
Research Article
FuMicro: A Fused Microarchitecture Design Integrating
In-Order Superscalar and VLIW

Yumin Hou,1 Hu He,1 Xu Yang,2 Deyuan Guo,1 Xu Wang,1 Jiawei Fu,1 and Keni Qiu3

1 Institute of Microelectronics, Tsinghua University, Beijing 100084, China
2School of Software, Beijing Institute of Technology, Beijing 100081, China
3College of Information Engineering, Capital Normal University, Beijing 100048, China

Correspondence should be addressed to Hu He; hehu@tsinghua.edu.cn

Received 12 June 2016; Revised 4 October 2016; Accepted 19 October 2016

Academic Editor: Jose Carlos Monteiro

Copyright © 2016 Yumin Hou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper proposes FuMicro, a fused microarchitecture integrating both in-order superscalar and Very Long Instruction Word
(VLIW) in a single core. A processor with FuMicro microarchitecture can work under alternative in-order superscalar and VLIW
mode, using the same pipeline and the same Instruction Set Architecture (ISA). Small modification to the compiler is made to
expand the register file in VLIW mode. The decision of mode switch is made by software, and this does not need extra hardware.
VLIW code can be exploited in the form of library function and the users will be exposed under only superscalar mode; by this
means, we can provide the users with a convenient development environment. FuMicro could serve as a universalmicroarchitecture
for it can be applied to different ISAs. In this paper, we focus on the implementation of FuMicro with ARM ISA. This architecture
is evaluated on gem5, which is a cycle accurate microarchitecture simulation platform. By adopting FuMicro microarchitecture,
the performance can be improved on an average of 10%, with the best performance improvement being 47.3%, compared with that
under pure in-order superscalar mode.The result shows that FuMicromicroarchitecture can improve Instruction Level Parallelism
(ILP) significantly, making it promising to expand digital signal processing capability on a General Purpose Processor.

1. Introduction

With the evolution of wireless communication protocols,
digital signal processing becomes more and more demand-
ing in applications of embedded systems. As digital signal
processors (DSPs) become increasingly indispensable, many
embedded systems embrace both General Purpose Processor
(GPP) cores and DSP cores.

Many SoCs use ARM+DSP architecture [1–4] in recent
years. For example, the Integra ARM+DSP architecture inte-
grates the ARM Cortex-A8 processor and high performance
DSP. Figure 1 shows a typical ARM+DSP architecture [5].

Architectures incorporating GPP and DSP have their
common headaches. The GPP and DSP require different
instruction sets and they need independent development
environment, which brings overwhelming workload to soft-
ware design, making such architectures time and effort
consumptive and inconvenient to the users at the same

time. Communication between GPP and DSP brings more
overhead [6].

We aim to enhance digital signal processing ability on
GPP cores to replace the GPP+DSP architecture by a single
core.

To enhance DSP capability is to enable the processor to
do more operations in one cycle. We either arrange more
operations in a single instruction or issue more instructions
in one cycle. Since we hope to keep the ISA of the GPP core
unchanged, we consider the second approach. To issue more
instructions in one cycle means to increase Instruction Level
Parallelism (ILP).

Several methods increase ILP of a processor, including
in-order superscalar, Out-of-Order (OoO) superscalar, and
VLIW [7].

As in-order superscalar approach dispatches instructions
according to the register dependence table, the count of the
instruction parallelism checking is proportional to the square

Hindawi Publishing Corporation
VLSI Design
Volume 2016, Article ID 8787919, 12 pages
http://dx.doi.org/10.1155/2016/8787919

2 VLSI Design

Tool
chains

IDEs

Emulators

PC

Arm processor and
accelerators

A
RM

-D
SP

co
m

m
un

ic
at

io
ns

DSP

Evaluation module (EVM) board

Figure 1: Typical ARM+DSP architecture.

of the dispatching width. Slight increase to the issue width
can cause great delay to the critical path, which is not allowed
by the high frequency demand; thus, though the program
provides enough parallelism, the issue width of in-order
superscalar microarchitecture is always limited [8].

One of the early cases to introduce OoO dispatch and
execution into superscalar pipeline design is the work of
Smith and Pleszkun [9]. This largely increased the perfor-
mance of processors, but at the same time, exacerbated the
design complexity of control logic. Along came the increase
of chip area, because OoO execution needs a large amount
of memory to buffer instructions and intermediate results of
execution. Power consumption increases correspondingly. In
Micro44 conference, Sodani [10], from Intel, gave the analysis
of power consumption of a processor. Some applications
adopt SIMD float point instructions to improve digital
signal processing performance, and we call them compute-
heavy applications. To reduce power consumption, DSPs
seldom adopt float point computation. For non-compute-
heavy applications, power consumption of OoO dispatch
counts for 21% of the total power consumption, as shown in
Figure 2. Thus, for digital signal processors, to reduce this
portion of power consumption is important.

Many DSPs adopt VLIW microarchitecture [11–13].
VLIWapproach has its own drawbacks, and themost obvious
one is compiler dependency. As the instructions are statically
allocated by the compiler, any modification to the hardware
resource requires recompilation of the program.

In conclusion, to improve the performance of a processor
just depending on a singlemethod is quite difficult, especially
when we expect the processor to show excellent performance
both on general purpose and digital signal processing tasks.

We choose in-order superscalar and VLIW approaches
for several reasons. We avoid OoO because of the problem of
power consumption. Most GPPs adopt superscalar approach
considering the need of compatibility. On the basis of in-
order superscalar, we arrange some parts of the application
to run under VLIW mode, which can further increase
parallelism. By this means, we avoid complex hardware and
software design and achieve high ILP of the processor.

This paper offers the following contributions.

(i) We propose FuMicro, a fused microarchitecture
integrating both in-order superscalar and VLIW

4%

21%

6%

45%

13%

2% 9%

Fetch+decode
OoO+speculation
Integer execution
Caches

TLBs
Legacy
Others

Figure 2: Power consumption for non-compute-heavy applications
[10].

approaches. The two modes share the same pipeline
and use the same ISA.

(ii) Provided with the VLIW library functions, the users
can enjoy a simple and convenient development
environment.

(iii) This fused microarchitecture could serve as a univer-
sal one for it can be applied to different ISAs.

