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The purpose of this paper is to develop a high-order compact finite difference method for solving one-dimensional (1D)
heat conduction equation with Dirichlet and Neumann boundary conditions, respectively. A parameter is used for the direct
implementation of Dirichlet and Neumann boundary conditions. The introduced parameter adjusts the position of the neighboring
nodes very next to the boundary. In the case of Dirichlet boundary condition, we developed eighth-order compact finite difference
method for the entire domain and fourth-order accurate proposal is presented for the Neumann boundary conditions. In the case
of Dirichlet boundary conditions, the introduced parameter behaves like a free parameter and could take any value from its defined
domain but for the Neumann boundary condition we obtained a particular value of the parameter. In both proposed compact finite
difference methods, the order of accuracy is the same for all nodes. The time discretization is performed by using Crank-Nicholson
finite difference method. The unconditional convergence of the proposed methods is presented. Finally, a set of 1D heat conduction

equations is solved to show the validity and accuracy of our proposed methods.

1. Introduction

Heat conduction problems with suitable boundary conditions
exist in many areas of engineering applications [1-7]. His-
torically, highly accurate compact finite difference schemes
are developed in the work by Lele [8]. But these higher-order
compact finite difference schemes only offer good accuracy
at the interior nodes or for periodic boundary conditions.
Usually, compact finite difference schemes have first- or
second-order accuracy [9,10]. The low-order of accuracy near
boundary grid points affects the whole numerical results and
it reduces the accuracy of overall numerical solution [11].
Some authors offer one-side finite difference approximations
for the Dirichlet boundary condition [8, 12] but they cannot
offer unconditional stability for the whole finite difference
scheme. Recently, Dai et al. [11, 13-16] proposed a new idea
to achieve higher-order accuracy with unconditional stability.

Actually, authors introduced a new parameter 6 that adjusts
the location of nodes near the boundaries in symmetric way.

2. Higher-Order Compact Finite
Difference Method

The 1D heat conduction equation can be written as

2
oT (x,t) :ka T(x’t)+s(x,t),
at ax2 (la)
0<x<l, 0<t<ty
T(x,0)=f(x), 0<x<L (1b)



Dirichlet boundary conditions are as follows:

T(0,t) =Ty (2),

T (,t) =T (t), (2)
0<t< tf.
Neumann boundary conditions are as follows:
T, (0,t) =T, (1),
T, (t) =T (), €)
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accuracy for boundary nodes. Actually, they use eighth-
order accurate approximation for the second-order derivative
developed in [8] and given as

1 " " 1 1
BTyt T ) + T, + Ty + BT,

1

Ty - 2T+ T, Tiyy - 2T+ T,y )

a s I :

=b,

where double dash always means derivative with respect to
spatial variable and oy = 344/1179, f3; = (383 -9)/214, a; =
(696—1191cr5)/428, and b; = (2454x;—294)/535. The implicit
compact finite difference scheme (4) without the contribution

0<t<t £
of boundary nodes in matrix form is given by
Han and Dai [17] have proposed a compact finite dif- AT, = BT. (5)
ference method for the spatial discretization of (la) that
has eighth-order accuracy at interior nodes and sixth-order =~ Here,
[Bs oz 1 a; f ]
By az 1 oz By
A= Bs ?‘3 .1 o3 (33
Bs az 1 a3 fB
L By az 1 a3 f5s]
- - 6
b b b ©
E 23 o 2 N b B b
3 3 3
3 2a. -2 3
I
B — .. . .
bs bs by
3 “2a, — = )
4 Zs =5 a3 , 4 ,
3 3 3
3 2a. -2 3
L V. BT By

The governing equation of implicit compact finite differ-
ence approximation of second-order derivative is

" 1" 1 " "
BT, +aT,_ + T, +aT; , + BT;

i i+ i+2
Ty — 2T, + T4
oh?
T - 2T+ T4
h? ’

T, -2T;+T;
+b i+2 i i-2
4h?

@)
+a

Note that (4) can be obtained from (7).

We can observe that matrix A is strictly diagonally dom-
inant and matrix B is diagonally dominant. In [17], authors
constructed finite difference scheme at boundary nodes in
such a way that they conserve the diagonal dominance of
matrixes A and B to attain higher order of accuracy. The

achieved order of accuracy at boundary nodes in [17] is
six. The essence of article [17] is hidden in the calculation
of a parameter 6 that they use to obtain higher-order
approximation near boundary nodes. The parameter 8 makes
the point distribution unequal near boundary but offer higher
order of accuracy and diagonal dominance for matrices A and
B. The diagonally dominance of A and B is the key to prove
stability of whole compact finite difference scheme when they
use Crank-Nicholson method for time integration.

