
Research Article
Generalized Robertson-Walker Space-Time Admitting Evolving
Null Horizons Related to a Black Hole Event Horizon

K. L. Duggal

Department of Mathematics and Statistics, University of Windsor, Windsor, ON, Canada N9B 3P4

Correspondence should be addressed to K. L. Duggal; yq8@uwindsor.ca

Received 20 June 2016; Accepted 4 August 2016

Academic Editor: Elias C. Vagenas

Copyright © 2016 K. L. Duggal. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A new technique is used to study a family of time-dependent null horizons, called “Evolving Null Horizons” (ENHs), of generalized
Robertson-Walker (GRW) space-time (𝑀, 𝑔) such that the metric 𝑔 satisfies a kinematic condition.This work is different from our
early papers on the same issue where we used (1 + 𝑛)-splitting space-time but only some special subcases of GRW space-time have
this formalism. Also, in contrast to previous work, we have proved that eachmember of ENHs is totally umbilical in (𝑀, 𝑔). Finally,
we show that there exists an ENH which is always a null horizon evolving into a black hole event horizon and suggest some open
problems.

1. Introduction

Let (𝑀, 𝑔) be a (1 + 𝑛)-dimensional space-time manifold
whose metric 𝑔 satisfies the following kinematic condition:

∇
𝑋
𝑈 = 𝜆 (𝑋 + 𝑔 (𝑋,𝑈)𝑈) , (1)

where 𝑈 is a timelike unit vector, ∇ denotes the Levi-Civita
connection on 𝑀, 𝜆 is a function, and 𝑋 is an arbitrary
vector field on 𝑀. Consider Gaussian normal coordinates
(𝑥0 = 𝑡, 𝑥𝑎) on𝑀 such that 𝑈 = 𝜕/𝜕𝑡 and 𝑔 = 𝑔

𝑖𝑗
𝑑𝑥𝑖𝑑𝑥𝑗 =

−𝑑𝑡2 + 𝑔
𝑎𝑏
𝑑𝑥𝑎𝑑𝑥𝑏, where 𝑖, 𝑗 run over 0, 1, . . . , 𝑛 and 𝑎, 𝑏 run

over 1, . . . , 𝑛 and 𝑔
𝑎𝑏

are functions of all the coordinates 𝑥𝑎.
Let Σ(𝑡 = a constant) be a spacelike slice orthogonal to𝑈 and
𝑋 = 𝜕/𝜕𝑥

𝑎 a coordinate vector field tangent to Σ. Then (1)
reduces to∇

𝜕/𝜕𝑥
𝑎𝜕/𝜕𝑡 = 𝜆(𝜕/𝜕𝑥𝑎)which further implies (with

some computation) that (𝜕/𝜕𝑡)𝑔
𝑎𝑏
= 2𝜆𝑔

𝑎𝑏
. Integrating this

we obtain 𝑔
𝑎𝑏
= 𝑒
2 ∫ 𝜆(𝑡,𝑥

𝑎

)𝑑𝑡
𝛾
𝑎𝑏
, where 𝛾 is a fixed Riemannian

metric on the initial slice (𝑡 = 𝑡
0
a constant). In this paper, we

take 𝜆 as a function of 𝑡 only and set 𝑒∫𝜆(𝑡)𝑑𝑡 = Ω(𝑡); that is,
𝜆 =

̇
Ω/Ω, where an overdot means derivative with respect to

𝑡. Then the metric 𝑔 is of the form

𝑔 = 𝑔
𝑖𝑗
𝑑𝑥
𝑖
𝑑𝑥
𝑗
= −𝑑𝑡

2
+ (Ω)

2

(𝑡) 𝛾
𝑎𝑏
𝑑𝑥
𝑎
𝑑𝑥
𝑏
, (2)

which is generalized Robertson-Walker (GRW) space-time
notion introduced by Aĺıas et al. [1]. It is a warped product,

with base of an open interval of a real line with a negatively
defined metric and fibre of a Riemannian manifold and
not of constant sectional curvature, in general. The reader
will see that the kinematic condition (1) on the space-time
metric plays an important role in the induced geometry
of null hypersurfaces of 𝑀. This is our reason to generate
GRW space-time instead of stating it as a definition. This
class of space-time is inhomogeneous admitting an isotropic
radiation whose subcase is classical Robertson-Walker (RW)
space-time which includes Einstein-de-Sitter space-time,
Friedman cosmologicalmodels, and the static Einstein space-
time. Considerable work is available on GRW space-time,
primarily on spacelike hypersurfaces [1–4] and more cited
therein, and only recently there has been interest (see Kang
[5, 6] andNavarro et al. [7]) on its null submanifold geometry.
However, nothingmuch is available on physical application of
their null hypersurfaces.