2. Related Works

Since digital signal processing becomes progressively de-
manding in embedded applications, many processor suppli-
ers expanded DSP capabilities on their GPPs. Eyre and Bier
[14] have pointed out that, with the development of DSP, the
DSP enhanced GPP cores will be the trend due to its cost,
power, and area efficiency.

Hameed et al. [15] evaluated general purposed chips, and
they showed that the hardware resources in general purpose
chips are limited in a quantitative way. It also gave solution to
solve the problem, such as exploiting ILP and DLP by means
of VLIW and SIMD, providing customized instructions, and
creating specific function units. These approaches are well
accepted by other designers. Wong et al. [16] enhanced mul-
timedia capabilities to the GPP by introducing multimedia
instructions and expanding hardware to support them.

The researches stated above have something in common.
They all need to add instructions to the original ISA. It brings
the task of exploitation of binary-tool-chain. While, in our
design, in-order superscalar and VLIW mode support the
same ISA. Formature industrial processors such asARMpro-
cessors, ourmethod provides convenience to themigration of
microarchitecture and compatibility to the binary-tool-chain.

VLSI Design 3

Few researches were conducted on pipeline architecture
design to enable DSP capabilities on GPP, whichmight be the
most fundamental approach.Though, some researches might
be similar to ours in the idea of fused mode in a single core.

Lin et al. [17] propose a unified DSP working under RISC
or VLIW mode, and the mode can be switched instruction
by instruction. The instruction set was modified on the
basis of MIPS32 ISA. They proposed hierarchical instruction
encoding, which enables mode switch. When the program
jumps to a VLIW packet, which has special tags to be
recognized, it switches to VLIW mode. This design mainly
focuses on the instruction encodingmethod.Thehierarchical
instruction encoding technology realizes mode switch and
reduced VLIW code size significantly.Though the concept of
fused mode might be similar, our approach is quite different.
We do not focus on ISA design; on the contrary, our approach
can be applied to any existing ISA, only if the ISA has
possibility to be utilized to realize mode switch. Our main
technique is the design of pipeline shared by the two modes.

Khubaib et al. [18] propose MorphCore which provides
two modes of execution: out-of-order and in-order. This
design aims to realize high performance ILP and high
throughput TLP. Firstly, MorphCore is a traditional OoO
core. When TLP is available, it works as a Simultaneous
Multi-Threading (SMT) in-order core. Mode switch depends
on the number of active threads. When the number of active
threads is less than a threshold, it switches to OoOmode.The
overhead of mode switch is pipeline drain and the spill or fill
of architectural register state of the threads.While they realize
high TLP by means of SMT, we choose the method of VLIW
to increase ILP.We switchmode by instructions, which brings
little overhead.

Villavieja et al. [19] propose Yoga, a hybrid microar-
chitecture of OoO and VLIW. Yoga remembers instruction
schedules generated under OoO and transforms them into
VLIW words. When it comes to the same part of the
program, Yoga will arrange these VLIW words to run under
VLIW mode to save power. The two approaches work under
independent pipelines. The hardware design is complicated
and the hardware is underutilized.

Fallin et al. [20] propose heterogeneous block architec-
ture (HBA). The idea of fine-grained heterogeneity is quite
similar with our design. It is observed that code sections in
a program fit different architectures better. HBA combines
heterogeneous architectures, including in-order superscalar,
out-of-order superscalar, and VLIW, in one core. It uses
simple heuristics to choose backends for different code
sections. The difference is that we use software to decide
whether the processor works under in-order superscalar or
VLIWmode, while they use hardware to make this decision.

3. Design Ideas and Methods

According to pipeline design methodology, the procedure
of processing one instruction is divided into several finer
grained jobs.The pipelines of in-order superscalar andVLIW
microarchitectures share eight common actions as listed as
follows.

(1) Fetch instructions from I-Cache.
(2) Predecode instructions to get useful information.
(3) Dispatch instructions dynamically or statically.
(4) Decode the instructions to get the operands.
(5) Read operands from the register files.
(6) Execute.
(7) Access the memory.
(8) Write back the result to the register files.

Steps (1)-(2) are done before instruction dispatch and
steps (4)–(8) are done after instruction dispatch. These steps
are almost the same in in-order superscalar and VLIW
microarchitecture. The issue width of instructions is the
main difference between the twomicroarchitectures, which is
decided at dispatch stage. VLIWmay have awider issuewidth
because of its high instruction parallelism, while the design
philosophy is of no difference with in-order superscalar.

For in-order superscalar microarchitecture, instruction
parallelism detection is implemented depending on the so-
called register dependence table. Register dependence table
does the following things.

(i) Check whether the source registers of the instruction
to be dispatched are ready by comparing their indexes
with the destination registers’ indexes recorded in the
register dependence table.

(ii) If an instruction can be dispatched successfully, then
record its destination registers’ indexes.

(iii) When an instruction finishes execution, remove its
destination registers’ indexes.

For VLIWmicroarchitecture, instruction parallelism de-
tection ismuch simpler than superscalar. In traditional VLIW
instruction encoding, there are several bits indicating the
parallelism of the instructionwhich are called the explicit par-
allelism indicating bits. By checking those bits, dispatch stage
can determine how many instructions should be dispatched
in one cycle. In this paper, we propose a VLIW dispatch
method according to the order of function units.

When the dispatch width grows, the complexity of dis-
patching grows differently between two microarchitectures.
For superscalar, the count of the instruction parallelism
checking is proportional to the square of the dispatching
width because each instruction to be dispatched should be
checked with the register dependence table [21]. For VLIW,
by adopting the proposed dispatch method, the count of
the instruction parallelism checking is proportional to the
dispatching width.

While VLIW has simpler dispatch logic, superscalar has
two advantages over VLIW. One is backward compatibility,
which means old programs can directly run on a new pro-
cessor. Another one is dynamic cycle instruction efficiency.
When a cache miss occurs, superscalar can still dispatch
irrelevant instructions into the execution stages while VLIW
can only stall dispatching instructions.

We are inspired to incorporate the advantages of the
two dispatching patterns given that superscalar and VLIW

4 VLSI Design

Predispatch Dispatch Postdispatch

Fetch

Predecode

Superscalar

VLIW

Decode

Read
operands

Execute

Memory
access

Write
back

Figure 3: Concept of fused microarchitecture.