We construct a new finite difference scheme for boundary
nodes to achieve eighth order of accuracy that exactly
matches the order of accuracy at the interior nodes. The
inclusion of two parameters 6 and «’s will be introduced in
our newly developed finite difference scheme for boundary
nodes. The diagonally dominance will be conserved and the
whole eighth-order scheme becomes stable.
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FIGURE 1: Grid points and location of boundary nodes.

The stencil of eighth-order implicit finite difference
scheme to approximate the second-order derivative for the
interior nodes is

(i-2,i-1Lii+1,i+2} fori=3,4,...,M~-2 (8)
It means that if we are at location i, then we need two grid
nodes to the left of i and two grid points to the right of it. It
is noticeable that mutual distance between nodes is equal to
h = 1/(20 + M — 2) and M points divide the interval [0, ]
with x, = 0, X, = L, x; — %9 = Oh, X5 — X5 = Oh, and
x; =@ +i-1hfori=2,3,...,M — 1. Figure 1 shows the
location of interior and boundary nodes.

In the case of Dirichlet boundary conditions, we con-
struct the eighth-order accurate implicit finite difference
approximations of second-order derivatives for the nodes x;,
X5, Xpp and x,,0,1, whereas, in the case of Neumann boundary
conditions, we establish stable fourth-order compact finite
difference scheme for the entire grid.

3. Compact Implicit Finite Difference Scheme
for Boundary Nodes in the Case of Dirichlet
Boundary Conditions

In the case of Dirichlet boundary condition, we construct the
following compact implicit finite difference scheme at point
x, = 0h:

1
Ty (%0) + Ty (%) = 2 (aoT (x0) + &, T (x,)
9)

+a,T (x,) +-+-+agT (x4)),
where 0, «; (#0), and g; fori = 0,1,2,...,8 are unknowns

and we are interested to find them in such a way that we can
get
(i) eighth-order accurate approximation of second-order
derivative at x,,
(ii) diagonal dominance, that is, @, < 0 and |a,| =

8
Lj-ij 15l

a, = 36

By expanding (9) around the node x; = 0h and equating
the coefficients of the same-order derivatives, we get the
following system of equations:

—Gy—a; =Gy — 03— 0y — 05 —dg—a; —ag =0

ay0 — a, — 2a, — 3a, — 4as — 5a; — 6a, — 7ag = 0

1 a, 9 25
-2 g, -~ —8a,- g, 18a
2a)0* 2 > 2a, ° 2°° 7
49aq4
-——+a;+1=0
2
1 a, 4 9 32a; 125a,
—ag-22_ 2 2 25 22%
6a,0° ' 6 3a; 2a, 3 6
343a,
- 36a, — =
6
1 1 a 2 27a, 32
—_——— + —_— e — e —
24a,0* 20,6 24 3a, 8 3
625a, 2401ag
24 24
a0’ 1 a, 4a; 8la, 128as

120 6a,0° 120 15 40 15

625a, 324a, 16807ag 0 (10)
24 5 120
a,0° 1 a, 4a; 8la, 256as

+
720 240;0* 720 45 80 45

31250, 324a, 117649
144 5 720
a0 0> a, 8a; 243a, 1024as
5040 120 5040 315 560 315
15625a, 1944a, 117649a,
© 1008 35 720
a,0° +0c196 a,  2a; 729, 512as
40320 © 720 40320 315 4480 315
781254, 1458a, 823543ay
8064 35 5760
a,0° o0 a, 4a;  243a,
362880 5040 362880 2835 4480
2048a; 390625a; 972a, 5764801lag
2835 72576 35 51840

By solving (10), we get the solution as follows:

653460° + 1403360° + 11861436* + 49980000° + 1091373560 + 114577686 + 4357806

' (2608 + 6367 + 8266° + 583160° + 239196* + 572320% + 7547762 + 469980 + 8820) (0 + 6) (0 +5) (0 +4) (O +3) (B +2) (0 + 1)
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2626407 + 59446360° + 51623880 + 208133660" + 332892280° — 155847936° — 1031199126 — 78440508

