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We consider a single server queue with two types of customers. We propose a discipline of flexible priority in access that combines
the features of randomization and the threshold type control. We introduce a new class of distributions, phase-type with failures
(PHF) distribution, that generalizes the well-known phase-type (PH) distribution to the case when failures can occur during service
of a customer. The arrival flow is described by the marked Markovian arrival process. The service time distribution is of PHF type
with the parameters depending on the type of a customer. Customers of both types can be impatient. Behavior of the system
is described by the multidimensional Markov chain. Problem of existence and computation of the stationary distribution of this
Markov chain is discussed in brief as well as the problem of computation of the key performancemeasures of the system. Numerical
examples are presented that give some insight into behavior of the system performance measures under different values of the
parameters defining the strategy of customers access to service.

1. Introduction

In this paper, we consider a single server queueing model
of information transmission system with two types of cus-
tomers. Type-1 customers can be queued into the buffer hav-
ing an infinite capacity. The buffer for type-2 customers has
a finite capacity. Such kind of systems quite often describes
behavior of various telecommunication systems where type-
1 customers are interpreted as delay tolerant and type-2
customers are interpreted as loss tolerant; see, for example,
[1]. Existence of two types of customers causes the necessity
of managing the discipline of customers access to the server.
Popular disciplines are priority (preemptive or nonpreemp-
tive) disciplines in which a priority is given to one of types
and customers of another type have a chance to enter service
only when the priority customers are absent in the system.

However, such disciplines are not appropriate when it is
necessary to provide more fair access of customers to the
server. In particular, in some real world systems, for example,
the vehicular ad hoc networks (VANET) that use the IEEE

802.11p protocol, it is necessary to share the available access
time between a Control Channel and Service Channels.
The Control Channel is used for the periodical dissemina-
tion of control information (beaconing) and traffic safety
related information eventmessages.The Service Channels are
used to disseminate noncritical information for infotainment
applications; see, for example, [2]. So it is necessary to
alternate access to the server by two types of customers, which
cannot be achieved via the classical priority discipline.

Aiming to provide more fairness in access of customers
of different type to the server, in this paper, we do not
assume existence of an explicit priority given to one of the
types. Instead, we suggest randomized choice of a customer
for service when both queues are not empty at a service
completion epoch. Priority can be given to one of types
implicitly by means of fixing higher probability of a choice
for service. If we set equal probabilities of the choice of
customers of different types for service, in probabilistic sense,
we create good conditions for frequent alternation of the
type of a customer in service. However, equal probabilities
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may be not reasonable when the intensities of two flows
are quite different. So it is important to optimally choose
the probability defining the randomized access. The problem
becomes even more complicated if impatience of customers
should be taken into account and customers of one type are
more impatient than the customers of another type.

In the model under study, we account impatience of
customers. Because type-2 customers can be dropped (lost)
also due to their buffer overflow, additionally we assume that
randomization does not work and type-2 customer is always
chosen for service if the number of type-2 customers in the
buffer exceeds some predefined threshold. To the best of our
knowledge such type of mechanisms of customers access to
service was not considered in the literature.

One of the popular distributions of service time in
queueing literature (and information transmission time in
telecommunications literature) is so-called phase-type (PH)
distribution. The class of PH distributions is dense (in the
sense of a weak convergence) in the set of all probability
distributions of nonnegative variables.Thus, the PH distribu-
tion is very general and can be used for approximation of an
arbitrary distribution; see [3]. However, in real life systems
during some phases of service (information transmission),
the server may fail. The failure occurrence implies the loss
of a customer or the necessity of complete repetition of its
service or resuming service from the phase at which the
failure occurred.The use of the classical PH distribution does
not allow taking into account the failures during the service
process effectively. In this paper, we introduce and apply
extension of the PH distribution, which we call PHF (phase-
type with failures) distribution, that allows taking the failures
into account.

Last but not least, we consider the model with quite
complicatedmarkedMarkovian arrival process (MMAP); see
[4]. Such arrival process of heterogeneous customers is much
more complicated than the superposition of the stationary
Poisson processes. But it allows taking into account the bursty
correlated nature of information transmission processes in
modern telecommunication networks.

The rest of the paper is organized as follows. The PHF
distribution is introduced and briefly analyzed in Section 2.
Mathematical model of the queueing system under study is
described in Section 3. Process of the system states is defined
in Section 4. Its generator as a block matrix is written down.
The problem of ergodicity of this process is discussed in brief
and the algorithm for computation of stationary distribution
of the system states is chosen. In Section 5, expressions
for computation of various performance measures of the
system based on the known stationary distribution of the
system states are derived. In Section 6, results of numerical
experiments are presented. Section 7 concludes the paper.

2. Phase-Type with
Failures (PHF) Distribution

In this paper, we consider the queueingmodel of information
transmission system.We assume that errors can occur during
the transmission (service of a customer), which can cause the
loss of information (customer) or necessity of retransmission

(repetition, in full or partial extent, of customer’s service).
Thus, to formally describe the service process of an arbitrary
customer with account of possible errors, we introduce
essential extension of well-known PH distribution; see, for
example, [5]. We call this new distribution PHF (phase-type
with failures) distribution. In defining PH distribution, Neuts
has interpreted the time having such a distribution as some
sequence of random times called phases, durations of which
have an exponential distribution. By analogy, we define PHF
distribution as some sequence of random times called stages
each of which, in turn, consists of a random number of
phases. PHF distribution can characterize different positive
random variables, for example, interarrival, interretrial, and
service times, in some queueing system. Because in this
paper we will use this distribution to model the service time
in the queueing model described in the next section, for
easier interpretation, we will speak here about the PHF type
distribution of a service time.

The PHF type distribution of a service time is defined by
the continuous-time Markov chain 𝑚

𝑡
, 𝑡 ≥ 0, with a finite

state space {1, . . . ,𝑀,𝑀 + 1,𝑀 + 2}. The states {1, . . . ,𝑀}
are assumed to be transient. The initial state of the process
𝑚
𝑡
at the service beginning moment (which coincides with

the moment of the first stage beginning) is chosen among
the transient states with probabilities defined by the entries of
the stochastic row vector 𝛽 = (𝛽

1
, . . . , 𝛽

𝑀
).The sojourn time

of the chain 𝑚
𝑡
in the state 𝑚, 𝑚 = 1,𝑀, is exponentially

distributed with the parameter 𝜇
𝑚
. After this time expires,

with probability 𝑝
𝑚,𝑚
 , 𝑚 = 1,𝑀, 𝑚 = 1,𝑀 + 2, 𝑚 ̸= 𝑚,

∑
𝑀+2

𝑚

=1,𝑚

̸=𝑚
𝑝
𝑚,𝑚
 = 1, the process 𝑚

𝑡
transits to the state 𝑚.