SuperscalarSuperscalar

VLIWVLIW

Figure 4: Program flow for fused microarchitecture.

microarchitectures have almost the same pipeline modules.
Figure 3 shows the concept of fused microarchitecture.

Superscalar and VLIW present outstanding performance
in different applications. Superscalar is good at handling
general purpose assignments, while VLIW stands out in
compute-intensive tasks. As Figure 4 shows, a program is
divided into several sections and each section runs under
a certain mode. For those high-parallelism demand parts
of the program, we arrange them to run under the VLIW
mode and the remaining part runs under superscalar mode.
The dispatch stage would recognize the running mode of
that section of instructions and dispatch them accordingly.
By wisely allocating tasks, the performance can be greatly
improved.

To realize the FuMicro based on ARM ISA, we focus on
solving the following problems.

(i) Pipeline Design. This is the most significant part
because in-order superscalar andVLIWmode should
share the same pipeline and the processor should
work under alternative mode.

(ii) Mode Switch. Since mode switch takes place at soft-
ware level, mode switch method differs according to
the instruction set. When we transform a superscalar
machine to FuMicro architecture, we should work out
method to realize mode switch with the instruction
set unchanged.

(iii) Computing Resource. VLIW approach realizes higher
parallelism and we should provide enough com-
putational resources. As the size of register file is
constrained by the instruction set, we may need to
expand register file by other means in order to retain
the ISA.

4. Microarchitecture

In this design, we aim to fulfil a kind of fused microarchitec-
ture, which combines the advantages of in-order superscalar
and VLIWmicroarchitecture and hides their drawbacks.

We aim to transformARMin-order superscalar processor
into a fused architectural one. By enabling in-order super-
scalar and VLIW cooperating in the same core, we expect
to improve the DSP performance of the ARM GPP core
noticeably.

The features of the fused microarchitecture are.

(i) The processor with fused microarchitecture works
under alternative in-order superscalar and VLIW
mode.

(ii) The two modes share the same pipeline and support
the same ISA. The codes for the two modes exist in
the same code flow.

(iii) Mode switch takes place at software level, which needs
no extra hardware.

(iv) The VLIW code is provided as library function,
and the user is exposed to only superscalar mode,
making the development environment simple and
convenient.

(v) The fusedmicroarchitecture could serve as a universal
one for it can be applied to different ISAs.

4.1. Composition. ARM Cortex-A7 [22] is a 2-issue in-order
superscalar processor. There are 5 function units available,
including 1 integer unit, 1 multiply unit, 1 float point unit,
1 load/store unit, and 1 branch unit. By applying FuMicro
to ARM ISA, we aim to expand digital signal processing
functionality on ARM general purpose cores. We name the
processor as ARM-FuMicro.

In ARM-FuMicro, we design the two modes to be 2-
issue in-order superscalar mode and 7-issue VLIW mode.
If ARM-FuMicro works only under superscalar mode, it
performs just like ARM Cortex-A7. VLIW mode provides
higher parallelism and requires sufficient function units and
registers. Those in ARM Cortex-A7 are not enough.

We assume that 7 function units are available in ARM-
FuMicro, including 2 integer units, 2 multiply units, which
can also execute integer instructions, 2 load/store units, and
1 branch unit. Integer instructions are completed in 1 cycle,
multiply instruction are completed in 2 cycles, and load/store
instructions are finished in 3 cycles. Branch instructions
are finished in 1 cycle in superscalar mode and there are
5 branch delay slots in VLIW mode. These are shown in
Table 1. For load instructions, the pipeline will be stalled if a
cache miss happens, and it will take far more cycles to finish

VLSI Design 5

Table 1: Composition of ARM-FuMicro.

Instruction category Function unit number Execution cycle
Integer 2 1
Multiply 2 2
Load/store 2 3
Branch 1 1 or 6

execution. In ARM ISA, preload mechanism is realized by
the PLD instruction. When a large number of data is needed
for computation, the PLD instruction can preload data from
DRAM to cache to avoid cache misses.

4.2. Register File. While function units can be easily expand-
ed, register organization is so constrained by the ISA. In
ARM ISA, there are only 4 bits in an instruction encode
assigned for register addressing, which implies that only 16
registers are available. Of the limited 16 registers, 4 (R0–R3)
are used for parameter transfer in subroutine call and 3 (R13–
R15) are used as SP, LR, and PC registers, which cannot be
arbitrarily used by programmers. As a result, only 9 registers
(R4–R12) can be used freely in program design, which cannot
meet the requirement for high parallelism in VLIW mode.
Even though ARM provides several working modes, and it
is claimed to have 37 registers in total, in most occasions,
especially for the programmer visible part, it works just under
the user mode.

To address this problem, we expand the register file by
fully utilizing the ARM ISA. Most ARM instructions support
conditional execution. For those instructions, the highest
4 bits indicate the condition of execution. 0x0000-0x1110
indicate 15 conditions in all.The instructions with the highest
4 bits being 0x1111 are corresponding to the expanded ISA
space, such as the NEON and Vector ISA. ARM added these
instructions to explore SIMD technique on some series of
ARM processors. In this design, these instructions are not
supported. And we utilize this ISA space to expand the
register file.

Among all the execution conditions, condition
AL(0x1110) means always, and if condition is elided, the
effect equals that under condition AL. In other words, an
instruction is added with the AL suffix or not does not
affect the encoding of this instruction. In VLIW mode of
ARM-FuMicro, we modified the assembler to distinguish
instructions with and without AL suffix. The instructions
without AL suffix are compiled to be 0X1110, and instructions
with AL suffix are compiled to be 0X1111. Since condition
AL does not affect the execution of an instruction, we use
condition AL to choose register file. Thus, we can expand the
number of registers available.

Table 2 shows the expanded register file. R0–R15 registers
are the original ARM registers. The method of expanding
register file stated above is just supported under VLIW
mode. R0–R3 registers are still used for parameter transfer
complying with the ARM-Thumb Procedure Call Standard
(ATPCS). K4–K12 compose register file S0, and T4–T12
compose register file S1. Register files S0 and S1 are the

Table 2: Expanded ARM register file organization.

