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Why does Planck (1900), referring to Boltzmann’s 1877 probabilistic treatment, obtain his quantum distribution function while
Boltzmann did not? To answer this question, both treatments are compared on the basis of Boltzmann’s 1868 three-level scheme
(configuration—occupation—occupancy). Some calculations by Planck (1900, 1901, and 1913) and Einstein (1907) are also sketched.
For obtaining a quantum distribution, it is crucial to stick with a discrete energy spectrum and to make the limit transitions
to infinity at the right place. For correct state counting, the concept of interchangeability of particles is superior to that of
indistinguishability.

1. Introduction

Very recently, Sharp and Matschinsky have translated and
commented Boltzmann’s famous 1877 paper [1] “On the
Relationship between the Second Fundamental Theorem of
the Mechanical Theory of Heat and Probability Calculations
regarding the Conditions for Thermal Equilibrium” [2]. As a
matter of fact, they have done a great service to the scientific
community1.

Barely any of Boltzmann’s original scientific work is avail-
able in translation.This is remarkable given his central role in
the development of both equilibrium and non-equilibrium
statistical mechanics, his statistical mechanical explanation
of entropy, and our understanding of the Second Law of
thermodynamics. What Boltzmann actually wrote on these
subjects is rarely quoted directly, his methods are not fully
appreciated, and key concepts have been misinterpreted. Yet
his work remains relevant today. (Ibid., pp. 1971f.)

The paper “exemplifies several of Boltzmann’s most
important contributions to modern physics. These include

(1) The eponymous Boltzmann distribution, relating the
energy scaled by the mean kinetic energy (tempera-
ture). . .

(2) Much of the theoretical apparatus of statistical
mechanics is developed with great clarity. . . His
terminology. . .is incisive, in some ways superior to
the twomodern termsmacro-state andmicro-state. . .

(3) The statistical mechanical formulation of entropy. . .
(4) . . .Boltzmann also clearly demonstrates that there are

two distinct contributions to entropy, arising from
the distribution of heat (kinetic energy) and the
distribution in space of atoms or molecules. . . It is
fitting that Boltzmann was the one to discover the
third fundamental contribution to entropy, namely
radiation, by deriving the Stefan-Boltzmann Law
[3]. . .” (ibid., pp. 1972f.)

(5) Boltzmann’s “permutability measure”,Ω (3/2 of Clau-
sius’ entropy, 𝑆), is constructed as an extensive quan-
tity. “Thus Boltzmann never encounters the appar-
ent Gibbs paradox for the entropy of mixing of
identical gases. Furthermore, with Boltzmann’s Per-
mutabilitätmass method for counting states, there
is no need for a posteriori division by 𝑁! to “cor-
rect” the derivation using the “somewhat mystical
arguments of Gibbs2 and Planck [4]” nor a need
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to appeal to quantum indistinguishability, which has
been implausibly described as the appearance of
quantum effects at the macroscopic classical level [5].
Subsequently, at least four distinguished practitioners
of statistical mechanics have pointed out that cor-
rect counting of states a la Boltzmann obviates the
need for the spurious indistinguishability/𝑁! term:
Ehrenfest and Trkal [6], Van Kampen [7], Jaynes [8],
Swendsen [9] (and possibly Pauli [10]3). This has had
little impact on textbooks of statistical mechanics.4
An exception is the treatise by Gallavotti [11]” (Ibid.,
p. 1974).

Indeed, Jaynes [8] argues similarly: “Some important facts
about thermodynamics have not been understood by others
to this day, nearly as well as Gibbs understood them over 100
years ago [12]. . . For 80 years it has seemed natural that, to
find what Gibbs had to say about this, one should turn to his
Statistical Mechanics. For 60 years, textbooks and teachers
(including, regrettably, the present writer) have impressed
upon students how remarkable it was that Gibbs, already in
[13], had been able to hit upon this paradox which foretold—
and had its resolution only in—quantum theory with its lore
about indistinguishable particles, Bose and Fermi statistics,
etc.5 It was therefore a shock to discover that. . .Gibbs [in
“Heterogeneous Equilibrium”] displays a full understanding
of this problem, and disposes of it without a trace of that
confusion over the “meaning of entropy” or “operational dis-
tinguishability of particles” on which later writers have stum-
bled. He goes straight to the heart of the matter as a simple
technical detail, easily understood as soon as one has grasped
the full meanings of the words “state” and “reversible” as they
are used in thermodynamics. In short, quantum theory did
not resolve any paradox, because there was no paradox. . ..
Today, the universally taught conventional wisdom holds
that “Classical mechanics failed to yield an entropy function
that was extensive, and so statistical mechanics based on
classical theory gives qualitatively wrong predictions of vapor
pressures and equilibrium constants, which was cleared up
only by quantum theory in which the interchange of identical
particles is not a real event”. We argue that, on the contrary,
phenomenological thermodynamics, classical statistics, and
quantum statistics are all in just the same logical positionwith
regard to extensivity of entropy; they are silent on the issue,
neither requiring it nor forbidding it.”

Last but not least, Boltzmann’s statistical definition of
entropy is the first one, which applies to nonequilibrium
states, thus “opening the door to the statistical mechanics of
non-equilibrium states and irreversible processes” [2, p. 1974].

In this paper, I will concentrate on Boltzmann’smanner of
state counting and its consequences for classical and quantum
statistics. Boltzmann accounts for the interchangeability of
equal particles; nevertheless, he does not obtain Planck’s
distribution function, while Planck—starting with similar
probabilistic settings [14, 15] or even with the same setting
[4]—did.

Moreover, I will sketch some calculations by Einstein [16].
In Einstein’s pioneering paper about the specific heat of solids,
Planck’s distribution law emerges from the discreteness of

the energy spectrum of Planck’s resonators, when compared
with the continuous energy spectrum of classical resonators.
From this, Einstein concludes quantization to be a selection
problem of states.

2. Boltzmann’s 1868 Probabilistic Scheme

According to Bach [17, Sections 3.2.1, 5.1], Boltzmann [18]
invents the scheme (𝑛, 𝑑):

𝑛 identical particles are distributed onto 𝑑 identical cells. (1)

Since, in Boltzmann’s 1877 paper, the cells are energy levels, I
will continue with 𝑑 different cells.

This scheme involves 3 levels of descriptions:

(1) configurations,
(2) occupation numbers,
(3) occupancy numbers.

2.1. Level 1: Configurations. A configuration is the most
detailed description of the distribution of the particles over
the cells. For each particle, 𝑟 (𝑟 = 1, 2, . . . , 𝑛), it provides the
number, 𝑠 (𝑠 = 1, 2, . . . , 𝑑), of the cell, in which it is located.

This can be realized by means of a matrix, M, where
𝑀

𝑟𝑠
= 1 (0), if particle 𝑟 is (is not) in cell 𝑠. This matrix

can be condensed into the vector j = (𝑗

1
, 𝑗

2
, 𝑗

3
, . . . , 𝑗

𝑛
), where

𝑗

𝑟
is the number of the cells, in which particle 𝑟 is located

(1 ≤ 𝑗

𝑟
≤ 𝑑)

𝑗

𝑟
=

𝑑

∑

𝑠=1

𝑀

𝑟𝑠
𝑠; 𝑟 = 1 ⋅ ⋅ ⋅ 𝑛. (2)

There are altogether 𝑑𝑛 different configurations [17, p. 58].
The configuration is a complete description. However,

since the particles are identical, this description is redundant
when applied to physical systems like monoatomic gases.
The interchange of two atoms does not change the physical
properties of the gas.This fact is accounted for in levels 2 and
3.

