ∈ 𝐾
to the automorphism 𝜑𝑔 : 𝑓(𝑥) 󳨃→ (𝑓 ∘ 𝑔)(𝑥) is a
group homomorphism, where 𝑔(𝑥) is the compositional
inverse of 𝑔(𝑥). In particular, 𝐺 = 𝐻⋊𝜑𝐾 is a group
under the binary operation ∗ : 𝐺 × 𝐺 → 𝐺 defined by(𝑓1, 𝑔1) ∗ (𝑓2, 𝑔2) = (𝑓1 ∙ 𝜑𝑔1 (𝑓2) , 𝑔1 ∘ 𝑔2) . (13)

(iii) Themap∗ : 𝐺×𝑉 → 𝑉 defined by (𝑓, 𝑔)∗ℎ = 𝑓∙(ℎ∘𝑔)
is a group action of 𝐺 on 𝑉.

We use 𝑔(𝑥) to denote the compositional inverse 𝑔−1(𝑥)
so that we will not confuse this with themultiplicative inverse𝑔(𝑥)−1. Later, we will show that 𝐺 is isomorphic to the
Riordan group R. Moreover, we will show that 𝐻, a normal
subgroup of 𝐺, is isomorphic to the Appell subgroup of R.
The motivation of this result is to use the action of 𝐺 on 𝑉
to write down a permutation representation 𝜋 : 𝐺 → 𝐺𝐿(𝑉)
and then use the canonical basis {𝑥, 𝑥2, . . . , 𝑥𝑛, . . .} of𝑉 to list
infinite-dimensional matrices.



4 International Journal of Combinatorics

Proof. We show (i) to fix some notation to be used in the
sequel. Since (𝑓 ∙ 𝑔)(0) = 𝑓(0)𝑔(0) ̸= 0 for any 𝑓(𝑥), 𝑔(𝑥) ∈𝐻, we see that ∙ : 𝐻 × 𝐻 → 𝐻 is an associative binary
operation. The identity is the constant power series 𝑒(𝑥) = 1,
and the inverse of 𝑓(𝑥) is its reciprocal, seen to be a power
series by expressing said reciprocal in terms of a formal
geometric series:1𝑓 (𝑥) = 1𝑓0 ⋅ 11 − ∑∞𝑛=0 (−𝑓𝑛/𝑓0) 𝑥𝑛

= ∞∑
𝑛=0

[ ∞∑
𝑚=0

∑
𝑛1+⋅⋅⋅+𝑛𝑚=𝑛−𝑚

(−1)𝑚 𝑓𝑛1+1 ⋅ ⋅ ⋅ 𝑓𝑛𝑚+1𝑓0𝑚+1 ]𝑥𝑛. (14)

Since (𝑓 ∘ 𝑔)(0) = 𝑓(𝑔(0)) = 𝑓(0) = 0 and (𝑓 ∘ 𝑔)󸀠(0) =𝑓󸀠(𝑔(0))𝑔󸀠(0) = 𝑓󸀠(0)𝑔󸀠(0) ̸= 0 for any 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐾, we
see that ∘ : 𝐾 × 𝐾 → 𝐾 is an associative binary operation.
The identity is the power series id(𝑥) = 𝑥, and the inverse of𝑔(𝑥) is its compositional inverse 𝑔(𝑥) = ∑𝑛 𝑔𝑛𝑥𝑛 having the
implicitly defined coefficients𝑔0 = 0,𝑔1 = 1𝑔1 ,
𝑛∑
𝑚=0

𝑔𝑚 [ ∑
𝑛1+⋅⋅⋅+𝑛𝑚=𝑛

𝑔𝑛1 ⋅ ⋅ ⋅ 𝑔𝑛𝑚] = 0 for 𝑛 = 2, 3, . . . .
(15)

Since (𝑓+𝑔)(0) = 𝑓(0)+𝑔(0) = 0 for any 𝑓(𝑥), 𝑔(𝑥) ∈ 𝑉, we
see that + : 𝑉×𝑉 → 𝑉 is an associative binary operation.The
identity is the constant power series 𝑜(𝑥) = 0, and the inverse
of ℎ(𝑥) is the negation −ℎ(𝑥), seen to be a power series with(−ℎ)(0) = −ℎ(0) = 0.