Register Mode
Superscalar VLIW

General purpose register

R0
R1
R2
R3

R4 K4 T4
R5 K5 T5
R6 K6 T6
R7 K7 T7
R8 K8 T8
R9 K9 T9
R10 K10 T10
R11 Kll T11
R12 K12 T12

R13(SP)
R14(LR)

Program counter register R15(PC)
Status register CPSR

Table 3: Code example for register file selection.

Mode Code Registers used

Superscalar add r6, r4, r5 R4, R5 and R6
add.al r6, r4, r5 R4, R5 and R6

VLIW add r6, r4, r5 K4, K5 and K6
add.al r6, r4, r5 T4, T5 and T6

expanded registers, and they are selected by condition AL. If
condition AL is set, we choose register file S0; else we choose
register file S1. A code example is shown in Table 3.

4.3. Pipeline Design. The universal pipeline structure of
FuMicro microarchitecture is shown in Figure 5, and the
premises of the pipeline design are listed as follows.

(i) The issue width under superscalar mode is 2.
(ii) The issue width under VLIWmode is 7.
(iii) The size of the instruction is 16 bits or 32 bits.
(iv) The size of the Instruction Fetching Packet (IFP) is

256 bits, to meet the demand of VLIWmode.

The universal pipeline structure of FuMicro microarchi-
tecture consists of the following stages.

(i) Stage 1: PCG (Program Counter Generate Stage). The
PCG stage generates the next PC of the program.
The next PC is selected from the current PC + 4,
the branch target, or the entry point of the interrupt
service routine.

(ii) Stage 2: PCS (Program Counter Send Stage).This stage
simply sends the PC address generated by the PCG
stage.

6 VLSI Design

Superscalar VLIW

PCG

PCS

PWT

FPR

DDP

IDC

EX

PC interrupt
PC

Branch
prediction

PC branch

M
U

X

256 bits

256 bits

256 bits

· · ·

· · · · · ·

fi 0 fi 1 fi 2 fi 3 fi 4 fi 5 fi n

qi 0 qi 1 qi 2 qi 3 qi 4 qi 5 qi n qi 8 qi 9 qi 10 qi 11 qi 12 qi 13 qi 15

ei 0 ei 1 ei 2 ei 3 ei 4 ei 5 ei 6 ei 7 ei 8 ei 9 ei 10 ei 11 ei 12 ei 13 ei 15ei 14

di 0 di 0di 1 di 1

Dispatch
selection

di 2 di 3 di 4 di 5

Ex

Ex

Ex

Ex

ExExEx

Ex

Ex

Ex

ExEx

Decode unit

Figure 5: Universal pipeline structure for fused microarchitecture.

(iii) Stage 3: PWT (Processor Wait Stage). Judge whether
the instruction is valid in the instruction cache. If not,
stall the pipeline and fetch the instruction from the
instruction RAM.

(iv) Stage 4: FPR (Fetch-Packet Receive Stage). In the FPR
stage, we use two 256-bit fetch registers to mimic an
instruction fetch queue.Once a fetch register is empty,
instruction fetch will occur. FPR stage should also
implement instruction expansion. Because we want
all the instructions sent to the following stages have
the same length.

(v) Stage 5: DDP (Dynamic Dispatch Stage). In the DDP
stage, we use two 192-bit expanding registers tomimic
an instruction expanding queue. Once an expanding
register is empty, instruction expand will occur.

Instruction parallelism detection is based on the
expanding queue. When the CPU is under super-
scalar mode, register dependence table is used for
dynamic instruction dispatching. When the CPU is
under VLIW mode, the order of function units is
checked for static instruction dispatching.

VLSI Design 7

N Z C V Q JIT[1:0] MS Reserved · · ·

Figure 6: Structure of ARM CPSR.

Table 4: ASM code for mode switch.

(a)

Switch from superscalar to VLIW
mrs r2, cpsr
ldr r1, =#0x800000
orr r2, r2, r1
msr cpsr, r2

(b)

Switch from VLIW to superscalar
mrs r3, cpsr
bic r3, 0x800000
msr cpsr, r3

All the instructions to be dispatched are put in the
dispatching registers. There are only one dispatching
register in the decode stage.

(vi) Stage 6: IDC (Instruction Decode Stage). The decode
stage just decodes all the instructions.

(vii) Stages 7–9: EX (Instruction Execution Stages). In the
execution stages, superscalar mode and VLIW mode
have the same behavior. Different instructions need
different cycles to finish execution.

4.4. Mode Switch. In order to ensure complete compatibility
with ARM ISA, we realize mode switch by utilizing ARM
instructions.There is a register called Current Program Status
Register (CPSR) in ARM. It is a 32-bit register recording the
information of execution condition bits, instruction set, ARM
processor mode, and so on. There are several reserved bits
we can utilize. As it is described in ARMv7-A architecture,
CPSR has 4 reserved bits, and we take one as themode switch
flag, as shown in Figure 6. By setting and clearing this bit, we
switch from one mode to the other. CPSR can be modified by
instructions. Modification of CPSR should comply with the
principle of copy-modify-write back, and direct modification
to the CPSR is not allowed.The ASM code for mode switch is
shown in Table 4. When mode switches from superscalar to
VLIW, we set the MS bit as 1. When MS bit is set as 0, mode
switches from VLIW to superscalar.

In conclusion, mode switch is totally decided by software.
The programmers can switch the mode from one to the other
when theywant to. Generally, we switch toVLIWmodewhen
the code section can provide high ILP. What the hardware
needs to do is to check theMS bit each cycle.WhenMSbit is 1,
the currentmode isVLIW, and it should dispatch instructions
according to the principle we are going to describe in the
next part. When MS bit is 0, the current mode will be in-
order superscalar, and the processor should check register
dependence table to dispatch instructions. Thus, we need

quite simple logic to realizemode switch, and the overhead of
mode switch mainly comes from executing the mode switch
instructions, as shown in Table 4. Since these instructions
are irrelevant to the program function, they bring about 3-
cycle performance loss. But the performance improvement
brought by VLIW can easily make up for this loss.

4.5. VLIW Dispatch Method. Under VLIW mode, we dis-
patch instructions according to the order of function units.
ARM-FuMicro has 7 function units, which can be classified
into four categories: integer unit (A), multiply unit (M),
load/store unit (L), and branch unit (B). The order of the
functions is listed as follows. Instructions with ascending
order can be dispatched in one cycle.