It is well-known that the null hypersurfaces have been
used as physical models of black hole horizons in general
relativity. In this paper we show that there exists a physi-
cal model of a family of time-dependent null horizons of
GRW space-time which may evolve into a black hole event
horizon. See Sections 3 and 4 for a brief account on event
horizons, recent works on time-dependent null horizons of
Duggal [8–10] and Sultana and Dyer [11, 12], and more cited
therein. We highlight that the physical use of research on
time-dependent null horizons may have connection (though
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it is too early to be sure) with the latest LIGO [Laser Inter-
ferometer Gravitational-Waves Observatory] experiment (as
per Press Release of February 11, 2016) which confirms the
presence of gravitational waves produced during the final
fraction of a second of the merger of two black holes into a
single massive spinning black hole. Thus, this recent LIGO
experiment reconfirms that black hole has a cosmological
background or it is surrounded by a local matter distribution.
Therefore, there is significant difference in the structure and
properties of the surrounding dynamical region of a black
hole and this latest experiment strengthens the ongoing
research on time-dependent null horizons, in particular, near
such spinning black holes surrounded with gravitational
waves. For information on LIGO via video one may try
http://mediaassets.caltech.edu/gwave/.

2. Family of Null Hypersurfaces

Consider GRW space-time (𝑀, 𝑔) with its metric 𝑔 given by
(2). Let 𝑝 be a point in𝑀 and ((𝑀, 𝑔) : 𝑥1 = a constant) be a
timelike hypersurface of𝑀 passing through 𝑝. Observe that
there is a freedom of choice in taking any one of the spacelike
coordinates constant. Suppose that n is the future directed
timelike unit vector on𝑀 induced by 𝑈 of𝑀 such that the
following holds:

∇
𝑋
n = 𝜆 (𝑡) (𝑋 + 𝑔 (𝑋,n)n) , ∀𝑋 ∈ 𝑇𝑀, (3)

where 𝑔, ∇, and 𝜆(𝑡) are the induced metric, Levi-Civita
connection, and a function on 𝑀, respectively. Let ((S, 𝑞) :
𝑡
0
= a constant) be a connected spacelike hypersurface in𝑀

and hence a codimension two-spacelike submanifold of 𝑀
passing through 𝑝 via the normal exponential map along S
in𝑀 with metric 𝑞 induced from 𝑔. Using (3) and following
a procedure explained in previous section one can show that
𝑀 is also GRW space-time with metric 𝑔 expressed as

𝑔 = −𝑑𝑡
2
+ Ω
2
(𝑡) 𝛾𝐴𝐵𝑑𝑥

𝐴
𝑑𝑥
𝐵
,

2 ≤ 𝐴, 𝐵 ≤ 𝑛, 𝜆 =
Ω̇

Ω
,

(4)

wherewe take𝜆 = Ω̇/Ω and 𝛾
𝐴𝐵

is a fixedRiemannianmetric.
Assume that𝑥 = (𝑥

2
, . . . , 𝑥

𝑛
) are the coordinates in (S

𝑢
, 𝑡 = 𝑢

a constant) centered on 𝑝 so that the metric 𝑞
𝑢
on S
𝑢
is given

by

𝑞
𝑢
= Ω
2

𝑢
𝛾
𝐴𝐵
𝑑𝑥
𝐴
𝑑𝑥
𝐵
, 2 ≤ 𝐴, 𝐵 ≤ 𝑛. (5)

Choose at each point of S
𝑢
a null direction perpendicular in

S
𝑢
and smoothly depending on the foot-point. There are two

such possibilities: the ingoing and the outgoing null direc-
tions.Then, it is easy to see that the union of all geodesics with
the chosen (say outgoing) direction ℓ

