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Let𝐺 be a group and 𝑆 a nonempty subset of𝐺.Then, 𝑆 is product-free if 𝑎𝑏 ∉ 𝑆 for all 𝑎, 𝑏 ∈ 𝑆. We say 𝑆 is a locally maximal product-
free set if 𝑆 is product-free and not properly contained in any other product-free set. It is natural to ask whether it is possible to
determine the smallest possible size of a locally maximal product-free set in 𝐺. Alternatively, given a positive integer 𝑘, one can ask
the following: what is the largest integer 𝑛𝑘 such that there is a group of order 𝑛𝑘 with a locally maximal product-free set of size 𝑘?
The groups containing locally maximal product-free sets of sizes 1 and 2 are known, and it has been conjectured that 𝑛3 = 24. The
purpose of this paper is to prove this conjecture and hence show that the list of known locally maximal product-free sets of size 3
is complete. We also report some experimental observations about the sequence 𝑛𝑘.

1. Introduction

Let 𝐺 be a group and 𝑆 a nonempty subset of 𝐺. Then, 𝑆 is
product-free if 𝑎𝑏 ∉ 𝑆 for all 𝑎, 𝑏 ∈ 𝑆. For example, if 𝐻 is a
subgroup of 𝐺 then 𝐻𝑔 is a product-free set for any 𝑔 ∉ 𝐻.
Traditionally these sets have been studied in abelian groups
and have therefore been called sum-free sets (see, e.g., [1, 2]).
Since we are working with arbitrary groups it makes more
sense to say “product-free” in this context.We say 𝑆 is a locally
maximal product-free set if 𝑆 is product-free and not properly
contained in any other product-free set. We use the term
locally maximal rather than maximal because the majority of
the literature in this area uses maximal to mean maximal by
cardinality (e.g., [3, 4]).

There are some obvious questions from the definition:
given a group 𝐺, what is the maximum cardinality of a
product-free set in 𝐺 and what are the maximal (by cardi-
nality) product-free sets? How many product-free sets are
there in 𝐺? Given that each product-free set is contained
in a locally maximal product-free set, what are the locally
maximal product-free sets? What are the possible sizes of
locally maximal product-free sets? Most of the work on
product-free sets has been done in the abelian group case,
particularly for Z and Z𝑛. The number of sum-free sets in
the integers has been studied by, for example, Cameron and
Erdös [1] and Green [5], who with Ruzsa also studied the

density and number of sum-free sets in abelian groups [6].
The number of sum-free sets of {1, 2, . . . , 𝑛} is 2(1/2+𝑜(1))𝑛.
The number of sum-free sets of an arbitrary abelian group
is 2(𝜇(𝐺)+𝑜(1))𝑛. See [7] for further work in this direction.
Petrosyan [8] determined the asymptotic behaviour of the
number of product-free sets in groups of even order. Green
and Ruzsa in [6] also determined the maximal size of a sum-
free set in an arbitrary abelian group. For the nonabelian
case Kedlaya [9] showed that there exists a constant 𝑐 such
that the largest product-free set in a group of order 𝑛 is of
size at least 𝑐𝑛11/14. See also [10]. Gowers in his work on
quasirandom groups proved that if the smallest nontrivial
representation of a group𝐺 is of dimension 𝑘 then the largest
product-free set in 𝐺 is of size at most 𝑘−1/3𝑛 (Theorem 3.3
and commentary at the start of Section 5 of [11]). Much less is
known about theminimum sizes of locally maximal product-
free sets. This question was first asked in [3] and later in
[12], where the authors ask what is the minimum size of a
locally maximal product-free set in a group of order 𝑛? A
good bound for this minimum size is still not known. Small
locally maximal product-free sets when 𝐺 is an elementary
abelian 2-group are of interest in finite geometry, because they
correspond to complete caps in PG(𝑛−1, 2). Locally maximal
sum-free sets for elementary abelian 2-groups of order up to
64 were classified in [13]. In [14], all groups containing locally
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maximal product-free sets of sizes 1 and 2 were classified.
Some general results were also obtained. Furthermore, there
was a classification (Theorem 5.6 of [14]) of groups containing
locally maximal product-free sets 𝑆 of size 3 for which not
every subset of size 2 in 𝑆 generates ⟨𝑆⟩. Each of these groups
has order of at most 24. Conjecture 5.7 of [14] was that if 𝐺
is a group of order greater than 24, then 𝐺 does not contain a
locally maximal product-free set of size 3. A list was given of
all locally maximal product-free sets in groups of orders up
to 24. So the conjecture asserts that this list is the complete
list of all such sets. (This list is given in the current paper as
Table 1; we include it both for ease of reference and because
information from it is needed in the proofs of our results.)The
main result of this paper is the following and its immediate
corollary.

