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We show that every separable Gaussian process with integrable variance function admits a Fredholm representation with respect
to a Brownian motion. We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it.
We show the convenience of the Fredholm representation by giving applications to equivalence in law, bridges, series expansions,
stochastic differential equations, and maximum likelihood estimations.

1. Introduction

The stochastic analysis of Gaussian processes that are not
semimartingales is challenging. One way to overcome the
challenge is to represent the Gaussian process under con-
sideration, 𝑋, say, in terms of a Brownian motion, and then
develop a transfer principle so that the stochastic analysis can
be done in the “Brownian level” and then transferred back
into the level of𝑋.

One of the most studied representations in terms of a
Brownian motion is the so-called Volterra representation. A
Gaussian Volterra process is a process that can be represented
as

𝑋
𝑡
= ∫

𝑡

0

𝐾 (𝑡, 𝑠) d𝑊
𝑠
, 𝑡 ∈ [0, 𝑇] , (1)

where 𝑊 is a Brownian motion and 𝐾 ∈ 𝐿2([0, 𝑇]2). Here,
the integration goes only up to 𝑡, hence the name “Volterra.”
This Volterra nature is very convenient: it means that the
filtration of 𝑋 is included in the filtration of the underlying
Brownian motion𝑊. Gaussian Volterra processes and their
stochastic analysis have been studied, for example, in [1, 2],
just to mention a few. Apparently, the most famous Gaussian
process admitting Volterra representation is the fractional

Brownian motion and its stochastic analysis indeed has been
developedmostly by using its Volterra representation; see, for
example, the monographs [3, 4] and references therein.

In discrete finite time the Volterra representation (1) is
nothing but the Cholesky lower-triangular factorization of
the covariance of 𝑋, and hence every Gaussian process is
a Volterra process. In continuous time this is not true; see
Example 16 in Section 3.

There is a more general representation than (1) by Hida;
see [5, Theorem 4.1]. However, this Hida representation
includes possibly infinite number of Brownian motions.
Consequently, it seems very difficult to apply the Hida rep-
resentation to build a transfer principle needed by stochastic
analysis. Moreover, the Hida representation is not quite
general. Indeed, it requires, among other things, that the
Gaussian process is purely nondeterministic. The Fredholm
representation (2) does not require pure nondeterminism.
Example 16 in Section 3, which admits a Fredholm represen-
tation, does not admit a Hida representation, and the reason
is the lack of pure nondeterminism.

The problem with the Volterra representation (1) is the
Volterra nature of the kernel 𝐾, as far as generality is
concerned. Indeed, if one considers Fredholm kernels, that is,
kernels where the integration is over the entire interval [0, 𝑇]
under consideration, one obtains generality. A Gaussian

Hindawi Publishing Corporation
International Journal of Stochastic Analysis
Volume 2016, Article ID 8694365, 15 pages
http://dx.doi.org/10.1155/2016/8694365



2 International Journal of Stochastic Analysis

Fredholm process is a process that admits the Fredholm
representation

𝑋
𝑡
= ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑠) d𝑊

𝑠
, 𝑡 ∈ [0, 𝑇] , (2)

where𝑊 is a Brownian motion and 𝐾
𝑇
∈ 𝐿

2
([0, 𝑇]

2
). In this

paper we show that every separable Gaussian process with
integrable variance function admits representation (2). The
price we have to pay for this generality is twofold:

(i) The process 𝑋 is generated, in principle, from the
entire path of the underlying Brownian motion 𝑊.
Consequently, 𝑋 and 𝑊 do not necessarily generate
the same filtration. This is unfortunate in many
applications.

(ii) In general the kernel 𝐾
𝑇
depends on 𝑇 even if the

covariance 𝑅 does not, and consequently the derived
operators also depend on 𝑇. This is why we use the
cumbersome notation of explicitly stating out the
dependence when there is one. In stochastic analysis
this dependence on 𝑇 seems to be a minor inconve-
nience, however. Indeed, even in the Volterra case as
examined, for example, by Alòs et al. [1], one cannot
avoid the dependence on 𝑇 in the transfer principle.
Of course, for statistics, where one would like to let 𝑇
tend to infinity, this is a major inconvenience.

Let us note that the Fredholm representation has already
been used, without proof, in [6], where the Hölder continuity
of Gaussian processes was studied.

Let us mention a few papers that study stochastic anal-
ysis of Gaussian processes here. Indeed, several different
approaches have been proposed in the literature. In partic-
ular, fractional Brownian motion has been a subject of active
study (see the monographs [3, 4] and references therein).
More general Gaussian processes have been studied in the
already mentioned work by Alòs et al. [1]. They considered
Gaussian Volterra processes where the kernel satisfies certain
technical conditions. In particular, their results cover frac-
tional BrownianmotionwithHurst parameter𝐻 > 1/4. Later
Cheridito and Nualart [7] introduced an approach based on
the covariance function itself rather than on the Volterra
kernel 𝐾. Kruk et al. [8] developed stochastic calculus for
processes having finite 2-planar variation, especially covering
fractional Brownian motion 𝐻 ≥ 1/2. Moreover, Kruk and
Russo [9] extended the approach to cover singular covari-
ances, hence covering fractional Brownian motion𝐻 < 1/2.
Furthermore, Mocioalca and Viens [10] studied processes
which are close to processeswith stationary increments.More
precisely, their results cover cases whereE(𝑋

𝑡
−𝑋

𝑠
)
2
∼ 𝛾

2
(|𝑡−

𝑠|), where 𝛾 satisfies some minimal regularity conditions. In
particular, their results cover some processes which are not
even continuous. Finally, the latest development we are aware
of is a paper by Lei and Nualart [11] who developed stochastic
calculus for processes having absolute continuous covariance
by using extended domain of the divergence introduced in
[9]. Finally, we would like to mention Lebovits [12] who
used the S-transform approach and obtained similar results

to ours, although his notion of integral is not elementary as
ours.

The results presented in this paper give unified approach
to stochastic calculus for Gaussian processes and only inte-
grability of the variance function is required. In particular,
our results cover processes that are not continuous.

The paper is organized as follows.
Section 2 contains some preliminaries on Gaussian pro-

cesses and isonormal Gaussian processes and related Hilbert
spaces.

Section 3 provides the proof of the main theorem of the
paper: the Fredholm representation.

In Section 4 we extend the Fredholm representation to
a transfer principle in three contexts of growing generality:
First we prove the transfer principle for Wiener integrals
in Section 4.1, then we use the transfer principle to define
the multiple Wiener integral in Section 4.2, and, finally, in
Section 4.3 we prove the transfer principle for Malliavin
calculus, thus showing that the definition of multiple Wiener
integral via the transfer principle done in Section 4.2 is
consistent with the classical definitions involving Brownian
motion or other Gaussian martingales. Indeed, classically
one defines the multiple Wiener integrals either by building
an isometry with removed diagonals or by spanning higher
chaos by using the Hermite polynomials. In the general
Gaussian case one cannot of course remove the diagonals,
but the Hermite polynomial approach is still valid. We show
that this approach is equivalent to the transfer principle. In
Section 4.3 we also prove an Itô formula for general Gaussian
processes and in Section 4.4 we extend the Itô formula even
further by using the technique of extended domain in the
spirit of [7]. This Itô formula is, as far as we know, the
most general version for Gaussian processes existing in the
literature so far.

Finally, in Section 5 we show the power of the transfer
principle in some applications. In Section 5.1 the transfer
principle is applied to the question of equivalence of law
of general Gaussian processes. In Section 5.2 we show how
one can construct net canonical-type representation for
generalizedGaussian bridges, that is, for theGaussian process
that is conditioned by multiple linear functionals of its path.
In Section 5.3 the transfer principle is used to provide series
expansions for general Gaussian processes.

2. Preliminaries

Our general setting is as follows: let 𝑇 > 0 be a fixed finite
time-horizon and let 𝑋 = (𝑋

𝑡
)
𝑡∈[0,𝑇]

be a Gaussian process
with covariance𝑅 that may ormay not depend on𝑇. Without
loss of any interesting generalitywe assume that𝑋 is centered.
We also make the very weak assumption that 𝑋 is separable
in the sense of the following definition.

Definition 1 (separability). The Gaussian process𝑋 is separa-
ble if the Hilbert space 𝐿2(Ω, 𝜎(𝑋),P) is separable.

Example 2. If the covariance 𝑅 is continuous, then 𝑋 is
separable. In particular, all continuousGaussian processes are
separable.
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Definition 3 (associated operator). For a kernel Γ ∈

𝐿
2
([0, 𝑇]

2
) one associates an operator on 𝐿2([0, 𝑇]), also

denoted by Γ, as

Γ𝑓 (𝑡) = ∫

𝑇

0

𝑓 (𝑠) Γ (𝑡, 𝑠) d𝑠. (3)

Definition 4 (isonormal process). The isonormal process
associated with 𝑋, also denoted by 𝑋, is the Gaussian family
(𝑋(ℎ), ℎ ∈ H

𝑇
), where the Hilbert space H

𝑇
= H

𝑇
(𝑅) is

generated by the covariance 𝑅 as follows:

(i) Indicators 1
𝑡
fl 1

[0,𝑡)
, 𝑡 ≤ 𝑇, belong toH

𝑇
.

(ii) H
𝑇
is endowed with the inner product ⟨1

𝑡
, 1

𝑠
⟩H𝑇

fl
𝑅(𝑡, 𝑠).

Definition 4 states that 𝑋(ℎ) is the image of ℎ ∈ H
𝑇
in

the isometry that extends the relation

𝑋(1
𝑡
) fl 𝑋

𝑡
(4)

linearly. Consequently, we can have the following definition.

Definition 5 (Wiener integral). 𝑋(ℎ) is theWiener integral of
the element ℎ ∈H

𝑇
with respect to𝑋. One will also denote

∫

𝑇

0

ℎ (𝑡) d𝑋
𝑡
fl 𝑋 (ℎ) . (5)

Remark 6. Eventually, all the following will mean the same:

𝑋(ℎ) = ∫

𝑇

0

ℎ (𝑡) d𝑋
𝑡
= ∫

𝑇

0

ℎ (𝑡) 𝛿𝑋
𝑡
= 𝐼

𝑇,1
(ℎ)

= 𝐼
𝑇
(ℎ) .

(6)

Remark 7. TheHilbert spaceH
𝑇
is separable if and only if𝑋

is separable.

Remark 8. Due to the completion under the inner product
⟨⋅, ⋅⟩H𝑇

it may happen that the space H
𝑇
is not a space of

functions but contains distributions; compare [13] for the case
of fractional Brownian motions with Hurst index bigger than
half.