2.2. Level 2: Occupation Numbers. Occupation numbers
represent a condensed description of the distribution of
the particles over the cells. It removes the permutation
redundancy in the configurations just mentioned. It means
that two configurations’ vectors, j, which contain the same
numbers in merely different sequence—such as j = (1, 2, 2, 3)

and j = (2, 1, 2, 3)—are physically equivalent. In other words,
relevant is not the complete information: which particle is
in a given cell, but only the numbers of particles in the
cells. The latter is recorded in theoccupation number, k =
(𝑘
1
, 𝑘

2
, 𝑘

3
, . . . , 𝑘

𝑑
). There are 𝑘

𝑠
particles in cell 𝑠 (1 ≤ 𝑘

𝑠
≤ 𝑛)

𝑘

𝑠
(j) =

𝑛

∑

𝑟=1

𝑀

𝑟𝑠
=

𝑛

∑

𝑟=1

𝛿

𝑗
𝑟
,𝑠
; 𝑠 = 1 ⋅ ⋅ ⋅ 𝑑. (3)

The occupation numbers are invariant under any permuta-
tion of the particles [17, p. 59].
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We have the obvious constraint
𝑑

∑

𝑠=1

𝑘

𝑠
= 𝑛. (4)

Altogether, there are

(

𝑑 + 𝑛 − 1

𝑛

) (5)

different occupation numbers with

(

𝑛

𝑘

1
⋅ ⋅ ⋅ 𝑘

𝑑

) ≡

𝑛!

𝑘

1
! ⋅ ⋅ ⋅ 𝑘

𝑑
!

(6)

configurations for each occupation number, k [17, p. 59].

2.3. Level 3: Occupancy Numbers. A further condensation of
the state description consists in the question, how many cells
host 0 particles, 1 particle, . . . , 𝑛 particles? It is answered in the
occupancy number vector, z = (𝑧

0
, 𝑧

1
, 𝑧

2
, 𝑧

3
, . . . , 𝑧

𝑛
). There

are

𝑧

𝑟
(k) =

𝑠

∑

𝑠=1

𝛿

𝑘
𝑠
,𝑟
; 𝑟 = 0, 1, . . . , 𝑛 (7)

cells with 𝑟 particles, where 0 ≤ 𝑧

𝑟
≤ 𝑑 [17, eq. (3.55)].

Now, we have two constraints:
𝑛

∑

𝑟=0

𝑧

𝑟
= 𝑑; (8a)

𝑛

∑

𝑟=0

𝑟𝑧

𝑟
= 𝑛. (8b)

We are now prepared to compare Boltzmann’s and Planck’s
treatments on an equal footing, in particular, their basic
entities, the “complexions.”

3. Boltzmann’s 1877 Manner of State Counting

3.1. Boltzmann’s Discrete Gas Model. For simplicity, Boltz-
mann begins (p. 1976) with an ideal gas model, in which
each of the 𝑛 molecules can assume only “a finite number of
velocities, V, such as

V = 0,

1

𝑞

,

2

𝑞

,

3

𝑞

, . . . ,

𝑝

𝑞

, (9)

where 𝑝 and 𝑞 are arbitrary finite numbers. Upon colliding,
twomolecules may exchange velocities, but after the collision
both molecules still have one of the above velocities. . .” (p.
1976). Accordingly, the kinetic energy, 𝐸kin, of each molecule
can also assume only a finite number of values

𝐸kin

= 0,

𝑚

2

(

1

𝑞

)

2

,

𝑚

2

(

2

𝑞

)

2

,

𝑚

2

(

3

𝑞

)

2

, . . . ,

𝑚

2

(

𝑝

𝑞

)

2

.

(10)

However, when considering solely the distribution of the
various values of 𝐸kin over the molecules, it is simpler to
assume the arithmetic progression

𝐸kin = 0, 𝜀, 2𝜀, 3𝜀, . . . , 𝑝𝜀. (11)

Upon colliding, two molecules may exchange energy, but
after the collision both molecules still have one of the above
energies.

The total kinetic energy of the gas is 𝐿 = 𝜆𝜀 = const.

3.2. The Kinetic Energy Distribution. There are 𝑤

0
molecules

having kinetic energy 0𝜀,𝑤
1
molecules having kinetic energy

1𝜀, up to the 𝑤

𝑝
molecules having kinetic energy 𝑝𝜀. The set

{𝑤

0
, 𝑤

1
, 𝑤

2
, . . . , 𝑤

𝑝
} is the distribution of the kinetic energy

“among” the molecules (cf. p. 1977).
(A) One can interpret the set {𝑤

0
, 𝑤

1
, 𝑤

2
, . . . , 𝑤

𝑝
} at as

distribution of the 𝜆 energy portions, 𝜀, over the 𝑛molecules,
the probabilistic scheme being

(𝑛 particles in 𝑑 cells)

= (𝜆 energy portions on 𝑛 molecules) .
(12)

Then, 𝑤
𝑞
tells the number of cells hosting 𝑞 particles. This is

the component 𝑧
𝑞
of the occupancy number, z.

(B) In turn, one can reverse the role of molecules and
energy portions and interpret that as distribution of the 𝑛

molecules over the 𝑝 + 1 energy levels, 0, 𝜀, 2𝜀, . . . , 𝑝𝜀, the
probabilistic scheme being

(𝑛 particles in 𝑑 cells)

= (𝑛 molecules on 𝑝 + 1 energy levels) .
(13)

Then, 𝑤

𝑞
is the number of particles in cell 𝑞. This is the

component 𝑘
𝑞
of the occupation number, k.

The set {𝑤
0
, 𝑤

1
, 𝑤

2
, . . . , 𝑤

𝑝
} is subject to the constraints

𝑤

0
+ 𝑤

1
+ 𝑤

2
+ ⋅ ⋅ ⋅ + 𝑤

𝑝
= 𝑁,

(1877-1)

6the number of molecules in the gas, and

𝑤

0
⋅ 0 + 𝑤

1
⋅ 1 + 𝑤

2
⋅ 2 + ⋅ ⋅ ⋅ + 𝑤

𝑝
⋅ 𝑝 = 𝜆,

(1877-2)

the total energy of the gas in units of 𝜀. For case (A), they
correspond to the constraints (8a) and (8b). For case (B),
(1877-1) is identical to (4), while (1877-2) results additionally
from the meaning of the cells as energy levels.

3.3. Complexions. Boltzmann continues, “As a preliminary,
we will use a simpler schematic approach to the problem,
instead of the exact case” (p. 1977). The energy levels are
distributed in all possible ways among the 𝑛molecules, where
𝐿 = 𝜆𝜀 = const. “Any such distribution, in which the first
molecule may have a kinetic energy of, e.g., 2𝜀, the second
may have 6𝜀, and so on, up to the last molecule, we call a
complexion. . .” (p. 1977). In other words, a complexion is the
set {𝑐
1
, 𝑐

2
, . . . , 𝑐

𝑛
}, where 𝑐

𝑟
is the energy of molecule 𝑟 in units

of 𝜀 (0 ≤ 𝑐

𝑟
≤ 𝑝).
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(A) Literally, this means the distribution of the 𝑝 + 1

possible amounts of energy, 0, 𝜀, . . . , 𝑝, over the 𝑛 molecules,
the probabilistic scheme being

(𝑛 particles in 𝑑 cells)

= (𝑝 + 1 energies on 𝑛 molecules) .
(14)

Then, 𝑐
𝑞
means the number of cells hosting 𝑞 particles.This is

the component 𝑧
𝑞
of the occupancy number, z.