Theorem 1. Suppose 𝑆 is a locally maximal product-free set of
size 3 in a group 𝐺, such that every two-element subset of 𝑆
generates ⟨𝑆⟩. Then |𝐺| ≤ 24.

Corollary 2. If a group𝐺 contains a locally maximal product-
free set 𝑆 of size 3, then |𝐺| ≤ 24 and the only possibilities for 𝐺
and 𝑆 are listed in Table 1.

Proof. If not every two-element subset of 𝑆 generates ⟨𝑆⟩,
then, by Theorem 5.6 of [14], |𝐺| ≤ 24. We may therefore
assume that every two-element subset of 𝑆 generates ⟨𝑆⟩.
Then |𝐺| ≤ 24 byTheorem 1. Now Table 1 is a list of all locally
maximal product-free sets of size 3 occurring in groups of
order up to 24 (a version of this table appeared in [14] as a list
of such sets in groups of order up to 37). Since we have shown
that all locally maximal product-free sets of size 3 occur in
groups of order up to 24, this table now constitutes a complete
list of possibilities.

More generally, given a positive integer 𝑘, one can ask the
following: what is the largest integer 𝑛𝑘 such that there is a
group of order 𝑛𝑘 with a locally maximal product-free set of
size 𝑘? Using GAP [15] we have tested all groups of order up
to 100 when 𝑘 ≤ 5, and the results suggest that the sequence
𝑛𝑘 begins 8, 16, 24, 40, 64, which means the sequence (1/8)𝑛𝑘
begins 1, 2, 3, 5, 8. This is rather intriguing and it would be
interesting to know what the sequence actually is.

We finish this section by establishing the notation to be
used in the rest of the paper and giving some basic results
from [14]. For subsets 𝐴 and 𝐵 of a group 𝐺, we use the
standard notation 𝐴𝐵 for the product of 𝐴 and 𝐵. That is,
𝐴𝐵 = {𝑎𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. By definition, a nonempty set 𝑆 ⊆ 𝐺
is product-free if and only if 𝑆∩𝑆𝑆 = ⌀. In order to investigate
locally maximal product-free sets, we introduce some further
notations. For a set 𝑆 ⊆ 𝐺, we define the following sets:

𝑆2 = {𝑎2 : 𝑎 ∈ 𝑆} ;

𝑆−1 = {𝑎−1 : 𝑎 ∈ 𝑆} ;

√𝑆 = {𝑥 ∈ 𝐺 : 𝑥2 ∈ 𝑆} ;

𝑇 (𝑆) = 𝑆 ∪ 𝑆𝑆 ∪ 𝑆𝑆−1 ∪ 𝑆−1𝑆;

𝑆̂ = {𝑠 ∈ 𝑆 : √{𝑠} ̸⊂ ⟨𝑆⟩} .
(1)

For a singleton set {𝑎}, we usually write√𝑎 instead of√{𝑎}.
For a positive integer 𝑛, we will denote by Alt(𝑛) the

alternating group of degree 𝑛, by 𝐶𝑛 the cyclic group of order
𝑛, by 𝐷2𝑛 the dihedral group of order 2𝑛, and by 𝑄4𝑛 the
dicyclic group of order 4𝑛 given by 𝑄4𝑛 := ⟨𝑥, 𝑦 : 𝑥2𝑛 = 1,
𝑥𝑛 = 𝑦2, 𝑦𝑥 = 𝑥−1𝑦⟩.

We now state the results from [14] that we will use.