Definition 9. The function space H0

𝑇
⊂ H

𝑇
is the space

of functions that can be approximated by step-functions on
[0, 𝑇] in the inner product ⟨⋅, ⋅⟩H𝑇 .

Example 10. If the covariance 𝑅 is of bounded variation, then
H0

𝑇
is the space of functions 𝑓 satisfying

∬

𝑇

0

𝑓 (𝑡) 𝑓 (𝑠)
 |𝑅| (d𝑠, d𝑡) < ∞. (7)

Remark 11. Note that itmay be that𝑓 ∈H0

𝑇
but for some𝑇 <

𝑇 we have 𝑓1
𝑇
 ∉ H0

𝑇
 ; compare [14] for an example with

fractional Brownian motion with Hurst index less than half.
For this reason we keep the notation H

𝑇
instead of simply

writing H. For the same reason we include the dependence
of 𝑇 whenever there is one.

3. Fredholm Representation

Theorem 12 (Fredholm representation). Let 𝑋 = (𝑋
𝑡
)
𝑡∈[0,𝑇]

be a separable centered Gaussian process. Then there exists a
kernel𝐾

𝑇
∈ 𝐿

2
([0, 𝑇]

2
) and a Brownian motion𝑊 = (𝑊

𝑡
)
𝑡≥0

,
independent of 𝑇, such that

𝑋
𝑡
= ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑠) d𝑊

𝑠
(8)

in law if and only if the covariance 𝑅 of 𝑋 satisfies the trace
condition

∫

𝑇

0

𝑅 (𝑡, 𝑡) d𝑡 < ∞. (9)

Representation (8) is unique in the sense that any other
representation with kernel �̃�

𝑇
, say, is connected to (8) by

a unitary operator 𝑈 on 𝐿2([0, 𝑇]) such that �̃�
𝑇
= 𝑈𝐾

𝑇
.

Moreover, one may assume that 𝐾
𝑇
is symmetric.

Proof. Let us first remark that (9) is precisely what we need to
invokeMercer’s theorem and take square root in the resulting
expansion.

Now, by Mercer’s theorem we can expand the covariance
function 𝑅 on [0, 𝑇]2 as

𝑅 (𝑡, 𝑠) =

∞

∑

𝑖=1

𝜆
𝑇

𝑖
𝑒
𝑇

𝑖
(𝑡) 𝑒

𝑇

𝑖
(𝑠) , (10)

where (𝜆𝑇
𝑖
)
∞

𝑖=1
and (𝑒𝑇

𝑖
)
∞

𝑖=1
are the eigenvalues and the eigen-

functions of the covariance operator

𝑅
𝑇
𝑓 (𝑡) = ∫

𝑇

0

𝑓 (𝑠) 𝑅 (𝑡, 𝑠) d𝑠. (11)

Moreover, (𝑒𝑇
𝑖
)
∞

𝑖=1
is an orthonormal system on 𝐿2([0, 𝑇]).

Now, 𝑅
𝑇
, being a covariance operator, admits a square

root operator𝐾
𝑇
defined by the relation

∫

𝑇

0

𝑒
𝑇

𝑖
(𝑠) 𝑅

𝑇
𝑒
𝑇

𝑗
(𝑠) d𝑠 = ∫

𝑇

0

𝐾
𝑇
𝑒
𝑇

𝑖
(𝑠) 𝐾

𝑇
𝑒
𝑇

𝑗
(𝑠) d𝑠 (12)

for all 𝑒𝑇
𝑖
and 𝑒𝑇

𝑗
. Now, condition (9) means that 𝑅

𝑇
is trace

class and, consequently, 𝐾
𝑇
is Hilbert-Schmidt operator. In

particular, 𝐾
𝑇
is a compact operator. Therefore, it admits

a kernel. Indeed, a kernel 𝐾
𝑇
can be defined by using the

Mercer expansion (10) as

𝐾
𝑇
(𝑡, 𝑠) =

∞

∑

𝑖=1

√𝜆
𝑇

𝑖
𝑒
𝑇

𝑖
(𝑡) 𝑒

𝑇

𝑖
(𝑠) . (13)

This kernel is obviously symmetric. Now, it follows that

𝑅 (𝑡, 𝑠) = ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑢)𝐾

𝑇
(𝑠, 𝑢) d𝑢, (14)

and representation (8) follows from this.
Finally, let us note that the uniqueness up to a unitary

transformation is obvious from the square root relation
(12).
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Remark 13. The Fredholm representation (8) holds also for
infinite intervals, that is, 𝑇 = ∞, if the trace condition (9)
holds. Unfortunately, this is seldom the case.

Remark 14. The above proof shows that the Fredholm repre-
sentation (8) holds in law. However, one can also construct
the process𝑋 via (8) for a given Brownian motion𝑊. In this
case, representation (8) holds of course in 𝐿2. Finally, note
that in general it is not possible to construct the Brownian
motion in representation (8) from the process 𝑋. Indeed,
there might not be enough randomness in 𝑋. To construct
𝑊 from𝑋 one needs that the indicators 1

𝑡
, 𝑡 ∈ [0, 𝑇], belong

to the range of the operator𝐾
𝑇
.

Remark 15. We remark that the separability of 𝑋 ensures
representation of form (8) where the kernel 𝐾

𝑇
only satisfies

a weaker condition 𝐾
𝑇
(𝑡, ⋅) ∈ 𝐿

2
([0, 𝑇]) for all 𝑡 ∈ [0, 𝑇],

which may happen if the trace condition (9) fails. In this
case, however, the associated operator𝐾

𝑇
does not belong to

𝐿
2
([0, 𝑇]), which may be undesirable.

Example 16. Let us consider the following very degenerate
case: suppose 𝑋

𝑡
= 𝑓(𝑡)𝜉, where 𝑓 is deterministic and 𝜉 is a

standard normal random variable. Suppose 𝑇 > 1. Then

𝑋
𝑡
= ∫

𝑇

0

𝑓 (𝑡) 1
[0,1)
(𝑠) d𝑊s. (15)

So, 𝐾
𝑇
(𝑡, 𝑠) = 𝑓(𝑡)1

[0,1)
(𝑠). Now, if 𝑓 ∈ 𝐿2([0, 𝑇]), then

condition (9) is satisfied and 𝐾
𝑇
∈ 𝐿

2
([0, 𝑇]

2
). On the other

hand, even if 𝑓 ∉ 𝐿2([0, 𝑇]) we can still write 𝑋 in form
(15). However, in this case the kernel 𝐾

𝑇
does not belong to

𝐿
2
([0, 𝑇]

2
).

Example 17. Consider a truncated series expansion

𝑋
𝑡
=

𝑛

∑

𝑘=1

𝑒
𝑇

𝑘
(𝑡) 𝜉

𝑘
, (16)

where 𝜉
𝑘
are independent standard normal random variables

and

𝑒
𝑇

𝑘
(𝑡) = ∫

𝑡

0

�̃�
𝑇

𝑘
(𝑠) d𝑠, (17)

where �̃�𝑇
𝑘
, 𝑘 ∈ N, is an orthonormal basis in 𝐿2([0, 𝑇]). Now

it is straightforward to check that this process is not purely
nondeterministic (see [15] for definition) and, consequently,
𝑋 cannot have Volterra representation while it is clear that
𝑋 admits a Fredholm representation. On the other hand, by
choosing the functions �̃�𝑇

𝑘
to be the trigonometric basis on

𝐿
2
([0, 𝑇]),𝑋 is a finite-rank approximation of the Karhunen-

Loève representation of standard Brownianmotion on [0, 𝑇].
Hence by letting 𝑛 tend to infinity we obtain the standard
Brownian motion and hence a Volterra process.

Example 18. Let𝑊 be a standard Brownian motion on [0, 𝑇]
and consider the Brownian bridge. Now, there are two rep-
resentations of the Brownian bridge (see [16] and references

therein on the representations of Gaussian bridges). The
orthogonal representation is

𝐵
𝑡
= 𝑊

𝑡
−
𝑡

𝑇
𝑊

𝑇
. (18)

Consequently, 𝐵 has a Fredholm representation with kernel
𝐾
𝑇
(𝑡, 𝑠) = 1

𝑡
(𝑠) − 𝑡/𝑇. The canonical representation of the

Brownian bridge is

𝐵t = (𝑇 − 𝑡) ∫
𝑡

0

1

𝑇 − 𝑠
d𝑊

𝑠
. (19)

Consequently, the Brownian bridge has also a Volterra-type
representation with kernel 𝐾(𝑡, 𝑠) = (𝑇 − 𝑡)/(𝑇 − 𝑠).

4. Transfer Principle and Stochastic Analysis

4.1. Wiener Integrals. Theorem 22 is the transfer principle in
the context of Wiener integrals. The same principle extends
to multiple Wiener integrals and Malliavin calculus later in
the following subsections.

Recall that for any kernel Γ ∈ 𝐿2([0, 𝑇]2) its associated
operator on 𝐿2([0, 𝑇]) is

Γ𝑓 (𝑡) = ∫

𝑇

0

𝑓 (𝑠) Γ (𝑡, 𝑠) d𝑠. (20)

Definition 19 (adjoint associated operator). The adjoint asso-
ciated operator Γ∗ of a kernel Γ ∈ 𝐿2([0, 𝑇]2) is defined by
linearly extending the relation

Γ
∗1

𝑡
= Γ (𝑡, ⋅) . (21)

Remark 20. Thename andnotation of “adjoint” for𝐾∗

𝑇
comes

from Alòs et al. [1] where they showed that in their Volterra
context𝐾∗

𝑇
admits a kernel and is an adjoint of𝐾

𝑇
in the sense

that

∫

𝑇

0

𝐾
∗

𝑇
𝑓 (𝑡) 𝑔 (𝑡) d𝑡 = ∫

𝑇

0

𝑓 (𝑡)𝐾
𝑇
𝑔 (d𝑡) (22)

for step-functions 𝑓 and 𝑔 belonging to 𝐿2([0, 𝑇]). It is
straightforward to check that this statement is valid also in
our case.