Now, we show (ii). Since (𝑓 ∘ 𝑔)(0) = 𝑓(𝑔(0)) = 𝑓(0) ̸= 0
for any 𝑓(𝑥) ∈ 𝐻 and 𝑔(𝑥) ∈ 𝐾, we see that 𝜑 : 𝐾 → Aut (𝐻)
is well defined. Given 𝑔(𝑥), ℎ(𝑥) ∈ 𝐾, we have 𝜑𝑔 ∘ 𝜑ℎ = 𝜑𝑔∘ℎ
because for all 𝑓(𝑥) ∈ 𝐻 we have

(𝜑𝑔 ∘ 𝜑ℎ) [𝑓 (𝑥)] = 𝜑𝑔 [(𝑓 ∘ ℎ) (𝑥)] = (𝑓 ∘ ℎ ∘ 𝑔) (𝑥)= (𝑓 ∘ 𝑔 ∘ ℎ) (𝑥) = 𝜑𝑔∘ℎ [𝑓 (𝑥)] . (16)

Hence, 𝜑 : 𝐾 → Aut (𝐻) is indeed a group homomorphism.
The semidirect product 𝐺 = 𝐻⋊𝜑𝐾 consists of pairs(𝑓(𝑥), 𝑔(𝑥)) with 𝑓(𝑥) ∈ 𝐻 and 𝑔(𝑥) ∈ 𝐾, where the binary
operation ∗ : 𝐺 × 𝐺 → 𝐺 is defined by(𝑓1 (𝑥) , 𝑔1 (𝑥)) ∗ (𝑓2 (𝑥) , 𝑔2 (𝑥))= (𝑓1 (𝑥) 𝑓2 (𝑔1 (𝑥)) , 𝑔1 (𝑔2 (𝑥))) . (17)

Finally, we show (iii). The map ∗ : 𝐺 × 𝑉 → 𝑉 is defined
as the formal identity(𝑓 (𝑥) , 𝑔 (𝑥)) ∗ ℎ (𝑥) = 𝑓 (𝑥) ℎ (𝑔 (𝑥)) . (18)

Since [(𝑓, 𝑔) ∗ ℎ](0) = 𝑓(0)ℎ(𝑔(0)) = 𝑓(0)ℎ(0) = 0, we see
that the map ∗ : 𝐺 × 𝑉 → 𝑉 is well defined. As the identity

element of𝐺 is (𝑒(𝑥), id(𝑥)) = (1, 𝑥), we see that (𝑒(𝑥), id(𝑥))∗ℎ(𝑥) = ℎ(𝑥) so that it acts trivially on 𝑉. Given two elements(𝑓1, 𝑔1), (𝑓2, 𝑔2) ∈ 𝐺 and ℎ(𝑥) ∈ 𝑉, we have the identity
(𝑓1 (𝑥) , 𝑔1 (𝑥)) ∗ [(𝑓2 (𝑥) , 𝑔2 (𝑥)) ∗ ℎ (𝑥)]= (𝑓1 (𝑥) , 𝑔1 (𝑥)) ∗ [𝑓2 (𝑥) ℎ (𝑔2 (𝑥))]= 𝑓1 (𝑥) 𝑓2 (𝑔1 (𝑥)) ℎ (𝑔2 ∘ 𝑔1 (𝑥))= 𝑓1 (𝑥) 𝑓2 (𝑔1 (𝑥)) ℎ (𝑔1 ∘ 𝑔2 (𝑥))= (𝑓1 (𝑥) 𝑓2 (𝑔1 (𝑥)) , 𝑔1 (𝑔2 (𝑥))) ∗ ℎ (𝑥)= [(𝑓1 (𝑥) , 𝑔1 (𝑥)) ∗ (𝑓2 (𝑥) , 𝑔2 (𝑥))] ∗ ℎ (𝑥) .