Lemma 3 (see [14, Lemma 3.1]). Suppose 𝑆 is a product-free
set in the group 𝐺. Then 𝑆 is a locally maximal product-free set
if and only if 𝐺 = 𝑇(𝑆) ∪ √𝑆.

The next result lists, in order, Proposition 3.2, Theorem
3.4, Propositions 3.6, 3.7, and 3.8, and Corollary 3.10 of [14].

Theorem 4. Let 𝑆 be a locally maximal product-free set in a
group 𝐺. Then

(i) ⟨𝑆⟩ is normal in 𝐺 and 𝐺/⟨𝑆⟩ is either trivial or an
elementary abelian 2-group;

(ii) |𝐺| ≤ 2|𝑇(𝑆)| ⋅ |⟨𝑆⟩|;
(iii) if ⟨𝑆⟩ is not an elementary abelian 2-group and |𝑆̂| = 1,

then |𝐺| = 2|⟨𝑆⟩|;
(iv) every element 𝑠 of 𝑆̂ has even order, and all odd powers

of 𝑠 lie in 𝑆;
(v) if there exists 𝑠 ∈ 𝑆 and integers 𝑚1, . . . , 𝑚𝑡 such that

𝑆̂ = {𝑠, 𝑠𝑚1 , . . . , 𝑠𝑚𝑡}, then |𝐺| divides 4|⟨𝑆⟩|;
(vi) if 𝑆 ∩ 𝑆−1 = ⌀, then |𝐺| ≤ 4|𝑆|2 + 1.

We require one final fact.

Theorem 5 (see [14, Theorem 5.1]). Up to isomorphism, the
only instances of locally maximal product-free sets 𝑆 of size 3 of
a group 𝐺 where |𝐺| ≤ 37 are given in Table 1.

2. Proof of Theorem 1

Proposition 6. Suppose 𝑆 is a locally maximal product-free set
of size 3 in 𝐺. If ⟨𝑆⟩ is cyclic, then |𝐺| ≤ 24.

Proof. Write 𝑆 = {𝑎, 𝑏, 𝑐}. First note that since ⟨𝑆⟩ is abelian,
𝑆𝑆−1 = 𝑆−1𝑆; moreover 𝑎𝑎−1 = 𝑏𝑏−1 = 𝑐𝑐−1 = 1; so |𝑆𝑆−1| ≤ 7.
Also 𝑆𝑆 ⊆ {𝑎2, 𝑏2, 𝑐2, 𝑎𝑏, 𝑎𝑐, 𝑏𝑐}. Thus

|𝑇 (𝑆)| = 󵄨󵄨󵄨󵄨󵄨𝑆 ∪ 𝑆𝑆 ∪ 𝑆𝑆
−1󵄨󵄨󵄨󵄨󵄨 ≤ 3 + 6 + 7 = 16. (2)

By Lemma 3, 𝐺 = 𝑇(𝑆) ∪ √𝑆; so ⟨𝑆⟩ = 𝑇(𝑆) ∪ (⟨𝑆⟩ ∩ √𝑆).
Elements of cyclic groups have at most two square roots.
Therefore |⟨𝑆⟩| ≤ 16 + 6 = 22. By Table 1, ⟨𝑆⟩ must now be
one of 𝐶6, 𝐶8, 𝐶9, 𝐶10, 𝐶11, 𝐶12, 𝐶13, or 𝐶15. Theorem 4(iv)
tells us that every element 𝑠 of 𝑆̂ has even order and all odd
powers of 𝑠 lie in 𝑆. This means that, for 𝐶9, 𝐶11, 𝐶13, or 𝐶15,
we have 𝑆̂ = ⌀ and so 𝐺 = ⟨𝑆⟩. In particular, |𝐺| ≤ 24.
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Table 1: Locally maximal product-free sets of size 3.