(B) In turn, one can reverse the role of molecules and
energy levels, again, and understand that as distribution of
the 𝑛 molecules over the 𝑝 + 1 energy levels, 0, 𝜀, 2𝜀, . . . , 𝑝𝜀,
the probabilistic scheme being

(𝑛 particles in 𝑑 cells)

= (𝑛 molecules on 𝑝 + 1 energy levels) .
(15)

Then, 𝑐

𝑟
means that particle 𝑟 is in cell 𝑐

𝑟
. This is the

component 𝑗

𝑟
of the configuration, j. Boltzmann’s formula

(1877-3) below supports this interpretation.

3.4. The State Distribution. This distribution {𝑤

0
, 𝑤

1
, 𝑤

2
, . . . ,

𝑤

𝑝
} “specifies the number of𝑃 of complexions [{𝑐

1
, 𝑐

2
, . . . , 𝑐

𝑛
}]

for that distribution; in other words, it determines the
likelihood of that state distribution. Dividing the number
𝑃 by the number of all possible complexions, we get the
probability of the state distribution” (p. 1977).

Since a distribution of states does not determine kinetic
energies exactly, the goal is to describe the state distribution
by writing as many zeros [0] as molecules with zero kinetic
energy (𝑤

0
), 𝑤
1
ones [1] for those with kinetic energy 𝜀 etc.

All these zeros [0], ones [1], etc. are the elements defining the
state distribution. (p. 1977).

As example, Boltzmann considers the case𝑁=7,𝜆=7,𝑝=
7. “There are then 15 possible state distributions” (p. 1978).
They are listed in Table 1.

“Thefirst state distribution, e.g., has 6moleculeswith zero
kinetic energy, and the seventh has kinetic energy 7𝜀. So𝑤

0
=

6, 𝑤
7
= 1, 𝑤

1
= 𝑤

2
= 𝑤

3
= 𝑤

4
= 𝑤

5
= 𝑤

6
= 0” (p. 1978).

Notice that the numbers in columns 2 ⋅ ⋅ ⋅ 8 are not𝑤
𝑟
, but the

configuration numbers, 𝑗
𝑠
.

For the reader’s convenience, I add Table 2 with the
corresponding values of 𝑤

𝑟
.

The rows have been regrouped along increasing value of
𝑃, in order to demonstrate the fact that sequences of 𝑤

𝑟
,

which differ just in the sequence of numbers, have got the
same probability, 𝑃. There is a “degeneracy” in that different
sequences of 𝑤

𝑟
yield the same value of 𝑃, if the number

^
𝑟=0⋅⋅⋅𝑝

𝑤

𝑟
! is the same; see (1877-3) below.

3.5. Calculation of the Number of Complexions, 𝑃. “It is now
immediately clear that the number 𝑃 for each state distri-
bution is exactly the same as the number of permutations
of which the elements of the state distribution are capable,
and that is why the number 𝑃 is the desired measure of
the permutability of the corresponding distribution of states.
Once we have specified every possible complexion, we have
also all possible state distributions, the latter differing from

Table 1:The 15 “state distributions” for the case𝑁 = 7, 𝜆 = 7, 𝑝 = 7.
“The state distributions are so arranged that, read as a number, the
rows are arranged in increasing order” (p. 1978; I have added the
labels of the configuration numbers, 𝑗

1
, . . . , 𝑗

7
).

# 𝑗

1
𝑗

2
𝑗

3
𝑗

4
𝑗

5
𝑗

6
𝑗

7
𝑃

1 0 0 0 0 0 0 7 7
2 0 0 0 0 0 1 6 42
3 0 0 0 0 0 2 5 42
4 0 0 0 0 0 3 4 42
5 0 0 0 0 1 1 5 105
6 0 0 0 0 1 2 4 210
7 0 0 0 0 1 3 3 105
8 0 0 0 0 2 2 3 105
9 0 0 0 1 1 1 4 140
10 0 0 0 1 1 2 3 420
11 0 0 0 1 2 2 2 140
12 0 0 1 1 1 1 3 105
13 0 0 1 1 1 2 2 210
14 0 1 1 1 1 1 2 42
15 1 1 1 1 1 1 1 1

Table 2: The numbers 𝑤

0
, . . . , 𝑤

7
for the 15 “state distributions” of

Table 1 (𝑁 = 7, 𝜆 = 7, 𝑝 = 7).

# 𝑤

0
𝑤

1
𝑤

2
𝑤

3
𝑤

4
𝑤

5
𝑤

6
𝑤

7
P

15 0 7 0 0 0 0 0 0 1
1 6 0 0 0 0 0 0 1 7
2 5 1 0 0 0 0 1 0 42
3 5 0 1 0 0 1 0 0 42
4 5 0 0 1 1 0 0 0 42
14 1 5 1 0 0 0 0 0 42
5 4 2 0 0 0 1 0 0 105
7 4 1 0 2 0 0 0 0 105
8 4 0 2 1 0 0 0 0 105
12 2 4 0 1 0 0 0 0 105
9 3 3 0 0 1 0 0 0 140
11 3 1 3 0 0 0 0 0 140
6 4 1 1 0 1 0 0 0 210
13 2 3 3 0 0 0 0 0 210
10 3 2 1 1 0 0 0 0 420

the former only by immaterial permutations of molecular
labels. All those complexionswhich contain the samenumber
of zeros, the same number of ones etc., differing from
each other merely by different arrangements of elements,
will result in the same state distribution; the number of
complexions forming the same state distribution, and which
we have denoted by 𝑃, must be equal to the number of
permutations which the elements of the state distribution are
capable of.” (pp. 1977f.)

In other words, it is not relevant, which molecule has got
which (kinetic) energy, but how many molecules have got a
given amount of energy. The molecules having got the same
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energy are interchangeable, while molecules with different
energies are not.7

Thus, the number 𝑃 is obtained through permutating the
molecules as

𝑃 =

𝑁!

𝑤

0
!𝑤

1
! ⋅ ⋅ ⋅

.
(1877-3)

The denominator arises, “since of the 𝑁 elements 𝑤

0
are

mutually identical. Similarly with the 𝑤

1
, 𝑤
2
, etc. elements”

(p. 1979).
Formula (1877-3) is isomorphic with formula (6) for

the number of configurations for a given occupation num-
ber, k. This indicates that Boltzmann’s “state distribution,”
{𝑤

0
, 𝑤

1
, 𝑤

2
, . . . , 𝑤

𝑝
}, represents an occupation number, while

his complexions are configurations.
The relative probability equals 𝑊 = 𝑃/𝐽, where 𝐽 is “the

sum of the permutations𝑃 for all possible state distributions”
(p. 1979). In Table 1, 𝐽 = 1716 (p. 1978)

𝐽 = (

𝜆 + 𝑛 − 1

𝜆

) (16)

(p. 1983). This is isomorphic with formula (5), what suggests
the scheme (A) of Section 3.2,

(𝑛 particles in 𝑑 cells)

= (𝜆 energy portions on 𝑛 molecules) .
(17)

However, Boltzmann has already made the limit transition
𝑝 → ∞, since 𝑝 ≫ 𝜆/𝑛. This contradicts the condition
𝑝 ≤ 𝜆. For this, I will not go into more details.