(19)

Similarly, given two elements ℎ1(𝑥), ℎ2(𝑥) ∈ 𝑉 and (𝑓, 𝑔) ∈ 𝐺,
we have the identity

(𝑓 (𝑥) , 𝑔 (𝑥)) ∗ [ℎ1 (𝑥) + ℎ2 (𝑥)]= 𝑓 (𝑥) [ℎ1 (𝑔 (𝑥)) + ℎ2 (𝑔 (𝑥))]= (𝑓 (𝑥) , 𝑔 (𝑥)) ∗ ℎ1 (𝑥) + (𝑓 (𝑥) , 𝑔 (𝑥))∗ ℎ2 (𝑥) .
(20)

Hence, ∗ : 𝐺 × 𝑉 → 𝑉 is indeed a group action.

2.2. Riordan Matrices. Recall that the set𝑉 = {ℎ (𝑥) ∈ 𝑘 ⟦𝑥⟧ | ℎ (0) = 0} (21)

is a 𝑘-vpng {𝑥, 𝑥2, . . . , 𝑥𝑛, . . .}. Since the semidirect product𝐺 = 𝐻⋊𝜑𝐾 acts on 𝑉, we have a “permutation” representa-
tion 𝜋 : 𝐺 → 𝐺𝐿(𝑉). Explicitly, this representation is defined
on the basis elements of 𝑉 via the formal identity

(𝑓 (𝑥) , 𝑔 (𝑥)) ∗ 𝑥𝑚 = 𝑓 (𝑥) [𝑔 (𝑥)]𝑚 = ∞∑
𝑛=1

𝑙𝑛,𝑚𝑥𝑛
for 𝑚 = 1, 2, 3, . . . . (22)

(Recall that 𝑔(𝑥) is the compositional inverse of 𝑔(𝑥).) The
matrix with respect to the basis {𝑥, 𝑥2, . . . , 𝑥𝑛, . . .} is given by
the lower triangular matrix

𝜋 (𝑓 (𝑥) , 𝑔 (𝑥)) =(((((((
(

𝑙1,1𝑙2,1 𝑙2,2𝑙3,1 𝑙3,2 𝑙3,3... ... ... d𝑙𝑛,1 𝑙𝑛,2 𝑙𝑛,3 ⋅ ⋅ ⋅ 𝑙𝑛,𝑛... ... ... ⋅ ⋅ ⋅ ... d

)))))))
)

. (23)

Recall that 𝑔(0) = 0 yet 𝑓(0), 𝑔󸀠(0) ̸= 0. The following result
explains the main multiplicative property of these matrices.
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Theorem 4. Continue notation as above.

(i) 𝜋 : 𝐺 → 𝐺𝐿(𝑉) is a group homomorphism. That is,𝜋 (𝑓1 (𝑥) , 𝑔1 (𝑥)) 𝜋 (𝑓2 (𝑥) , 𝑔2 (𝑥))= 𝜋 (𝑓1 (𝑥) 𝑓2 (𝑔1 (𝑥)) , 𝑔1 (𝑔2 (𝑥))) . (24)

(ii) For a generating function 𝑡(𝑥) = 𝑡0 + 𝑡1𝑥 + 𝑡2𝑥2 + ⋅ ⋅ ⋅
with 𝑡0 ̸= 0,𝜋 (𝑓 (𝑥) , 𝑔 (𝑥)) 𝜋 (𝑡 (𝑥) , id (𝑥))

= ( 𝑚∑
𝑝=1

𝑙𝑛,𝑝𝑡𝑝−𝑚)
𝑛,𝑚≥1

. (25)

Such matrices 𝜋(𝑓, 𝑔) are called the Riordan matrices
associated with the pair (𝑓, 𝑔). The collection R of Riordan
matrices is a group which is isomorphic to 𝐺 = 𝐻⋊𝜑𝐾; this
is the Riordan group. The collection of matrices 𝜋(𝑓, id) is a
group which is isomorphic to𝐻; this normal subgroup is the
Appell subgroup of R.