𝐺 𝑆 ⟨𝑆⟩
# of locally maximal
product-free sets of

size 3 in 𝐺
⟨𝑔 : 𝑔6 = 1⟩ ≅ 𝐶6 {𝑔, 𝑔3, 𝑔5} ≅ 𝐶6 1
⟨𝑔, ℎ : 𝑔3 = ℎ2 = 1, ℎ𝑔ℎ = 𝑔−1⟩ ≅ 𝐷6 {ℎ, 𝑔ℎ, 𝑔2ℎ} ≅ 𝐷6 1
⟨𝑔 : 𝑔8 = 1⟩ ≅ 𝐶8 {𝑔, 𝑔−1, 𝑔4} ≅ 𝐶8 2
⟨𝑔, ℎ : 𝑔4 = ℎ2 = 1, ℎ𝑔ℎ−1 = 𝑔−1⟩ ≅ 𝐷8 {ℎ, 𝑔ℎ, 𝑔2} ≅ 𝐷8 4
⟨𝑔 : 𝑔9 = 1⟩ ≅ 𝐶9 {𝑔, 𝑔3, 𝑔8} , {𝑔, 𝑔4, 𝑔7} ≅ 𝐶9 8
⟨𝑔, ℎ : 𝑔3 = ℎ3 = 1, 𝑔ℎ = ℎ𝑔⟩ ≅ 𝐶3 × 𝐶3 {𝑔, ℎ, 𝑔2ℎ2} ≅ 𝐶3 × 𝐶3 8
⟨𝑔 : 𝑔10 = 1⟩ ≅ 𝐶10 {𝑔2, 𝑔5, 𝑔8} , {𝑔, 𝑔5, 𝑔8} ≅ 𝐶10 6
⟨𝑔 : 𝑔11 = 1⟩ ≅ 𝐶11 {𝑔, 𝑔3, 𝑔5} ≅ 𝐶11 10

⟨𝑔 : 𝑔12 = 1⟩ ≅ 𝐶12
{𝑔2, 𝑔6, 𝑔10} ≅ 𝐶6 1

{𝑔, 𝑔6, 𝑔10} , {𝑔, 𝑔3, 𝑔8} ≅ 𝐶12 8
⟨𝑔, ℎ : 𝑔6 = 1, 𝑔3 = ℎ2, ℎ𝑔ℎ−1 = 𝑔−1⟩ ≅ 𝑄12 {𝑔, 𝑔3, 𝑔5} ≅ 𝐶6 1

Alternating group of degree 4 = Alt(4)
{𝑥, 𝑦, 𝑧 : 𝑥2 = 𝑦2 = 𝑧3 = 1}

≅ Alt(4) 48{𝑥, 𝑧, 𝑥𝑧𝑥 : 𝑥2 = 𝑧3 = 1}
{𝑥, 𝑧, 𝑧𝑥𝑧 : 𝑥2 = 𝑧3 = 1}

⟨𝑔 : 𝑔13 = 1⟩ ≅ 𝐶13 {𝑔, 𝑔3, 𝑔9} , {𝑔, 𝑔6, 𝑔10} ≅ 𝐶13 16
⟨𝑔 : 𝑔15 = 1⟩ ≅ 𝐶15 {𝑔, 𝑔3, 𝑔11} ≅ 𝐶15 4
⟨𝑔, ℎ : 𝑔4 = ℎ4 = 1, 𝑔ℎ = ℎ𝑔⟩ ≅ 𝐶4 × 𝐶4 {𝑔, ℎ, 𝑔−1ℎ−1} ≅ 𝐶4 × 𝐶4 16
⟨𝑔, ℎ : 𝑔8 = 1, 𝑔4 = ℎ2, ℎ𝑔ℎ−1 = 𝑔−1⟩ ≅ 𝑄16 {𝑔, 𝑔4, 𝑔−1} ≅ 𝐶8 2
⟨𝑔, ℎ : 𝑔8 = ℎ2 = 1, ℎ𝑔ℎ−1 = 𝑔5⟩ (Order 16) {𝑔, 𝑔6, 𝑔3ℎ} ≅ 𝐺 8
⟨𝑔, ℎ : 𝑔10 = 1, 𝑔5 = ℎ2, ℎ𝑔ℎ−1 = 𝑔−1⟩ ≅ 𝑄20 {𝑔, 𝑔5, 𝑔8} , {𝑔2, 𝑔5, 𝑔8} ≅ 𝐶10 6
⟨𝑔, ℎ : 𝑔3 = ℎ7 = 1, 𝑔ℎ𝑔−1 = ℎ2⟩ ≅ 𝐶7 ⋊ 𝐶3 {𝑔ℎ, 𝑔ℎ−1, 𝑔−1} ≅ 𝐶7 ⋊ 𝐶3 42
⟨𝑥 : 𝑥3 = 1⟩ × ⟨𝑔, ℎ : 𝑔4 = 1, 𝑔2 = ℎ2, ℎ𝑔ℎ−1 = 𝑔−1⟩ ≅ 𝐶3 × 𝑄8 {𝑔2, 𝑥𝑔2, 𝑥2𝑔2} ≅ 𝐶6 1