17 77504007 + 1234800° + 121716065 + 61740000% + 1705788067 + 2481948002 + 164656800 + 3175200
1 6(178467 + 400476° + 3455706° + 14021750" + 24548680° + 3688126” — 33717600 — 2116800)
“= "0 (6 + 1) (207 + 4965 + 48305 + 24500* + 67696° + 984967 + 65346 + 1260)
(351607 + 768396° + 6410106° + 24967500" + 42233826" + 11781396 — 33226200 — 1587600) 6
%= (400 + 80) (267 + 4965 + 483605 + 24500* + 67690 + 98496 + 65346 + 1260)
6759207 + 1597756° + 12699186° + 46430156" + 72053326" + 16579320" — 47829606 — 2116800
a, = —
* (720 + 216) (207 + 4966 + 48305 + 24500* + 67696 + 984962 + 65346 + 1260)
1 (656607 + 132510° + 1002726° + 3459506* + 5021200° + 1026676 — 3099606 — 132300) 6
as = —
> 8 (0 +4) (207 + 496° + 4830° + 24500* + 67690° + 984902 + 65340 + 1260)
360 (53607 + 103676° + 748426° + 2461196* + 3414920° + 645886” — 2026086 — 84672)
%= (400 + 200) (267 + 490° + 4830° + 24500* + 67696° + 984962 + 65346 + 1260)
0407607 + 753136° + 5207706° + 16500500" + 22184626° + 3970536° — 12839406 — 529200)
“= (3600 + 2160) (207 + 4965 + 48305 + 24500* + 67696 + 984962 + 65346 + 1260)
639267 + 69036° + 459906° + 14157560* + 1860046° + 319486° — 1058406 — 43200)
% = 756068 + 1764007 + 2312806° + 16326800° + 66973200" + 16024960607 + 2113356007 + 131594400 + 2469600
w9 3630 - 140
17207 + 4966 + 4830° + 24500* + 67690 + 9849602 + 65340 + 1260
(11)
We define the error equation as Similarly, at the node x,, we have the following construction
of the implicit compact finite difference scheme:
1
_ _ L 1
El - OclTxx (xO) + Txx (xl) hz (aOT (‘XO) (XIT” (.XO) + OCZT” (Xl) + T” (xz) = - (aOT (XO)
(12) h (15)
+a, T (x,) + @ T (x;) + -+ + asT (x3)) +a,T(x)) +a,T (x,) + -+ agT (xg)),
After substituting the solution (11) into (12), we get where 0, a; (#0), a, (_7&0)’ and a; for i = 0, .1’2’ --.»8 are
unknowns and we are interested to find them in such a way
q s . that we can get
E,==h +0(h), N o
' g, ( ) (13) (i) eighth-order accurate approximation of second-order
derivative at x,,
where (ii) diagonal dominance, that is, a, < 0 and |a,] >
8
8 7 6 Lje1,j#2 1951
q, =0 (8624886 +208380480" + 2004821280 .
By expanding (15) around the node x, = (60 + 1)h and
. " 5 equating the coeflicients of the same-order derivative, we get
+9722697600° + 24465764406" + 27822231366 the system of the following;
+ 35948668867 — 14489798400 — 558835200) —a =4~~~ —as—as—a; ~ag =0
. f(lo) (14) a,0 +ay +a, —a; — 2a, — 3a; — 4a, — 5a, — 6ag = 0
1 a, a; a3 9
_ 7 6 5 4 ——— - 212 2a, - — - 8a,
gy = 53222400 (207 + 496° + 4836° + 24500 2@ TR T T TR g, %

+67696° + 984967 + 65346 + 1260) . _ 275% 18ag+ay oy +1=0
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1 o 1 o+ 1 — a0+ I W 4 - «,0’ a,0° a,0° B «,0° a0’ ~ «, 0’
6a,0°  2a,0°  2a,0 6 6 3a 5040 = 362880 40320 720 10080 240
9  32a, 125a 6 4
S0 30 1B o —a =0 +a09 ot ay 97244
2a5 3 6 4320 144 5040 5040 35
~ 1 ~ 1 ~ 1 . 1 ~ 1 oy B 2048a B 243a, B 4a, a3 N a,
2af  6ag@  daf’ 2w  6af 2835 4480 2835 362880 362880
3 2 2
a a a3 2 27a; 32a; 625a, I T 0 + 40" _ a0 + a0
24 24 24 34 8 3 o 362880 144 10080 240 = 40320
5 4 3
P b N a,0 N a,0 N a,0° 3906254, _
- 54ag + St = 0 720 2880 2880 4320 72576
(16)
a0’ 1 1 1 1 1

+ + - + -
120 24a,0*  12a)0° 60,6°  12a,6> 2,67 _ ) ,
By solving (16), we get the following solution:
1 1 G 9 a;  4a,

+ - + + —
24a,0 20 120 120 120 15

ay = 36 (65340,0” + 1403360,0° — 52267
8la; 128ag  625a, 324a3 o o,
"0 15 5 6 @80 +11861430,60° — 114946° + 49980006

a,0°  a,0° 1 1 1 —1006950° + 109137350,0° — 4480356"