A < M < L < B. (1)

The order is defined based on the fact that, in a program,
most instructions are arithmetic instructions and the number
of branch instructions is the smallest. In other words, this
is the order easiest to meet, and more instructions can be
dispatched according to this order. As the VLIW code is
hand written, the programmer should ensure that there is no
dependency between the instructions to be dispatched in one
cycle.

The code examples will be given in the next chapter, to
help understand this principle.

4.6. Branch Prediction. Branch prediction is applied in super-
scalar mode. In VLIW mode, we use delayed branch, and
each branch instruction has 5 delay slots. So when we write
VLIW code, we have to make use of the delay slots to keep
the pipeline running. The delayed branch is very effective.
Since we always arrange compute-intensive code sections to
run under VLIW mode, and such code sections might be
performed for thousands of times in one program, so the
branch in such code sections is more likely to be taken.Thus,
the performance loss in VLIW mode caused by branch is
negligible.

Next, we introduce the branch predictionmethod applied
in superscalar mode. In the fused microarchitecture, we
should not still use the same method as in pure superscalar
mode [23] to deal with branch instructions, mainly because
of the concept of IFP. At fetch stage we use two 256-bit fetch
registers to mimic an instruction fetch queue, and each is
called an IFP.

Figure 7 shows a normal case. B indicates the branch
instruction and T indicates the branch target. We call the IFP
containing branch instruction the first IFP and we call the
next IFP containing the branch target instruction the second
IFP. When it comes to the branch instruction, the post-B
instructions in the first IFP and the pre-T instructions in the
second IFP are all flushed. If the branch prediction is correct,
we just do nothing. While the branch prediction is incorrect,
we flush all the pipelines before the execution stage.

A special case is also demonstrated in Figure 7. Because
of the variable length of the instructions, a 32-bit branch
instruction can be partitioned into two IFP, with the 16-bit
in the first IFP and 16-bit in the second IFP. This will cause a

8 VLSI Design

Pre-B B Post-B

Pre-T T Post-T

First IFP

Second IFP

Normal case:

Pre-B B[15:0]

Post-B

First IFP

Second IFP

Special case:

B[31:16]

Pre-T T Post-TThird IFP

Figure 7: Branch prediction processing flow.

bubble in the pipeline because the post-B instructions in the
second IFP will all be flushed. In this case, even if the branch
prediction is correct, we will still loss a cycle.

5. Software Design

In this part, wewill introduce howwe choose the code section
to be executed under VLIWmode.Then, we introduceVLIW
code design method, to help understand VLIW dispatch
method and delayed branch in VLIWmode. We also explain
how we provide VLIW library functions to users.

5.1. Code Division. VLIW execution can greatly improve the
execution efficiency. To decide whether a code section is
suitable to be executed under VLIW mode, we consider
whether there are enough computational operations in one
basic block and we hope the dependency between them is as
little as possible. The fundamental goal is to fully utilize the
computational resources.

Figure 8 shows two examples of how we divide the
code into two modes. Figure 8(a) is a FFT program. In this
program, the subfunction fft bit reduct fulfils iteration of
the butterfly operation, which in the main operation in fft
function. Since this code section is computed intensively and
the ILP is relatively high, we arrange this code section to
run under VLIWmode. Figure 8(b) shows the mpeg2decode
programs. Mpeg2decode programs convert MPEG-2 video
bitstreams into uncompressed video. Mpeg2decode includes
several subfunctions, of which idct function takes large part
of computation task, since it is subsubfuction of many other
subfunctions. When mpeg2decode programs run under
superscalar mode of FuMicro, idct subfunction takes 28.3%
of the total runtime. While the code size of idct takes just
3.7% of the total. We arrange the idct subfunction to run
under VLIW mode, and the rest parts of the programs
run under superscalar mode. After rewrite the idct code
into VLIW pattern; the total code size is just expanded by
0.37%.

Table 5: ASM code example. (a) is a ASM code section run under
superscalar mode. (b) is the corresponding VLIW code.

(a)

Cycle Number Instruction Function unit

1 1 mov r7, r7, asr #8 A
2 mov r2, r2, as1 #11 A

2 3 add r2, r2, #128 A

3 4 add 1r, fp, r2 A
5 rsb fp, fp, r2 A

4 6 ldr r2, [sl, r5] L
7 add r5, 1r, r4 A

5 8 add r0, fp, r6 A
9 rsb r4, r4, lr A

6 10 mul r6, r6, fp M
11 mul ip, r9, r4 M

7 12 add sl, r8, r5 A
13 rsb r9, r9, r4 A

8 14 add r2, r0, rl A
15 add 1r, r6, r7 A

9 16 rsb r8, r8, r5 A
17 rsb rl, rl, r0 A

10 18 rsb r6, r7, r6 A
19 ldr r4, [sp, #12] L

(b)

Cycle Number Instruction Function unit

1
1 mov r7, r7, asr #8 A
2 mov r2, r2, asl #11 A
6 ldr r2, [sl, r5] L

2 3 add r2, r2, #128 A

3 4 add lr, fp, r2 A
5 rsb fp, fp, r2 A

4

7 add r5, 1r, r4 A
8 add r0, fp, r6 A
9 rsb r4, r4, lr A
10 mul r6, r6, fp M
19 ldr r4, [sp, #12] L

5

12 add sl, r8, r5 A
13 rsb r9, r9, r4 A
14 add r2, r0, rl A
11 mul ip, r9, r4 M

6

15 add lr, r6, r7 A
16 rsb r8, r8, r5 A
17 rsb rl, rl, r0 A
18 rsb r6, r7, r6 A

5.2. VLIW Code Design. As for the VLIW code design
method, We firstly consider code sections without branch
instructions.

Table 5(a) shows a code section run under superscalar
mode. The total runtime is 10 cycles. Table 5(b) shows how

VLSI Design 9

TYPE
main()
{

pin_down(&input_data[0]);

}

fft_bit_reduct(&input_data[0]);

VLIW mode

dump_to_file(&input_data[0]);
return (0);

Iteration of butterfly operation

TYPE input_data[2 ∗ N_FFT];

(a)

recon.cgetbits.c

store.c

getvlc.c

display.c

idct.c

mpeg2decode programs

mpeg2dec.c Main
Subfunctions

getpic.c gethdr.c
motion.c

VLIW mode

3.7% code size
28.3% runtime

· · ·

(b)

Figure 8: Code division. (a)It is a FFT program. (b) It shows the mpeg2decode programs.

we arrange the same code section to run under VLIWmode,
and the runtime is reduced to 6 cycles.