Example 21. Suppose the kernel Γ(⋅, 𝑠) is of bounded variation
for all 𝑠 and that 𝑓 is nice enough. Then

Γ
∗
𝑓 (𝑠) = ∫

𝑇

0

𝑓 (𝑡) Γ (d𝑡, 𝑠) . (23)

Theorem 22 (transfer principle for Wiener integrals). Let 𝑋
be a separable centered Gaussian process with representation
(8) and let 𝑓 ∈H

𝑇
. Then

∫

𝑇

0

𝑓 (𝑡) d𝑋
𝑡
= ∫

𝑇

0

𝐾
∗

𝑇
𝑓 (𝑡) d𝑊

𝑡
. (24)

Proof. Assume first that 𝑓 is an elementary function of form

𝑓 (𝑡) =

𝑛

∑

𝑘=1

𝑎
𝑘
1
𝐴𝑘

(25)
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for some disjoint intervals 𝐴
𝑘
= (𝑡

𝑘−1
, 𝑡
𝑘
]. Then the claim

follows by the very definition of the operator𝐾∗

𝑇
andWiener

integral with respect to 𝑋 together with representation
(8). Furthermore, this shows that 𝐾∗

𝑇
provides an isometry

between H
𝑇
and 𝐿2([0, 𝑇]). Hence H

𝑇
can be viewed as a

closure of elementary functions with respect to ‖𝑓‖H𝑇 =
‖𝐾

∗

𝑇
𝑓‖

𝐿
2
([0,𝑇])

which proves the claim.

4.2. Multiple Wiener Integrals. The study of multiple Wiener
integrals goes back to Itô [17] who studied the case of
Brownian motion. Later Huang and Cambanis [18] extended
the notion to general Gaussian processes. Dasgupta and
Kallianpur [19, 20] and Perez-Abreu and Tudor [21] studied
multiple Wiener integrals in the context of fractional Brown-
ian motion. In [19, 20] a method that involved a prior control
measure was used and in [21] a transfer principle was used.
Our approach here extends the transfer principle method
used in [21].

We begin by recalling multiple Wiener integrals with
respect to Brownian motion and then we apply transfer
principle to generalize the theory to arbitrary Gaussian
process.

Let 𝑓 be an elementary function on [0, 𝑇]𝑝 that vanishes
on the diagonals; that is,

𝑓 =

𝑛

∑

𝑖1 ,...,𝑖𝑝=1

𝑎
𝑖1 ⋅⋅⋅𝑖𝑝

1
Δ 𝑖1

×⋅⋅⋅×Δ 𝑖𝑝
, (26)

whereΔ
𝑘
fl [𝑡

𝑘−1
, 𝑡
𝑘
) and 𝑎

𝑖1 ...𝑖𝑝
= 0whenever 𝑖

𝑘
= 𝑖

ℓ
for some

𝑘 ̸= ℓ. For such 𝑓 we define the multiple Wiener integral as

𝐼
𝑊

𝑇,𝑝
(𝑓) fl ∫

𝑇

0

⋅ ⋅ ⋅ ∫

𝑇

0

𝑓 (𝑡
1
, . . . , 𝑡

𝑝
) 𝛿𝑊

𝑡1
⋅ ⋅ ⋅ 𝛿𝑊

𝑡𝑝

fl
𝑛

∑

𝑖1,...,i𝑝=1
𝑎
𝑖1 ...𝑖𝑝
Δ𝑊

𝑡1
⋅ ⋅ ⋅ Δ𝑊

𝑡𝑝
,

(27)

where we have denoted Δ𝑊
𝑡𝑘
fl𝑊

𝑡𝑘
−𝑊

𝑡𝑘−1
. For 𝑝 = 0 we set

𝐼
𝑊

0
(𝑓) = 𝑓. Now, it can be shown that elementary functions

that vanish on the diagonals are dense in 𝐿2([0, 𝑇]𝑝).Thus,
one can extend the operator 𝐼𝑊

𝑇,𝑝
to the space 𝐿2([0, 𝑇]𝑝). This

extension is called the multiple Wiener integral with respect
to the Brownian motion.

Remark 23. It is well-known that 𝐼𝑊
𝑇,𝑝
(𝑓) can be under-

stood as multiple or iterated. Itô integrals if and only if
𝑓(𝑡

1
, . . . , 𝑡

𝑝
) = 0 unless 𝑡

1
≤ ⋅ ⋅ ⋅ ≤ 𝑡

𝑝
. In this case we have

𝐼
𝑊

𝑇,𝑝
(𝑓)

= 𝑝! ∫

𝑇

0

∫

𝑡𝑝

0

⋅ ⋅ ⋅ ∫

𝑡2

0

𝑓 (𝑡
1
, . . . , 𝑡

𝑝
) d𝑊

𝑡1
⋅ ⋅ ⋅ d𝑊

𝑡𝑝
.

(28)

For the case of Gaussian processes that are not martingales
this fact is totally useless.

For a general Gaussian process𝑋, recall first the Hermite
polynomials:

𝐻
𝑝
(𝑥) fl

(−1)
𝑝

𝑝!
𝑒
(1/2)𝑥

2 d𝑝

d𝑥𝑝
(𝑒

−(1/2)𝑥
2

) . (29)

For any 𝑝 ≥ 1 let the 𝑝th Wiener chaos of 𝑋 be the
closed linear subspace of 𝐿2(Ω) generated by the random
variables {𝐻

𝑝
(𝑋(𝜑)), 𝜑 ∈ H, ‖𝜑‖H = 1}, where 𝐻𝑝

is the
𝑝th Hermite polynomial. It is well-known that the mapping
𝐼
𝑋

𝑝
(𝜑

⊗𝑝
) = 𝑝!𝐻

𝑝
(𝑋(𝜑)) provides a linear isometry between

the symmetric tensor product H⊙𝑝 and the 𝑝th Wiener
chaos. The random variables 𝐼𝑋

𝑝
(𝜑

⊗𝑝
) are called multiple

Wiener integrals of order 𝑝 with respect to the Gaussian
process𝑋.

Let us now consider the multipleWiener integrals 𝐼
𝑇,𝑝

for
a general Gaussian process𝑋. We define the multiple integral
𝐼
𝑇,𝑝

by using the transfer principle in Definition 25 and later
argue that this is the “correct” way of defining them. So, let
𝑋 be a centered Gaussian process on [0, 𝑇]with covariance 𝑅
and representation (8) with kernel 𝐾

𝑇
.

Definition 24 (𝑝-fold adjoint associated operator). Let𝐾
𝑇
be

the kernel in (8) and let𝐾∗

𝑇
be its adjoint associated operator.

Define

𝐾
∗

𝑇,𝑝
fl (𝐾∗

𝑇
)
⊗𝑝

. (30)

In the same way, define

H
𝑇,𝑝

fl H
⊗𝑝

𝑇
,

H
0

𝑇,𝑝
fl (H⊗𝑝

𝑇
)
0

.

(31)

Here the tensor products are understood in the sense of
Hilbert spaces; that is, they are closed under the inner product
corresponding to the 𝑝-fold product of the underlying inner
product.

Definition 25. Let 𝑋 be a centered Gaussian process with
representation (8) and let 𝑓 ∈H

𝑇,𝑝
. Then

𝐼
𝑇,𝑝
(𝑓) fl 𝐼𝑊

𝑇,𝑝
(𝐾

∗

𝑇,𝑝
𝑓) . (32)

The following example should convince the reader that
this is indeed the correct definition.

Example 26. Let 𝑝 = 2 and let ℎ = ℎ
1
⊗ℎ

2
, where both ℎ

1
and

ℎ
2
are step-functions. Then

(𝐾
∗

𝑇,2
ℎ) (𝑥, 𝑦) = (𝐾

∗

𝑇
ℎ
1
) (𝑥) (𝐾

∗

𝑇
ℎ
2
) (𝑦) ,

𝐼
𝑊

𝑇,2
(𝐾

∗

𝑇,2
𝑓)

= ∫

𝑇

0

𝐾
∗

𝑇
ℎ
1
(V) d𝑊V

⋅ ∫

𝑇

0

𝐾
∗

𝑇
ℎ
2
(𝑢) d𝑊

𝑢
− ⟨𝐾

∗

𝑇
ℎ
1
, 𝐾

∗

𝑇
ℎ
2
⟩
𝐿
2
([0,𝑇])

= 𝑋 (ℎ
1
)𝑋 (ℎ

2
) − ⟨ℎ

1
, ℎ

2
⟩
H𝑇
.

(33)
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The following proposition shows that our approach to
define multiple Wiener integrals is consistent with the tra-
ditional approach where multiple Wiener integrals for more
general Gaussian process 𝑋 are defined as the closed linear
space generated by Hermite polynomials.

Proposition 27. Let 𝐻
𝑝
be the 𝑝th Hermite polynomial and

let ℎ ∈H
𝑇
. Then

𝐼
𝑇,𝑝
(ℎ

⊗𝑝
) = 𝑝! ‖ℎ‖

𝑝

H𝑇
𝐻
𝑝
(
𝑋 (ℎ)

‖ℎ‖H𝑇

) . (34)

Proof. First note that without loss of generalitywe can assume
‖ℎ‖H𝑇

= 1.Now by the definition of multipleWiener integral
with respect to𝑋 we have

𝐼
𝑇,𝑝
(ℎ

⊗𝑝
) = 𝐼

𝑊

𝑇,𝑝
(𝐾

∗

𝑇,𝑝
ℎ
⊗𝑝
) , (35)

where

𝐾
∗

𝑇,𝑝
ℎ
⊗𝑝
= (𝐾

∗

𝑇
ℎ)

⊗𝑝

. (36)

Consequently, by [22, Proposition 1.1.4] we obtain

𝐼
𝑇,𝑝
(ℎ

⊗𝑝
) = 𝑝!𝐻

𝑝
(𝑊 (𝐾

∗

𝑇
ℎ)) (37)

which implies the result together withTheorem 22.

Proposition 27 extends to the following product formula,
which is also well-known in the Gaussianmartingale case but
apparently new for general Gaussian processes. Again, the
proof is straightforward application of transfer principle.

Proposition 28. Let 𝑓 ∈H
𝑇,𝑝

and 𝑔 ∈H
𝑇,𝑞
.Then

𝐼
𝑇,𝑝
(𝑓) 𝐼

𝑇,𝑞
(𝑔)

=

𝑝∧𝑞

∑

𝑟=0

𝑟! (

𝑝

𝑟
)(

𝑞

𝑟
) 𝐼

𝑇,𝑝+𝑞−2𝑟
(𝑓⊗̃

𝐾𝑇,𝑟
𝑔) ,

(38)

where

𝑓⊗̃
𝐾𝑇,𝑟
𝑔 = (𝐾

∗

𝑇,𝑝+𝑞−2𝑟
)
−1

(𝐾
∗

𝑇,𝑝
𝑓⊗̃

𝑟
𝐾
∗

𝑇,𝑞
𝑔) (39)

and (𝐾∗

𝑇,𝑝+𝑞−2𝑟
)
−1 denotes the preimage of 𝐾∗

𝑇,𝑝+𝑞−2𝑟
.

Proof. The proof follows directly from the definition of
𝐼
𝑇,𝑝
(𝑓) and [22, Proposition 1.1.3].