3.6. Entropy [4]. Boltzmann considered the entropy only for
the continuum case. For this, I refer to Planck’s lectures “The-
ory of Heat Radiation”8, in order to show that Boltzmann’s
formula (1877-3) yields an extensive entropy.

For large values of 𝑤
𝑖
and𝑁, Stirling’s formula allows for

simplifying (1877-3) as

𝑃 = (

𝑁

𝑤

0

)

𝑤
0

(

𝑁

𝑤

1

)

𝑤
1

(

𝑁

𝑤

2

)

𝑤
2

⋅ ⋅ ⋅ (

𝑁

𝑤

𝑝

)

𝑤
𝑝

(1991-172)

9(Planck numbers the cells from 1 to 𝑝 and writes 𝑁
𝑖
for 𝑤
𝑖
).

This elegant form yields immediately the entropy, 𝑆 = 𝑘

𝐵
ln𝑃,

as

𝑆 = 𝑘

𝐵

𝑝

∑

𝑠=0

𝑤

𝑠
ln(

𝑁

𝑤

𝑠

) ≡ −𝑘𝑁

𝑝

∑

𝑠=0

𝑤

𝑠
ln (𝑤

𝑠
) ;

𝑤

𝑠
=

def

𝑤

𝑠

𝑁

.

(1991-173)

Thus, for classical gases, Planck obtains essentially the same
result as Boltzmann, where the cells are now finite domains of
the volume, into which the gas molecules are enclosed.What,
then, is the difference to the quantum case?

4. Planck’s Manner of State Counting for
Resonators/Oscillators

4.1. Planck’s Radiation Formula I. Planck used the rather
exotic10 quantity [19, eq. (11)]

(

𝑑

2

𝑆

𝑑𝑈

2
)

0

=

]2

𝑐

2
(

𝑑

2

Λ

𝑑𝐾

2
)

0

. (18)

Here, 𝑆 and 𝑈 are the entropy and the internal energy of the
oscillators, Λ is the intensity of the radiation entropy and 𝐾

is the intensity of the radiation per polarization direction, ] is
the radiation frequency, and 𝑐 is the speed of light in vacuo;
the index “0” indicates equilibrium values. The case

𝑑

2

𝑆

𝑑𝑈

2
= −

const
𝑈

(1900b-3)

leads to Wien’s radiation formula [19, 20]. Its simplest gener-
alization reads [20]

𝑑

2

𝑆

𝑑𝑈

2
=

𝛼

𝑈 (𝛽 + 𝑈)

. (1900b-4)

Using the relation

𝑑𝑆

𝑑𝑈

=

1

𝑇

(1900b-5)

and Wien’s displacement law in the form 𝑆 = 𝑓(𝑈/]) [20],
formula (1900b-4) leads to “the two-parametric radiation
formula” (Ibid.)

𝐸 =

𝐶𝜆

−5

𝑒

𝑐/𝜆𝑇
− 1

.
(1900b-6)

It is in agreement with the then available experimental
data, in particular, which concerns the differences to Wien’s
radiation law. Notice that other radiation formulae of that
time did so, too [21–23], [20, refs. 2, 4 and 5].

The “−1” in the denominator makes the difference to the
formulae by Maxwell, Boltzmann, and Wien.

4.2. Planck’s Step to Quantum Physics. Immediately after
Planck’s talk in October 1900, where he presented his novel
formula (1900b-6), Rubens and Kurlbaum went to their
closely located laboratory to verify his new formula and
told him the following Sunday morning that it indeed
fits their data clearly better than the formulae by Wien,
Thiesen, and Lord Rayleigh ([24], Fig. 2; cf. also [25]). This
brought Planck the most strained weeks of his life to find a
physical justification of this formula. Having not found any
other way (although being an atomist, he worked solely on
continuum theories), he eventually resorted to Boltzmann’s
1877 probability approach.

Thus, Planck [14] considers a closed system of linear
monochromatic resonators weakly interacting with the elec-
tromagnetic radiation surrounding them. 𝑁 resonators have
got the frequency ], 𝑁󸀠 resonators have the frequency ]󸀠,
and so on, where 𝑁,𝑁

󸀠

, . . . ≫ 1. The question is how is,
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in a stationary state, the total (field) energy, 𝐸tot, distributed
among the resonators and the electromagnetic field between
them (radiation).

Assume that the set of𝑁 resonators with frequency ] has
got the field energy𝐸, the set of𝑁󸀠 resonators with frequency
]󸀠 the field energy 𝐸

󸀠, and so on. The field energy of all
resonators is

𝐸 + 𝐸

󸀠

+ 𝐸

󸀠󸀠

+ ⋅ ⋅ ⋅ =

def
𝐸

0
< 𝐸tot. (1900c-1)

Now, one has to distribute the energy 𝐸 among the 𝑁

resonators of frequency ], and so on. If 𝐸 is a continuous
quantity, there are infinitely many possibilities for that.
The following quotation describes Planck’s step to quantum
physics.

“We consider, however—and this is the most essential
point of the whole calculation—𝐸 to consist of a specific
number of finite equal parts. For it we use the natural constant
ℎ = 6.55 ⋅ 10

−27 (erg⋅s).11 This constant, multiplied with the
common oscillation number (frequency), ], yields the energy
element, 𝜀, in erg. Through division of 𝐸 by 𝜀 we obtain the
number, 𝑃, of energy elements, which are to be distributed
among the𝑁 resonators.” [14]

4.3. Planck’s 1900 Probabilistic Treatment. Referring to Boltz-
mann, Planck calls a “complexion” the concrete distribution
of “energy elements” over resonators. For 𝑃 = 100 “energy
elements” on 𝑁 = 10 resonators, Planck writes down the
following example:

1 2 3 4 5 6 7 8 9 10

7 38 11 0 9 2 20 4 4 5

Obviously, this complexion, that is, the set {𝑐
1
, 𝑐

2
, . . . , 𝑐

10
} =

{7, 38, . . . , 5}, corresponds to the occupation number,k, in the
probabilistic scheme

(𝑛 particles in 𝑑 cells)

= (𝑃 “energy elements” in 𝑁 resonators) .
(19)

Two complexions are considered to be different, if the
numbers in the second row are the same, but in different
sequence.

Then, the number of different complexions for this kind
of resonators equals (𝑁 ≫ 1, 𝑃 ≫ 1)12

𝑅 =

𝑁 ⋅ (𝑁 + 1) ⋅ (𝑁 + 2) ⋅ ⋅ ⋅ (𝑁 + 𝑃 − 1)

1 ⋅ 2 ⋅ 3 ⋅ ⋅ ⋅ 𝑃

=

(𝑁 + 𝑃 − 1)!

(𝑁 − 1)!𝑃!

≈

(𝑁 + 𝑃)

𝑁+𝑃

𝑁

𝑁
𝑃

𝑃
.