The intensities of the transition between transient states of the
process 𝑚

𝑡
are defined by the subgenerator 𝑆 that is defined

by its entries as follows:

(𝑆)
𝑚,𝑚

= −𝜇
𝑚
, 𝑚 = 1,𝑀,

(𝑆)
𝑚,𝑚
 = 𝜇
𝑚
𝑝
𝑚,𝑚
 , 𝑚 = 1,𝑀, 𝑚


= 1,𝑀, 𝑚


̸= 𝑚.

(1)

The states 𝑀 + 1 and 𝑀 + 2 are the absorbing states
transition which corresponds to the end of the current stage
of the service. The transition to the absorbing state 𝑀 + 1

means the end of the stage and successful completion of
customer’s service. The intensities of the transition to the
absorbing state𝑀+1 are defined by the entries of the column
vector S

1
:

(S
1
)
𝑚
= 𝜇
𝑚
𝑝
𝑚,𝑀+1

, 𝑚 = 1,𝑀. (2)

The transition to the absorbing state𝑀+2means the end
of the stage of the service due to a failure occurrence. The
intensities of the transition to the absorbing state𝑀 + 2 are
defined by the entries of the column vector S

2
:

(S
2
)
𝑚
= 𝜇
𝑚
𝑝
𝑚,𝑀+2

, 𝑚 = 1,𝑀. (3)

Note that S
2
= −𝑆e − S

1
. After the transition to the absorbing

state𝑀+2, the following three scenarios are possible: (i) with
probability 𝑞

1
, service of a customer is completed and this

customer leaves the system permanently without successful
service (is lost); (ii) with probability 𝑞

2
, the next stage of
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service starts and the initial state of the process 𝑚
𝑡
, 𝑡 ≥ 0,

is again chosen among the transient states with probabilities
defined by the vector 𝛽; (iii) with probability 1 − 𝑞

1
− 𝑞
2
, the

next stage of service starts and the initial state of the process
𝑚
𝑡
is chosen as the state from which the transition to the

absorbing state𝑀+2 occurred. In both scenarios (ii) and (iii),
the intensities of transition of the process 𝑚

𝑡
within the set

{1, . . . ,𝑀} of the transient states and to the absorbing states
are the same as at the first stage of service.

So service of a customer finishes when either the process
𝑚
𝑡
transits to the absorbing state 𝑀 + 1 (this customer is

considered as successfully served) or the process 𝑚
𝑡
transits,

after some stage, to the absorbing state𝑀 + 2 and scenario
(i) is realized (the customer is lost). In interpretation of the
service time as transmission time of some information unit
(e.g., a file), scenario (ii) means the necessity of complete
retransmission of the unit while scenario (iii) means its
retransmission from some point where the error occurs.

Thus, the PHF distribution is defined by the set consisting
of the row vector 𝛽, the matrix 𝑆, the column vector S

1
, and

the probabilities 𝑞
1
and 𝑞
2
, while the classical PH distribution

is defined only by the row vector 𝛽 and the matrix 𝑆. The
pair (𝛽, 𝑆) is called in [5] an irreducible representation of PH
distribution. PHdistribution can be treated as the special case
of PHF when 𝑝

𝑚,𝑀+2
= 0, 𝑚 = 1,𝑀. By analogy with [5]

we call the set (𝛽, 𝑆, S
1
, 𝑞
1
, 𝑞
2
) an irreducible representation

of PHF distribution.
Let us describe some properties of PHF distribution.
Let ℎ(𝑢) be Laplace-Stieltjes Transform (LST) of PHF dis-

tribution with an irreducible representation (𝛽, 𝑆, S
1
, 𝑞
1
, 𝑞
2
).

Lemma 1. The LST ℎ(𝑢) is defined by formula

ℎ (𝑢) = 𝛽h (𝑢) , Re 𝑢 > 0, (4)

where the column vector function h(𝑢) is defined by formula

h (𝑢) = (𝑢𝐼 −A)−1 A
0
, (5)

where

A = 𝑆 + 𝑞
2
S
2
𝛽 + (1 − 𝑞

1
− 𝑞
2
) diag {S

2
} ,

A
0
= −Ae = S

1
+ 𝑞
1
S
2
,

(6)

where diag{S
2
} means the diagonal matrix with the diagonal

entries defined by the entries of the vector S
2
, where S

2
= −𝑆e−

S
1
.

Proof of Lemma 1 is implemented based on the known
probabilistic interpretation of LST. Let us assume that,
independently of the system operation, some virtual station-
ary Poisson flow of some virtual events, sometimes called
catastrophes, arrives. Let 𝑢 be the intensity of this flow.

We define h(𝑢) as the column vector entries, of which
(h(𝑢))

𝑚
have the meaning of the probability that catastrophe

will not arrive during the rest of the time having PHF dis-
tribution with an irreducible representation (𝛽, 𝑆, S

1
, 𝑞
1
, 𝑞
2
)

conditioned on the fact that at the given moment the
underlying Markov chain 𝑚

𝑡
of this distribution stays at the

state𝑚, 𝑚 = 1,𝑀.

Using this probabilistic interpretation and formula of
total probability, it is easy to derive formula

h (𝑢) = ∫
∞

0

𝑒
(−𝑢𝐼+𝑆)𝑡

[S
1
+ diag {S

2
}

⋅ (𝑞
1
e + 𝑞
2
e𝛽h (𝑢) + (1 − 𝑞

1
− 𝑞
2
) h (𝑢))] 𝑑𝑡

= (−𝑢𝐼 + 𝑆)
−1
[S
1
+ diag {S

2
} (𝑞
1
e + 𝑞
2
e𝛽h (𝑢)

+ (1 − 𝑞
1
− 𝑞
2
) h (𝑢))]

(7)

from which and formula of total probability the statement of
Lemma 1 immediately follows.

Remark 2. It can be noted that LST of PHF distribution
with an irreducible representation (𝛽, 𝑆, S

1
, 𝑞
1
, 𝑞
2
) coincides

with LST of a classical PH distribution with an irreducible
representation (𝛽,A). It is well known for the classical
PH distribution that its LST is easily calculated given the
irreducible representation. However, the inverse problem,
to restore the irreducible representation given the values
of LST, is very complicated and does not have a unique
solution, while, namely, the components of the irreducible
representation are necessary to write down the generator
of the Markov chain describing behavior of the states of
some queueing systemwith PH service process. Analogously,
the noted coincidence of LST of PHF distribution with
an irreducible representation (𝛽, 𝑆, S

1
, 𝑞
1
, 𝑞
2
) with LST of a

classical PH distribution with an irreducible representation
(𝛽,A) does not imply that we can avoid introduction of PHF
distribution and substitute this distribution by the classical
PH distribution.