⟨𝑔, ℎ : 𝑔12 = 1, 𝑔6 = ℎ2, ℎ𝑔ℎ−1 = 𝑔−1⟩ ≅ 𝑄24
{𝑔2, 𝑔6, 𝑔10} ≅ 𝐶6 1
{𝑔, 𝑔6, 𝑔10} ≅ 𝐶12 4

It remains to consider 𝐶6, 𝐶8, 𝐶10, and 𝐶12. For 𝐶6 = ⟨𝑔 :
𝑔6 = 1⟩, the unique locally maximal product-free set of size
3 is 𝑆 = {𝑔, 𝑔3, 𝑔5}. Now if 𝑔 or 𝑔5 is contained in 𝑆̂, then 𝑆̂
consists of powers of a single element; so, by Theorem 4(v),
|𝐺| divides 24. If neither 𝑔 nor 𝑔5 is in 𝑆̂, then |𝑆̂| ≤ 1, and
so by Theorem 4(iii), therefore, |𝐺| divides 12. In 𝐶8 there
is a unique (up to group automorphisms) locally maximal
product-free set of size 3, and it is {𝑔, 𝑔−1, 𝑔4}, where 𝑔 is any
element of order 8. If 𝑆̂ contains 𝑔 or 𝑔−1, then 𝑆 contains
all odd powers of that element by Theorem 4(iv), and hence
𝑆 contains {𝑔, 𝑔3, 𝑔5, 𝑔7}, a contradiction. Therefore |𝑆̂| ≤ 1
and so |𝐺| divides 16. Next, we consider ⟨𝑆⟩ = 𝐶10. Recall
that elements of 𝑆̂ must have even order. If 𝑆̂ contains any
element of order 10, then 𝑆 contains all five odd powers of
this element, which is impossible by Theorem 4(iv). This
leaves only the involution of 𝐶10 as a possible element of 𝑆̂.
Hence again |𝑆̂| ≤ 1 and |𝐺| divides 20. Finally we look at
𝐶12. If 𝑆̂ contains any element of order 12, then |𝑆| ≥ 6, a
contradiction. If 𝑆̂ contains an element 𝑥 of order 6 then 𝑆
contains all three of its odd powers, so 𝑆 = {𝑥, 𝑥3, 𝑥5}. But
then ⟨𝑆⟩ ≅ 𝐶6, contradicting the assumption that ⟨𝑆⟩ = 𝐶12.
Therefore, 𝑆̂ can only contain elements of order 2 or 4. Up to
group automorphism, we see from Table 1 that every locally

maximal product-free set 𝑆 of size 3 in 𝐶12 with ⟨𝑆⟩ = 𝐶12 is
one of {𝑔, 𝑔6, 𝑔10} or {𝑔, 𝑔3, 𝑔8} for some generator 𝑔 of 𝐶12.
Each of these sets contains exactly one element of order 2 or
4. Therefore, in every case, |𝑆̂| ≤ 1 and so |𝐺| divides 24. This
completes the proof.

Note that the bound on |𝐺| in Proposition 6 is attainable.
For example, in 𝑄24 there is a locally maximal product-free
set 𝑆 of size 3, with ⟨𝑆⟩ ≅ 𝐶12.