(1900c-2, 3)

This formula, that is,

𝑅 = (

𝑁 + 𝑃 − 1

𝑃

) , (20)

is isomorphic with formula (5) for the amount of occupation
numbers for the same probabilistic scheme,

(𝑛 particles in 𝑑 cells)

= (𝑃 “energy elements” in 𝑁 resonators) .
(21)

Hence, Planck’s complexions (occupation numbers) are
not Boltzmann’s complexions (configurations). Accordingly,
Planck’s “permutability measure” (20) is the number of
occupation numbers, while Boltzmann’s “permutability mea-
sure” (1877-3) is the number of configurations for a given
occupation number. But this is not the key difference.We will
see that there are other possibilities of differentiation between
classical and quantum results.

Since 𝑅 is a relative probability (see Boltzmann above),
the relative probability for all resonators of all frequencies
equals

𝑅 ⋅ 𝑅

󸀠

⋅ 𝑅

󸀠󸀠

⋅ . . . = 𝑅tot. (22)

4.4. Entropy and Energy Density. The value of 𝑅tot depends
on the set {𝐸, 𝐸

󸀠

, 𝐸

󸀠󸀠

, . . .}. The corresponding entropy is, up to
a constant,

𝑆tot = 𝑘

𝐵
ln𝑅tot = 𝑘

𝐵
(ln𝑅 + ln𝑅

󸀠

+ ln𝑅

󸀠󸀠

+ ⋅ ⋅ ⋅) . (23)

For this, Planck asks for the maximum value, 𝑅
0
, of 𝑅tot over

all sets {𝐸, 𝐸

󸀠

, 𝐸

󸀠󸀠

, . . .} obeying condition (1900c-1).
He states that “all quantities, 𝐸, 𝐸

󸀠

, 𝐸

󸀠󸀠

, . . . can be
expressed through the quantity𝐸

0
.”𝐸/𝑁 equals the (average)

energy, 𝑈], of a resonator of frequency ].
The energy density of the radiation outside the resonators

is determined by that of the oscillators as13

𝑢]𝑑] =

8𝜋]2

𝑐

3
𝑈]𝑑]. (1900c-4)

Given 𝐸tot, this determines the value of 𝐸
0
, too.

The temperature, 𝑇, is obtained “by means of a second
natural constant, 𝑘 = 1.346 ⋅ 10

−16 (erg/grd), through the
equation

1

𝑇

= 𝑘

𝐵

𝑑 ln𝑅

0

𝑑𝐸

0

. (1900c-5)

The product 𝑘

𝐵
ln(𝑅
0
) is the entropy of the system of res-

onators; it is the sum of the entropy of all single resonators.”

4.5. Planck’s Radiation Formula II. Then, a “hassle-free”
calculation leads to the expression

𝑢]𝑑] =

8𝜋ℎ]3

𝑐

3

𝑑]
𝑒

ℎ]/𝑘𝑇
− 1

.
(1900c-6)

It corresponds exactly to the earlier spectral formula
(1900b-6).

The corresponding calculations are not provided in
Planck’s talk [14]. I guess that he has proceeded as follows.
According to (1900c-4) and (1900c-6),

𝑈] =

ℎ]
𝑒

ℎ]/𝑘𝑇
− 1

;

1

𝑘𝑇

=

1

ℎ]
ln(1 +

ℎ]
𝑈]

) .

(24)
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On the other hand, the maximization of (replacing𝑁,𝑁

󸀠

, . . .

with 𝑁], 𝑃, 𝑃
󸀠

, . . . with 𝑃], and so on)

ln𝑅tot = ∑

]
ln𝑅] = ∑

]
ln

(𝑁] + 𝑃])
𝑁]+𝑃]

𝑁]
𝑁]

𝑃]
𝑃]

= ∑

]
[(𝑁] + 𝑃]) ln (𝑁] + 𝑃]) − 𝑁] ln𝑁] − 𝑃] ln𝑃]]

(25)

under condition (1900c-1), that is,

∑

]
𝐸] = ∑

]
𝑃]ℎ] = 𝐸

0
, (26)

means

𝑑

𝑑𝑃

{ln𝑅tot − 𝜅𝐸

0
} = 0;

𝑑

𝑑𝑃]
ln𝑅tot =

𝑑

𝑑𝑃]
ln𝑅] = 𝜅ℎ]

(27)

𝜅 being the Lagrangian multiplier. Here,

𝑑 ln𝑅]

𝑑𝑃]
=

1

𝑅]

𝑑

𝑑𝑃]
[

(𝑁] + 𝑃])
𝑁]+𝑃]

𝑁]
𝑁]

𝑃]
𝑃]

]

= ln(1 +

𝑁]

𝑃]
) .

(28)

This equation complies with (1900c-5) and (24)

1

𝑘𝑇

=

𝑑 ln𝑅

0

𝑑𝐸

0

=

1

ℎ]
ln(1 +

ℎ]
𝑈]

) ;

𝑑 ln𝑅]

𝑑𝐸]
=

1

ℎ]
ln(1 +

𝑁]ℎ]
𝐸]

) .

(29)

By definition, 𝑈] = 𝐸]/𝑁] and

𝑑 ln𝑅

0

𝑑𝐸

0

=

𝑑 ln𝑅]

𝑑𝐸]
. (30)

In contrast to his 1900 talk, in his 1901 paper, Planck sets
immediately

𝑆

𝑁
= 𝑘 ln𝑅 (1901-5)

for the entropy of the set of 𝑁 resonators. This agrees with
formula (35) below.

4.6. Equilibrium Entropy (Planck, 1913 [4]). According to the
second law of thermodynamics, the entropy, 𝑆, of a system
in equilibrium is maximum for a given (total) energy, 𝐸. The
numbers𝑁

𝑛
(or𝑤
𝑛
≡ 𝑁

𝑛
/𝑁)14 are thus obtained by means of

the variation of 𝑁
𝑛
(or 𝑤
𝑛
) in the entropy

𝑆 = 𝑘

𝐵

∞

∑

𝑛=1

𝑤

𝑛
ln(

𝑁

𝑤

𝑛

) ≡ −𝑘𝑁

∞

∑

𝑛=1

𝑤

𝑛
ln (𝑤

𝑛
) ;

𝑤

𝑛
=

def

𝑁

𝑛

𝑁

(1913-173)

and in the conditions for the energy of the oscillator (see
Appendix B and cf. (1877-2) above)

𝐸 = ∑

𝑛

𝐸

𝑛
= 𝑁ℎ]

∞

∑

𝑛=1

(𝑛 −

1

2

)𝑤

𝑛
(1913-219)

and the total number of energy quanta (as in (1877-1) above),

𝑤

1
+ 𝑤

2
+ 𝑤

3
+ ⋅ ⋅ ⋅ = 1. (1913-167)

This means [4, p. 141]

𝛿𝑆 = 0 =

∞

∑

𝑛=1

(ln𝑤

𝑛
+ 1) 𝛿𝑤

𝑛
, (31a)

𝛿𝐸 = 0 = 𝑁ℎ]
∞

∑

𝑛=1

(𝑛 −

1

2

) 𝛿𝑤

𝑛
, (31b)

∞

∑

𝑛=1

𝛿𝑤

𝑛
= 0. (31c)

The result is

𝑤

𝑛
= (

2𝑁ℎ]
2𝐸 − 𝑁ℎ]

)(

2𝑁ℎ]
2𝐸 + 𝑁ℎ]

)

𝑛

. (1913-220, 221)

Inserting these 𝑤

𝑛
into (1913-173) yields the entropy of the

system of oscillators as

𝑆 = 𝑘𝑁{(

𝐸

𝑁ℎ]
+

1

2

) ln(

𝐸

𝑁ℎ]
+

1

2

)

− (

𝐸

𝑁ℎ]
−

1

2

) ln(

𝐸

𝑁ℎ]
−

1

2

)} .