+
720 120 48a,0%  24a,0*  36a,0°

+114577680,0” — 10697056° + 4357806,0

1 1 1 a,0 1 a
- S = -2 — 132524767 - 7457400 — 131886 (6 (26° + 6367
60,0°  48a,?  4a 0> 120 6,0 720
6 5 4 3
o a, 4a, S8la, 256a, 31254, +8260° + 583160° + 239196* + 572320
720 720 45 80 45 144 +754776" + 469980 + 8820) (6 + 1) (6 +2) (6 + 3)
324a3 o @, 0 o
5 24 24 (0+4)(0+5)(0+6))

a, = (262640,6° + 5944630,6” + 35286°

5040 720 240 120 144 24«6
+51623880,0° + 9035167 + 2081336601,6°

a093 1 . a062 1 . ay0
144  120,60° 240 120,60 720 +9475830° + 33289228a,0" + 52598706°
1 G 4 _ 4 8a, 243 — 155847930,6” + 166749660" — 103119912a,6°

- + +
240,60 5040 5040 5040 315 560
1024a, 15625a, 1944a; «; a
315 1008 35 120 120 + 145822680 + 2373948 (25200 (207 + 496°
a0® a0 a0  «6° B a,0°  «,6°

+
40320 5040 1440 720 720 120

-1
Wl 1 af 1 af +1260))
576 48,0 720 36a,0° 1440

+303756390° — 78440508a,6 + 303081036°

+4836° + 24500* + 67699° + 98496 + 65340

a, = — (160560,0° + 3604230,0” + 2806°

1 a0 o0 a, a
T 48a, 02 5040 | 120 40320 40320 +31101300,6° + 110556” + 1261957506
a,  2a, 729s 512a, 78125a, +1684850° + 22093812a,0* + 13129690°

40320 315 4480 315 8064
1458ag N oy N o
35 720 720 + 1392924867 — 190512000,0 + 180068646°

+33193080,0° + 57061950* — 3034584006



+ 105286326 + 1900080) (3600 + 360) (267
+490° + 4830° + 24500* + 67690° + 984969°
+65340 +1260))

a; = (35160,60° + 768390,6” — 2166° + 641010a,6°
— 4419607 +24967500,0° — 319356°
+42233820,0" — 791826° + 1178139,0°
+1229580" — 33226200,0” + 10086450°
— 158760000 + 18303216” + 12304446
+234360) ((400 + 80) (267 + 496° + 4836°
+24500" + 67690° + 98490” + 65346 + 1260))_1

a, = - (75920,6° + 1597750,6” - 6846°
+1269918a,0° — 148950” + 4643015a,6°
—1245876° + 7205332a,0" — 4947216°
+1657932a,0° — 89822760" — 4782960,6”

— 4148646° — 211680000 + 6803826 + 7401246

+158760) (726 + 216) (2607 + 496° + 4836°

+24500" + 67696° + 98490° + 65346 + 1260))71
as = (59040,6° + 1192590,6” — 5366° + 90244801,6°

— 1136167 + 31135500,0° — 926650°

+45190800,0" — 3635300° + 924003a,6°

— 6886980 — 2789640a,0” — 4941856°

~ 11907000,0 + 1324950° + 2864520 + 66780)

+((726 + 288) (267 + 496° + 4836° + 24500"

+67690° + 98496° + 65340 + 1260))

ag = — (16080,6° + 31101a,6” — 1446°
+2245260,0° — 294307 + 7383570,0° — 231696°
+10244760,0* — 884250 + 193764a,0°
- 16692360" - 6078240,60” — 1308726°
— 2540160,0 + 47160° + 488166 + 12096 ( (400

+200) (267 +496° + 4836° + 24506" + 67696

+ 984967 + 65346 + 1260))
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a, = (40760,6° + 753130,0” — 3600° + 5207700;,6°
- 70650 + 1650050a,6° — 5368560°
+22184620,0" — 1997460° + 397053a,6°
— 3735900" — 128394001,6> — 3030576°
— 5292000,0 — 175416% + 873726 + 22680)

+((3600 + 2160) (207 + 496° + 4836° + 24506*

+67690° + 98496" + 65340 + 1260))
ag = — (35280,6° + 621270,6” — 3086°
+413910a,0° — 5787607 + 1274175a,0°
— 425950° + 16740360,0* — 1551416°
+287532a,0° — 2875116* — 952560a,6”
—2371606° — 388800c,0 — 256626” + 574926
+15480) (50406° + 15876067 + 20815200°
+ 146941200 + 602758800 + 1442246406’
+ 19020204007 + 1184349600 + 22226400)
ay = 9(363,0 — 140, — 296 - 9) (267 + 496°
+4830° + 24500" + 67690° + 98496 + 65340