Proof. We show (i). In the proof of Proposition 3, we found
that for each ℎ(𝑥) ∈ 𝑉 we have the following formal identity
involving power series as elements of 𝑘⟦𝑥⟧:(𝑓1 (𝑥) , 𝑔1 (𝑥)) ∗ [(𝑓2 (𝑥) , 𝑔2 (𝑥)) ∗ ℎ (𝑥)]= [(𝑓1 (𝑥) , 𝑔1 (𝑥)) ∗ (𝑓2 (𝑥) , 𝑔2 (𝑥))] ∗ ℎ (𝑥)= (𝑓1 (𝑥) 𝑓2 (𝑔1 (𝑥)) , 𝑔1 (𝑔2 (𝑥))) ∗ ℎ (𝑥) . (26)

In particular, this holds for the basis elements ℎ(𝑥) = 𝑥𝑛, so
the result follows.

Now, we show (ii). For a generating function 𝑡(𝑥) = 𝑡0 +𝑡1𝑥 + 𝑡2𝑥2 + ⋅ ⋅ ⋅ , we have the product
(𝑡 (𝑥) , id (𝑥)) ∗ 𝑥𝑚 = 𝑡 (𝑥) 𝑥𝑚 = ∞∑

𝑛=1

𝑡𝑛−𝑚𝑥𝑛; (27)

so matrices in the Appell subgroup are in the form

𝜋 (𝑡 (𝑥) , id (𝑥)) =(((((((
(

𝑡0𝑡1 𝑡0𝑡2 𝑡1 𝑡0... ... ... d𝑡𝑛−1 𝑡𝑛−2 𝑡𝑛−3 ⋅ ⋅ ⋅ 𝑡0... ... ... ⋅ ⋅ ⋅ ... d

)))))))
)

. (28)

This gives the matrix product𝜋 (𝑓 (𝑥) , 𝑔 (𝑥)) 𝜋 (𝑡 (𝑥) , 𝑥) = (𝑙𝑛,𝑝)𝑛,𝑝≥1 (𝑡𝑝−𝑚)𝑝,𝑚≥1
= ( 𝑚∑
𝑝=1

𝑙𝑛,𝑝𝑡𝑝−𝑚)
𝑛,𝑚≥1

(29)

so the result follows.

2.3. Examples. Let 𝑘 = Q. Using elementary calculus, we find
the power series expansions

− ln (1 − 𝑥)𝑥 = 1 + 12𝑥 + 13𝑥2 + 14𝑥3 + 15𝑥4 + 16𝑥5+ ⋅ ⋅ ⋅ ,
− 𝑥
ln (1 − 𝑥) = 1 − 12𝑥 − 112𝑥2 − 124𝑥3 − 19720𝑥4

− 3160𝑥5 + ⋅ ⋅ ⋅ ,
(30)

which are valid whenever |𝑥| < 1. Hence, the formal power
series

𝑓 (𝑥) = 1 + 12𝑥 + 13𝑥2 + 14𝑥3 + ⋅ ⋅ ⋅ + 1𝑛 + 1𝑥𝑛 + ⋅ ⋅ ⋅ (31)

is an element of𝐻 and has multiplicative inverse

1𝑓 (𝑥) = 1 − 12𝑥 − 112𝑥2 − 124𝑥3 − 19720𝑥4 − 3160𝑥5+ ⋅ ⋅ ⋅ . (32)