(1913-222)

The thermodynamic relation 1/𝑇 = 𝑑𝑆/𝑑𝐸 leads to Planck’s
distribution law, now including the zero-point energy15

𝐸] = 𝑁]
ℎ]
2

1 + 𝑒

−ℎ]/𝑘𝑇

1 − 𝑒

−ℎ]/𝑘𝑇 = 𝑁]ℎ](
1

2

+

1

𝑒

ℎ]/𝑘𝑇
− 1

)

=

1

2

𝑁]ℎ] + 𝑁]𝑈].

(32)

Hence, Planck obtains his quantum distribution law also
through using Boltzmann’s “classical,” though discrete “per-
mutability measure” (1877-3) and Boltzmann’s discrete
energy spectrum being actually a quantum spectrum. Boltz-
mann investigated (31a), (31b), and (31c) with finite sums
(finite values of 𝑝 and 𝜆) and sets 𝑝 → ∞ only at the end.
He did not arrive at Planck’s formulae (1913-220, 221), but
“. . .the probability of having a kinetic energy 𝑠𝜀 is given by”

𝑤

𝑠
=

𝑛𝜀

𝜇

𝑒

−𝜀𝑠/𝜇

; 𝜇 =

𝜆𝜀

𝑛

(33)

being the mean energy of a molecule (p. 1986). This became
“the eponymous Boltzmann distribution” [2, p. 1972]. Finally,
Boltzmann considered his discrete model not to be physically
relevant.
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4.7. Simplified Probabilistic Treatment (Planck, 1913 [4]). After
that, Planck [4, Pt. III, Ch. IV] simplifies Boltzmann’s [1] and
his own (Pt. III, Ch. I; see the above) probabilistic treatments
as follows.

The number of complexions at thermodynamic equilib-
rium is very much larger than the number of complexions at
nonequilibrium. For this, the number of all possible complex-
ions is a good approximation to the number of complexions
at thermodynamic equilibrium and thus to the maximum
“thermodynamic probability,” 𝑊

𝑚
. The total number of all

possible complexions can be calculatedmuchmore easily and
directly than the equilibrium value. (See formulae (1877-3),
(20), and (1901-5) above.)

A complexion is a definite assignment of every individual
oscillator to a quantum cell in phase space defined by
(1913-210) (see Appendix B).16 The constraint (1913-219)
can be written as17

𝐸

ℎ]
−

𝑁

2

=

∞

∑

𝑛=1

(𝑛 − 1)𝑁

𝑛
(34)

or
0 ⋅ 𝑁

1
+ 1 ⋅ 𝑁

2
+ 2 ⋅ 𝑁

3
+ ⋅ ⋅ ⋅ (𝑛 − 1) ⋅ 𝑁

𝑛
+ ⋅ ⋅ ⋅

=

𝐸

ℎ]
−

𝑁

2

= 𝑃,

(1913-231)

where 𝑃 is the total number of quanta ℎ]. The number of
complexions equals the number of possibilities to distribute
these 𝑃 quanta over the 𝑁 oscillators through varying the
numbers𝑁

𝑛
.

This task represents ““combinations with repetitions of𝑁
elements taken 𝑃 at a time,” whose total number is” [4, p.
146]18

𝑁

1

(𝑁 + 1)

2

(𝑁 + 2)

3

⋅ ⋅ ⋅

(𝑁 + 𝑃 − 1)

𝑃

=

(𝑁 + 𝑃 − 1)!

(𝑁 − 1)!𝑃!

.

(1913-232)

The entropy thus equals

𝑆 = 𝑘 ln (𝑁 + 𝑃 − 1)!

(𝑁 − 1)!𝑃!

= 𝑘𝑁{(

𝑃

𝑁

+ 1) ln(

𝑃

𝑁

+ 1) −

𝑃

𝑁

ln 𝑃

𝑁

}

(35)

by Stirling’s formula. If one replaces 𝑃 with 𝐸 from
(1913-231), this agrees exactly with formula (1913-222).19

Hence, Planck obtains his quantum distribution law also
through using his “quantum” “permutability measure” (20)
and the same discrete energy spectrum as before. And instead
of varying the occupation numbers for maximizing the
entropy, S, he replaces 𝑃 with 𝑆 according to the energy
conservation condition (1913-231).

In all three variants, Planck uses, as Boltzmann at the
beginning, a discrete energy spectrum. For this, let us finally
look at Einstein’s 1907 derivation of Planck’s radiation law.
Here, the difference between classical and quantum results
is immediately connected with the energy spectrum being
continuous and discrete, respectively.

5. Einstein’s 1907 Derivation of Planck’s
Radiation Law

5.1. Einstein’s Probability. Einstein [16] considers a system
of molecules, the state of which is determined by the (very
many) variables 𝑃

1
, 𝑃

2
, . . . , 𝑃

𝑛
. The equations of motion are (I

use the index 𝑖 instead of ])
𝑑𝑃

𝑖

𝑑𝑡

= Φ

𝑖
(𝑃

1
, 𝑃

2
, . . . , 𝑃

𝑛
) ; 𝑖 = 1, 2, . . . , 𝑛

(36)

with

∑

𝜕Φ

𝑖

𝜕𝑃

𝑖

= 0. (E-1)

20 ,21Further, there is a subsystem of that system characterized
by the variables𝑝

1
, 𝑝

2
, . . . , 𝑝

𝑚
being a subset of𝑃

𝑖
.The energy

of the whole system is approximately the sum of one part,
which depends solely on 𝑝

𝑗
, and a second part, which is

independent of 𝑝
𝑗
. 𝐸, the first part, is much smaller than the

whole energy.
The probability for 𝑝

𝑗
to lie at some time in the infinites-

imal domain 𝑑𝑝

1
𝑑𝑝

2
⋅ ⋅ ⋅ 𝑑𝑝

𝑚
equals (I set 𝑁/𝑅 = 1/𝑘)

𝑑𝑊 = 𝐶𝑒

−𝐸/𝑘𝑇

𝑑𝑝

1
𝑑𝑝

2
⋅ ⋅ ⋅ 𝑑𝑝

𝑚
.

(E-2)

Then, Einstein assumes that this formula can be written as

𝑑𝑊 = 𝐶𝑒

−𝐸/𝑘𝑇

𝜔 (𝐸) 𝑑𝐸.
(E-3)

Here, function 𝜔(𝐸) is defined as

∫

𝑑𝐸

𝑑𝑝

1
𝑑𝑝

2
⋅ ⋅ ⋅ 𝑑𝑝

𝑚
= 𝜔 (𝐸) 𝑑𝐸, (37)

where the integration runs over all values of the 𝑝

𝑗
that

correspond to the energy values between 𝐸 and 𝐸 + 𝑑𝐸.

5.2. Harmonic Oscillators. For a single oscillator with elonga-
tion 𝑥(𝑡) and velocity 𝜉(𝑡), we have 𝐸 = 𝑎𝑥

2

+ 𝑏𝜉

2 and 𝜔(𝐸) =
const. (Indeed,𝜔(𝐸) = 𝜋/√(𝑎𝑏).) Itsmean energy thus equals

𝐸 =

∫𝐸𝑒

−𝐸/𝑘𝑇

𝑑𝐸

∫ 𝑒

−𝐸/𝑘𝑇
𝑑𝐸

= 𝑘𝑇. (E-4)

This corresponds to the Rayleigh-Jeans formula for the black-
body radiation.