Corollary 3. The moments 𝑊
𝑘
of PHF distribution with an

irreducible representation (𝛽, 𝑆, S
1
, 𝑞
1
, 𝑞
2
) are calculated by

formula

𝑊
𝑘
= 𝑘!𝛽 (−A)

−𝑘 e, 𝑘 ≥ 1. (8)

In particular, the expectation is given by𝑊
1
= 𝛽(−A)−1e.

Let ℎ
1
(𝑢) be LST of the distribution of the service time

which is finished successfully (probability that the service
time is finished successfully andno catastrophe arrives during
this time) and let ℎ

2
(𝑢) be LST of the distribution of the

service time that is finished by a customer loss (probability
that the service time is finished by a customer loss and no
catastrophe arrives during this time).

Lemma 4. The LSTs ℎ
1
(𝑢) and ℎ

2
(𝑢) are defined by formulas

ℎ
1
(𝑢) = 𝛽 (𝑢𝐼 −A)

−1 S
1
, Re 𝑢 > 0,

ℎ
2
(𝑢) = 𝑞

1
𝛽 (𝑢𝐼 −A)

−1 S
2
, Re 𝑢 > 0.

(9)

Proof of Lemma 4 uses similar arguments as the proof of
Lemma 1.

Corollary 5. The probability 𝑃
𝑠𝑢𝑐𝑐𝑒𝑠𝑠

that an arbitrary service
will be finished successfully and the probability 𝑃

𝑓𝑎𝑖𝑙𝑢𝑟𝑒
that
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an arbitrary service will be finished by a customer’s loss are
given by

𝑃
𝑠𝑢𝑐𝑐𝑒𝑠𝑠

= ℎ
1
(0) = 𝛽 (−A)

−1 S
1
,

𝑃
𝑓𝑎𝑖𝑙𝑢𝑟𝑒

= ℎ
2
(0) = 𝑞

1
𝛽 (−A)

−1 S
2
.

(10)

Corollary 6. The average service times 𝑊𝑠𝑢𝑐𝑐𝑒𝑠𝑠
1

(𝑊𝑓𝑎𝑖𝑙𝑢𝑟𝑒
1

) of
an arbitrary customer conditioned on the fact that it is known
that service is finished successfully (is failed) are computed as
follows:

𝑊
𝑠𝑢𝑐𝑐𝑒𝑠𝑠

1
=

𝛽 (−A)−2 S
1

𝛽 (−A)−1 S
1

,

𝑊
𝑓𝑎𝑖𝑙𝑢𝑟𝑒

1
=

𝛽 (−A)−2 S
2

𝛽 (−A)−1 S
2

.

(11)

3. Mathematical Model

We consider a single server queueing system with an infinite
buffer and a finite buffer of capacity𝑁, the structure of which
is presented in Figure 1.

Arrival of two types of customers is defined by
the MMAP. This process is defined by the irreducible
continuous-time Markov chain ]

𝑡
, 𝑡 ≥ 0, having a finite

state space {0, 1, . . . ,𝑊}. The sojourn time of the chain ]
𝑡
in

the state ] is exponentially distributed with the parameter
𝜆]. After this time expires, with probability 𝑝(0)],] the chain
]
𝑡
jumps to the state ] without generation of customers,

], ] = 0,𝑊, ] ̸= ], or with probability 𝑝(𝑟)],] it jumps to
the state ] with generation of type-𝑟 customer, 𝑟 = 1, 2,
], ] = 0,𝑊. Here notation ] = 0,𝑊 means that ] takes the
values in the set {0, 1, . . . ,𝑊}.

It is reasonable to store the set of numerous parameters,
which characterize the MMAP, as the entries of the square
matrices 𝐷

0
, 𝐷
𝑟
, 𝑟 = 1, 2, defined as follows. The entry

(𝐷
𝑟
)],] = 𝜆]𝑝

(𝑟)

],] , ], ]

= 0,𝑊, 𝑟 = 1, 2, of the matrix 𝐷

𝑟

defines the intensity of transition of the process ]
𝑡
from the

state ] to the state ] which is accompanied by arrival of type-
𝑟 customer. The modulus of the diagonal entry (𝐷

0
)],] of the

matrix𝐷
0
defines intensity of departure of the process ]

𝑡
from

the state ] : (𝐷
0
)],] = −𝜆], ] = 0,𝑊. The nondiagonal entry

(𝐷
0
)],] = 𝜆]𝑝

(0)

],] , ], ]

= 0,𝑊, ] ̸= ], of the matrix 𝐷

0

defines the intensity of transition of the process ]
𝑡
from the

state ] to the state ] which is not accompanied by arrival of
any customer.

The matrix 𝐷(1) = 𝐷
0
+ 𝐷
1
+ 𝐷
2
is the generator

of the Markov chain ]
𝑡
, 𝑡 ≥ 0. The average intensity of

customers arrival (fundamental rate) 𝜆 is defined by the
formula 𝜆 = 𝜃(𝐷

1
+ 𝐷
2
)e, where 𝜃 is the row vector of the

stationary probabilities of the Markov chain ]
𝑡
. This vector

is the unique solution to the system 𝜃𝐷(1) = 0, 𝜃e = 1.

Here and throughout this paper e is a column vector of
appropriate size consisting of 1’s, and 0 is a row vector of
appropriate size consisting of zeroes. The average intensity of

MMAP Type-1

Type-2

PHF1, PHF2

1 −
p

K

p

N

𝛼1

𝛼2

1

1

Figure 1: Queueing system under study.

type-𝑟 customers arrival 𝜆
𝑟
is defined by the formula 𝜆

𝑟
=

𝜃𝐷
𝑟
e, 𝑟 = 1, 2.
We assume that the service times of type-1 and type-

2 customers have PHF distribution with the parameters
depending on the type of a customer. Namely, we assume
that parameters of PHF distribution of service time of type-𝑟,
𝑟 = 1, 2, customers are given by the irreducible representation
(𝛽(𝑟), 𝑆(𝑟), S(𝑟)

1
, 𝑞
(𝑟)

1
, 𝑞
(𝑟)

2
). Let 𝑀

𝑟
, 𝑟 = 1, 2, be the number of

transient states of underlying Markov chain of PHF service
process of type-𝑟 customers.