𝑢
is a null hypersurface

of 𝑀. Denote by (𝐻
𝑢
, ℎ
𝑢
, ℓ
𝑢
) such a null hypersurface of

𝑀 with degenerate metric ℎ
𝑢
and null normal ℓ

𝑢
. Since 𝐻

𝑢

includes S
𝑢
and its degenerate metric ℎ

𝑢
must be of signature

(0, +, . . . , +), we assume that the Riemannian metric 𝑞
𝑢
of S
𝑢

coincides with the degenerate metric ℎ
𝑢
of𝐻
𝑢
given by

ℎ
𝑢
= (ℎ
𝑢
)
𝐴𝐵
𝑑𝑥
𝐴
𝑑𝑥
𝐵
= Ω
2

𝐻
𝑢

𝛾
𝐴𝐵
𝑑𝑥
𝐴
𝑑𝑥
𝐵
,

2 ≤ 𝐴, 𝐵 ≤ 𝑛,

(6)

where Ω
𝐻
𝑢

is a function on 𝐻
𝑢
induced by the function

Ω
𝑢
of 𝑀. This means that the null hypersurface (𝐻

𝑢
, ℎ
𝑢
)

is conformal to a fixed null hypersurface (𝐻, 𝛾); that is,
ℎ
𝑢
= Ω2
𝐻
𝑢

𝛾, with the conformal functionΩ
𝐻
𝑢

.
In this paper, we take ℓ

𝑢
in some subset of𝑀 around𝐻

𝑢
.

This will permit us to well define the space-time covariant
derivative ∇ℓ

𝑢
. Also, in this way we get a foliation of𝑀 (in

the vicinity of𝐻
𝑢
) by a family (𝐻

𝑢
) so that ℓ

𝑢
is in the part of

𝑀 foliated by this family (for details see Carter [13]) such that
at each point in this region ℓ

𝑢
is a null normal to𝐻

𝑢
for some

value of the parameter 𝑢. Let (ℎ
𝑢
) and (ℓ

𝑢
) be the families of

degenerate metrics and null normal, respectively. Denote by

𝐹 = {((𝐻
𝑢
) , (ℎ
𝑢
) , (ℓ
𝑢
)) : ℎ
𝑢
= Ω
2

𝐻
𝑢

𝛾 ∈ (ℎ
𝑢
)} (7)

a family of null hypersurfaces of (𝑀, 𝑔) conformally related to
a fixed null hypersurface (𝐻, 𝛾, ℓ) and eachΩ

𝐻
𝑢

is a function
on𝐻
𝑢
for some value of 𝑢. Also, let (S

𝑢
) be the corresponding

family of submanifolds of𝑀.
The bending of each 𝐻

𝑢
of 𝐹 in 𝑀 is described by the

Weingarten map:

W
ℓ
𝑢

: 𝑇
𝑝
𝐻
𝑢
󳨀→ 𝑇
𝑝
𝐻
𝑢
,

𝑋
𝑢
󳨀→ ∇

𝑋
𝑢

ℓ
𝑢
.

(8)

W
ℓ
𝑢

associates with each 𝑋
𝑢
of 𝐻
𝑢
the variation of ℓ

𝑢
along

𝑋
𝑢
, with respect to the space-time connection ∇. The second

fundamental form, say 𝐵
𝑢
, of 𝐻

𝑢
is the symmetric bilinear

form related to the Weingarten map by

𝐵
𝑢
(𝑋
𝑢
, 𝑌
𝑢
) = ℎ
𝑢
(W
ℓ
𝑢

𝑋
𝑢
, 𝑌
𝑢
) = ℎ
𝑢
(∇
𝑋
𝑢

ℓ
𝑢
, 𝑌) ,

𝑋
𝑢
, 𝑌
𝑢
∈ 𝑇𝐻
𝑢
.

(9)

𝐵(𝑋
𝑢
, ℓ
𝑢
) = 0 for any𝑋

𝑢
∈ 𝑇𝐻
𝑢
implies that 𝐵

𝑢
has the same

ℓ
𝑢
degeneracy as that of the metric ℎ

𝑢
and it does not depend

on particular choice of ℓ
𝑢
.

Now we deal with the question of obtaining a normalized
expression for a null normal ℓ of a null hypersurface 𝐻 ∈

𝐹. For this purpose, we let s ∈ 𝑇𝑀 be a unit spacelike
normal vector to S defined in some open neighborhood of
corresponding 𝐻. Since the future directed timelike vectors
n of𝑀 and s are orthogonal, it is immediate that the vector
n + s is null so it is tangent to 𝐻. Therefore, one can take
ℓ = n + s as a natural normalization of the null normal to
𝐻. However, this normalization can only be defined for a
single fixed hypersurface 𝐻, whereas we need to normalize
the entire family (ℓ

𝑢
) for any parameter value of 𝑢. For this

purpose, we choose the following normalization of each ℓ
𝑢
∈

(ℓ
𝑢
):

ℓ
𝑢
= (n
𝑢
+ s
𝑢
) ,

where s
𝑢
⋅ s
𝑢
= 1, x

𝑢
∈ 𝑇
𝑝
S
𝑢
⇐⇒ s

𝑢
⋅ x
𝑢
= 0,

(10)