Einstein obtained Planck’s formula in the following way.
Instead of 0 ≤ 𝐸 < ∞ and 𝜔(𝐸) = const, he assumes that the
energy of the oscillator is restricted to the values 0, 𝜀, 2𝜀 and
so forth.Then,

𝐸 =

∑

∞

𝑠=0
𝑠𝜀𝑒

−𝑠𝜀/𝑘𝑇

∑

∞

𝑠=0
𝑒

−𝑠𝜀/𝑘𝑇

=

𝜀

𝑒

𝜀/𝑘𝑇
− 1

.
(E-7)

With 𝜀 = ℎ], this is Planck’s result (24).
The simplest imagination about solids is that they

are made of atoms or ions, which vibrate around their
equilibrium positions like three-dimensional oscillators. If
electrically charged, they interact with the electromagnetic
radiation like Planck’s resonators. Compatibility with Planck’s
radiation law implies their energy spectrum to be that of
Planck’s resonators; see the following.
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5.3. Specific Heat of Solids. On the other hand, the vibrating
ions carry the heat energy of such a model solid. Then, the
classical result (E-4) yields for the specific heat the value

𝑐 = 3𝑁𝑘, (38)

where 𝑁 is the number of atoms/ions in the solid, in
agreement with Dulong-Petit’s rule.

In contrast, the nonclassical result (E-7) yields the for-
mula

𝑐 = 3𝑁𝑘

(ℎ]/𝑘𝑇)

2

𝑒

ℎ]/𝑘𝑇

(𝑒

ℎ]/𝑘𝑇
− 1)

2
= 3𝑁𝑘

(ℎ]/𝑘𝑇)

2

2 − 2 cosh (ℎ]/𝑘𝑇)

.
(E-8)

The specific heat is no longer temperature-independent but
decreases exponentially for temperatures being small against
ℎ]/𝑘. Formula (E-8) is in very good agreement with the then
available experimental data for diamond22. In bypassing I
notice that this brought him the attention of Nernst, who
became one of the key persons to get Einstein to Berlin.

5.4. Quantization as Selection Problem. Before concluding
this paper, let me point to the following crucial conclusion
by Einstein.

. . .we are now compelled, for vibratory ions of a
certain frequency, which can mediate an energy
exchange betweenmatter and radiation, tomake
the assumption, that the mannifold [sic] of states
they are able to assume is a smaller one when
compared with the bodies of our experience. (p.
184)

This defines quantization to be the problem to “select” [26, 27,
Ch. I, § 15] the set of quantum states “out of” the set of classical
states.

(i) Planck [14, 19, 20] has selected the discrete set {𝐸 | 𝐸 =

0, ℎ], 2ℎ], . . .} out of the continuum {𝐸 | 0 ≤ 𝐸 < ∞}.
(ii) Bohr [28, eq. (9)] has selected a discrete set of

energies, too, namely, for the assumed circularmotion
of the electron in an 𝐻-atom.

(iii) The additional Sommerfeld-Wilson quantization con-
dition

∫

𝑇

0

𝑝

𝑟
𝑑𝑞

𝑟
= 𝑛

𝑟
ℎ

(39)

[29, 30] selects discrete values for the action of
the radial motion of that electron taken over the
period, 𝑇, in order to quantize elliptical orbits. More
generally, this condition is postulated for multiplying
periodic motions (𝑟 = 1, 2, . . .), where 𝑝

𝑟
and 𝑞

𝑟
are

appropriate angular-action variables.
(iv) De Broglie [31] assigns to each particle with momen-

tum 𝑝 the wavelength 𝜆 = ℎ/𝑝 and selects the
“resonant” values, 𝜆 = 𝑙/𝑛, 𝑙 being the length of the
periodic orbit.

All these examples stem from the “old” quantum theory.
Within the “new” quantum theory, beginning with Heisen-
berg’s [32] “matrix mechanics” and Schrödinger’s [33] “wave
mechanics,” there seems to be no place for a quantum
selection condition. Schrödinger speaks about the quantum
conditions as selection conditions [33, pp. 510f.]. But they
are replaced with “for a physical quantity almost self-evident
requirement to the [wave] function, 𝜓, to be unique, finite
and continuous” (Ibid., p. 511). Accordingly, he calls the cor-
responding boundary conditions “natural” and “intrinsic” to
the wave equation (Ibid., p. 512). Nevertheless, an eigenvalue
problem represents “classical mathematics” for a classical
problem, namely, the vibrations of strings and resonators and
the like (notably, standing waves). However, it is possible
to solve the stationary Schrödinger equation as a selection
rather than an eigenvalue problem [34, 35].

Thus, Planck and Einstein have selected right subsets,
while Boltzmann did not.

6. Summary and Conclusions

Boltzmann [1] starts from a correct probabilistic setting of the
dispersion of energy quanta over molecules, which can lead
to the Planck distribution [4, 14, 15, 19, 20]. He does not arrive
at the Planck (and, subsequently, Bose-Einstein) distribution,
because he finally considered his discrete model to be not
physically relevant.Moreover, he obtained expressions, which
do not correspond to equilibrium distributions (p. 2003).
This could be due to various confusions being common for
pioneering work that goes so far ahead.23

Boltzmann [1] did not succeed with a discrete model of
matter and energies for the entropy, but he obtained the all-
important Boltzmann factor. Without it, there is no partition
function, and Einstein could not have presented his 1907
calculations in such a short form.

There are many more aspects of the relation of Boltz-
mann’s work to quantum statistics ([17, Sect. 5.1.2]; see also
[36–42]), which deserve further explorations.

Appendices

A. Permutation Invariance of Newtonian State
Quantities: Avoidance of Gibbs’ Paradox

According to the definitions and axioms in Newton’s Prin-
cipia, the state of a body (here always considered as being
pointlike) is given by its momentum (vector) (cf. [43], § 1).
It is conserved as long as no external force is acting upon
it. For a system of two bodies, which interact at most with
each another, the total momentum is conserved (Newton’s
3rd axiom). The state of the system is thus described by that
total momentum. It is not changed, when the two bodies
interchange their momenta. If the two bodies are equal in
their mechanical properties, the mechanical properties of
the system are not changed, if they are interchanged. The
generalization to a gas is straightforward.

Another conserved quantity for a free body and for
an isolated system of bodies is the (total) kinetic energy
(envisaged by Leibniz in form of the “living force”).
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Hence, generally speaking, in the sense of Newton, the
state of a system is described by a complete set of independent
conserved quantities, such as total momentum, angular
momentum, and energy. In contrast, the positions of the
bodies do not enter the state description.

The conserved quantities are not affected, when equal
bodies are interchanged (“equal” means equal mass, etc., cf.
[44]). As a consequence, the Newtonian state quantities are
permutation invariant (cf. [17], Remark 2.1.2b, p. 15). This
invariance has implicitly been used by Boltzmann and by
Planck.

Thus, “identical” should not refer to the (im)possibility of
identification, but to the actual impact of interchange on the
behaviour of a system. A striking example is provided by the
red balls in a snooker game. They are identifiable through
their positions on the table; nevertheless, the interchange of
two of them does not affect the outcome of the game.