If the server is idle during an arbitrary customer arrival
epoch, the customer immediately starts service. If the server
is busy during an arbitrary type-1 customer arrival epoch,
this customer goes to the infinite buffer. If the server is
busy during an arbitrary type-2 customer arrival epoch, this
customer goes to the finite buffer of capacity𝑁. If this buffer
is full, the customer is lost.

We assume the following strategy of choosing the cus-
tomers for service. Let some probability 𝑝, 0 ≤ 𝑝 ≤

1, and threshold 𝐾, 0 ≤ 𝐾 ≤ 𝑁, be fixed. If, during
the service completion epoch, there are customers in both
buffers and the number of type-2 customers is less than or
equal to 𝐾, then type-1 customer is chosen for service with
probability 𝑝 or type-2 customer occupies the server with the
complimentary probability. If, during the service completion
epoch, the number of type-2 customers is greater than 𝐾,
then type-2 customers are chosen for service. If one of the
buffers is empty at the service completion epoch, service is
provided to the customer from another buffer, if any, without
randomization. Note that if 𝑝 = 0 or 𝐾 = 0, then type-1
customer can be chosen for service only if type-2 customers
are absent in the system. This means that type-2 customers
have nonpreemptive priority over type-1 customers. If 𝑝 =
1, then type-2 customers are chosen for service only if the
number of such customers in the buffer exceeds the value
𝐾. In other words, if the number of type-2 customers in the
buffer does not exceed the threshold 𝐾, type-1 customers
have nonpreemptive priority over type-2 customers. Thus,
the considered admission strategy is essentially more flexible
than the strategy with nonpreemptive priority.

The customers in the buffers are assumed to be impatient;
for example, each type-𝑟 customer leaves the buffer after an
exponentially distributed, with the parameter𝛼

𝑟
, 𝛼
𝑟
≥ 0, 𝑟 =

1, 2, amount of time due to the lack of service.
Let us analyze the stochastic process defining behavior of

the described queueing model.
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4. Process of System States and
Its Stationary Distribution

Let, during the epoch 𝑡, 𝑡 ≥ 0,

(i) 𝑖
𝑡
, 𝑖
𝑡
≥ 0, be the number of type-1 customers in the

buffer;
(ii) 𝑛
𝑡
, 𝑛
𝑡
∈ {0, 1, 2}, be the state of the server (𝑛

𝑡
= 0

when the server is idle, 𝑛
𝑡
= 1 when the server is

occupied by type-1 customer, and 𝑛
𝑡
= 2 when the

server provides service to type-2 customer);

(iii) 𝑘
𝑡
, 𝑘
𝑡
= 0,𝑁, be the number of type-2 customers in

the buffer;
(iv) ]
𝑡
, ]
𝑡
= 0,𝑊, be the state of the underlying process

of the MMAP;
(v) 𝜂
𝑡
be the state of PH service process, 𝜂

𝑡
= 1,𝑀

𝑛
𝑡

.

The Markov chain 𝜉
𝑡
= {𝑖
𝑡
, 𝑛
𝑡
, 𝑘
𝑡
, ]
𝑡
, 𝜂
𝑡
}, 𝑡 ≥ 0, is the

regular irreducible continuous-time Markov chain.
TheMarkov chain 𝜉

𝑡
, 𝑡 ≥ 0, has the following state space:

({0, 0, 0, ]}) ∪ ({𝑖, 𝑛, 𝑘, ], 𝜂} , 𝑖 ≥ 0, 𝑛 = 1, 2, 𝑘

= 0,𝑁, 𝜂 = 1,𝑀
𝑛
) , ] = 0,𝑊.

(12)

Let us introduce the following notations:

(i) 𝐼 is the identity matrix and 𝑂 is a zero matrix of
appropriate dimension. If it is necessary, dimension
of the matrix is indicated by the suffix.

(ii) 𝑁 = 𝑁 + 1,𝑊 = 𝑊 + 1.
(iii) 𝐶 is the square matrix of size 𝑁 defined as follows:

𝐶 = diag{0, 1, . . . , 𝑁}; that is, 𝐶 is the diagonal matrix
with the diagonal entries {0, 1, . . . , 𝑁}.

(iv) 𝐸− is the square matrix of size𝑁 with all zero entries
except the entries (𝐸−)

𝑘,𝑘−1
, 𝑘 = 1,𝑁, which are equal

to 1.
(v) 𝐸−
1
is the square matrix of size𝑁 with all zero entries

except the entries (𝐸−
1
)
𝑘,𝑘−1

, 𝑘 = 1, 𝐾, which are equal
to 1.

(vi) 𝐸−
2
is the square matrix of size𝑁 with all zero entries

except the entries (𝐸−
2
)
𝑘,𝑘−1

, 𝑘 = 𝐾 + 1,𝑁, which are
equal to 1.

(vii) 𝐸+ is the square matrix of size 𝑁 with all zero
entries except the entries (𝐸+)

𝑘,𝑘+1
, 𝑘 = 0,𝑁 − 1, and

(𝐸
+
)
𝑁,𝑁

which are equal to 1.

(viii) ẽ is the column vector of size 𝑁 with all zero entries
except the entry ẽ

0
which is equal to 1.

(ix) �̂�
𝑙
, 𝑙 = 0, 𝐾, is the squarematrix of size𝑁with all zero

entries except the entries (�̂�
𝑙
)
𝑘,𝑘
= 1, 𝑘 ≤ 𝑙.

(x) ⊗ is the symbol of the Kronecker product of matrices;
see, for example, [6].

Let us enumerate the states of the Markov chain 𝜉
𝑡
in the

lexicographic order and refer to the set of states of the chain
having value 𝑖 of the first components of the Markov chain as
level 𝑖, 𝑖 ≥ 0.

Let 𝑄 be the generator of the Markov chain 𝜉
𝑡
, 𝑡 ≥ 0.