We have the product

(𝑓 (𝑥) , id (𝑥)) ∗ 𝑥𝑚 = 𝑓 (𝑥) 𝑥𝑚 = ∞∑
𝑛=1

1𝑛 − 𝑚 + 1𝑥𝑛 (33)

which yields the matrix

𝜋 (𝑓, id) =
(((((((((((
(

112 113 12 1... ... ... d1𝑛 1𝑛 − 1 1𝑛 − 2 ⋅ ⋅ ⋅ 1... ... ... ⋅ ⋅ ⋅ ... d

)))))))))))
)

. (34)

Similarly, we have the product

( 1𝑓 (𝑥) , id (𝑥)) ∗ 𝑥𝑚 = 1𝑓 (𝑥)𝑥𝑚
= 𝑥𝑚 − 12𝑥𝑚+1 − 112𝑥𝑚+2− 124𝑥𝑚+3 − 19720𝑥𝑚+4 + ⋅ ⋅ ⋅ .

(35)
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Since we may use Theorem 4 to conclude that 𝜋(𝑓, id)−1 =𝜋(1/𝑓, id), we find the identity

(((((((((((
(

112 113 12 1... ... ... d1𝑛 1𝑛 − 1 1𝑛 − 2 ⋅ ⋅ ⋅ 1... ... ... ⋅ ⋅ ⋅ ... d

)))))))))))
)

−1

=
((((((((((((
(

1−12 1
− 112 −12 1
− 124 − 112 −12 1
− 19720 − 124 − 112 −12 1... ... ... ⋅ ⋅ ⋅ ... d

))))))))))))
)

.

(36)

These matrices are elements of the Appell subgroup of R.

2.4. Relation with Standard Notation. Standard references
for Riordan matrices are Shapiro et al. [3] and Sprugnoli
[4, 5]. The notation 𝜋(𝑓, 𝑔) employed above is not the typical
one, so we explain the connection. Consider sequences{𝐺0, 𝐺1, 𝐺2, . . . , 𝐺𝑛, . . .} and {𝐹1, 𝐹2, 𝐹3, . . . , 𝐹𝑛, . . .} of complex
numbers 𝑘 = C, where 𝐺0, 𝐹1 ̸= 0. Upon associating
generating functions𝐺(𝑥) = 𝐺0+𝐺1𝑥+𝐺2𝑥2+⋅ ⋅ ⋅ and𝐹(𝑥) =𝐹1𝑥 + 𝐹2𝑥2 + 𝐹3𝑥3 + ⋅ ⋅ ⋅ with these sequences, respectively,
the standard notation for a Riordan matrix is that infinite-
dimensional matrix given by

𝐿 = [𝐺 (𝑥) , 𝐹 (𝑥)] = 𝜋 (𝐺 (𝑥) , 𝐹 (𝑥)) = (𝑙𝑛,𝑚)𝑛,𝑚≥1 (37)

in terms of the compositional inverse 𝐹(𝑥) of 𝐹(𝑥). Indeed,
the entry 𝑙𝑛,𝑚 in the 𝑛th row and 𝑚th column satisfies the
relation

𝐺 (𝑥) [𝐹 (𝑥)]𝑚 = ∞∑
𝑛=1

𝑙𝑛,𝑚𝑥𝑛 for 𝑚 = 1, 2, 3, . . . (38)

as formal power series in C⟦𝑥⟧. Equivalently, a Riordan
matrix 𝐿 can be defined by a pair (𝐺(𝑥), 𝐹(𝑥)) of generating
functions.

Corollary 5 (fundamental theorem of the Riordan group [3,
5, 6]). Continue notation as above.