As Feller put it, “Whether or not actual balls are in
practice distinguishable is irrelevant for our theory. Even if
they are, we may decide to treat them as indistinguishable”
([45, p. 12]; quoted after [17, p. 139]).

Generally speaking, identifiability or distinguishability is
not a property of bodies (particles), but of states [17, p. 8]. For
this, Bach calls identical particle all those, which have got one
and the same intrinsic, that is, state-independent properties
(Definition 2.1.1, p. 15). This is Helmholtz’s notion of “equal
particles” (loc. cit.).

Hence, the confusion of understanding these terms as
stressed by Jaynes [8] arises largely from a confusion of
the notions “equal,” “identical,” and “interchangeable.” (This
resembles the history of the notions “force” and “energy”.)
Their correct use avoids Gibbs’ paradox automatically.

B. Average Energy of a Quantum Oscillator [4]

In his lectures on heat radiation, Planck [4, Pt. III, Ch.
I] follows Boltzmann [1] in the probabilistic treatment of
ideal gases. For oscillators interacting with electromagnetic
radiation, however, he proceeds completely differently (Ibid.,
Pt. III, Ch. III). For the reader’s convenience, the calculation
of the mean energy is sketched here.

The (total) energy of a linear harmonic oscillator is
written in the form (Planck’s notation)

𝑈 =

1

2

𝐾𝑓

2

+

1

2

𝐿

̇

𝑓

2

, (1913-205)

where 𝐾 and 𝐿 are the appropriate force constant and mass,
respectively. Such an oscillator vibrates as

𝑓 (𝑡) = 𝐶 cos (2𝜋]𝑡 − 𝜃) (1913-207)

with the frequency

] =

1

2𝜋

√

𝐾

𝐿

.

(1913-208)

The generalized momentum equals

𝜓 = 𝐿

̇

𝑓. (1913-209)

Now, the elementary part of the phase space is not the classical
infinitesimal 𝑑𝑓𝑑𝜓, but the finite area24

∬𝑑𝑓𝑑𝜓 = ℎ. (1913-210)

According to (1913-207), the classical orbit is described by
the ellipse

(

𝑓

𝐶

)

2

+ (

𝜓

2𝜋]𝐿𝐶
)

2

= 1.
(1913-211)

Its area equals

𝐴 = 2𝜋

2]𝐿𝐶2. (B-1)

Hence, the classically continuous values of the amplitude, 0 ≤

𝐶 < ∞, are quantized by virtue of condition (1913-210) to the
discrete values

𝐶

𝑛
=

√

𝑛ℎ

2𝜋

2]𝐿
; 𝑛 = 1, 2, 3, . . .

(1913-214)

As a consequence, the energy spectrum is limited to the
discrete values

𝑈

𝑛
= 𝑛ℎ]; 𝑛 = 1, 2, 3, . . . (B-2)

Theaverage energy of all𝑁
𝑛
oscillators in the 𝑛th phase-space

region equals the number of oscillators in this region, 𝑁
𝑛
,

times the average energy of an oscillator in this region:

𝐸

𝑛
= 𝑁

𝑛
∬

𝑛

𝑈

𝑑𝑓𝑑𝜓

ℎ

= 𝑁

𝑛
(𝑛 −

1

2

) ℎ];

𝑛 = 1, 2, 3, . . .

(B-3)

[4, p. 140]. The r.h.s. contains the, then unknown, zero-point
energy. Planck remarks that 𝐸

𝑛
is the arithmetic mean of 𝑈

𝑛

and 𝑈

𝑛−1
.

The total energy of all oscillators with frequency ] thus
reads

𝐸 = ∑

𝑛

𝐸

𝑛
= 𝑁ℎ]

∞

∑

𝑛=1

(𝑛 −

1

2

)𝑤

𝑛
. (1913-219)
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Endnotes

1. This paper is absent in Brush’s 1966 collection of original
papers on “Kinetic Theory” [46]. There is a Russian
translation [47], which deviates from the English one in
some details.
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2. Cf. Jaynes [8] about Gibbs as quoted below.
3. In fact, in Sec. 7, Pauli writes down Boltzmann’s formula

𝑁!/Π

𝑘
𝑁

𝑘
! for the number of microstates, that is, for “the

number ofways inwhich𝑁 elements can be ordered into
groups of𝑁

1
, 𝑁

2
, . . . identical elements” [10, p. 21].

4. This fact has also been stressed by Jaynes [8], including
his own (!) writings; see the following.

5. Surprisingly enough, thismisunderstanding is still present
onhttps://de.wikipedia.org/wiki/Gibbssches Paradoxon
(25.10.2015).

6. (1877-∗) is equation (∗) in Boltzmann’s paper.
7. Appendix A contains additional remarks on this issue.
8. Held in 1906/7, first published in 1913, I will quote the

Dover edition of 1991.
9. (19∗-𝑛) means the 𝑛th formula in [14, 20] or formula (𝑛)

in [4].
10. I am not aware about its use in thermodynamics before

and after Planck; Planck’s [19] paper “Entropie und
Temperatur strahlender Wärme” is not contained in ter
Haar’s [48] collection of reprints, but there is a Russian
translation by R. B. Segalya in Planck, Selected Works,
[49], pp. 234–248.

11. Notice the difference between Planck’s 1900 talk, where
ℎ is introduced as a “new universal constant” at the
beginning of the talk, and his [15] paper, where ℎ appears
merely as a combination of spectroscopic parameters at
the end of the paper. Einstein did not use ℎ in his [50]
and [16] papers.

12. The symmetry of this formula in𝑁 and 𝑃 is perhaps the
reason for that Reiche (Comment 4 to [15], in [51]) sees
no essential difference between the dispersion of energy
quanta over resonators or, vice versa, that of resonators
over energy levels.

13. Thehistory of this formula ismost interesting on its own,
but beyond the scope of this paper.

14. Planck’s 𝑁

𝑛
are Boltzmann’s 𝑤

𝑛
; Planck’s 𝑤

𝑛
are Boltz-

mann’s 𝑤
𝑛
/𝑁

15. I add the index ] to 𝐸 and 𝑁.; 𝑈] is Planck’s 1900 result
for the mean energy of a single oscillator; see (24).

16. Notice that this definition complies with Boltzmann’s
complexion.

17. 𝑛 = 1 belongs to the cell around the origin, (𝑓, 𝜓) =

(0, 0), which corresponds to the ground state of an
oscillator.

18. Notice that this formula complies with Planck’s 1900
complexion, but not with Boltzmann’s complexion; see
Section 4.3.

19. The translator, Morton Masius, points to “a complete
mathematical discussion” by Lorentz and refers to a
meeting of the British Association in September 1913,
reviewed in Nature 92, pp. 305ff.

20. All Hamiltonian systems with twice continuously differ-
entiable Hamiltonian belong to this kind of systems.

21. (E-∗) is equation (∗) in Einstein’s [16] paper.
22. See the diagram in [16, p. 186] and the explanations on

http://www.osti.gov/accomplishments/nuggets/einstein/
solidcoldd.html, Fig. 2 (27.07.2015).

23. Cf. Truesdell’s comment on Newton’s Principia [52, p.
88] quoted by Simonyi [53, p. 296].

24. In bypassing, this is a nonclassical quantization condi-
tion, while boundary conditions in eigenvalue problems
are not; cf. [33, p. 511].
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