Lemma 7. The generator 𝑄 has the following block-three-
diagonal structure:

𝑄 =(

𝑄
0,0
𝑄
0,1

𝑂 𝑂 𝑂 ⋅ ⋅ ⋅

𝑄
1,0
𝑄
1,1

𝑄
+
𝑂 𝑂 ⋅ ⋅ ⋅

𝑂 𝑄
2,1
𝑄
2,2
𝑄
+
𝑂 ⋅ ⋅ ⋅

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. d

). (13)

The nonzero blocks 𝑄
𝑖,𝑗
, 𝑖, 𝑗 ≥ 0, containing the intensities

of the transitions from level 𝑖 to level 𝑗 have the following form:

𝑄
0,0
= (

𝑄
(0,0)

𝑄
(0,1)

𝑄
(0,2)

𝑄
(1,0)

𝑄
(1,1)

𝑄
(1,2)

𝑄
(2,0)

𝑂 𝑄
(2,2)

), (14)

where

𝑄
(0,0)

= 𝐷
0
,

𝑄
(0,𝑟)

= ẽ𝑇 ⊗ 𝐷
𝑟
⊗ 𝛽
(𝑟)
, 𝑟 = 1, 2,

𝑄
(1,1)

= 𝐼
𝑁
⊗ 𝐷
0
⊕ 𝑆
(1)
+ 𝐸
+
⊗ 𝐷
2
⊗ 𝐼
𝑀
1
+1

− 𝛼
2
𝐶 (𝐼
𝑁+1

− 𝐸
−
) ⊗ 𝐼
𝑊(𝑀

1
+1)
+ 𝑞
(1)

2
𝐼
𝑁𝑊

⊗ S(1)
2
𝛽
(1)
+ (1 − 𝑞

(1)

1
− 𝑞
(1)

2
) 𝐼
𝑁𝑊

⊗ diag {(S(1)
2
)
𝑙
, 𝑙 = 1,𝑀

1
} ,

𝑄
(𝑟,0)

= ẽ ⊗ 𝐼
𝑊
⊗ (𝑞
(𝑟)

1
S(𝑟)
2
+ S(𝑟)
1
) , 𝑟 = 1, 2,

𝑄
(1,2)

= 𝐸
−
⊗ 𝐼
𝑊
⊗ (𝑞
(1)

1
S(1)
2
+ S(1)
1
)𝛽
(2)
,

𝑄
(2,2)

= 𝐼
𝑁
⊗ 𝐷
0
⊕ 𝑆
(2)
+ 𝐸
+
⊗ 𝐷
2
⊗ 𝐼
𝑀
2
+1

− 𝛼
2
𝐶 (𝐼
𝑁+1

− 𝐸
−
) ⊗ 𝐼
𝑊(𝑀

2
+1)
+ 𝑞
(2)

2
𝐼
𝑊

⊗ S(2)
2
𝛽
(1)
+ (1 − 𝑞

(2)

1
− 𝑞
(2)

2
) 𝐼
𝑊

⊗ diag {(S(2)
2
)
𝑙
, 𝑙 = 1,𝑀

2
} + 𝐸
−
⊗ 𝐼
𝑊

⊗ (𝑞
(2)

1
S(2)
2
+ S(2)
1
)𝛽
(2)
;

𝑄
𝑖,𝑖
= (

𝑄
(1,1)

𝑖,𝑖
𝑄
(1,2)

0

𝑂 𝑄
(2,2)

𝑖,𝑖

) , 𝑖 > 0,

(15)
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where

𝑄
(1,1)

𝑖,𝑖
= 𝐼
𝑁
⊗ 𝐷
0
⊕ 𝑆
(1)
+ 𝐸
+
⊗ 𝐷
2
⊗ 𝐼
𝑀
1
+1

− (𝛼
2
𝐶 (𝐼
𝑁+1

− 𝐸
−
) + 𝑖𝛼
1
𝐼
𝑁
) ⊗ 𝐼
𝑊(𝑀

1
+1)

+ 𝑞
(1)

2
𝐼
𝑁𝑊

⊗ S(1)
2
𝛽
(1)

+ (1 − 𝑞
(1)

1
− 𝑞
(1)

2
) 𝐼
𝑊𝑁

⊗ diag {(S(1)
2
)
𝑙
, 𝑙 = 1,𝑀

1
} ,

𝑄
(2,2)

𝑖,𝑖
= 𝐼
𝑁
⊗ 𝐷
0
⊕ 𝑆
(2)
+ 𝐸
+
⊗ 𝐷
2
⊗ 𝐼
𝑀
2
+1

− (𝛼
2
𝐶 (𝐼
𝑁+1

− 𝐸
−
) + 𝑖𝛼
1
𝐼
𝑁
) ⊗ 𝐼
𝑊(𝑀

2
+1)

+ 𝑞
(2)

2
𝐼
𝑁𝑊

⊗ S(2)
2
𝛽
(1)

+ (1 − 𝑞
(2)

1
− 𝑞
(2)

2
) 𝐼
𝑁𝑊

⊗ diag {(S(2)
2
)
𝑙
, 𝑙 = 1,𝑀

2
}

+ ((1 − 𝑝) 𝐸
−

1
+ 𝐸
−

2
) ⊗ 𝐼
𝑊

⊗ (𝑞
(2)

1
S(2)
2
+ S(2)
1
)𝛽
(2)
,

𝑄
(1,2)

0
= ((1 − 𝑝) 𝐸

−

1
+ 𝐸
−

2
) ⊗ 𝐼
𝑊

⊗ (𝑞
(1)

1
S(1)
2
+ S(1)
1
)𝛽
(2)
;

𝑄
0,1
= (

𝑂
𝑊×𝑁𝑊(𝑀

1
+1)

𝑂
𝑊×𝑁𝑊(𝑀

2
+1)

𝐼
𝑁
⊗ 𝐷
1
⊗ 𝐼
𝑀
1
+1

𝑂

𝑂 𝐼
𝑁
⊗ 𝐷
1
⊗ 𝐼
𝑀
2
+1

);

𝑄
+
= (

𝐼
𝑁
⊗ 𝐷
1
⊗ 𝐼
𝑀
1
+1

𝑂

𝑂 𝐼
𝑁
⊗ 𝐷
1
⊗ 𝐼
𝑀
2
+1

) ;

𝑄
1,0
= (

𝑂
𝑁𝑊(𝑀

1
+1)×𝑊

𝑄
(1,1)

1,0
𝑄
(1,2)

−

𝑂
𝑁𝑊(𝑀

2
+1)×𝑊

𝑂 𝑄
(2,2)

1,0

) ,

𝑄
𝑖,𝑖−1

= (

𝑄
(1,1)

𝑖,𝑖−1
𝑂

𝑄
(2,1)

−
𝑄
(2,2)

𝑖,𝑖−1

) , 𝑖 > 1,

(16)

where

𝑄
(1,1)

𝑖,𝑖−1
= 𝑖𝛼
1
𝐼
𝑁𝑊(𝑀

1
+1)
+ (�̂�
0
+ 𝑝 (�̂�

𝐾
− �̂�
0
)) ⊗ 𝐼

𝑊

⊗ (𝑞
(1)

1
S(1)
2
+ S(1)
1
)𝛽
(1)
, 𝑖 > 0,

𝑄
(2,2)

𝑖,𝑖−1
= 𝑖𝛼
1
𝐼
𝑁𝑊(𝑀

2
+1)
, 𝑖 > 0,

𝑄
(2,1)

−
= (𝑝 (�̂�

𝐾
− �̂�
0
) + �̂�
0
) ⊗ 𝐼
𝑊

⊗ (𝑞
(2)

1
S(2)
2
+ S(2)
1
)𝛽
(1)
.

(17)

Proof of the lemma is performed by means of analysis of
the intensities of all possible transitions of the Markov chain
𝜉
𝑡
during the time interval having infinitesimal length.