Example 29. Let 𝑓 ∈ H
𝑇,𝑝

and 𝑔 ∈ H
𝑇,𝑞

be of forms
𝑓(𝑥

1
, . . . , 𝑥

𝑝
) = ∏

𝑝

𝑘=1
𝑓
𝑘
(𝑥

𝑘
) and𝑔(𝑦

1
, . . . , 𝑦

𝑝
) = ∏

𝑞

𝑘=1
𝑔
𝑘
(𝑦

𝑘
).

Then

(𝐾
∗

𝑇,𝑝
𝑓⊗̃

𝑟
𝐾
∗

𝑇,𝑞
𝑔) (𝑥

1
, . . . , 𝑥

𝑝−𝑟
, 𝑦

1
, . . . , 𝑦

𝑞−𝑟
)

= ∫
[0,𝑇]
𝑟

𝑝−𝑟

∏

𝑘=1

𝐾
∗

𝑇
𝑓
𝑘
(𝑥

𝑘
)

𝑟

∏

𝑗=1

𝐾
∗

𝑇
𝑓
𝑝−𝑟+𝑗

(𝑠
𝑗
)

⋅

𝑞−𝑟

∏

𝑘=1

𝐾
∗

𝑇
𝑔
𝑘
(𝑦

𝑘
)

⋅

𝑟

∏

𝑗=1

𝐾
∗

𝑇
𝑔
𝑞−𝑟+𝑗
(𝑠

𝑗
) d𝑠

1
⋅ ⋅ ⋅ d𝑠

𝑟

=

𝑝−𝑟

∏

𝑘=1

𝐾
∗

𝑇
𝑓
𝑘
(𝑥

𝑘
)

𝑞−𝑟

∏

𝑘=1

𝐾
∗

𝑇
𝑔
𝑘
(𝑦

𝑘
)

⋅ ⟨

𝑟

∏

𝑗=1

𝑓
𝑝−𝑟+𝑗
,

𝑟

∏

𝑗=1

𝑔
𝑞−𝑟+𝑗
⟩

H𝑇,𝑟

.

(40)

Hence
𝑓⊗̃

𝐾𝑇,𝑟
𝑔

=

𝑝−𝑟

∏

𝑘=1

𝑓
𝑘
(𝑥

𝑘
)

𝑞−𝑟

∏

𝑘=1

𝑔
𝑘
(𝑦

𝑘
)⟨

𝑟

∏

𝑗=1

𝑓
𝑗
,

𝑟

∏

𝑗=1

𝑔
𝑗
⟩

H𝑇,𝑟

.

(41)

Remark 30. In the literature multiple Wiener integrals are
usually defined as the closed linear space spanned byHermite
polynomials. In such a case Proposition 27 is clearly true by
the very definition. Furthermore, one has a multiplication
formula (see, e.g., [23]):

𝐼
𝑇,𝑝
(𝑓) 𝐼

𝑇,𝑞
(𝑔)

=

𝑝∧𝑞

∑

𝑟=0

𝑟! (

𝑝

𝑟
)(

𝑞

𝑟
) 𝐼

𝑇,𝑝+𝑞−2𝑟
(𝑓⊗̃H𝑇,𝑟

𝑔) ,

(42)

where 𝑓⊗̃H𝑇,𝑟𝑔 denotes symmetrization of tensor product

𝑓⊗H𝑇,𝑟
𝑔 =

∞

∑

𝑖1 ,...,𝑖𝑟=1

⟨𝑓, 𝑒
𝑖1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑒

𝑖𝑟
⟩
H⊗𝑟
𝑇

⊗ ⟨𝑔, 𝑒
𝑖1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑒

𝑖𝑟
⟩
H⊗𝑟
𝑇

(43)

and {𝑒
𝑘
, 𝑘 = 1, . . .} is a complete orthonormal basis of the

Hilbert space H
𝑇
. Clearly, by Proposition 27, both formulas

coincide. This also shows that (39) is well-defined.

4.3. Malliavin Calculus and Skorohod Integrals. We begin by
recalling some basic facts on Malliavin calculus.

Definition 31. Denote by S the space of all smooth random
variables of the form

𝐹 = 𝑓 (𝑋 (𝜑
1
) , . . . , 𝑋 (𝜑

𝑛
)) , 𝜑

1
, . . . , 𝜑

𝑛
∈H

𝑇
, (44)
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where 𝑓 ∈ 𝐶∞
𝑏
(R𝑛
), that is, 𝑓 and all its derivatives are

bounded. The Malliavin derivative 𝐷
𝑇
𝐹 = 𝐷

𝑋

𝑇
𝐹 of 𝐹 is an

element of 𝐿2(Ω;H
𝑇
) defined by

𝐷
𝑇
𝐹 =

𝑛

∑

𝑖=1

𝜕
𝑖
𝑓 (𝑋 (𝜑

1
) , . . . , 𝑋 (𝜑

𝑛
)) 𝜑

𝑖
. (45)

In particular,𝐷
𝑇
𝑋
𝑡
= 1

𝑡
.

Definition 32. Let D1,2
= D1,2

𝑋
be the Hilbert space of all

square integrable Malliavin differentiable random variables
defined as the closure of S with respect to norm

‖𝐹‖
2

1,2
= E [|𝐹|

2
] + E [

𝐷𝑇
𝐹


2

H𝑇
] . (46)

The divergence operator 𝛿
𝑇
is defined as the adjoint

operator of the Malliavin derivative𝐷
𝑇
.

Definition 33. The domain Dom 𝛿
𝑇
of the operator 𝛿

𝑇
is the

set of random variables 𝑢 ∈ 𝐿2(Ω;H
𝑇
) satisfying


E ⟨𝐷

𝑇
𝐹, 𝑢⟩

H𝑇


≤ 𝑐

𝑢
‖𝐹‖

𝐿
2 (47)

for any 𝐹 ∈ D1,2 and some constant 𝑐
𝑢
depending only on 𝑢.

For 𝑢 ∈ Dom 𝛿
𝑇
the divergence operator 𝛿

𝑇
(𝑢) is a square

integrable random variable defined by the duality relation

E [𝐹𝛿
𝑇
(𝑢)] = E ⟨𝐷

𝑇
𝐹, 𝑢⟩

H𝑇
(48)

for all 𝐹 ∈ D1,2.

Remark 34. It is well-known that D1,2
⊂ Dom 𝛿

𝑇
.

We use the notation

𝛿
𝑇
(𝑢) = ∫

𝑇

0

𝑢
𝑠
𝛿𝑋

𝑠
. (49)

Theorem 35 (transfer principle for Malliavin calculus). Let
𝑋 be a separable centered Gaussian process with Fredholm
representation (8). Let 𝐷

𝑇
and 𝛿

𝑇
be the Malliavin derivative

and the Skorohod integral with respect to𝑋 on [0, 𝑇]. Similarly,
let 𝐷𝑊

𝑇
and 𝛿𝑊

𝑇
be the Malliavin derivative and the Skorohod

integral with respect to the Brownianmotion𝑊 of (8) restricted
on [0, 𝑇]. Then

𝛿
𝑇
= 𝛿

𝑊

𝑇
𝐾
∗

𝑇
,

𝐾
∗

𝑇
𝐷
𝑇
= 𝐷

𝑊

𝑇
.

(50)

Proof. The proof follows directly from transfer principle and
the isometry provided by 𝐾∗

𝑇
with the same arguments as in

[1]. Indeed, by isometry we have

H
𝑇
= (𝐾

∗

𝑇
)
−1

(𝐿
2
([0, 𝑇])) , (51)

where (𝐾∗

𝑇
)
−1 denotes the preimage, which implies that

D
1,2
(H

𝑇
) = (𝐾

∗

𝑇
)
−1

(D
1,2

𝑊
(𝐿

2
([0, 𝑇]))) (52)

which justifies 𝐾∗

𝑇
𝐷
𝑇
= 𝐷

𝑊

𝑇
. Furthermore, we have relation

E ⟨𝑢,𝐷
𝑇
𝐹⟩

H𝑇
= E ⟨𝐾

∗

𝑇
𝑢,𝐷

𝑊

𝑇
𝐹⟩

𝐿
2
([0,𝑇])

(53)

for any smooth random variable 𝐹 and 𝑢 ∈ 𝐿2(Ω;H
𝑇
).

Hence, by the very definition ofDom 𝛿 and transfer principle,
we obtain

Dom 𝛿
𝑇
= (𝐾

∗

𝑇
)
−1

(Dom 𝛿𝑊
𝑇
) (54)

and 𝛿
𝑇
(𝑢) = 𝛿

𝑊

𝑇
(𝐾

∗

𝑇
𝑢) proving the claim.

Now we are ready to show that the definition of the
multiple Wiener integral 𝐼

𝑇,𝑝
in Section 4.2 is correct in the

sense that it agrees with the iterated Skorohod integral.

Proposition 36. Let ℎ ∈ H
𝑇,𝑝

be of form ℎ(𝑥
1
, . . . , 𝑥

𝑝
) =

∏
𝑝

𝑘=1
ℎ
𝑘
(𝑥

𝑘
). Then ℎ is iteratively 𝑝 times Skorohod integrable

and

∫

𝑇

0

⋅ ⋅ ⋅ ∫

𝑇

0

ℎ (𝑡
1
, . . . , 𝑡

𝑝
) 𝛿𝑋

𝑡1
⋅ ⋅ ⋅ 𝛿𝑋

𝑡𝑝
= 𝐼

𝑇,𝑝
(ℎ) . (55)

Moreover, if ℎ ∈ H0

𝑇,𝑝
is such that it is 𝑝 times iteratively

Skorohod integrable, then (55) still holds.

Proof. Again the idea is to use the transfer principle together
with induction. Note first that the statement is true for 𝑝 = 1
by definition and assume next that the statement is valid
for 𝑘 = 1, . . . , 𝑝. We denote 𝑓

𝑗
= ∏

𝑗

𝑘=1
ℎ
𝑘
(𝑥

𝑘
). Hence, by

induction assumption, we have

∫

𝑇

0

⋅ ⋅ ⋅ ∫

𝑇

0

ℎ (𝑡
1
, . . . , 𝑡

𝑝
, 𝑡V) 𝛿𝑋𝑡1

⋅ ⋅ ⋅ 𝛿𝑋
𝑡𝑝
𝛿𝑋V

= ∫

𝑇

0

𝐼
𝑇,𝑝
(𝑓

𝑝
) ℎ

𝑝+1
(V) 𝛿𝑋V.