Proposition 7. Suppose 𝑆 is a locally maximal product-free set
of size 3 in𝐺 such that every 2-element subset of 𝑆 generates ⟨𝑆⟩.
Then either |𝐺| ≤ 24 or 𝑆 contains exactly one involution.

Proof. First suppose 𝑆 contains no involutions. If 𝑆∩𝑆−1 = ⌀,
then Theorem 4(vi) tells us that 𝐺 has order of at most 37,
and then, byTheorem 5, (𝐺, 𝑆) is one of the possibilities listed
in Table 1. In particular |𝐺| ≤ 24. If 𝑆 ∩ 𝑆−1 ̸= ⌀, then
𝑆 = {𝑎, 𝑎−1, 𝑏} for some 𝑎, 𝑏. But then ⟨𝑆⟩ = ⟨𝑎, 𝑎−1⟩ = ⟨𝑎⟩,
so ⟨𝑆⟩ is cyclic. Now by Proposition 6 we get |𝐺| ≤ 24. Next,
suppose that 𝑆 contains at least two involutions (𝑎, 𝑏), with the
third element being 𝑐. Then, since every 2-element subset of
𝑆 generates ⟨𝑆⟩, we have that𝐻 = ⟨𝑆⟩ = ⟨𝑎, 𝑏⟩ is dihedral and
𝑆 is a locally maximal product-free set in 𝐻. Let 𝑜(𝑎𝑏) = 𝑚,
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so 𝐻 ≅ 𝐷2𝑚. The nontrivial coset of the subgroup ⟨𝑎𝑏⟩ is
product-free of size 𝑚. So if 𝑐 lies in this coset, then we have
𝑚 = 3 and 𝐻 ≅ 𝐷6. If 𝑐 does not lie in this coset then
𝑐 = (𝑎𝑏)𝑖 for some 𝑖, and from the relations in a dihedral
group 𝑎𝑐−1 = 𝑐𝑎, 𝑐−1𝑎 = 𝑎𝑐, 𝑏𝑐−1 = 𝑐𝑏, and 𝑐−1𝑏 = 𝑏𝑐.
The coset ⟨𝑎𝑏⟩𝑎 consists of 𝑚 involutions, which cannot lie
in √𝑆. Thus ⟨𝑎𝑏⟩𝑎 ⊆ 𝑇(𝑆) by Lemma 3. A straightforward
calculation shows that

⟨𝑎𝑏⟩ 𝑎 = 𝑇 (𝑆) ∩ ⟨𝑎𝑏⟩ 𝑎

= {𝑎, 𝑏, 𝑎𝑐, 𝑐𝑎, 𝑏𝑐, 𝑐𝑏, 𝑎𝑐−1, 𝑐−1𝑎, 𝑏𝑐−1, 𝑐−1𝑏}

= {𝑎, 𝑏, 𝑎𝑐, 𝑐𝑎, 𝑏𝑐, 𝑐𝑏} .

(3)

This means 𝑚 ≤ 6, and 𝑆 consists of two generating
involutions 𝑎, 𝑏 plus a power of their product 𝑎𝑏, with the
property that any two-element subset of 𝑆 generates ⟨𝑎, 𝑏⟩. A
glance at Table 1 shows there are no locally maximal product-
free sets of this form in 𝐷2𝑚 for 𝑚 ≤ 6. Therefore the only
possibility is that ⟨𝑆⟩ ≅ 𝐷6, with 𝑆 consisting of the three
reflections in ⟨𝑆⟩. By Theorem 4(i), the index of ⟨𝑆⟩ in 𝐺 is
a power of 2. By Theorem 4(ii), |𝐺| ≤ 2|𝑇(𝑆)| ⋅ |⟨𝑆⟩|. Thus
|𝐺| ∈ {6, 12, 24, 48}. Suppose for contradiction that |𝐺| = 48.
Now 𝐺 = 𝑇(𝑆) ∪ √𝑆, and since 𝑆 consists of involutions,
the elements of√𝑆 have order 4. So 𝐺 contains two elements
of order 3 and three elements of order 2 and the remaining
nonidentity elements have order 4. Then the 46 elements
of 𝐺 whose order is a power of 2 must lie in three Sylow
2-subgroups of order 16, with trivial pairwise intersection.
Each of these groups therefore has a unique involution and
14 elements of order 4, all of which square to the given
involution. But no group of order 16 has fourteen elements
of order 4. Hence |𝐺| ̸= 48, and so |𝐺| ≤ 24. Therefore either
|𝐺| ≤ 24 or 𝐺 contains exactly one involution.