+1260) .
17)
The error equation at the node x, is given by

EZ = ‘XlTxx (xO) + ‘XZTxx (xl) + Txx (xz)

1
e (aoT (x0) + T () + @, T (x;) + -+ (18)
+agT (xg)).
By substituting (17) into (18), we get

E, = @hs +0 (hg), (19)
92

where

q, = (77623920,6° + 1875424320,6° — 6201366°
+1804339152a,0” — 157980246°
+8750427840a,0° — 1640818086’
+22019187960a,0° — 8947018086°

+250400082240,0* — 27426001686°
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+3235380192a,0° — 46659911766*
— 13040818560a,60” — 39593568960°
- 50295168000 — 10621290246” + 3597644160
+131725440) 1%
g, = 479001600 (207 + 496° + 4836° + 24506

+67696° + 984967 + 65340 + 1260) .
(20)

In a similar way to that for the nodes x, and x,, the implicit
compact finite difference approximation of second-order
derivatives at nodes x,, and x,,_; is constructed.

4. Implicit Compact Finite Difference
Scheme for Boundary Nodes in the Case
of Neumann Boundary Conditions

For the construction of fourth-order implicit compact finite
difference approximation for second-order derivatives at
node x;,i = 2,3,..., M, we consider the following model:

“lTxx (xi—l) + Txx (xi) + (XlTxx (xi+1)
1 (21)
2 (aT (x;21) + @, T (x;) + a5 T (x341)) -

The stencil in (21) is
{i—1,i,i+1} (22)

and its length is three. It means that we have to construct
a fourth-order approximation of second-order derivative at
nodes x; and x,; Due to symmetry, we will only present
the construction for the node x; in the case of Neumann
boundary conditions. By expanding (21) around the node x;
and comparing the coefficients of the same-order derivative
of T at x;, we find the following values:

1
o = E,
o= 6
1 — =»
5
(23)
12
a, = —?,
6
as = g,
and (21) becomes
i " +TII LT/I _ 6Ti—1_2Ti+Ti+1
10 i-1 i 10 i+1 5 h2
Til—,l Tiy (24)
1 1 17 6
— - T =—11 =21 T, |,
[10 10] . 5h2[ N
Tin Tin

7
wherei = 2,3,..., M. Equation (24) can be written as
- 1 1 -
— 1 — 0 - o |[1/
10 ) 10 ) "
- 1 = ... 0 T,
10 _ 10
1 1
0 - 0 — 1 —|[Ty
L 10 10 - (25)
121 0 ---07[h
clo1 21 - o0||lT2
T sk?
00 1 21][p
The error equation for (24) is given by
= +o(r) (26)
P 200 fOnt

Next, we consider the following model for the construction
of implicit compact finite difference approximation of the
second-order derivative at node x;:

Txx (xl) + /31Txx (xz)
1
=BT () =T ) +e(T () -T() ()

T' (x1)
d——=.
T
After expanding (27) around x, and simplifying it, we get the
values of the parameters:

1
9=—1 E/)
~ 1\’ 1\ 16¢
b_30<_1+ﬁ> +90<—1+@> —72+?
2
ﬂzz 1 1'.15 ~ 3+45(—1+21/15¢>) _10+%)
(-1+1/15¢) 08)
3 2
c:—15<—1+i> 135(-1+1/15¢) p
15¢ 4
b
10¢
2
d=—45(_1++/15¢)+60—3¢,

where ¢ = /225 + 30V/30. The error equation for the stencil

(27) is given by

E—<@+i ¢)fi(6)h4+o(h5). (29)

47\ 27000 40 600



5. Stability

Consider a partition P = {xq, X1, X5, .. +» Xpr1> Xpp Xpgeq) Of
[0,1]. We define T'(¢) = [T (xy,1), T (x5, 1), ..., T(xpp )]7 and
S(t) = [s(x;, 1), s(xp, 1), ..., s(xpp0 H)]7. The implicit compact
finite difference scheme for the second-order derivative can
be written as

1

AT ()= =3

BT ()
(30)

T

XX

(t) = —%A*IBT (t).

The vector form of 1D heat conduction equation (la) can be
written as

Tt () = kax (1) +S8(1)

. €)
T,(5)= ~5 A BT () +S(0).