(56)

Put now 𝐹 = 𝐼
𝑇,𝑝
(𝑓

𝑝
) and 𝑢(𝑡) = ℎ

𝑝+1
(𝑡). Hence by [22,

Proposition 1.3.3] and by applying the transfer principle we
obtain that 𝐹𝑢 belongs to Dom 𝛿

𝑇
and

𝛿
𝑇
(𝐹𝑢) = 𝛿

𝑇
(𝑢) 𝐹 − ⟨𝐷

𝑡
𝐹, 𝑢 (𝑡)⟩

H𝑇

= 𝐼
𝑊

𝑇
(𝐾

∗

𝑇
ℎ
𝑝+1
) 𝐼

𝑊

𝑇,𝑝
(𝐾

∗

𝑇,𝑝
𝑓
𝑝
)

− 𝑝 ⟨𝐼
𝑇,𝑝−1
(𝑓

𝑝
(⋅, 𝑡)) , ℎ

𝑝+1
(𝑡)⟩

H𝑇

= 𝐼
𝑇
(ℎ

𝑝+1
) 𝐼

𝑇,𝑝
(𝑓

𝑝
)

− 𝑝𝐼
𝑊

𝑇,𝑝−1
(𝐾

∗

𝑇,𝑝−1
𝑓
𝑝
⊗̃
1
𝐾
∗

𝑇
ℎ
𝑝+1
)

= 𝐼
𝑇
(ℎ

𝑝+1
) 𝐼

𝑇,𝑝
(𝑓

𝑝
)

− 𝑝𝐼
𝑇,𝑝−1
(𝑓

𝑝
⊗̃
𝐾𝑇,1
ℎ
𝑝+1
) .

(57)

Hence the result is valid also for 𝑝+ 1 by Proposition 28 with
𝑞 = 1.

The claim for general ℎ ∈H0

𝑇,𝑝
follows by approximating

with a product of simple function.
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Remark 37. Note that (55) does not hold for arbitrary ℎ ∈
H0

𝑇,𝑝
in general without the a priori assumption of 𝑝 times

iterative Skorohod integrability. For example, let 𝑝 = 2 and
𝑋 = 𝐵

𝐻 be a fractional Brownian motion with𝐻 ≤ 1/4 and
define ℎ

𝑡
(𝑠, V) = 1

𝑡
(𝑠)1

𝑠
(V) for some fixed 𝑡 ∈ [0, 𝑇]. Then

∫

𝑇

0

ℎ
𝑡
(𝑠, V) 𝛿𝑋V = 𝑋𝑠

1
𝑡
(𝑠) . (58)

But𝑋
⋅
1
𝑡
does not belong to Dom 𝛿

𝑇
(see [7]).

We end this section by providing an extension of Itô for-
mulas provided by Alòs et al. [1]. They considered Gaussian
Volterra processes; that is, they assumed the representation

𝑋
𝑡
= ∫

𝑡

0

𝐾 (𝑡, 𝑠) d𝑊
𝑠
, (59)

where the kernel𝐾 satisfied certain technical assumptions. In
[1] it was proved that in the case of Volterra processes one has

𝑓 (𝑋
𝑡
) = 𝑓 (0) + ∫

𝑡

0

𝑓

(𝑋

𝑠
) 𝛿𝑋

𝑠

+
1

2
∫

𝑡

0

𝑓

(𝑋

𝑠
) d𝑅 (𝑠, 𝑠)

(60)

if 𝑓 satisfies the growth condition

max [𝑓 (𝑥)
 ,

𝑓

(𝑥)

,

𝑓

(𝑥)

] ≤ 𝑐𝑒

𝜆|𝑥|
2

(61)

for some 𝑐 > 0 and 𝜆 < (1/4)(sup
0≤𝑠≤𝑇

E𝑋2

𝑠
)
−1. In the

following we will consider different approach which enables
us to

(i) prove that such formula holds with minimal require-
ments,

(ii) give more instructive proof of such result,
(iii) extend the result from Volterra context to more

general Gaussian processes,
(iv) drop some technical assumptions posed in [1].

For simplicity, we assume that the variance of 𝑋 is of
bounded variation to guarantee the existence of the integral

∫

𝑇

0

𝑓

(𝑋

𝑡
) d𝑅 (𝑡, 𝑡) . (62)

If the variance is not of bounded variation, then integral (62)
may be understood by integration by parts if 𝑓 is smooth
enough or, in the general case, via the inner product ⟨⋅, ⋅⟩H𝑇 .
InTheorem 40 we also have to assume that the variance of𝑋
is bounded.

The result for polynomials is straightforward, once we
assume that the paths of polynomials of 𝑋 belong to
𝐿
2
(Ω;H

𝑇
).

Proposition 38 (Itô formula for polynomials). Let 𝑋 be a
separable centered Gaussian process with covariance 𝑅 and
assume that 𝑝 is a polynomial. Furthermore, assume that for

each polynomial 𝑝 one has 𝑝(𝑋
⋅
)1

𝑡
∈ 𝐿

2
(Ω;H

𝑇
). Then for

each 𝑡 ∈ [0, 𝑇] one has

𝑝 (𝑋
𝑡
) = 𝑝 (𝑋

0
) + ∫

𝑡

0

𝑝

(𝑋

𝑠
) 𝛿𝑋

𝑠

+
1

2
∫

𝑡

0

𝑝

(𝑋

𝑠
) d𝑅 (𝑠, 𝑠)

(63)

if and only if𝑋
⋅
1
𝑡
belongs to Dom 𝛿

𝑇
.

Remark 39. The message of the above result is that once the
processes 𝑝(𝑋

⋅
)1

𝑡
∈ 𝐿

2
(Ω;H

𝑇
), then they automatically

belong to the domain of 𝛿
𝑇
which is a subspace of 𝐿2(Ω;H

𝑇
).

However, in order to check 𝑝(𝑋
⋅
)1

𝑡
∈ 𝐿

2
(Ω;H

𝑇
) one needs

more information on the kernel 𝐾
𝑇
. A sufficient condition is

provided in Corollary 43 which covers many cases of interest.

Proof. By definition and applying transfer principle, we have
to prove that 𝑝(𝑋

⋅
)1

𝑡
belongs to domain of 𝛿

𝑇
and that

E∫
𝑡

0

𝐷
𝑠
𝐺𝐾

∗

𝑇
[𝑝


(𝑋

⋅
) 1

𝑡
] d𝑠

= E [𝐺𝑝 (𝑋
𝑡
)] − E [𝐺𝑝 (𝑋

0
)]

−
1

2
∫

𝑡

0

E [𝐺𝑝

(𝑋

𝑡
)] d𝑅 (𝑡, 𝑡)

(64)

for every random variable 𝐺 from a total subset of 𝐿2(Ω).
In other words, it is sufficient to show that (69) is valid for
random variables of form 𝐺 = 𝐼𝑊

𝑛
(ℎ

⊗𝑛
), where ℎ is a step-

function.
Note first that it is sufficient to prove the claim only for

Hermite polynomials𝐻
𝑘
, 𝑘 = 1, . . .. Indeed, it is well-known

that any polynomial can be expressed as a linear combination
of Hermite polynomials and, consequently, the result for
arbitrary polynomial 𝑝 follows by linearity.

We proceed by induction. First it is clear that first
two polynomials 𝐻

0
and 𝐻

1
satisfy (64). Furthermore, by

assumption 𝐻

2
(𝑋

⋅
)1

𝑡
belongs to Dom 𝛿

𝑇
from which (64)

is easily deduced by [22, Proposition 1.3.3]. Assume next
that the result is valid for Hermite polynomials 𝐻

𝑘
, 𝑘 =

0, 1, . . . , 𝑛. Then, recall well-known recursion formulas

𝐻
𝑛+1
(𝑥) = 𝑥𝐻

𝑛
(𝑥) − 𝑛𝐻

𝑛−1
(𝑥) ,

𝐻


𝑛
(𝑥) = 𝑛𝐻

𝑛−1
(𝑥) .

(65)

The induction step follows with straightforward calcula-
tions by using the recursion formulas above and [22,
Proposition 1.3.3]. We leave the details to the reader.

We will now illustrate how the result can be generalized
for functions satisfying the growth condition (61) by using
Proposition 38. First note that the growth condition (61) is
indeed natural since it guarantees that the left side of (60)
is square integrable. Consequently, since operator 𝛿

𝑇
is a

mapping from 𝐿2(Ω;H
𝑇
) into 𝐿2(Ω), functions satisfying

(61) are the largest class of functions for which (60) can hold.
However, it is not clear in general whether 𝑓(𝑋

⋅
)1

𝑡
belongs
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to Dom 𝛿
𝑇
. Indeed, for example, in [1] the authors posed

additional conditions on the Volterra kernel 𝐾 to guarantee
this. As our main result we show that E‖𝑓(𝑋

⋅
)1

𝑡
‖
2

H𝑇
< ∞

implies that (60) holds. In other words, not only is the Itô
formula (60) natural but it is also the only possibility.

Theorem 40 (Itô formula for Skorohod integrals). Let 𝑋 be
a separable centered Gaussian process with covariance 𝑅 such
that all the polynomials 𝑝(𝑋

⋅
)1

𝑡
∈ 𝐿

2
(Ω;H

𝑇
). Assume that

𝑓 ∈ 𝐶
2 satisfies growth condition (61) and that the variance of

𝑋 is bounded and of bounded variation. If

E

𝑓

(𝑋

⋅
) 1

𝑡



2

H𝑇
< ∞ (66)

for any 𝑡 ∈ [0, 𝑇], then

𝑓 (𝑋
𝑡
) = 𝑓 (𝑋

0
) + ∫

𝑡

0

𝑓

(𝑋

𝑠
) 𝛿𝑋

𝑠

+
1

2
∫

𝑡

0

𝑓

(𝑋

𝑠
) d𝑅 (𝑠, 𝑠) .

(67)

Proof. In this proof we assume, for notational simplicity and
with no loss of generality, that sup

0≤𝑠≤𝑇
𝑅(𝑠, 𝑠) = 1.

First it is clear that (66) implies that 𝑓(𝑋
⋅
)1

𝑡
belongs to

domain of 𝛿
𝑇
. Hence we only have to prove that

E ⟨𝐷
𝑇
𝐺, 𝑓


(𝑋

⋅
) 1

𝑡
⟩
H𝑇

= E [𝐺𝑓 (𝑋
𝑡
)] − E [𝐺𝑓 (𝑋

0
)]

−
1

2
∫

𝑡

0

E [𝐺𝑓

(𝑋

𝑠
)] d𝑅 (𝑠, 𝑠)

(68)

for every random variable 𝐺 = 𝐼𝑊
𝑛
(ℎ

⊗𝑛
).