Next, we explain the details of howwe designVLIWcode.
We name the instructions dispatched in cycle 𝑛 as dispatch
package 𝑛. As we can see, the instructions dispatched in one
cycle all complywith the order ofA,M, andL.Comparedwith
the original code as shown in Table 5(a), we simply reorder
the instructions to satisfy the dispatch principle of VLIW. But
in this process, we should make sure that every instruction
will be executed correctly.

For example, instruction number 6 is brought forward to
cycle 1. Because the execution of number 6 does not depend
on the execution result of numbers 1–5 and when it is brought
forward, it does not affect the execution of numbers 3–5, it is
notable that instruction number 6 is before numbers 3–5 in
VLIW code. Numbers 3–5 use the value of r2, and number 6
uses load number to r2. As loas/store instructions are finished
in 3 cycles, instruction number 6 is finished at the end of
cycle 3. So the value of r2 is changed by number 6 until the
end of cycle 3, which means instruction numbers 3–5 use the
correct value of r2. Similarly, instruction No. 19 is brought
forward to cycle 4. In this way, instruction number 19 will
finish execution at the end of cycle 6.

Next, we consider code sections with branch instructions.
As described before, there are 5 delay slots for branch
instructions in VLIWmode. We assume the ASM code given
in Table 5(a) is in a loop and at the end of the loop is a
branch instruction, as shown in Box 1. The corresponding
VLIWcode is given in Box 2.We bring the branch instruction
5 cycles ahead; thus the delay slots can be fed with useful
instructions. The premise is that the condition of branch is
produced before the branch instructions; otherwise, we need
to relocate the branch label and the branch instruction at the
same time.

5.3. VLIW Library Function. We can provide the users with
VLIW library functions, so they can enjoy a convenient
development environment.

Take the Mpeg2decode program, for example. This pro-
gram includes many subfunctions, among which idct takes

loop:
instruction No. 1
⋅ ⋅ ⋅

instruction No. 19
b loop

Box 1: ASM code example with branch instruction under VLIW
mode. A code example with branch instruction. It is transformed
from the code given as follows.

loop:
dispatch package 1
b loop
dispatch package 2
⋅ ⋅ ⋅

dispatch package 6

Box 2: ASM code example for branch under VLIW mode. The
corresponding VLIW code.

the largest amount of computation tasks. We rewrite the idct
ASM code into VLIW pattern and compile it as static library.
The users can use this library but do not need to know how
to design VLIW code or how to switch mode.

The process is shown in Figure 9. We first compile idct.c
into ASM and get idct.s. Then we rewrite idct.s into VLIW
pattern. The VLIW code is compiled as static library. The
function of idct is called bymain function. For the users, what
they need to do is just to compile the main function together
with the given VLIW library.

6. Evaluation

This architecture is simulated on gem5 simulator [24]. gem5
is a cycle accurate simulation platform. It support many ISAs,

10 VLSI Design

idct.c

idct.s

idct_VLIW.s

libidct_VLIW.a

idct_VLIW.o

main.out

main.c

Figure 9: How to provide static VLIW library to the user.

such as Alpha, ARM, MIPS, and Power. It also has sev-
eral CPUmodels, including AtomicSimpleCPU, TimingSim-
pleCPU, inorderCPU, and O3CPU. AtomicSimpleCPU is
the most recommended model for self-designed architecture
simulation [25].We realize the fusedmicroarchitecture based
onTimingSimpleCPUmodel, and the target ISA is ARM ISA.
TimingSimpleCPU model is similar to AtomicSimpleCPU,
but it uses timing memory accesses, which is more accurate.

To provide a comprehensive evaluation of FuMicro, we
choose various benchmarks, including Dhrystone2.1 [26],
CoreMark1.0, DSPStone [27], EEMBC [28] telecom, and
mpeg2decode [29].

Dhrystone and CoreMark benchmarks are used to evalu-
ate the general purpose capability of a processor. DSPStone
and EEMBC telecom are widely used benchmarks, which
emphasize more the evaluation of digital signal processing
ability. Mpeg2decode programs convert MPEG-2 video bit-
streams into uncompressed video, and it also requires digital
signal processing ability.

All the benchmarks are written in C code. The programs
running under VLIW mode are mainly developed by hand
coding. We firstly compile the C code into assembling
language, fromwhich we pick the code sections that are most
suitable to be executed in VLIW mode and rewrite the code
intoVLIWpattern. At the beginning and ending of theVLIW
section we insert instructions to realize mode switch.

ARM compiler is gcc linaro-4.7-2013.06-1.

6.1. Synthesis Result. FuMicro is designed initially based
on LILY2 ISA. The predecessor of LILY2 is called LILY
[30], which is an independently designed VLIW DSP. We
introduced the in-order superscalar on the basis of the VLIW
microarchitecture. When the fused microarchitecture works,
we consider to adopt FuMicro to ARM ISA.

Since ARM-FuMicro hardware is still under working, we
can only give the benchmark evaluation result based on the
simulator. LILY and LILY2 are both synthesized based on

Table 6: Slice logic synthesis result (utilization rate).

Site type LILY (VLIW) LILY2 (FuMicro) Gain
Slice LUTs 28.22 30.26 7.23%
Slice registers 3.82 4.38 14.66%

Table 7: Dhrystone and CoreMark result (DMIPS/MHz).

Benchmark ARM-FuMicro superscalar
Dhrystone 1.93
CoreMark 3.14

Table 8: EEMBC result (cycle).

Function Superscalar mode Fused mode Gain
fft 35675 29758 16.6%
autcor 621267 327363 47.3%
conven 182378 109674 39.9%
fbital 187641 243707 −29.9%
viterb 212388 210962 0.67%

Xilinx FPGAand the results are shownbelow. FPGA is ZYNQ
device XC7Z045 FFG900 and synthesis tool is Vivado. The
synthesis result is given in Table 6.