For time integration, we adopt Crank-Nicholson method for
(31):

Tm+1 _ Tm k B Tm+1 _ Tm
- - ZA'B————
At h? 2
. Sm+1 +Sm

2

(I + rAle) Tm+1 — (I _ rA—lB) Tm + Sm+1/2 (32)

"' = (1+rA™'B) " (I-rA"'B)T"

+ Sm+l/2

where U™ = U(t, + mAt), S™'? = (I + rA™' B} ((S™" +
§™)/2), and r = kAt/2h*. For stability analysis, we assume
two different solutions T} and T, of (32). Equation (32) can
be written as

T = (1+7A7'B) " (1-rA7'B) T +8™12 (33)
T = (1+7A7'B) (1= rA7'B) T + ™12 (34)
By subtracting (34) from (33), we get
R
= (1+ra7'B) " (1-rA 'B) (17" - TJ")

(35)

m+1 m+1
T1 - Tz

= ((1+raB) " (1-ra'B))" (17 - T3).

If we assume that A is the eigenvalue of A7'B, then (1-71)/(1+
rA) is the eigenvalue of (I + rA7'B)"Y{(I-rA7!B). By definition
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of r as positive and for stability of the algorithm, we have to
show that

1-rA
1+7rA

(1 —r)Ll)2 +A§ <(1 +T')t1)2 +A§
A >0,

where A = A, + i), It means that we have to show that the
real part of the eigenvalues of A™'B is positive. According
to Taussky theorem [18], an irreducible diagonally dominant
matrix is positive definite if every main diagonal entry of
the matrix is real and positive; then, every eigenvalue of the
matrix has positive real part; that is, the matrix is positive
definite. It can be seen that matrices (47), (48), (49), and
(50) are positive definite (positive definite in the sense that
the eigenvalues have positive real part) according to Taussky
theorem. In fact, matrices (47), (48), (49), and (50)

(i) are irreducible,

(ii) are diagonally dominant with at least one strict
diagonal dominance,

(iii) have real diagonal entries that are positive.

Theorem1. Prove that if matrices A and B are positive definite,
then matrix A™'B is also positive definite in the sense that its
eigenvalues have positive real parts.

Proof. Let A = A, + id, be the eigenvalue of A™'B with
corresponding eigenvector x = x; + ix,. Then, we have

A7'Bx = Ax
(37)
Bx = AAx
Bx, = A Ax; — A,Ax,
(38)
Bx, = A, Ax; + A Ax,
xlTx (38) =
xlTBx1 = /XlxlTAx1 - AleTsz (39)
xlTsz = /\leTAx1 + AlxlTsz (40)
x1x (38) =
xZBx1 = /\lszAx1 - /\zxZsz (41)
xZsz = /\zszAx1 + /\lesz (42)

A% (39) + A,x (40) =
)lelTBx1 + /\leTsz = ()ﬁ + /\é) xlTAx1 (43)
Aix (42) + A,%x (41) =

/\lesz - Azngxl = ()ﬁ + Ai) szsz. (44)
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The quadratic forms xlTAxl, xZsz, xlTBxl, and szsz are  of A”'B are not real, then we have the required positivity of
positive, because matrixes A and Bare positive definite. From ), from the fact that the signs of A,, x! Bx,, and x Bx, are

(43) and (44), we have arbitrary for arbitrary x; and x,. The arbitrariness of signs
. does not affect inequalities (45) and (46); hence, we conclude
x) Bx i )
A+ lT 250 (45) that A; > 0 which completes the proof. O
x7 Bx,
*TBx 6. Numerical Simulations
P ) (46)
X, Bx, To observe the validity and accuracy of our proposed finite
difference schemes, we solve the following two test problems,
Suppose that the eigenvalues of A™' B are real; thatis, A, = 0;  one with Dirichlet boundary conditions and the other one

then, (45) and (46) imply that A, > 0. But if the eigenvalues with Neumann boundary conditions:

1 000 0O0O0OUO0OOOUOUOOOUOOOUO0O0 0
% 1 0000 0O0O0OUO0OOOOUO0OOOTO0OO0O0 O
Bi oz 1 az B0 0 0 0 0 0 0 0 0 0 0 O 0 0 0
0 Bsa; 1 o B 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 B30, 1 oy 0 0 0 0 0 0 0 0 0 0 0 0 0
00 0Bz 1 agpB;00 00000000 0 O
000 0 PpByo 1a;fPf; 000000000 0O
0000 O02PBoaglafP; 000O0O0O0O0DO0 0 O
00 00 0 0 PBia; 1 ag Py 06000000 0 0
00 0 0 O0O0 O a 1 « 000 0 O0O0O0 O
A Bs oy s Bs (47)
000 00 000 O0pfalaf 0000000
00 00 0000 0 Balapf; 000000
00 000000 O0O0Bo 1a ;0000 0
00 00 000000 0 PBa 1 a P; 00 00
00 000000000 0B a 1l af; 000
00 0000000000 0 pB a1l a Py 00
00 00 00000000 00 a1 a0
00 000000000000 0Bl alp
2
000 0O0O0OUO0OOOUOUO0OO0O0UO0TUO0O0TO0O0 1 S
0 000 0O0O0O0OTUO0OOUOUO0OO0O0UO0TUO0O0 0 1
B
4094 -2.303 0.556 -0.160 0.034 -0.003  -0.0004  0.0001 0 0 0 0
-0.141 2.008 -1.371 0.088 0.030 -0.019 0.005  —0.0005 0 0 0 0
b. b b
= a,  2a,- = a = 0 0 0 0 0 0 0
4 2 4
by by by
—= as —2a; — = a, —= 0 0 0 0 0 0
4 2 4
hS b3 b3
0 0 = a, —2a; - =2 a = 0 0 0 0 0
! b. 2 b * b.
0 0 = —2a, — = = 0 0 0 0 4
_ 2 as as 5 as 2 (48)
b3 b3 b3
0 0 0 0 = a —2a;, - = a, = 0 0 0
4 2 4
b3 b3 b3
0 0 0 0 Z a3 _20!3—5 a3 1 0 0
b3 b3 b3
0 0 0 0 0 0 = a, —2a; - = a = 0
4 2 4
h3 b3 b3
0 0 0 0 0 0 0 = a, 2a; -2 a =
4 2 4
0 0 0 0 -0.0005  0.005 -0.019 0.030 0.088 -1.371  2.008 -0.141

0 0 0 0 0.0001 -0.0004  -0.003 0.034 -0.160 0.556  -2.303 4.094
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1.0 0366 0 0 O O O O 0 0
01 10 01 0 O O O O 0 0
0 01 1001 0 0O O O 0 0
0 0 011001 0 O O 0 0
A 0 0 0 011001 0 O 0 0 (49)
0 0 0 0 011001 0 0 0
0 0 0O 0 0 011001 O 0
0 0 o 0 o 0 0110 01 O
0 0 0o 0 o0 0O 0 01 1.0 0.1
0 0 0 0 0 0O 0O 0 0366 1.0
1.233 —-1.0342 -0.19872 0 0 0 0 0 0 0
-1.2 2.4 -1.2 0 0 0 0 0 0 0
0 -1.2 2.4 -12 0 0 0 0 0 0
0 0 -1.2 24 -12 0 0 0 0 0
B 0 0 0 -12 24 -12 O 0 0 0 (50)
0 0 0 0 -12 24 -12 0 0 0
0 0 0 0 0 -12 24 -1.2 0 0
0 0 0 0 0 0 =12 2.4 -1.2 0
0 0 0 0 0 0 0 -1.2 2.4 -1.2
0 0 0 0 0 0 0 -0.19872 -1.0342 1.233
T, (x,t) =T, (x,t), 0<x<1,t>0,
Dirichlet problem = { T (x,0) = sin (7x), 0<x<]1, (51)
T0,t)=T(1,t)=0, ¢>0.

The analytical solution to the above Dirichlet problem is
T(x,t) = exp(—nzt) sin(rrx). And

Neumann problem
Tt (x) t) = Txx (xr t) >
= 4T (x,0) = cos (1x),
T.(0,t)=T,(1,t) =0,

O0<x<l1,t>0,
(52)

0<x<1,
t>0.

The analytical solution to the above Neumann problem is
T(x,t) = exp(—ﬂzt) cos(mx).

In Table 1, we computed the spatial rate of convergence
of our proposed implicit compact finite difference scheme
for the Dirichlet problem. In all cases, Table 1 shows that
the spatial rate of convergence is at least eight. In Table 2,
we measure the temporal rate of convergence of Crank-
Nicholson method which is at least two and it is according
to the theoretical rate of convergence. Similarly, in Tables 3
and 4, we computed the spatial and temporal rates, respec-
tively, for Neumann problem and found them according
to theoretical values. In the case of Dirichlet problem, the
variation of 8 does not affect error in temporal dimension
but does affect the error in spatial dimension and that is
why Table 2 shows the same values of error with respect
to different values of 6 and At. We also observe that as
we decrease either h, At, or both, we get reduction in the

error E(M, A). Decreasing of h means that we increase the
number of grid points M in the spatial domain and this
is also valid in temporal dimension. The temporal domain
for the Dirichlet and Neumann problems is chosen to [0, 1]
as the solution decays rapidly when the time passes 1. The
maximum error in the numerical solution occurs around
0.1 in temporal dimension; this is the reason why we just
integrate the Dirichlet problem in the temporal domain
[0,0.1] (see Table 1).