Now, it is well-known that Hermite polynomials, when
properly scaled, form an orthogonal system in 𝐿2(R) when
equipped with the Gaussian measure. Now each 𝑓 satisfying
the growth condition (61) has a series representation

𝑓 (𝑥) =

∞

∑

𝑘=0

𝛼
𝑘
𝐻
𝑘
(𝑥) . (69)

Indeed, the growth condition (61) implies that

∫
R


𝑓

(𝑥)


2

𝑒
−𝑥
2
/(2sup

0≤𝑠≤𝑇
𝑅(𝑠,𝑠))d𝑥 < ∞. (70)

Furthermore, we have

𝑓 (𝑋
𝑠
) =

∞

∑

𝑘=0

𝛼
𝑘
𝐻
𝑘
(𝑋

𝑠
) , (71)

where the series converge almost surely and in 𝐿2(Ω), and
similar conclusion is valid for derivatives𝑓(𝑋

𝑠
) and 𝑓(𝑋

𝑠
).

Then, by applying (66) we obtain that for any 𝜖 > 0 there
exists𝑁 = 𝑁

𝜖
such that we have

E ⟨𝐷
𝑇
𝐺, 𝑓



𝑛
(𝑋

⋅
) 1

𝑡
⟩
H𝑇
< 𝜖, 𝑛 ≥ 𝑁, (72)

where

𝑓


𝑛
(𝑋

𝑠
) =

∞

∑

𝑘=𝑛

𝛼
𝑘
𝐻



𝑘
(𝑋

𝑠
) . (73)

Consequently, for random variables of form 𝐺 = 𝐼𝑊
𝑛
(ℎ

⊗𝑛
) we

obtain, by choosing 𝑁 large enough and applying Proposi-
tion 38, that

E [𝐺𝑓 (𝑋
𝑡
)] − E [𝐺𝑓 (𝑋

0
)] −
1

2

⋅ ∫

𝑡

0

E (𝐺𝑓

(𝑋

𝑡
)) d𝑅 (𝑡, 𝑡)

− E ⟨𝐷
𝑇
𝐺, 𝑓


(𝑋

⋅
) 1

𝑡
⟩
H𝑇

= E ⟨𝐷
𝑇
𝐺, 𝑓



𝑛
(𝑋

⋅
) 1

𝑡
⟩
H𝑇
< 𝜖.

(74)

Now the left side does not depend on 𝑛 which concludes the
proof.

Remark 41. Note that actually it is sufficient to have

E ⟨𝐷
𝑇
𝐺, 𝑓


(𝑋

⋅
) 1

𝑡
⟩
H𝑇

=

∞

∑

𝑘=1

𝛼
𝑘
E ⟨𝐷

𝑇
𝐺,𝐻



𝑘
(𝑋

⋅
) 1

𝑡
⟩
H𝑇

(75)

from which the result follows by Proposition 38. Further-
more, taking account growth condition (61) this is actually
sufficient and necessary condition for formula (60) to hold.
Consequently, our method can also be used to obtain Itô
formulas by considering extended domain of 𝛿

𝑇
(see [9] or

[11]). This is the topic of Section 4.4.

Example 42. It is known that if 𝑋 = 𝐵𝐻 is a fractional Brow-
nian motion with𝐻 > 1/4, then 𝑓(𝑋

⋅
)1

𝑡
satisfies condition

(66) while for 𝐻 ≤ 1/4 it does not (see [22, Chapter 5]).
Consequently, a simple application of Theorem 40 covers
fractional Brownian motion with 𝐻 > 1/4. For the case
𝐻 ≤ 1/4 one has to consider extended domain of 𝛿

𝑇
which is

proved in [9]. Consequently, in this case we have (75) for any
𝐹 ∈ S.

We end this section by illustrating the power of our
method with the following simple corollary which is an
extension of [1, Theorem 1].

Corollary 43. Let 𝑋 be a separable centered continuous
Gaussian process with covariance 𝑅 that is bounded such that
the Fredholm kernel 𝐾

𝑇
is of bounded variation and

∫

𝑇

0

(∫

𝑇

0

𝑋𝑡
− 𝑋

𝑠

𝐿2(Ω)

𝐾𝑇
 (d𝑡, 𝑠))

2

d𝑠 < ∞. (76)

Then, for any 𝑡 ∈ [0, 𝑇] one has

𝑓 (𝑋
𝑡
) = 𝑓 (𝑋

0
) + ∫

𝑡

0

𝑓

(𝑋

𝑠
) 𝛿𝑋

𝑠

+
1

2
∫

𝑡

0

𝑓

(𝑋

𝑠
) d𝑅 (𝑠, 𝑠) .

(77)
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Proof. Note that assumption is a Fredholm version of con-
dition (K2) in [1] which implies condition (66). Hence, the
result follows byTheorem 40.

4.4. Extended Divergence Operator. As shown in Section 4.3,
the Itô formula (60) is the only possibility. However, the
problem is that the space 𝐿2(Ω;H

𝑇
) may be too small to

contain the elements 𝑓(𝑋
⋅
)1

𝑡
. In particular, it may happen

that not even the process 𝑋 itself belongs to 𝐿2(Ω;H
𝑇
) (see,

e.g., [7] for the case of fractional Brownian motion with
𝐻 ≤ 1/4). This problem can be overcome by considering
an extended domain of 𝛿

𝑇
. The idea of extended domain is

to extend the inner product ⟨𝑢, 𝜑⟩H𝑇 for simple 𝜑 to more
general processes 𝑢 and then define extended domain by
(47) with a restricted class of test variables 𝐹. This also gives
another intuitive reason why extended domain of 𝛿

𝑇
can be

useful; indeed, here we have proved that Itô formula (60) is
the only possibility, and what one essentially needs for such
result is the following:

(i) 𝑋
⋅
1
𝑡
belongs to Dom 𝛿

𝑇
.

(ii) Equation (75) is valid for functions satisfying (61).

Consequently, one should look for extensions of operator 𝛿
𝑇

such that these two things are satisfied.
To facilitate the extension of domain, we make the

following relatively moderate assumption:

(H) The function 𝑡 → 𝑅(𝑡, 𝑠) is of bounded variation on
[0, 𝑇] and

sup
𝑡∈[0,𝑇]

∫

𝑇

0

|𝑅| (d𝑠, 𝑡) < ∞. (78)

Remark 44. Note that we are making the assumption on the
covariance 𝑅, not the kernel 𝐾

𝑇
. Hence, our case is different

from that of [1]. Also, [11] assumed absolute continuity in 𝑅;
we are satisfied with bounded variation.

We will follow the idea from Lei and Nualart [11] and
extend the inner product ⟨⋅, ⋅⟩H𝑇 beyondH

𝑇
.

Consider a step-function 𝜑.Then, on the one hand, by the
isometry property we have

⟨𝜑, 1
𝑡
⟩
H𝑇
= ∫

𝑇

0

(𝐾
∗

𝑇
𝜑) (𝑠) 𝑔

𝑡
(𝑠) d𝑠, (79)

where 𝑔
𝑡
(𝑠) = 𝐾(𝑡, 𝑠) ∈ 𝐿

2
([0, 𝑇]). On the other hand, by

using adjoint property (see Remark 20) we obtain

∫

𝑇

0

(𝐾
∗

𝑇
𝜑) (𝑠) 𝑔

𝑡
(𝑠) d𝑠 = ∫

𝑇

0

𝜑 (𝑠) (𝐾
𝑇
𝑔
𝑡
) (d𝑠) , (80)

where, computing formally, we have

(𝐾
𝑇
𝑔
𝑡
) (d𝑠) = ∫

𝑇

0

𝑔
𝑡
(𝑢)𝐾

𝑇
(d𝑠, 𝑢) d𝑢

= ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑢)𝐾

𝑇
(d𝑠, 𝑢) d𝑢 = 𝑅 (𝑡, d𝑠) .

(81)

Consequently,

⟨𝜑, 1
𝑡
⟩
H𝑇
= ∫

𝑇

0

𝜑 (𝑠) 𝑅 (𝑡, d𝑠) . (82)

This gives motivation to the following definition similar to
that of [11, Definition 2.1].

Definition 45. Denote by T
𝑇
the space of measurable func-

tions 𝑔 satisfying

sup
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔 (𝑠)
 |𝑅| (𝑡, d𝑠) < ∞ (83)

and let 𝜑 be a step-function of form 𝜑 = ∑𝑛
𝑘=1
𝑏
𝑘
1
𝑡𝑘
. Then we

extend ⟨⋅, ⋅⟩H𝑇 toT𝑇
by defining

⟨𝑔, 𝜑⟩
H𝑇
=

𝑛

∑

𝑘=1

𝑏
𝑘
∫

𝑇

0

𝑔 (𝑠) 𝑅 (𝑡
𝑘
, d𝑠) . (84)

In particular, this implies that, for 𝑔 and 𝜑 as above, we have

⟨𝑔1
𝑡
, 𝜑⟩

H𝑇
= ∫

𝑡

0

𝑔 (𝑠) d ⟨1
𝑠
, 𝜑⟩

H𝑇
. (85)

We define extended domain Dom𝐸
𝛿
𝑇
similarly as in [11].

Definition 46. A process 𝑢 ∈ 𝐿1(Ω;T
𝑇
) belongs to Dom𝐸

𝛿
𝑇

if

E ⟨𝑢,𝐷𝐹⟩H𝑇


≤ 𝑐

𝑢
‖𝐹‖

2
(86)

for any smooth random variable 𝐹 ∈ S. In this case, 𝛿(𝑢) ∈
𝐿
2
(Ω) is defined by duality relationship

E [𝐹𝛿 (𝑢)] = E ⟨𝑢,𝐷𝐹⟩H𝑇 . (87)

Remark 47. Note that in general Dom 𝛿
𝑇
and Dom𝐸

𝛿
𝑇
are

not comparable. See [11] for discussion.

Note now that if a function 𝑓 satisfies the growth
condition (61), then 𝑓(𝑋

⋅
)1

𝑡
∈ 𝐿

1
(Ω;T

𝑇
) since (61) implies

E sup
𝑡∈[0,𝑇]


𝑓

(𝑋

𝑡
)


𝑝

< ∞ (88)

for any 𝑝 < (1/2𝜆)(sup
𝑡∈[0,𝑇]

𝑅(𝑡, 𝑡))
−1. Consequently, with

this definition we are able to get rid of the problem that
processes might not belong to corresponding H

𝑇
-spaces.

Furthermore, this implies that the series expansion (69)
converges in the norm 𝐿1(Ω;T

𝑇
) defined by

E∫
𝑇

0

|𝑢 (𝑠)| |𝑅| (𝑡, d𝑠) (89)

which in turn implies (75). Hence, it is straightforward to
obtain the following by first showing the result for polynomi-
als and then by approximating in a similar manner as done in
Section 4.3, but using the extended domain instead.