Remark 8. The Markov chain 𝜉
𝑡
, 𝑡 ≥ 0, belongs to the class

of continuous-time asymptotically quasi-Toeplitz Markov
chains (AQTMC); see [7]. This is easily verified by means of
checking all points of definition of AQTMC given in [7].

Using results from [7], it is possible to show that if 𝛼
1
>

0, the Markov chain 𝜉
𝑡
is ergodic for any set of the system

parameters.
Let us consider the case 𝛼

1
= 0. In this case, the matrices

𝑄
𝑖,𝑖−1

and 𝑄
𝑖,𝑖
for 𝑖 > 1 do not depend on 𝑖 and have the

following form:

𝑄
𝑖,𝑖−1

= 𝑄
−

= (

(�̂�
0
+ 𝑝 (�̂�

𝐾
− �̂�
0
)) ⊗ 𝐼

𝑊
⊗ (𝑞
(1)

1
S(1)
2
+ S(1)
1
)𝛽(1) 𝑂

(𝑝 (�̂�
𝐾
− �̂�
0
) + �̂�
0
) ⊗ 𝐼
𝑊
⊗ (𝑞
(2)

1
S(2)
2
+ S(2)
1
)𝛽(1) 𝑂

) ,

𝑄
𝑖,𝑖
= 𝑄
0
= (

𝑄
(1,1)

0,0
𝑄
(1,2)

0

𝑂 𝑄
(2,2)

0,0

) .

(18)

Thus, in the case 𝛼
1
= 0, the Markov chain 𝜉

𝑡
, 𝑡 ≥

0, belongs to the class of continuous-time quasi-Toeplitz
Markov chains (QTMC) or quasi-birth-and-death processes;
see [5].

It follows from [5] that the necessary and sufficient
ergodicity condition of the quasi-birth-and-death process is
the fulfillment of the inequality

y𝑄
−
e > y𝑄

+
e, (19)

where the row vector y is the unique solution to the following
system of linear algebraic equations:

y (𝑄
−
+ 𝑄
0
+ 𝑄
+
) = 0, ye = 1. (20)

The ergodicity condition for the considered model is
easily verified algorithmically. Finite system (20) of linear
algebraic equation is solved on computer. Then, fulfillment
of inequality (19) is checked.

If the ergodicity condition is fulfilled, then the following
limits (stationary probabilities) exist:

𝜋 (𝑖, 𝑛, 𝑘, ], 𝜂)

= lim
𝑡→∞

𝑃 {𝑖
𝑡
= 𝑖, 𝑛

𝑡
= 𝑛, 𝑘

𝑡
= 𝑘, ]

𝑡
= ], 𝜂

𝑡
= 𝜂} ,

𝑖 ≥ 0, 𝑛 = 0, 2, 𝑘 = 0,𝑁, ] = 0,𝑊, 𝜂
𝑡
= 1,𝑀

𝑛
.

(21)

Let us form the row vectors 𝜋(𝑖, 𝑛, 𝑘), 𝜋(𝑖, 𝑛), 𝜋
𝑖
of these

probabilities as follows:

𝜋 (0, 0, 0) = (𝜋 (0, 0, 0, 0) , 𝜋 (0, 0, 0, 1) , . . . ,

𝜋 (0, 0, 0,𝑊)) ,

𝜋 (𝑖, 𝑛, 𝑘, ]) = (𝜋 (𝑖, 𝑛, 𝑘, ], 1) , 𝜋 (𝑖, 𝑛, 𝑘, ], 2) , . . . ,

𝜋 (𝑖, 𝑛, 𝑘, ],𝑀
𝑛
)) , ] = 0,𝑊,

𝜋 (𝑖, 𝑛, 𝑘) = (𝜋 (𝑖, 𝑛, 𝑘, 0) ,𝜋 (𝑖, 𝑛, 𝑘, 1) , . . . ,

𝜋 (𝑖, 𝑛, 𝑘,𝑊)) , 𝑘 = 0,𝑁,
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𝜋 (𝑖, 𝑛) = (𝜋 (𝑖, 𝑛, 0) ,𝜋 (𝑖, 𝑛, 1) , . . . ,𝜋 (𝑖, 𝑛,𝑁)) ,

𝑛 = 1, 2,

𝜋
0
= (𝜋 (0, 0) ,𝜋 (0, 1) ,𝜋 (0, 2)) ,

𝜋
𝑖
= (𝜋 (𝑖, 1) ,𝜋 (𝑖, 2)) , 𝑖 > 0.

(22)

It is well known that the probability vectors 𝜋
𝑖
, 𝑖 ≥ 0,

satisfy the following system of linear algebraic equations:

(𝜋
0
,𝜋
1
, . . .) 𝑄 = 0, (𝜋

0
,𝜋
1
, . . .) e = 1, (23)

called equilibrium or Chapman-Kolmogorov equations. This
system is infinite and the generator 𝑄, generally speaking,
does not possess Toeplitz-like property. So the system cannot
be directly solved on computer. Such type of equations arises
quite often in analysis of queues with impatient customers
and retrial queueing systems. Usually in the literature they are
solved by means of various truncation methods. Indeed, this
system can be effectively solved by means of the numerically
stable algorithm that is presented in [8].