7. Conclusions

The implicit compact finite difference methods provide a
more accurate way to approximate the spatial derivatives
compared to explicit finite difference methods. The construc-
tion of compact finite difference operators for the interior
nodes provides diagonal dominance and positivity of the
diagonal entries which is in fact a very nice property which
finally appears in the form of positive deftness of the com-
pact operator. We have observed that the positive deftness
helps us to prove the stability of numerical algorithm to
solve 1D heat conduction equations. However, the diagonal
dominance and positivity of diagonal entries for the interior
nodes are not enough, because we also have to deal with
the boundary conditions and usually one-sided compact
finite difference schemes do not respect the nice property
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TaBLE 1: Dirichlet problem: Max. /,-norm errors and convergence
rate when t = 0.1 and At = 1.0e - 6.

1

TABLE 3: Neumann problem: Max. J,-norm errors and convergence
rate whent = 1, At = 1.0e — 5, and 6 = 3.1541e — 01.

M E(M,A) Rate E(M,A) Rate
6=0.1 0=02

10 1.6534e — 04 — 2.4968¢ — 04 —

20 4.3906¢e — 07 8.5568 7.8152e — 07 8.3196

40 8.6154e — 10 8.9933 8.0111e - 10 9.9301
60=03 0=04

10 3.2357e - 04 — 3.6276e — 04 —

20 1.0791e - 06 8.2281 1.2556¢e — 06 8.1746

40 9.2171e - 10 10.193 1.1166e — 09 10.135
60=05 0=06

10 3.5225e — 04 — 2.8316e — 04 —

20 1.2494e - 06 8.1393 1.0109¢e — 06 8.1299

40 1.2167e — 09 10.000 1.1107e - 09 9.8299
6=07 6=038

10 1.5954e — 04 — 1.9640e — 04 —

20 5.4419e - 07 8.1956 9.1503e — 07 7.7457

40 7.4804e — 10 9.5068 8.6751e — 10 10.043
60=09 6 =095

10 4.5197e — 04 — 6.1645¢ — 04 —

20 2.0820e — 06 7.7621 2.8818e — 06 7.7409

40 2.4668e — 09 9.7211 3.6858e — 09 9.6108

TABLE 2: Dirichlet problem: Max. [,-norm errors and convergence
rate when M = 1000 and ¢ = 1.

At E(M,A) Rate E(M,A) Rate
6=0.1 60=02

1.0e -2 4.2273e — 04 — 4.2273e — 04 —

5.0e -3 1.0560e — 04 2.0011 1.0560e — 04 2.0011

2.5e -3 2.6395¢e — 05 2.0003 2.6395e — 05 2.0003
6=03 6=04

1.0e -2 4.2273e — 04 — 4.2273e — 04 —

5.0e -3 1.0560e — 04 2.0011 1.0560e — 04 2.0011

2.5e -3 2.6395e — 05 2.0003 2.6395e — 05 2.0003
0=0.5 0=06

1.0e — 2 4.2273e — 04 — 4.2273e — 04 —

5.0e -3 1.0560e — 04 2.0011 1.0560e — 04 2.0011

2.5e -3 2.6395e — 05 2.0003 2.6395e — 05 2.0003
0=07 0=038

1.0e — 2 4.2273e — 04 — 4.2273e — 04 —

5.0e - 3 1.0560e — 04 2.0011 1.0560e — 04 2.0011

2.5¢e -3 2.6395e — 05 2.0003 2.6395e — 05 2.0003
0=09 6 =095

1.0e -2 4.2273e — 04 — 4.2273e - 04 —

5.0e -3 1.0560e — 04 2.0011 1.0560e — 04 2.0011

2.5e—-3 2.6395e — 05 2.0003 2.6395e — 05 2.0003

of positive definiteness with high order of convergence rate.
In this project, the designing of the high-order accurate
boundary conditions is established in such a way that we can
maintain the positive definiteness of compact operator for the
numerical scheme.

M E(M,A) Rate
40 3.5993¢ - 08 —
80 2.2134e - 09 4.0234
160 5.5122e - 11 5.3275

TABLE 4: Neumann problem: Max. [,-norm errors and convergence
rate when t = 1, M = 1000, and 0 = 3.1541e — 01.

At E(M, A) Rate
1.0e — 2 2.1144e - 04 —
5.0e -3 5.2819e — 05 2.0011
2.5¢e -3 1.3202e — 05 2.0003
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