International Journal of Stochastic Analysis 11

Theorem 48 (Itô formula for extended Skorohod integrals).
Let𝑋 be a separable centered Gaussian process with covariance
𝑅 and assume that 𝑓 ∈ 𝐶2 satisfies growth condition (61).
Furthermore, assume that (H) holds and that the variance of𝑋
is bounded and is of bounded variation.Then for any 𝑡 ∈ [0, 𝑇]
the process 𝑓(𝑋

⋅
)1

𝑡
belongs to Dom𝐸

𝛿
𝑇
and

𝑓 (𝑋
𝑡
) = 𝑓 (𝑋

0
) + ∫

𝑡

0

𝑓

(𝑋

𝑠
) 𝛿𝑋

𝑠

+
1

2
∫

𝑡

0

𝑓

(𝑋

𝑠
) d𝑅 (𝑠, 𝑠) .

(90)

Remark 49. As an application of Theorem 48 it is straight-
forward to derive version of Itô-Tanaka formula under
additional conditions which guarantee that for a certain
sequence of functions 𝑓

𝑛
we have the convergence of term

(1/2) ∫
𝑡

0
𝑓


𝑛
(𝑋

𝑠
)d𝑅(𝑠, 𝑠) to the local time. For details we refer

to [11], where authors derived such formula under their
assumptions.

Finally, let us note that the extension to functions 𝑓(𝑡, 𝑥)
is straightforward, where 𝑓 satisfies the following growth
condition:

max [𝑓 (𝑡, 𝑥)
 ,
𝜕𝑡𝑓 (𝑡, 𝑥)

 ,
𝜕𝑥𝑓 (𝑡, 𝑥)

 ,
𝜕𝑥𝑥𝑓 (𝑡, 𝑥)

]

≤ 𝑐𝑒
𝜆|𝑥|
2

(91)

for some 𝑐 > 0 and 𝜆 < (1/4)(sup
0≤𝑠≤𝑇

E𝑋2

𝑠
)
−1.

Theorem 50 (Itô formula for extended Skorohod integrals,
II). Let 𝑋 be a separable centered Gaussian process with
covariance 𝑅 and assume that 𝑓 ∈ 𝐶1,2 satisfies growth
condition (91). Furthermore, assume that (H) holds and that
the variance of𝑋 is bounded and is of bounded variation.Then
for any 𝑡 ∈ [0, 𝑇] the process 𝜕

𝑥
𝑓(⋅, 𝑋

⋅
)1

𝑡
belongs to Dom𝐸

𝛿
𝑇

and

𝑓 (𝑡, 𝑋
𝑡
) = 𝑓 (0, 𝑋

0
) + ∫

𝑡

0

𝜕
𝑥
𝑓 (𝑠, 𝑋

𝑠
) 𝛿𝑋

𝑠

+ ∫

𝑡

0

𝜕
𝑡
𝑓 (𝑠, 𝑋

𝑠
) d𝑠

+
1

2
∫

𝑡

0

𝜕
𝑥𝑥
𝑓 (𝑠, 𝑋

𝑠
) d𝑅 (𝑠, 𝑠) .

(92)

Proof. Taking into account that we have no problems con-
cerning processes to belong to the required spaces, the
formula follows by approximating with polynomials of form
𝑝(𝑥)𝑞(𝑡) and following the proof of Theorem 40.

5. Applications

We illustrate how some results transfer easily from the
Brownian case to the Gaussian Fredholm processes.

5.1. Equivalence in Law. The transfer principle has already
been used in connection with the equivalence of law of

Gaussian processes in, for example, [24] in the context of
fractional Brownian motions and in [2] in the context of
GaussianVolterra processes satisfying certain nondegeneracy
conditions. The following proposition uses the Fredholm
representation (8) to give a sufficient condition for the
equivalence of general Gaussian processes in terms of their
Fredholm kernels.

Proposition 51. Let 𝑋 and �̃� be two Gaussian processes with
Fredholm kernels 𝐾

𝑇
and �̃�

𝑇
, respectively. If there exists a

Volterra kernel ℓ ∈ 𝐿2([0, 𝑇]2) such that

�̃�
𝑇
(𝑡, 𝑠) = 𝐾

𝑇
(𝑡, 𝑠) − ∫

𝑇

𝑠

𝐾
𝑇
(𝑡, 𝑢) ℓ (𝑢, 𝑠) d𝑢, (93)

then𝑋 and �̃� are equivalent in law.

Proof. Recall that by the Hitsuda representation theorem [5,
Theorem 6.3] a centered Gaussian process �̃� is equivalent in
law to a Brownian motion on [0, 𝑇] if and only if there exists
a kernel ℓ ∈ 𝐿2([0, 𝑇]2) and a Brownian motion𝑊 such that
�̃� admits the representation

�̃�
𝑡
= 𝑊

𝑡
− ∫

𝑡

0

∫

𝑠

0

ℓ (𝑠, 𝑢) d𝑊
𝑢
d𝑠. (94)

Let𝑋 have the Fredholm representations

𝑋
𝑡
= ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑠) d𝑊

𝑠
. (95)

Then, �̃� is equivalent to𝑋 if it admits, in law, the representa-
tion

�̃�
𝑡

𝑑

= ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑠) d�̃�

𝑠
, (96)

where �̃� is connected to𝑊 of (95) by (94).
In order to show (96), let

�̃�
𝑡
= ∫

𝑇

0

�̃�
𝑇
(𝑡, 𝑠) d𝑊

𝑡
(97)

be the Fredholm representation of �̃�. Here 𝑊 is some
Brownian motion. Then, by using connection (93) and the
Fubini theorem, we obtain

�̃�
𝑡
= ∫

𝑇

0

�̃�
𝑇
(𝑡, 𝑠) d𝑊

𝑠

𝑑

= ∫

𝑇

0

�̃�
𝑇
(𝑡, 𝑠) d𝑊

𝑠

= ∫

𝑇

0

(𝐾
𝑇
(𝑡, 𝑠) − ∫

𝑇

𝑠

𝐾
𝑇
(𝑡, 𝑢) ℓ (𝑢, 𝑠) d𝑢) d𝑊

𝑠
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= ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑠) d𝑊

𝑠

− ∫

𝑇

0

∫

𝑇

𝑠

𝐾
𝑇
(𝑡, 𝑢) ℓ (𝑢, 𝑠) d𝑢 d𝑊

𝑠

= ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑠) d𝑊

𝑠

− ∫

𝑇

0

∫

𝑠

0

𝐾
𝑇
(𝑡, 𝑠) ℓ (𝑠, 𝑢) d𝑊

𝑢
d𝑠

= ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑠) d𝑊

𝑠

− ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑠) (∫

𝑠

0

ℓ (𝑠, 𝑢) d𝑊
𝑢
) d𝑠

= ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑠) (d𝑊

𝑠
− ∫

𝑠

0

ℓ (𝑠, 𝑢) d𝑊
𝑢
d𝑠)

= ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑠) d�̃�

𝑠
.

(98)

Thus, we have shown representation (96) and consequently
the equivalence of �̃� and𝑋.

5.2. Generalized Bridges. We consider the conditioning, or
bridging, of 𝑋 on 𝑁 linear functionals G

𝑇
= [𝐺

𝑖

𝑇
]
𝑁

𝑖=1
of its

paths:

G
𝑇
(𝑋) = ∫

𝑇

0

g (𝑡) d𝑋
𝑡
= [∫

𝑇

0

𝑔
𝑖
(𝑡) d𝑋

𝑡
]

𝑁

𝑖=1

. (99)

We assume, without any loss of generality, that the functions
𝑔
𝑖
are linearly independent. Also, without loss of generality

we assume that 𝑋
0
= 0 and the conditioning is on the set

{∫
𝑇

0
g(𝑡)d𝑋

𝑡
= 0} instead of the apparently more general

conditioning on the set {∫𝑇
0
g(𝑡)d𝑋

𝑡
= y}. Indeed, see in [16]

how to obtain the more general conditioning from this one.
The rigorous definition of a bridge is as follows.

Definition 52. The generalized bridge measure Pg is the
regular conditional law

P
g
= P

g
[𝑋 ∈ ⋅] = P [𝑋 ∈ ⋅ | ∫

𝑇

0

g (𝑡) d𝑋
𝑡
= 0] . (100)

A representation of the generalized Gaussian bridge is any
process𝑋g satisfying

P [𝑋
g
∈ ⋅] = P

g
[𝑋 ∈ ⋅]

= P [𝑋 ∈ ⋅ | ∫
𝑇

0

g (𝑡) d𝑋
𝑡
= 0] .

(101)

We refer to [16] for more details on generalized Gaussian
bridges.

There are many different representations for bridges.
A very general representation is the so-called orthogonal
representation given by

𝑋
g
𝑡
= 𝑋

𝑡
− ⟨⟨⟨1

𝑡
, g⟩⟩⟩⊤ ⟨⟨⟨g⟩⟩⟩−1 ∫

𝑇

0

g (𝑢) d𝑋
𝑢
, (102)

where, by the transfer principle,

⟨⟨⟨g⟩⟩⟩
𝑖𝑗
fl Cov [∫

𝑇

0

𝑔
𝑖
(𝑡) d𝑋

𝑡
, ∫

𝑇

0

𝑔
𝑗
(𝑡) d𝑋

𝑡
]

= ∫

𝑇

0

𝐾
∗

𝑇
𝑔
𝑖
(𝑡) 𝐾

∗

𝑇
𝑔
𝑗
(𝑡) d𝑡.

(103)

A more interesting representation is the so-called canonical
representation where the filtration of the bridge and the
original process coincide. In [16] such representations were
constructed for the so-called prediction-invertible Gaussian
processes. In this subsection we show how the transfer
principle can be used to construct a canonical-type bridge
representation for all Gaussian Fredholm processes. We start
with an example that should make it clear how one uses the
transfer principle.

Example 53. We construct a canonical-type representation
for 𝑋1, the bridge of 𝑋 conditioned on 𝑋

𝑇
= 0. Assume

𝑋
0
= 0. Now, by the Fredholm representation of 𝑋 we can

write the conditioning as

𝑋
𝑇
= ∫

𝑇

0

1 d𝑋
𝑡
= ∫

𝑇

0

𝐾
𝑇
(𝑇, 𝑡) d𝑊

𝑡
= 0. (104)

Let us then denote by 𝑊1
∗

the canonical representation of
the Brownian bridge with conditioning (104). Then, by [16,
Theorem 4.12],

d𝑊1
∗

𝑠
= d𝑊

𝑠
− ∫

𝑠

0

𝐾
𝑇
(𝑇, 𝑠) 𝐾

𝑇
(𝑇, 𝑢)

∫
𝑇

𝑢
𝐾
𝑇
(𝑇, V)2 dV

d𝑊
𝑢
d𝑠. (105)

Now, by integrating against the kernel𝐾
𝑇
, we obtain from this

that

𝑋
1

𝑡
= 𝑋

𝑡

− ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑠) ∫

𝑠

0

𝐾
𝑇
(𝑇, 𝑠) 𝐾

𝑇
(T, 𝑢)

∫
𝑇

𝑢
𝐾
𝑇
(𝑇, V)2 dV

d𝑊
𝑢
d𝑠.