Before we establish the next result, we first make a useful
observation. Suppose 𝑆 = {𝑎, 𝑏, 𝑐}, where 𝑎, 𝑏, 𝑐 ∈ 𝐺 and 𝑐 is
an involution. Then a straightforward calculation shows that

𝑇 (𝑆) ⊆ {1, 𝑎, 𝑏, 𝑐, 𝑎2, 𝑏2, 𝑎𝑏, 𝑏𝑎, 𝑎𝑐, 𝑐𝑎, 𝑏𝑐, 𝑐𝑏, 𝑎𝑏−1, 𝑏𝑎−1,

𝑐𝑎−1, 𝑐𝑏−1, 𝑎−1𝑏, 𝑎−1𝑐, 𝑏−1𝑎, 𝑏−1𝑐} .
(4)

Lemma 8. Suppose 𝑆 is a locally maximal product-free set of
size 3 in 𝐺, every 2-element subset of 𝑆 generates ⟨𝑆⟩, and 𝑆
contains exactly one involution. Then either |𝐺| ≤ 24 or 𝑆 =
{𝑎, 𝑏, 𝑐}, where 𝑎, 𝑏 have order 3 and 𝑐 is an involution.

Proof. Suppose 𝑆 = {𝑎, 𝑏, 𝑐}, where 𝑐 is an involution and
𝑎, 𝑏 are not. Consider 𝑎−1. Recall that 𝐺 = 𝑇(𝑆) ∪ √𝑆. If
𝑎−1 ∈ √𝑆 then 𝑎−2 ∈ {𝑎, 𝑏, 𝑐} which implies that either
𝑎 has order 3 or ⟨𝑆⟩ is cyclic (because, e.g., if 𝑎−2 = 𝑏
then ⟨𝑆⟩ = ⟨𝑎, 𝑏⟩ = ⟨𝑎⟩). Thus if 𝑎−1 ∈ √𝑆 then
either 𝑎 has order 3 or (by Proposition 6) |𝐺| ≤ 24. Now
suppose that 𝑎−1 ∈ 𝑇(𝑆). The elements of 𝑇(𝑆) are given
in (4). If 𝑎−1 ∈ {𝑏, 𝑏2, 𝑎𝑏, 𝑏𝑎, 𝑎𝑏−1, 𝑏𝑎−1, 𝑎−1𝑏, 𝑏−1𝑎} then, by
remembering that ⟨𝑆⟩ = ⟨𝑎, 𝑏⟩, we deduce that ⟨𝑆⟩ is cyclic,
generated by either 𝑎 or 𝑏. For example, 𝑎−1 = 𝑏𝑎 implies

𝑏 ∈ ⟨𝑎⟩. Similarly, if 𝑎−1 ∈ {𝑐, 𝑎𝑐, 𝑐𝑎, 𝑎−1𝑐, 𝑐−1𝑎}, then ⟨𝑆⟩
is cyclic. Since 𝑎 has order of at least 3, we cannot have
𝑎−1 ∈ {1, 𝑎}. If 𝑎−1 ∈ {𝑏𝑐, 𝑐𝑏, 𝑏−1𝑐, 𝑐−1𝑏}, then 𝑆 would not be
product-free. For instance, 𝑎−1 = 𝑏−1𝑐 implies that 𝑏−1𝑐𝑎 = 1,
and hence 𝑎𝑐 = 𝑏. The only remaining possibility is 𝑎−1 = 𝑎2,
meaning that 𝑎 has order 3. The same argument with 𝑏−1
shows that 𝑏 also has order 3.

We can now prove Theorem 1, which states that if 𝑆 is a
locally maximal product-free set of size 3 in a group 𝐺, such
that every two-element subset of 𝑆 generates ⟨𝑆⟩, then |𝐺| ≤
24.