International Scholarly Research Notices 3

which implies that each ℓ
𝑢
is tangent to each member of

𝐹 and it has the property of Lie dragging the family of
submanifolds (S

𝑢
). Then, we define a transversal vector field

k
𝑢
to 𝑇
𝑝
𝐻
𝑢
not belonging to 𝐹 expressed as another suitable

linear combination of n
𝑢
and s
𝑢
such that it represents the

ingoing direction satisfying

𝑔 (ℓ
𝑢
, k
𝑢
) = −1, k

𝑢
=
1

2
(n
𝑢
− s
𝑢
) . (11)

Now we are ready to state and prove the following main
theorem.

Theorem 1. Let 𝐹 = ((𝐻
𝑢
), (ℎ
𝑢
), (ℓ
𝑢
)) be a family of null

hypersurfaces of the GRW space-time (𝑀, 𝑔) defined by (2)
such that 𝐹 is given by (7) and each of its members (𝐻

𝑢
, ℎ
𝑢
, ℓ
𝑢
)

is conformal to a fixed null hypersurface (𝐻, 𝛾, ℓ), where ℎ
𝑢
=

Ω2
𝐻
𝑢

𝛾 for every parameter value of 𝑢. Assume that (𝐻, 𝛾, ℓ) lies
to the future of each (𝐻

𝑢
, ℎ
𝑢
). Then

(a) each (𝐻
𝑢
, ℎ
𝑢
, ℓ
𝑢
) is totally umbilical in (𝑀, 𝑔), with its

volume expansion 𝜃
(ℓ
𝑢
)
= (𝑛 − 1)𝜆

𝑢
where the function

𝜆
𝑢
is as given in (3);

(b) each ℓ
𝑢
is conformal Killing vector (m

ℓ
𝑢

ℎ
𝑢
= 2𝜆
𝑢
ℎ
𝑢
) on

each𝐻
𝑢
;

(c) the family 𝐹 may evolve into a totally geodesic null
hypersurface (𝐻, 𝛾, ℓ) only if 𝜆

𝑢
→ 0 on 𝐻 and then

𝜃
(ℓ)
= 0 on𝐻.

Proof. Let x
𝑢
be a vector tangent to a spacelike hypersurface

S
𝑢
in𝑀. TheWeingarten formula is given by ∇x

𝑢

n
𝑢
= 𝐴n

𝑢

x
𝑢
,

where we denote by 𝐴n
𝑢

the shape operator of S
𝑢
. It follows

from (3) that 𝐴n
𝑢

x
𝑢
= 𝜆
𝑢
x
𝑢
. Denote by 𝐵S

𝑢

the second
fundamental form of S

𝑢
in 𝑀 with respect to n

𝑢
. Then, for

any x
𝑢
, y
𝑢
∈ 𝑇𝑆
𝑢

𝐵S
𝑢

(x
𝑢
, y
𝑢
) = 𝑞
𝑢
(∇x
𝑢

n
𝑢
, y
𝑢
) = 𝑞
𝑢
(𝐴n

𝑢

x
𝑢
, y
𝑢
)

= 𝜆
𝑢
𝑞
𝑢
(x
𝑢
, y
𝑢
) .

(12)

Thus, (S
𝑢
, 𝑞
𝑢
) is totally umbilical in 𝑀. Then, it is easy to

show that any (𝐻
𝑢
, ℎ
𝑢
, ℓ
𝑢
) is also totally umbilical in 𝑀.

Indeed, take 𝐵
𝑢
as the second fundamental form of 𝐻

𝑢
. As

𝐵
𝑢
(ℓ
𝑢
, 𝑋
𝑢
) = 0, ∀𝑋

𝑢
∈ 𝑇𝐻
𝑢
, and corresponding S

𝑢
⊂ 𝐻
𝑢
we

conclude that for every𝑋
𝑢
, 𝑌
𝑢
∈ 𝑇𝐻
𝑢

𝐵
𝑢
(𝑋
𝑢
, 𝑌
𝑢
) = 𝐵
𝑢
(x
𝑢
, y
𝑢
) = 𝐵S

𝑢

(x
𝑢
, y
𝑢
) ,

∀x
𝑢
, y
𝑢
∈ 𝑇𝑆
𝑢
.
(13)