(106)

This canonical-type bridge representation seems to be a new
one.

Let us then denote

⟨⟨g⟩⟩
𝑖𝑗
(𝑡) fl ∫

𝑇

𝑡

𝑔
𝑖
(𝑠) 𝑔

𝑗
(𝑠) d𝑠. (107)

Then, in the sameway as Example 53, by applying the transfer
principle to [16, Theorem 4.12], we obtain the following
canonical-type bridge representation for general Gaussian
Fredholm processes.
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Proposition 54. Let 𝑋 be a Gaussian process with Fredholm
kernel 𝐾

𝑇
such that 𝑋

0
= 0. Then the bridge 𝑋g admits the

canonical-type representation

𝑋
g
𝑡
= 𝑋

𝑡
− ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑠) ∫

𝑠

0

⟨⟨g
∗
⟩⟩
 (𝑠) (g

∗
)
⊤

(𝑠)

⋅ ⟨⟨g∗⟩⟩−1 (𝑠) g∗ (𝑢)
⟨⟨g∗⟩⟩ (𝑢)

d𝑊
𝑢
d𝑠,

(108)

where g∗ = 𝐾∗

𝑇
g.

5.3. Series Expansions. The Mercer square root (13) can
be used to build the Karhunen-Loève expansion for the
Gaussian process 𝑋. But the Mercer form (13) is seldom
known. However, if one can find some kernel 𝐾

𝑇
such that

representation (8) holds, then one can construct a series
expansion for𝑋 by using the transfer principle ofTheorem 22
as follows.

Proposition 55 (series expansion). Let 𝑋 be a separable
Gaussian process with representation (8). Let (𝜙𝑇

𝑗
)
∞

𝑗=1
be any

orthonormal basis on 𝐿2([0, 𝑇]). Then 𝑋 admits the series
expansion

𝑋
𝑡
=

∞

∑

𝑗=1

∫

𝑇

0

𝜙
𝑇

𝑗
(𝑠) 𝐾

𝑇
(𝑡, 𝑠) d𝑠 ⋅ 𝜉

𝑗
, (109)

where (𝜉
𝑗
)
∞

𝑗=1
is a sequence of independent standard normal

random variables. Series (109) converges in 𝐿2(Ω) and also
almost surely uniformly if and only if 𝑋 is continuous.

The proof below uses reproducing kernel Hilbert space
technique. For more details on this we refer to [25] where
the series expansion is constructed for fractional Brownian
motion by using the transfer principle.

Proof. The Fredholm representation (8) implies immediately
that the reproducing kernel Hilbert space of 𝑋 is the image
𝐾
𝑇
𝐿
2
([0, 𝑇]) and 𝐾

𝑇
is actually an isometry from 𝐿2([0, 𝑇])

to the reproducing kernel Hilbert space of 𝑋. The 𝐿2-
expansion (109) follows from this due to [26, Theorem 3.7]
and the equivalence of almost sure convergence of (109) and
continuity of𝑋 follows [26, Theorem 3.8].

5.4. Stochastic Differential Equations and Maximum Likeli-
hood Estimators. Let us briefly discuss the following gener-
alized Langevin equation:

d𝑋𝜃

𝑡
= −𝜃𝑋

𝜃

𝑡
d𝑡 + d𝑋

𝑡
, 𝑡 ∈ [0, 𝑇] (110)

with some Gaussian noise 𝑋, parameter 𝜃 > 0, and initial
condition𝑋

0
. This can be written in the integral form

𝑋
𝜃

𝑡
= 𝑋

𝜃

0
− 𝜃∫

𝑡

0

𝑋
𝜃

𝑠
d𝑠 + ∫

𝑇

0

1
𝑡
(𝑠) d𝑋

𝑠
. (111)

Here the integral ∫𝑇
0
1
𝑡
(𝑠) d𝑋

𝑠
can be understood in a

pathwise sense or in a Skorohod sense, and both integrals

coincide. Suppose now that the Gaussian noise 𝑋 has the
Fredholm representation

𝑋
𝑡
= ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑠) d𝑊

𝑠
. (112)

By applying the transfer principle we can write (111) as

𝑋
𝜃

𝑡
= 𝑋

𝜃

0
− 𝜃∫

𝑡

0

𝑋
𝜃

𝑠
d𝑡 + ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑠) d𝑊

𝑠
. (113)

This equation can be interpreted as a stochastic differential
equation with some anticipating Gaussian perturbation term
∫
𝑇

0
𝐾
𝑇
(𝑡, 𝑠)d𝑊

𝑠
. Now the unique solution to (111) with an

initial condition𝑋𝜃

0
= 0 is given by

𝑋
𝜃

𝑡
= 𝑒

−𝜃𝑡
∫

𝑡

0

𝑒
𝜃𝑠d𝑋

𝑠
. (114)

By using integration by parts and by applying the Fredholm
representation of𝑋 this can be written as

𝑋
𝜃

𝑡
= ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑢) d𝑊

𝑢

− 𝜃∫

𝑡

0

∫

𝑇

0

𝑒
−𝜃𝑡
𝑒
𝜃𝑠
𝐾
𝑇
(𝑠, 𝑢) d𝑊

𝑢
d𝑠

(115)

which, thanks to stochastic Fubini’s theorem, can be written
as

𝑋
𝜃

𝑡
= ∫

𝑇

0

[𝐾
𝑇
(𝑡, 𝑢) − 𝜃∫

𝑡

0

𝑒
−𝜃𝑡
𝑒
𝜃𝑠
𝐾
𝑇
(𝑠, 𝑢) d𝑠] d𝑊

𝑢
. (116)

In other words, the solution 𝑋𝜃 is a Gaussian process with a
kernel

𝐾
𝜃

𝑇
(𝑡, 𝑢) = 𝐾

𝑇
(𝑡, 𝑢) − 𝜃∫

𝑡

0

𝑒
−𝜃(𝑡−𝑠)

𝐾
𝑇
(𝑠, 𝑢) d𝑠. (117)

Note that this is just an example of how transfer principle can
be applied in order to study stochastic differential equations.
Indeed, for a more general equation

d𝑋𝑎

𝑡
= 𝑎 (𝑡, 𝑋

𝑎

𝑡
) d𝑡 + d𝑋

𝑡
(118)

the existence or uniqueness result transfers immediately to
the existence or uniqueness result of equation

𝑋
𝑎

𝑡
= 𝑋

𝑎

0
+ ∫

𝑡

0

𝑎 (𝑠, 𝑋
𝑎

𝑠
) d𝑠 + ∫

𝑇

0

𝐾
𝑇
(𝑡, 𝑢) d𝑊

𝑢
, (119)

and vice versa.
Let us end this section by discussing briefly how the

transfer principle can be used to build maximum likelihood
estimators (MLEs) for themean-reversal-parameter 𝜃 in (111).
For details on parameter estimation in such equations with
general stationary-increment Gaussian noise we refer to [27]
and references therein. Let us assume that the noise𝑋 in (111)
is infinite-generate, in the sense that the Brownianmotion𝑊
in its Fredholm representation is a linear transformation of
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𝑋. Assume further that the transformation admits a kernel
so that we can write

𝑊
𝑡
= ∫

𝑇

0

𝐾
−1

𝑇
(𝑡, 𝑠) d𝑋

𝑠
. (120)

Then, by operating with the kernels 𝐾
𝑇
and 𝐾−1

𝑇
, we see that

(111) is equivalent to the anticipating equation

𝑊
𝜃

𝑡
= 𝐴

𝑇,𝑡
(𝑊

𝜃
) +𝑊

𝑡
, (121)

where

𝐴
𝑇,𝑡
(𝑊

𝜃
) = −𝜃∬

𝑇

0

𝐾
−1

𝑇
(𝑡, 𝑠) 𝐾

𝑇
(𝑠, 𝑢) d𝑊𝜃

𝑢
d𝑠. (122)

Consequently, the MLE for (111) is the MLE for (121), which
in turn can be constructed by using a suitable anticipating
Girsanov theorem.There is a vast literature on how to do this;
see, for example, [28] and references therein.

6. Conclusions

Wehave shown that virtually everyGaussian process admits a
Fredholm representation with respect to a Brownian motion.
This apparently simple fact has, as far as we know, remained
unnoticed until now. The Fredholm representation immedi-
ately yields the transfer principle which allows one to transfer
the stochastic analysis of virtually any Gaussian process into
stochastic analysis of the Brownian motion. We have shown
how this can be done. Finally, we have illustrated the power
of the Fredholm representation and the associated transfer
principle in many applications.

Stochastic analysis becomes easy with the Fredholm
representation. The only obvious problem is to construct the
Fredholm kernel from the covariance function. In principle
this can be done algorithmically, but analytically it is very
difficult.The opposite construction is, however, trivial.There-
fore, if one begins the modeling with the Fredholm kernel
and not with the covariance, one’s analysis will be simpler and
much more convenient.
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no. 2, pp. 187–203, 2002.

[22] D. Nualart,TheMalliavin Calculus and Related Topics, Probabil-
ity and Its Applications, Springer, New York, NY, USA, 2006.



International Journal of Stochastic Analysis 15

[23] I. Nourdin and G. Peccati, “Stein’s method and exact Berry-
Esseen asymptotics for functionals of Gaussian fields,” The
Annals of Probability, vol. 37, no. 6, pp. 2231–2261, 2009.

[24] T. Sottinen, “On Gaussian processes equivalent in law to
fractional Brownian motion,” Journal of Theoretical Probability,
vol. 17, no. 2, pp. 309–325, 2004.

[25] H. Gilsing and T. Sottinen, “Power series expansions for
fractional Brownian motions,” Theory of Stochastic Processes,
vol. 9, no. 3-4, pp. 38–49, 2003.

[26] R. Adler, An Introduction to Continuity, Extrema, and Related
Topics forGeneral Gaussian Processes, vol. 12 of Institute ofMath-
ematical Statistics Lecture Notes—Monograph Series, Institute of
Mathematical Statistics, Hayward, Calif, USA, 1990.

[27] T. Sottinen and L. Viitasaari, “Parameter estimation for the
Langevin equation with stationary-increment Gaussian noise,”
https://arxiv.org/abs/1603.00390.

[28] J. P. N. Bishwal, “Maximum likelihood estimation in Skorohod
stochastic differential equations,” Proceedings of the American
Mathematical Society, vol. 138, no. 4, pp. 1471–1478, 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