Proof of Theorem 1. Suppose 𝑆 is a locally maximal product-
free set of size 3 in 𝐺 such that every two-element subset
of 𝑆 generates ⟨𝑆⟩. Then, by Lemma 8, either |𝐺| ≤ 24 or
𝑆 = {𝑎, 𝑏, 𝑐}, where 𝑎, 𝑏 have order 3 and 𝑐 is an involution.
In the latter case, we observe that 𝑎𝑐𝑎−1 is an involution and
so must be contained in 𝑇(𝑆). Using (4) we work through the
possibilities. Obviously it is impossible for 𝑎𝑐𝑎−1 to be equal
to any of 1, 𝑎, 𝑏, 𝑎2, or 𝑏2 because these elements are not of
order 2. If any of 𝑎𝑐, 𝑐𝑎, 𝑎−1𝑐, 𝑐−1𝑎, 𝑏𝑐, 𝑐𝑏, 𝑏−1𝑐, or 𝑐𝑏−1 were
involutions, then it would imply that ⟨𝑆⟩ was generated by
two involutions whose product has order 3. For example, if
𝑎𝑐 were an involution then ⟨𝑐, 𝑎𝑐⟩ = ⟨𝑎, 𝑐⟩ = ⟨𝑆⟩. That is,
⟨𝑆⟩ would be dihedral of order 6. But there is no product-
free set in 𝐷6 containing two elements of order 3, because
if 𝑥, 𝑦 are the elements of order 3 in 𝐷6 then 𝑥2 = 𝑦
and 𝑦2 = 𝑥. So the remaining possibilities for 𝑎𝑐𝑎−1 are
𝑐, 𝑎𝑏, 𝑏𝑎, 𝑎𝑏−1, 𝑏𝑎−1, 𝑎−1𝑏, and 𝑏−1𝑎. Now 𝑎𝑐𝑎−1 = 𝑎𝑏
implies 𝑐 = 𝑏𝑎, whereas 𝑎𝑐𝑎−1 = 𝑎𝑏−1 implies 𝑏𝑐 = 𝑎 and
𝑎𝑐𝑎−1 = 𝑏𝑎−1 implies 𝑏 = 𝑎𝑐, each of which contradicts the
fact that 𝑆 is product-free. We are now left with the cases
𝑎𝑐𝑎−1 = 𝑐, 𝑎𝑐𝑎−1 = 𝑏𝑎, and 𝑎𝑐𝑎−1 = 𝑎−1𝑏 (which, if it is
an involution, equals 𝑏−1𝑎). If 𝑎𝑐𝑎−1 = 𝑐, then ⟨𝑆⟩ = ⟨𝑎, 𝑐⟩ =
𝐶6, but the only product-free set of size 3 in 𝐶6 contains no
elements of order 3, so this is impossible. Therefore 𝑎𝑐𝑎−1 ∈
{𝑏𝑎, 𝑎−1𝑏}. If 𝑎𝑐𝑎−1 = 𝑏𝑎, then 𝑎−1𝑏𝑎 = 𝑐𝑎−1, so 𝑎𝑐 = 𝑎−1𝑏−1𝑎,
which has order 3. If 𝑎𝑐𝑎−1 = 𝑎−1𝑏, then 𝑎𝑐 = 𝑎−1𝑏𝑎, again of
order 3. So we see that ⟨𝑆⟩ = ⟨𝑎, 𝑐 : 𝑎3 = 1, 𝑐2 = 1, (𝑎𝑐)3 =
1⟩. This is a well known presentation of the alternating group
Alt(4). As 𝑐 is the only element of 𝑆 whose order is even, we
see that |𝑆̂| ≤ 1, and hence |𝐺| ≤ 2|Alt(4)| = 24. Therefore in
all cases |𝐺| ≤ 24.

3. A Table of All Locally Maximal
Product-Free Sets of Size 3

Though Table 1 is essentially the same as the one in [14], we
have taken the opportunity here to correct a typographical
error in the entry for the (unnamed) group of order 16.
The data was obtained using simple GAP programs [15] and
additionally verified by hand for the smaller groups.
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