5. Performance Measures of the System

Having computed the vectors of the stationary probabilities
𝜋
𝑖
, 𝑖 ≥ 0, it is possible to compute a variety of the

performance measures of the system.
The average number of customers in the system is

computed by

𝐿 =

∞

∑

𝑖=0

2

∑

𝑛=1

𝑁

∑

𝑘=0

(𝑘 + 𝑖 + 1)𝜋 (𝑖, 𝑛, 𝑘) e. (24)

The probability 𝑃busy that the server is busy at an arbitrary
moment is computed by

𝑃busy =
∞

∑

𝑖=0

2

∑

𝑛=1

𝜋 (𝑖, 𝑛) e. (25)

The probability 𝑃busy-𝑙 that, at an arbitrary moment, the
server provides service to type-𝑙 customer is computed by

𝑃busy-𝑙 =
∞

∑

𝑖=0

𝜋 (𝑖, 𝑙) e, 𝑙 = 1, 2. (26)

The probability 𝑃idle that the server is idle at an arbitrary
moment is computed by

𝑃idle = 𝜋 (0, 0) e. (27)

The average number 𝑁type-1
buffer of type-1 customers in the

buffer is computed by

𝑁
type-1
buffer =

∞

∑

𝑖=1

𝑖𝜋
𝑖
e. (28)

The average number 𝑁type-2
buffer of type-2 customers in the

buffer is computed by

𝑁
type-2
buffer =

∞

∑

𝑖=0

2

∑

𝑛=1

𝑁

∑

𝑘=1

𝑘𝜋 (𝑖, 𝑛, 𝑘) e. (29)

The intensity 𝜆type-𝑙out , 𝑙 = 1, 2, of the output flow of
successfully served type-𝑙 customers is computed by

𝜆
type-𝑙
out =

∞

∑

𝑖=0

𝜋 (𝑖, 𝑙) (e
(𝑁+1)𝑊

⊗ S(𝑙)
1
) , 𝑙 = 1, 2. (30)

The intensity 𝜆type-𝑙failure-loss, 𝑙 = 1, 2, of the flow of type-𝑙
customers that leave the system due to the failure occurrence
is computed by

𝜆
type-𝑙
fail = 𝑞

(𝑙)

1

∞

∑

𝑖=0

𝜋 (𝑖, 𝑙) (e
(𝑁+1)𝑊

⊗ S(𝑙)
2
) , 𝑙 = 1, 2. (31)

The loss probability 𝑃type-2ent-loss of an arbitrary type-2 cus-
tomer upon arrival due to the buffer overflow is computed
by

𝑃
type-2
ent-loss =

1

𝜆
2

∞

∑

𝑖=0

2

∑

𝑛=1

𝜋 (𝑖, 𝑛,𝑁) (𝐷
2
⊗ 𝐼
𝑀
𝑛

) e. (32)

The loss probability 𝑃type-1imp-loss of an arbitrary type-1 cus-
tomer due to impatience is computed by

𝑃
type-1
imp-loss =

𝛼
1
𝑁

type-1
buffer
𝜆
1

=

1

𝜆
1

∞

∑

𝑖=1

2

∑

𝑛=1

𝑁

∑

𝑘=0

𝑖𝛼
1
𝜋 (𝑖, 𝑛, 𝑘) e. (33)

The loss probability 𝑃type-2imp-loss of an arbitrary type-2 cus-
tomer due to impatience is computed by

𝑃
type-2
imp-loss =

𝛼
2
𝑁

type-2
buffer
𝜆
2

=

1

𝜆
2

∞

∑

𝑖=0

2

∑

𝑛=1

𝑁

∑

𝑘=1

𝑘𝛼
2
𝜋 (𝑖, 𝑛, 𝑘) e. (34)

The probability 𝑃type-𝑙failure-loss of an arbitrary type-𝑙 customer
loss due to a failure occurrence is computed by

𝑃
type-𝑙
failure-loss =

𝜆
type-𝑙
fail
𝜆
𝑙

, 𝑙 = 1, 2. (35)

The probability 𝑃type-𝑙loss of an arbitrary type-𝑙 customer loss
is computed by

𝑃
type-𝑙
loss = 1 −

𝜆
type-𝑙
out
𝜆
𝑙

, 𝑙 = 1, 2. (36)

6. Numerical Example

In the numerical example we assume that the finite buffer
capacity is 𝑁 = 10. The value of the threshold 𝐾 is set to be
equal to 8.



8 International Journal of Stochastic Analysis

The MMAP arrival process has the coefficient of correla-
tion 𝑐cor = 0.2 and the coefficient of variation 𝑐var = 12.3 and
is defined by the matrices

𝐷
0
= (

−6.759 0

0 −0.21941

) ,

𝐷
1
= (

4.476 0.03

0.08144 0.06483

) ,

𝐷
2
= (

2.238 0.015

0.04072 0.03242

) .

(37)

The average arrival rate of this process is 𝜆 = 5, the
average arrival rate of type-1 customers is 𝜆

1
= 3.33, and the

average arrival rate of type-2 customers is 𝜆
2
= 1.67.

The intensities of impatience of type-𝑙 customers, 𝑙 = 1, 2,
are 𝛼
1
= 0.02 and 𝛼

2
= 0.05.

To illustrate importance of taking into account possible
failures in the service process, let us consider two cases of
service processes. In the first case, coded as PH, we assume
that service of the customers is modelled by two phase-type
service processes. Namely, we assume that the service time of
type-1 customers is defined by the vector 𝛽(1) = (0.8, 0.2) and
the matrix 𝑆(1) = ( −12 9

0 −12
). The mean service time is equal

to 0.13333.The service time of type-2 customers is defined
by the vector 𝛽(2) = (0.6, 0.1, 0.3) and the matrix 𝑆(2) =
(

−10 4 3

3 −10 5

1 1 −10

). The mean service time is equal to 0.21582.
In the second case, coded as PHF, we assume that the

service times of the customers have PHF distributions with
irreducible representations

(𝛽
(𝑙)
, 𝑆
(𝑙)
, S(𝑙)
1
, 𝑞
(𝑙)

1
, 𝑞
(𝑙)

2
) , 𝑙 = 1, 2, (38)

where 𝛽(𝑙) and 𝑆(𝑙), 𝑙 = 1, 2, are the same as in the first case
and

S(1)
1
= (2.6, 11.2)

𝑇
,

S(2)
1
= (2.7, 1.7, 7.3)

𝑇
,

𝑞
(1)

1
= 0.1,

𝑞
(2)

1
= 0.3,

𝑞
(1)

2
= 0.05,

𝑞
(2)

2
= 0.4.

(39)

Let us vary the parameter 𝑝 from 0 to 1 with the step 0.01.
Figures 2 and 3 illustrate the dependence of the loss

probabilities 𝑃type-1loss and 𝑃type-2loss on the parameter 𝑝.
The quite essential difference between values of the loss

probability 𝑃type-𝑙loss , 𝑙 = 1, 2, for case 1 when the service time
has PHdistribution and case 2when the service time has PHF
distribution is worth noting, while the differences between
the average service times are not so essential. For type-1
customer the average value of the service time having PH
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distribution is equal, as mentioned above, to 0.13333. The
average value of the service time having PHF distribution
is equal to 0.14143 (the probability 𝑃success that an arbitrary
service will be finished successfully is equal to 0.9914). For
type-2 customer the average value of the service time having
PH distribution is equal, as mentioned above, to 0.21582.The
average value of service time having PHF distribution is equal
to 0.2307 (the probability 𝑃success that an arbitrary service will
be finished successfully is equal to 0.9688).