(i) The product of Riordan matrices is again a Riordan
matrix. Explicitly, their product satisfies the relation

[𝐺1 (𝑥) , 𝐹1 (𝑥)] [𝐺2 (𝑥) , 𝐹2 (𝑥)]= [𝐺1 (𝑥) 𝐺2 (𝐹1 (𝑥)) , 𝐹2 (𝐹1 (𝑥))] . (39)

(ii) For a generating function 𝑇(𝑥) = 𝑇0 +𝑇1𝑥+𝑇2𝑥2 + ⋅ ⋅ ⋅
with 𝑇0 ̸= 0, one has the product

[𝐺 (𝑥) , 𝐹 (𝑥)] [𝑇 (𝑥) , 𝑥] = ( 𝑚∑
𝑝=1

𝑙𝑛,𝑝𝑇𝑝−𝑚)
𝑛,𝑚≥1

. (40)

Proof. Statement (i) is shown in [3, Eq. 5] and [6, Proof of
Thm. 2.1], but we give an alternate proof. Upon denoting𝑓𝑖(𝑥) = 𝐺𝑖(𝑥) and 𝑔𝑖(𝑥) = 𝐹𝑖(𝑥) for 𝑖 = 1 and 2, we find
the matrix product

[𝐺1 (𝑥) , 𝐹1 (𝑥)] [𝐺2 (𝑥) , 𝐹2 (𝑥)]= 𝜋 (𝑓1 (𝑥) , 𝑔1 (𝑥)) 𝜋 (𝑓2 (𝑥) , 𝑔2 (𝑥))= 𝜋 (𝑓1 (𝑥) 𝑓2 (𝑔1 (𝑥)) , 𝑔1 (𝑔2 (𝑥)))= [𝐺1 (𝑥) 𝐺2 (𝐹1 (𝑥)) , 𝐹2 (𝐹1 (𝑥))]
(41)

which follows directly fromTheorem 4. Statement (ii) is also
shown in [6], but it follows directly from Theorem 4 as well.

3. Proof of Kenter’s Result and
Generalizations

3.1. Main Result. We now proveTheorem 1.

Proof of Theorem 1. With the three power series 𝑎(𝑥) =∑𝑛 𝑎𝑛𝑥𝑛, 𝑏(𝑥) = ∑𝑛 𝑏𝑛𝑥𝑛, and 𝑐(𝑥) = ∑𝑛 𝑐𝑛𝑥𝑛 convergent in
the interval |𝑥| < 1, consider the power series

𝑓 (𝑥) = 𝑏 (𝑥)𝑑 𝑐 (𝑥) = ∞∑
𝑛=0

𝑓𝑛𝑥𝑛 where |𝑥| < 1. (42)

As elements of the Appell subgroup of R, we invoke Theo-
rem 4 to see that we have the matrix product 𝜋(𝑓(𝑥), 𝑥) =𝜋(𝑏(𝑥), 𝑥)𝑑𝜋(𝑐(𝑥), 𝑥). In particular, the first column is given
by

(((((((
(

𝑓0𝑓1𝑓2...𝑓𝑛...

)))))))
)
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=(((((((
(

𝑏0𝑏1 𝑏0𝑏2 𝑏1 𝑏0... ... ... d𝑏𝑛 𝑏𝑛−1 𝑏𝑛−2 ⋅ ⋅ ⋅ 𝑏0... ... ... ⋅ ⋅ ⋅ ... d

)))))))
)

𝑑

(((((((
(

𝑐0𝑐1𝑐2...𝑐𝑛...

)))))))
)

.

(43)

Hence, the matrix product

(𝑎0 𝑎1 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑛 ⋅ ⋅ ⋅)(((((((
(

𝑏0𝑏1 𝑏0𝑏2 𝑏1 𝑏0... ... ... d𝑏𝑛 𝑏𝑛−1 𝑏𝑛−2 ⋅ ⋅ ⋅ 𝑏0... ... ... ⋅ ⋅ ⋅ ... d

)))))))
)

𝑑

⋅(((((((
(

𝑐0𝑐1𝑐2...𝑐𝑛...