Since the Riemannian metric 𝑞
𝑢
coincides with the corre-

sponding degenerate metric ℎ
𝑢
it follows from above relation

and (12) that

𝐵
𝑢
(𝑋
𝑢
, 𝑌
𝑢
) = 𝜆
𝑢
ℎ
𝑢
(𝑋, 𝑌) , ∀𝑋

𝑢
, 𝑌
𝑢
∈ 𝑇𝐻
𝑢
, (14)

which proves that each 𝐻
𝑢
is totally umbilical in 𝑀. More-

over, it follows from (3) that the volume expansion 𝜃
(ℓ
𝑢
)
=

div(n
𝑢
) = (𝑛 − 1)𝜆

𝑢
, where we have used 𝐵

𝑢
(ℓ
𝑢
, 𝑋
𝑢
) =

0, ∀𝑋
𝑢
∈ 𝑇𝐻
𝑢
, which proves (a). Using the expression

m
ℓ
𝑢

ℎ
𝑢 (𝑋, 𝑌) = ℎ𝑢 (∇𝑋ℓ𝑢, 𝑌) + ℎ𝑢 (∇𝑌ℓ𝑢, 𝑋) (15)

and 𝐵
𝑢
(𝑋
𝑢
, 𝑌
𝑢
) symmetric in the above equation we obtain

𝐵
𝑢
(𝑋
𝑢
, 𝑌
𝑢
) =

1

2
m
ℓ
ℎ
𝑢
(𝑋
𝑢
, 𝑌
𝑢
) , ∀𝑋

𝑢
, 𝑌
𝑢
∈ 𝑇𝐻
𝑢
. (16)

Since 𝐻
𝑢

is totally umbilical, we use 𝐵
𝑢
(𝑋
𝑢
, 𝑌
𝑢
) =

𝜆
𝑢
ℎ
𝑢
(𝑋
𝑢
, 𝑌
𝑢
) in above relation to get m

ℓ
𝑢

ℎ
𝑢
= 2𝜆
𝑢
ℎ
𝑢
on 𝐻
𝑢
.

Hence, each ℓ
𝑢
is conformal Killing vector of the metric ℎ

𝑢

with conformal function 2𝜆
𝑢
which proves (b). For item (c),

since the fixed hypersurface (𝑀, 𝛾, ℓ) is in the future of its
conformally related family 𝐹 of hypersurfaces, (𝐻

𝑢
, ℎ
𝑢
) →

(𝐻, 𝛾) only if the metric ℎ
𝑢
→ 𝛾 for that value of 𝑢, which

further means that Ω
𝑢
→ 1 for that value of 𝑢. We know

that 𝜆
𝑢
= ̇Ω
𝑢
/Ω
𝑢
. Thus, 𝜆

𝑢
→ 0 on 𝐻 for that value of

𝑢 which implies that 𝜃
(ℓ)

= 0 on 𝐻. Now we know that a
null hypersurface of a semi-Riemannian manifold has zero
expansion if and only if it is totally geodesic so (c) holdswhich
completes the proof.

Now we quote the following general result for a totally
umbilical submanifold (also holds for totally geodesic case) of
a semi-Riemannian manifold which is needed to address the
question of howTheorem 1 can be used to show the existence
of null horizons of GRW space-time.

Proposition 2 (Perlick [14]). Let𝐻 be a totally umbilical sub-
manifold of a semi-Riemannian manifold𝑀. Then, (a) a null
geodesic vector field of𝑀 that starts tangential to 𝐻 remains
within 𝐻 (for some parameter interval around the starting
point) and (b)𝐻 is totally geodesic if and only if every geodesic
vector field of𝑀 that starts tangential to𝐻 remains within𝐻
(for some parameter interval around the starting point).

Above result satisfies a requirement for the existence of
a null horizon in relativity. Since we assume that each null
normal ℓ

𝑢
of the family of hypersurfaces 𝐹 is null geodesic,

using above result of Perlick, we state the following corollary
of Theorem 1 (proof is easy).

Corollary 3. Let (𝑀, 𝑔) be null geodesically complete space-
time obeying the null energy condition Ric(𝑋,𝑋) ≥ 0 for all
null vectors 𝑋 such that the hypothesis of Theorem 1 holds.
Then, each null geodesic vector ℓ

𝑢
of 𝐹 is contained in its

respective smooth totally umbilical null hypersurface (𝐻
𝑢
, ℓ
𝑢
) of

(𝑀, 𝑔). In particular, this property will also hold for the totally
geodesic null hypersurface (𝐻, 𝛾) of (𝑀, 𝑔).