The result shows that when transforming the VLIW
microarchitecture into the fusedmicroarchitecture, hardware
consumption is rather small. LILY2 requires more memory
space for branch prediction, and the size of memory depends
on the Branch Target Buffer (BTB) table item.

6.2. Superscalar Performance Evaluation. We evaluate the
general purpose performance of ARM-FuMicro process-
or by Dhrystone and CoreMark. The Dhrystone result is
1.93DMIPS/MHz and the CoreMark result is 3.14DMIPS/
MHz, as shown in Table 7. For general purpose evaluation,
ARM-FuMicro processorworks just under superscalarmode.
The general purpose performance of ARM-FuMicro is sim-
ilar to ARM Cortex-A7 processor, of which the Dhrystone
result is 1.9DMIPS/MHz.

6.3. Fused Mode Performance Evaluation. We evaluate the
digital signal processing ability of ARM-FuMicro processor
by EEMBC telecom and DSPStone benchmarks. The result
is shown in Tables 8 and 9. For EEMBC benchmarks, when
the processor works under alternative fused mode, the per-
formance can be improved on an average of 14.9%, compared
with that under pure superscalar mode. It also shows similar
or even worse performance when handling viterb and fbital
functions. For DSPStone benchmarks, most programs show
better performance with an average improvement of 8.2%.
There are also some programs that showworse performances.

We also evaluate the image decompression processing
ability of ARM-FuMicro processor and the result is shown
in Table 10. We arrange the idct function to run under
VLIW mode, and the remaining parts of the programs run
under superscalar mode. The performance of mpeg2decode

VLSI Design 11

Table 9: DSPStone result (cycle).

Function Superscalar mode Fused mode Gain
dot product 39 30 23.1%
convolution 162 131 19.1%
lms 439 284 35.3%
iir biquad one section 22 30 −36.4%
iir biquad 𝑁 sections 74 61 17.6%
real update 22 24 −9.1%
𝑛 real updates 75 62 17.3%
matrix 2178 2030 6.8%
matrix 1 × 3 31 33 −6.4%
fft 1993 1698 14.8%
complex update 48 40 16.7%
𝑛 complex updates 658 450 31.6%
fir 220 250 −13.6%
fir2dim 530 494 6.8%
complex multiply 450020 450020 0%

is improved by 10.0%, and the total code size is expanded just
by 0.37%, as shown in Table 11.

6.4. Results Analysis. For ARM-FuMicro processor, the gen-
eral purpose performance is close to ARMCortex-A7 proces-
sor, which is what we expected.

The objective of FuMicro microarchitecture is exploiting
digital signal processing ability on general purpose cores. For
ARM-FuMicro processor, the performance of most EEMBC
and DSPStone functions can be improved. While for some
functions, the results remain similar or even become worse.

Twomain factors leading to possibly performance degra-
dation are inserting mode switch instructions and delayed
branch inVLIWmode.When the performance improvement
brought by VLIW can not cover the performance loss caused
by executing mode switch instructions, or the VLIW branch
delay slots can not be efficiently utilized, the overall perfor-
mance will decrease. So this result can be partly attributed to
the nature of the programs.Through analysis of the programs,
we find that the programs, of which the results under fused
mode areworse than that under superscalarmode, are among
the following categories.

(i) The program is short with few operations.
(ii) There are multilayer nested loops in the program and

in each loop, there are few operations.
(iii) The programs provide limited parallelism. High

dependency exists between conjoint instructions.

EEMBC and DSPStone both include a few small bench-
marks. Some of them are too simple, and the computation
amount is quite small. Just considering the basic block, Table 5
shows that we reduce the execution time of a 19-instruction
basic block form 10 cycles to 6 cycles. When the basic block
is even smaller, the performance improvement brought by
VLIW is quite limited. What is more, we have to insert
mode switch instructions, and it will take a few cycles. If the

Table 10: Mpeg2decode result (cycle).

Function Superscalar mode Fused mode Gain
Mpeg2decode 8627001 7762105 10.0%

Table 11: Mpeg2decode code size comparison (byte).

Mpeg2decode idct superscalar code idct VLIW code
80332 2664 2960

disadvantage of mode switch overweights the advantage of
VLIW, the performance decreases. Boxes 1 and 2 show an
ideal case of branch instruction.The branch target is the basic
block itself, and the condition of branch is ready 5 cycles
before the branch instruction.When the condition, normally
the result of a compare instruction, is ready just before the
branch instruction, we can not bring the branch instruction
forward. When the branch target is redirected to other basic
blocks, it makes the situation even more complex. Then it
is difficult to insert useful instructions into the branch delay
slots, and this may case several cycles of performance loss.

These programs are not suitable to be executed in VLIW
mode in nature. So the results of EEMBC and DSPStone, at
the same time, reflect the flexibility of FuMicro microarchi-
tecture. For the programs that are suitable to be executed
in VLIW, the performance can be improved up to 47.3%.
Mpeg2decode is a relatively large benchmark. Among the
mpeg2decode programs, idct is the most suitable one to run
under VLIW mode. The result shows that the performance
is improved by 10.0% with just 0.37% of code size expansion.
The results show the potential capability of FuMicro in digital
signal processing filed.

7. Conclusion

In this paper, we propose a universal microarchitecture
named as FuMicro, aiming to realize GPP+DSP capability
in a single core. Our approach is to allow the processor
working under alternative in-order superscalar and VLIW
mode using the same pipeline and the same ISA. Superscalar
approach is suitable for flow control tasks, while VLIW
approach is advantageous in processing DSP applications.
Wise assignment of the tasks can bring improvement to the
performance of the processor.

FuMicro is applied to ARM ISA.The evaluation of ARM-
FuMicro shows that, for the programs including sections that
are suitable to be executed in VLIW mode, the result can be
improved to a large extend. Such programs are characterized
by high parallelism and large amount of computational
operations.

It is a trend for many systems to use ARM+DSP cores,
indicating the need of both general flow control capabil-
ity and data processing ability simultaneously, and FuMi-
cro microarchitecture is promising to take place of the
ARM+DSP architecture to satisfy all these needs in a single
core.

12 VLSI Design

Competing Interests

The authors declare that there is no conflict of interests re-
garding the publication of this paper.