)))))))
)

(44)

is equal to the sum ∑𝑛 𝑎𝑛𝑓𝑛. We wish to evaluate this sum
using complex analysis.

By assumption, the power series 𝑎(𝑥), 𝑏(𝑥), and 𝑐(𝑥) are
convergent in the interval |𝑥| < 1. Hence, for each fixed real
number 𝑟 satisfying 0 < 𝑟 < 1, the functions 𝑎(𝑧) and 𝑓(𝑧)
are uniformly convergent inside a closed disk |𝑧| ≤ 𝑟. Hence,
we can interchange summation and integration to find the
integral around the boundary to be equal to

12𝜋𝑖 ∮|𝑧|=𝑟 𝑎 (𝑧) 𝑏 (𝑧∗)𝑑𝑐 (𝑧∗) 1𝑧𝑑𝑧= 12𝜋𝑖 ∮|𝑧|=𝑟 𝑎 (𝑧) 𝑓 (𝑧∗) 1𝑧𝑑𝑧
= ∞∑
𝑛1=0

∞∑
𝑛2=0

𝑎𝑛1𝑓𝑛2𝑟𝑛1+𝑛2 ⋅ 12𝜋 ∫2𝜋0 𝑒𝑖(𝑛1−𝑛2)𝜃𝑑𝜃
= ∞∑
𝑛=0

𝑎𝑛𝑓𝑛𝑟2𝑛.
(45)

Here, 𝑧∗ is the complex conjugate of 𝑧. As 𝑟 → 1, the integral
exists, so by Cauchy’s ResidueTheorem it must be equal to

Res
𝑧=0

[[
𝑎 (𝑧) 𝑏 (𝑧−1)𝑑 𝑐 (𝑧−1)𝑧 ]]= lim
𝑟→1

[ 12𝜋𝑖 ∮|𝑧|=1 𝑎 (𝑧) 𝑏 (𝑧−1)𝑑 𝑐 (𝑧−1) 1𝑧𝑑𝑧]
= lim
𝑟→1

[∞∑
𝑛=0

𝑎𝑛𝑓𝑛𝑟2𝑛] = ∞∑
𝑛=0

𝑎𝑛𝑓𝑛.
(46)

The theorem follows upon equating this with (44).

3.2. Applications. We explain how to use Theorem 1 in order
to express Euler’s number 𝑒 = 2.7182818284 ⋅ ⋅ ⋅ in terms of
Riordan matrices.

Proof of Corollary 2. The coefficients of the matrices in (9)
correspond to the three power series

𝑎 (𝑥) = 11 − 𝑥𝑝 = ∞∑
𝑛=0

𝑥𝑛𝑝𝑛 ,
𝑏 (𝑥) = 𝑒𝑥 = ∞∑

𝑛=0

𝑥𝑛𝑛! ,
𝑐 (𝑥) = 11 − 𝑥/𝑞 = ∞∑𝑛=0𝑥𝑛𝑞𝑛

where |𝑥| < 1.

(47)

For a complex number 𝑧 with |𝑧| < 1, we have the identity
𝑎 (𝑧) 𝑏 (𝑧−1)𝑑 𝑐 (𝑧−1)𝑧
= [ 11 − 𝑧/𝑝] [𝑒𝑑𝑧−1] [ 11 − 𝑧−1/𝑞]
= ∞∑
𝑛=−∞

[ ∑
𝑛1−𝑛2−𝑛3=𝑛+1

𝑑𝑛2𝑝𝑛1𝑛2!𝑞𝑛3 ] 𝑧𝑛.
(48)

The residue corresponds to the coefficient of the 𝑧−1 term, so
we consider the terms where 𝑛 = −1:
Res
𝑧=0

[[
𝑎 (𝑧) 𝑏 (𝑧−1)𝑑 𝑐 (𝑧−1)𝑧 ]] = ∑

𝑛1=𝑛2+𝑛3

𝑑𝑛2𝑝𝑛1𝑛2!𝑞𝑛3
= [ ∞∑
𝑛2=0

1𝑛2! (𝑑𝑝)𝑛2][ ∞∑𝑛3=0 1(𝑝𝑞)𝑛3 ] = 𝑒𝑑/𝑝 𝑝𝑞𝑝𝑞 − 1 .
(49)

The corollary follows now fromTheorem 1.