3. Physical Interpretation

In this section we present a physical interpretation of
Theorem 1. For this purpose, recall that the vorticity-free
Raychaudhuri equation for any member (𝐻, ℎ, ℓ) of the
family 𝐹 is given by

𝑑 (𝜃
(ℓ)
)

𝑑𝑠
= −𝑅
𝑖𝑗
ℓ
𝑖
ℓ
𝑗
− 𝜎
𝑖𝑗
𝜎
𝑖𝑗
−

𝜃2

𝑛 − 1
, (17)

where 𝜎
𝑖𝑗
= ∇
←
(𝑖
(ℓ)
𝑗)
− (1/2)𝜃

(ℓ)
ℎ
𝑖𝑗
is the shear tensor, 𝑠 is a

pseudoarc parameter such that ℓ is null geodesic, and 𝑅
𝑖𝑗
is
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the Ricci tensor of𝑀. We also recall that in two recent papers
[8, 9] we studied a new class of null horizons of space-time
using the following definition.

Definition 4. A null hypersurface (𝐻, ℎ, ℓ) of the family 𝐹 of
space-time (𝑀, 𝑔) is called an Evolving Null Horizon, briefly
denoted by ENH, if

(i) 𝐻 is totally umbilical in𝑀 and may include a totally
geodesic portion;

(ii) all equations of motion hold at 𝐻 and energy tensor
𝑇
𝑖𝑗
is such that 𝑇𝑎

𝑏
ℓ𝑏 is future-causal for any future

directed null normal ℓ.

Comparing this definition withTheorem 1, we notice that
the first part of its condition (i) is the same as the first part
of conclusion (a) of Theorem 1 and energy condition (ii)
requires that 𝑅

𝑖𝑗
ℓ𝑖ℓ𝑗 is nonnegative for any ℓ, which implies

(see Hawking and Ellis [15, page 95]) that 𝜃
(ℓ)

monotonically
decreases in time (whichwe take as𝑢 parameter for the family
𝐹) along each ℓ; that is,𝑀 obeys the null convergence condi-
tion. Thus, in the region where 𝜃

(ℓ)
is nonzero each member

of the family 𝐹 will be totally umbilical with 𝑢-parameter
time-dependent metric ℎ and may include a totally geodesic
portion where 𝜃

(ℓ)
vanishes for a fixed (𝐻, 𝛾), so condition

(c) will hold. It follows from the Raychaudhuri equation
that each ℓ will have nonzero or zero shear accordingly as
its expansion function 𝜃

(ℓ)
is nonzero or zero, respectively.

Moreover, it is easy to see that condition (b) of Theorem 1
will hold for an ENH. This clearly shows that there exists a
“Physical Model” of a class 𝐹 = ((𝐻

𝑢
), (ℎ
𝑢
), (ℓ
𝑢
)) of a family of

totally umbilical null hypersurfaces of the space-time (𝑀, 𝑔),
satisfying the hypothesis and three conclusions ofTheorem 1,
such that each of its members is an Evolving Null Horizon
(ENH) which may evolve into a fixed null hypersurface
(𝐻, 𝛾) with zero expansion, 𝜃

(ℓ)
= 0. For up-to-date

information with some examples of ENHs we refer to Duggal
[8–10, 16].

However, Theorem 1 is limited by the fact that not
every such totally umbilical null hypersurface evolving into
a totally geodesic null hypersurface can be related to a black
hole horizon. Therefore, we must show that there exists a
prescribed family of ENHs of GRW space-time which is
related to a black hole horizon. To complete our analysis on a
physical interpretation we need the following information on
a class of black hole horizons.

Event Horizons. A boundary of space-time is called a null
event horizon (briefly denoted by EH) beyond which events
cannot affect the observer. An EH is intrinsically a global
concept as its definition requires the knowledge of the entire
space-time to determine whether null geodesics can reach
null infinity. In particular, an event horizon is called a
Killing horizon if it is represented by a null hypersurface
which admits a Killing vector field. Most important family
is the Kerr-Newman black holes. EHs have played a key
role and this includes Hawking’s area increasing theorem,
black hole thermodynamics, black hole perturbation theory,
and the topological censorship results. Moreover, an EH

always exists in black hole asymptotically flat space-time
under a weak cosmic censorship condition and is represented
by a Killing horizon such that the space-time is analytic
and the stress tensor obeys the weak energy condition. The
null hypersurface of such space-time admits a nonvanishing
Killing vector field, say ℓ, which may or may not be the
Killing vector field of the landing space-time. The latter case
corresponds to a rotating asymptotically flat black hole which
we do not discuss here. We refer to Hawking’s paper on
“event horizons” [17], three papers of Hájiček’s work [18–
20], and more cited therein. Based on this brief account,
we now recall the following work of Galloway [21] who
has shown that the null hypersurfaces which arise most
naturally in general relativity, such as black hole EHs, are
in general 𝐶0 but not 𝐶1. His approach has its roots in
the well-known geometric maximum principle of E. Hopf,
a powerful analytic tool which is often used in the theory
of minimal or constant mean curvature hypersurfaces. This
principle implies that two different minimal hypersurfaces in
a Riemannian manifold cannot touch each other from one
side. In year 2000, Galloway [21] proved the following result
for smooth null hypersurfaces restricted to the zero mean
curvature case and suitable for asymptotically flat space-time.