Acknowledgments

This work is supported by the Core Electronic Devices, High-
End General Purpose Processor, and Fundamental System
Software of China underGrant no. 2012ZX01034-001-002, the
National Natural Science Foundation of China under Grants
no. 61201182 and no. 61502032, Tsinghua National Laboratory
for Information Science and Technology (TNList), and Sam-
sung Tsinghua Joint Laboratory.

References

[1] H.-P. Brueckner, M. Wielage, and H. Blume, “Intuitive and
interactive movement sonification on a heterogeneous RISC/
DSP platform,” in Proceedings of the 18th Annual International
Conference on Auditory Display (ICAD ’12), pp. 75–82, 2012.

[2] L. Codrescu, W. Anderson, S. Venkumanhanti et al., “Hexagon
DSP: an architecture optimized for mobile multimedia and
communications,” IEEE Micro, vol. 34, no. 2, pp. 34–43, 2014.

[3] TI. Multicore dsp+arm keystone ii system-on-chip (soc), 2013.
[4] Freescale, Frescale Official Website, 2014.
[5] TI, “Linux EZ Software Development Kit (EZSDK) for

DaVinci(TM) DM814x and DM816x Video Processors,” 2014.
[6] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in

multi-core architectures: understanding mechanisms, over-
heads and scaling,” in Proceedings of the 32nd International
Symposium on Computer Architecture (ISCA ’05), pp. 408–419,
Madison, Wis, USA, June 2005.

[7] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach, Elsevier, 2012.

[8] G. Steven, B. Christianson, R. Collins, R. Potter, and F. Steven,
“A superscalar architecture to exploit instruction level paral-
lelism,”Microprocessors andMicrosystems, vol. 20, no. 7, pp. 391–
400, 1997.

[9] J. E. Smith and A. R. Pleszkun, “Implementation of precise
interrupts in pipelined processors,” in Proceedings of the 12th
Annual International Symposium on Computer Architecture
(ISCA ’85), pp. 36–44, ACM, Boston, Mass, USA, 1985.

[10] A. Sodani, “Race to exascale: opportunities and challenges,”
in Proceedings of the Keynote at the Annual IEEE/ACM 44th
Annual International Symposium on Microarchitecture, Porto
Alegre, Brazil, December 2011.

[11] N. Seshan andW. Sites, “High velociTI processing,” IEEE Signal
Processing Magazine, vol. 15, no. 2, pp. 86–101, 1998.

[12] J. T. J. van Eijndhoven, F. W. Sijstermans, K. A. Vissers et al.,
“TriMedia CPU64 architecture,” in Proceedings of the Interna-
tional Conference on Computer Design (ICCD ’99), pp. 586–592,
IEEE, October 1999.

[13] T. Kumura,M. Ikekawa,M.Yoshida, and I. Kuroda, “VLIWDSP
for mobile applications,” IEEE Signal Processing Magazine, vol.
19, no. 4, pp. 10–21, 2002.

[14] J. Eyre and J. Bier, “Evolution of DSP processors,” IEEE Signal
Processing Magazine, vol. 17, no. 2, pp. 43–51, 2000.

[15] R.Hameed,W.Qadeer,M.Wachs et al., “Understanding sources
of inefficiency in general-purpose chips,” ACM SIGARCH
Computer Architecture News, vol. 38, no. 3, pp. 37–47, 2010.

[16] S.Wong, S. Cotofana, and S. Vassiliadis, “Multimedia enhanced
general-purpose processors,” in Proceedings of the IEEE Inter-
national Conference on Multimedia and Expo (ICME ’00), vol.
3, pp. 1493–1496, IEEE, New York, NY, USA, August 2000.

[17] T.-J. Lin, C.-M. Chao, C.-H. Liu et al., “A unified processor
architecture for RISC & VLIW DSP,” in Proceedings of the 15th
ACM Great Lakes Symposium on VLSI, pp. 50–55, ACM, 2005.

[18] Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson, and Y.
N. Patt, “MorphCore: an energy-efficient microarchitecture for
high performance ILP and high throughput TLP,” inProceedings
of the IEEE/ACM 45th International Symposium on Microarchi-
tecture (MICRO ’12), pp. 305–316, December 2012.

[19] C. Villavieja, J. A. Joao, R. Miftakhutdinov, and Y. N. Patt, Yoga:
A hybrid dynamic VLIW/OoO processor, 2014.

[20] C. Fallin, C. Wilkerson, and O. Mutlu, “The heterogeneous
block architecture,” in Proceedings of the 32nd IEEE Interna-
tional Conference on Computer Design (ICCD ’14), pp. 386–393,
Seoul, South Korea, October 2014.

[21] S. Cotofana and S. Vassiliadis, “On the design complexity of the
issue logic of superscalar machines,” in Proceedings of the 24th
Euromicro Conference, pp. 277–284, 1998.

[22] P. Greenhalgh, Big. LITTLE processing with ARM Cortex-A15
& Cortex-A7, September 2011.

[23] J. E. Smith, “A study of branch prediction strategies,” in Pro-
ceedings of the 8th Annual Symposium on Computer Architecture
(ISCA ’81), vol. 29, pp. 135–148, May 1981.

[24] N. Binkert, B. Beckmann, G. Black et al., “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp.
1–7, 2011.

[25] gem5 official website, http://www.gem5.org.
[26] R. P. Weicker, “Dhrystone: a synthetic systems programming

benchmark,” Communications of the ACM, vol. 27, no. 10, pp.
1013–1030, 1984.

[27] V. Živojinović, J. M. Velarde, C. Schläger, and H. Meyr, “Dsp-
stone: a dsp-oriented benchmarking methodology,” in Pro-
ceedings of the International Conference on Signal Processing
Applications and Technology, pp. 715–720, 1994.

[28] J. A. Poovey, T. M. Conte, M. Levy, and S. Gal-On, “A
benchmark characterization of the EEMBC benchmark suite,”
IEEE Micro, vol. 29, no. 5, pp. 18–29, 2009.

[29] T. Y. Chung and Y. N. Oh, MPEG2 moving picture encod-
ing/decoding system: US, US6310962, 2001.

[30] Z. Shen, H. He, X. Yang, D. Jia, and Y. Sun, “Architecture design
of a variable length instruction SetVLIWDSP,”Tsinghua Science
and Technology, vol. 14, no. 5, pp. 561–569, 2009.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