Kenter’s result is also an application of Theorem 1.
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Corollary 6 (see [1]). The Euler-Mascheroni constant

𝛾 = lim
𝑛→∞

[( 𝑛∑
𝑚=1

1𝑚) − ln 𝑛] = 0.5772156649 ⋅ ⋅ ⋅ (50)

is equal to the matrix product

(1 12 13 ⋅ ⋅ ⋅ 1𝑛 ⋅ ⋅ ⋅)
(((((((((((
(

112 113 12 1... ... ... d1𝑛 1𝑛 − 1 1𝑛 − 2 ⋅ ⋅ ⋅ 1... ... ... ⋅ ⋅ ⋅ ... d

)))))))))))
)

−1

⋅
((((((((((((
(

121314...1𝑛 + 1...

))))))))))))
)

.

(51)

Proof. The coefficients of the matrices above correspond to
the three power series

𝑎 (𝑥) = − log (1 − 𝑥)𝑥 = ∞∑
𝑛=0

𝑥𝑛𝑛 + 1 ,
𝑏 (𝑥) = − log (1 − 𝑥)𝑥 = ∞∑

𝑛=0

𝑥𝑛𝑛 + 1 ,
𝑐 (𝑥) = 𝑎 (𝑥) − 1𝑥 = ∞∑

𝑛=0

𝑥𝑛𝑛 + 2
where |𝑥| < 1.

(52)

We will choose the exponent 𝑑 = −1. We will express the
reciprocal as the power series

𝑥
log (1 − 𝑥) = −1 + 12𝑥 + 112𝑥2 + 124𝑥3 + 19720𝑥4

+ 3160𝑥5 + ⋅ ⋅ ⋅ = ∞∑𝑛=0𝐿𝑛𝑥𝑛
(53)

which is also convergent in the interval |𝑥| < 1. (Recall
that the coefficients 𝐿𝑛 are sometimes called the “logarithmic

numbers” or the “Gregory coefficients.”) For a complex
number 𝑧 with |𝑧| < 1, we have the identity

𝑎 (𝑧) 𝑏 (𝑧−1)𝑑 𝑐 (𝑧−1)𝑧
= − log (1 − 𝑧)𝑧 + [− log (1 − 𝑧)𝑧 ]
⋅ [ 𝑧−1

log (1 − 𝑧−1)]
= ∞∑
𝑛=0

𝑧𝑛𝑛 + 1 + ∞∑𝑛=−∞[ ∞∑𝑚=−𝑛 𝐿𝑚𝑛 + 𝑚 + 1] 𝑧𝑛.
(54)

The residue corresponds to the coefficient of the 𝑧−1 term, so
we consider the terms where 𝑛 = −1:

Res
𝑧=0

[[
𝑎 (𝑧) 𝑏 (𝑧−1)𝑑 𝑐 (𝑧−1)𝑧 ]] =

∞∑
𝑚=1

𝐿𝑚𝑚
= ∫1
0
[ ∞∑
𝑚=1

𝐿𝑚𝑥𝑚−1]𝑑𝑥
= ∫1
0
[ 1𝑥 + 1

log (1 − 𝑥)] 𝑑𝑥 = 𝛾.
(55)

The corollary follows now fromTheorem 1.

We conclude by stating that Theorem 1 can also be used
to show Riordan matrix representations for ln 2 and 𝜋2/6.
Finding matrix representations of other constants, like √2,𝜋, and the Golden Ratio 𝜙, is of interest.
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