Theorem 5. Let𝐻
1
and𝐻

2
be smooth null hypersurfaces in a

space-time manifold 𝑀. Suppose that (1) 𝐻
1
and 𝐻

2
meet at

𝑝 ∈ 𝑀 and 𝐻
2
lies to the future side of 𝐻

1
near 𝑝 and (2)

the null mean curvatures 𝜃
1
of 𝐻
1
and 𝜃

2
of 𝐻
2
satisfy 𝜃

2
≤

0 ≤ 𝜃
1
. Then𝐻

1
and𝐻

2
coincide near 𝑝 and this common null

hypersurface has mean curvature 𝜃 = 0.

Although the above maximum principle theorem is for
smooth null hypersurfaces, in reality null hypersurfaces as
models of black hole event horizons are the null portions of
achronal boundaries as the sets = 𝜕𝐼

±(𝐴), 𝐴 ⊂ 𝑀, which
are always 𝐶0 hypersurfaces and contain nondifferentiable
points. These null geodesics (entirely contained in 𝐶0 null
hypersurface 𝐻) are the null geodesic generators of 𝐻. For
this reason, Galloway also proved his above result for 𝐶0 null
hypersurface and the following physically meaningful null
splitting theorem.

Theorem6 (see [21]). Let (𝑀, 𝑔) be null geodesically complete
space-time which obeys the null energy condition, Ric(𝑋,𝑋) ≥
0 for all null vectors 𝑋. If 𝑀 admits a null line 𝜂, then 𝜂
is contained in a smooth closed achronal totally geodesic null
hypersurface.

Examples (see [21]) are Minkowski space, de-Sitter, and
anti-de-Sitter spaces. Now we state the following theorem as
physical interpretation of Theorem 1.

Theorem 7. Let (𝑀, 𝑔) be null geodesically complete GRW
space-time which obeys the null energy condition, Ric(𝑋,𝑋) ≥
0 for all null vectors 𝑋. Suppose F = ((𝐻

𝑢
), (ℎ
𝑢
), (ℓ
𝑢
)) is a

family of null hypersurfaces of (𝑀, 𝑔) defined by (2) and given
by (7) where each of its members (𝐻

𝑢
, ℎ
𝑢
, ℓ
𝑢
) is conformally

related to a totally geodesic hypersurface (𝐻, 𝛾, ℓ) such that the
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conformal factor of ℎ
𝑢
= Ω2
𝐻
𝑢

𝛾 for every parameter value of 𝑢.
Then, conditions (a) and (b) of Theorem 1 will hold. Moreover,
let (𝐻, 𝛾, ℓ) be in the future of each (𝐻

𝑢
, ℎ
𝑢
, ℓ
𝑢
) and it admits

a Killing horizon. Then, (c) the family F evolves into a black
hole event horizon represented by (𝐻, 𝛾, ℓ) only if 𝜆

𝑢
→ 0 at

null infinity.

Theproofs of items (a) and (b) follow exactly as the proofs
of items (a) and (b) in Theorem 1. For the proof of item (c)
we first notice that𝐻 admits a Killing horizon. Secondly, the
Killing horizon 𝐻 satisfies a particular case of Corollary 3
andGalloway’s [21] null splittingTheorem 6.This implies that
when 𝜆

𝑢
→ 0 the Killing horizon𝐻 will be equivalent to an

event horizon at null infinity, which proves (c).
We, therefore, claim that Theorem 1 provides a physical

model of a family of time-dependent Evolving Null Horizons
(ENHs) of GRW space-time andTheorem 7 is a step towards
the ongoing physical use of ENHs of prescribed GRW space-
time which admits a null event horizon satisfying Galloway’s
null splitting Theorem 6 whose above listed three examples
(which are subcases of GRW space-time) are also examples of
Theorem7. Consequently, the twoTheorems 1 and 7 complete
the objective of this paper.