Now, let us illustrate the dependence of the main perfor-
mance measures of the system on the parameters 𝐾 and 𝑝
that define the strategy of customers access to the server. To
this end let us consider the system with PHF service time
distribution of type-1 and type-2 customers defined above
and vary the parameter 𝑝 from 0 to 1 with step 0.01 and the
parameter 𝐾 from 1 to 10 with step 1.
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failure-loss on the parameters 𝐾 and 𝑝.

Figures 4 and 5 illustrate the dependence of the loss
probabilities 𝑃type-1loss and 𝑃type-2loss on the parameters𝐾 and 𝑝.

Figures 6 and 7 illustrate the dependence of the loss
probabilities𝑃type-1failure-loss and𝑃

type-2
failure-loss on the parameters𝐾 and

𝑝.
Figures 8 and 9 illustrate the dependence of the loss

probability𝑃type-2ent-loss and the probability𝑃busy on the parameters
𝐾 and 𝑝.

As it is seen from Figures 4 and 5, the loss probability of
type-1 customers decreases and the loss probability of type-2
customers increases with growth of the parameters 𝑝 and 𝐾.
This finding can be explained as follows.With increasing of 𝑝
and 𝐾, type-1 customers are more often chosen for service,
so they obtain the better conditions and the probability of

their loss decreases. Since type-2 customers are competing
for the server with type-1 customers, their loss probability
grows. However we can see the opposite trend in Figures 6
and 7: the loss probability 𝑃type-1failure-loss increases and the loss
probability 𝑃type-2failure-loss decreases with increasing of 𝐾 and 𝑝.
This can be explained as follows. When 𝑝 and 𝐾 are small,
type-1 customers are rarely chosen for service and they are
lost, basically, due to impatience before service. So the prob-
ability of an arbitrary type-1 customer loss due to a failure
occurrence during its service is small. When the parameters
𝑝 and K grow, the chance to start service for type-1 customer
increases and the probability 𝑃type-1failure-loss also increases. For
type-2 customers, we see the opposite situation and the loss
probability 𝑃type-2failure-loss decreases with increasing of𝐾 and 𝑝.
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As it is seen from Figure 8 the loss probability 𝑃type-2ent-loss of
an arbitrary type-2 customer upon arrival due to the buffer
overflow essentially increases with increase of 𝐾 and 𝑝. Due
to this fact, the probability 𝑃busy that the server is busy at an
arbitrarymoment that is presented in Figure 9 decreases with
growth of𝐾 and 𝑝.

Let us introduce the value

𝐸 = 𝜆
1
𝑃
type-1
loss + 𝜆

2
𝑃
type-2
loss . (40)

This value has the meaning of an average number of cus-
tomers lost in the system per unit of time and may be
considered as some kind of cost criterion of quality of the
system operation. It is obvious that the value 𝐸 depends on
the probability𝑝 and the threshold𝐾 that defines the strategy
of customers access to the server; that is, 𝐸 = 𝐸(𝐾, 𝑝).

Figure 10 illustrates the dependence of the values of the
cost criterion 𝐸(𝐾, 𝑝) on the parameters 𝐾 and 𝑝.

The minimal value 𝐸∗(𝐾, 𝑝) of the cost criterion 𝐸(𝐾, 𝑝)
is 𝐸∗(6, 0.8) = 0.447533. So the admission control of
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Figure 10: Dependence of the cost criterion 𝐸(𝐾, 𝑝) on the parameters 𝐾 and 𝑝.

customers can bring some profit even in terms of this trivial
cost criterion. Note that variety of various optimization
problemswhere theweighted sumof someperformancemea-
sures should be minimized or maximized under restrictions
imposed on the values of other performance measures can
be formulated and solved based on the results of probabilistic
analysis presented in this paper.

7. Conclusion

We analyzed a queueing model with a single server which
provides service for two types of customers. The system has
a finite buffer for one type of customers and an infinite one
for another type. Service to customers of the same type is
provided according to first in-first out discipline. If both
buffers are not empty at the moment of the service comple-
tion, a type of the next customer, which will be picked up for
service, is defined randomly, if the number of customers in
a finite buffer does not exceed some preassigned threshold.
Errors can occur during service of customers. To simplify
account of these errors, which may lead to a customer loss,
repeated service, or partial repeated service, notion of phase-
type distribution with failures (PHF) was introduced in this
paper. Customers of both types are impatient. This queueing
model can be used, for example, for approximating the
process of information transmission using the protocol of
time division between Control Channel and Service Chan-
nels. The stationary distribution of five-dimensional Markov
chain defining the dynamics of the system is computed and
expressions for the key performance measures of the system
are derived. Results of numerical examples illustrating effect
of parameters of customer’s admission strategy are presented.

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

The work is supported by Tomsk State University Competi-
tiveness Improvement Program.

References

[1] K. Al-Begain, A. Dudin, A. Kazimirsky, and S. Yerima, “Investi-
gation of the M

2
/G
2
/1/∞, N queue with restricted admission

of priority customers and its application to HSDPA mobile
systems,”Computer Networks, vol. 53, no. 8, pp. 1186–1201, 2009.

[2] M. van Eenennaam, A. van de Venis, and G. Karagiannis,
“Impact of IEEE 1609.4 channel switching on the IEEE 802.11p
beaconing performance,” in Proceedings of the IFIP Wireless
Days (WD ’12), pp. 1–8, IEEE, Dublin, Republic of Ireland,
November 2012.

[3] S. Asmussen, Applied Probability and Queues, vol. 51, Springer,
New York, NY, USA, 2nd edition, 2003.

[4] Q.-M. He, “Queues with marked customers,” Advances in
Applied Probability, vol. 28, no. 2, pp. 567–587, 1996.

[5] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models,
The Johns Hopkins University Press, Baltimore, Md, USA, 1981.

[6] A. Graham, Kronecker Products and Matrix Calculus with
Applications, Ellis Horwood, Chichester, UK, 1981.

[7] V. Klimenok and A. Dudin, “Multi-dimensional asymptotically
quasi-Toeplitz Markov chains and their application in queueing
theory,” Queueing Systems, vol. 54, no. 4, pp. 245–259, 2006.

[8] O. Dudina, Ch. Kim, and S. Dudin, “Retrial queuing system
with Markovian arrival flow and phase-type service time dis-
tribution,” Computers & Industrial Engineering, vol. 66, no. 2,
pp. 360–373, 2013.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