4. Conclusion

The motivation for this work originated from the need for
time-dependent null horizons which describe the geometry
of a null hypersurface of dynamical space-time. For this
purpose, in our four previous papers [8–10, 16] we studied
a quasilocal family of “Evolving Null Horizons” (ENHs) of
(1 + 𝑛)-splitting space-time, explained the reason for such
a study, constructed a variety of examples of ENHs, and in
some cases established their relation with black hole isolated
horizons introduced by Ashtekar et al. [22]. The following
is a brief account on nonexpanding, weakly, and isolated
horizons.

Definition 8. A null hypersurface (𝐻, 𝛾) of 4-dimensional
space-time (𝑀, 𝑔) is called a nonexpanding horizon (NEH)
if (1) 𝐻 has a topology 𝑅 × 𝑆2, (2) any null normal ℓ𝑎 of
𝐻 has vanishing expansion, 𝜃

(ℓ)
= 0, and (3) all equations

of motion hold at 𝐻 and the stress energy tensor 𝑇
𝑖𝑗
is such

that−𝑇𝑖
𝑗
ℓ𝑗 is future-causal for any future directed null normal

ℓ𝑖.

Condition (1) implies that 𝐻 is ruled by the integral
curves of the null direction field which is normal to it.
Conditions (2) and (3) imply that m

ℓ
𝛾 = 0 on 𝐻, which

further implies that themetric 𝛾 is time-independent and𝐻 is
totally geodesic in𝑀. Also, it follows from the Raychaudhuri
equation that ℓ is shear-free on𝐻. In general, there does not
exist a unique induced connection on 𝐻 due to degenerate
𝛾. However, on an NEH, the property m

ℓ
𝛾 = 0 implies that

the space-time connection ∇ induces a unique (torsion-free)
connection, sayD, on𝐻 compatible with 𝛾. We say that two
types of null normal, ℓ and ℓ, belong to the same equivalence
class [ℓ] if ℓ = 𝑐ℓ for some positive constant 𝑐.

Definition 9. The pair (𝐻, [ℓ]) is called a weakly isolated
horizon (WIH) if it is NEH and each normal ℓ ∈ [ℓ] satisfies
(m
ℓ
D
𝑖
− D
𝑖
m
ℓ
)ℓ𝑖 = 0; that is, D

𝑖
ℓ𝑗 is time-independent.

Moreover,WIH (𝐻, 𝛾, [ℓ]) is called an isolated horizon (IH) if
the full connectionD is time-independent, that is, if (m

ℓ
D
𝑖
−

D
𝑖
m
ℓ
)𝑉 = 0 for arbitrary vector fields 𝑉 tangent to𝐻.

We refer to Ashtekar et al. [23] and several other papers
listed therein for information with examples on isolated
horizons.

In this paper, for the first time in the literature we have
studied the existence of a family of time-dependent ENHs in
GRW space-time which, in general, is not (1 + 𝑛)-splitting
space-time. Since our early works in which the study on
ENHs of (1 + 𝑛)-splitting space-time was explored, we have
used a new technique of using the kinematic condition (1) for
constructing the GRW space-time (instead of defining it) and
proving Theorems 1 and 7 is an important step towards the
ongoing research on time-dependent null horizons. On the
other hand we mention that recently Caballero et al. [4] have
proved the following characterization of prescribed space-
time which can be globally split as GRW space-time.

Theorem 10. A Lorentzian manifold (𝑀, 𝑔) admits a global
decomposition as GRW space-time if and only if it has a
timelike gradient conformal Killing vector field𝐾, such that the
flow of its normalized vector field, 𝑍, is well defined and onto
a domain 𝐼 ×L for some interval 𝐼 ≤ 𝑅 and some leaf of the
orthogonal foliation to 𝐾.

Contrary to this, note that our working GRW space-
time does not require a conformal Killing vector field. Also,
observe that in this paper we have only related ENHs to
black hole event horizons represented by a Killing horizon,
whereas in our previous works [8–10, 16] we related ENHs
to one of the three types of isolated horizons which, unlike
event horizons, may not be represented by a Killing horizon.
Note however that any Killing horizon which is topologically
𝑅×𝑆
2 is an isolated horizon which is the only common result

between this paper andour previous papers on the same issue.
It is important to mention that Lewandowski [24] has shown
that Einstein’s equations admit an infinite dimensional family
of solutions with isolated horizons which are not Killing
horizons. A subfamily of Robertson-Trautman space-time
provides explicit examples of space-timewhich admit IHs but
do not admit a Killing vector in any neighborhood of it [25].

Finally, we discuss similarity and difference between
our results in this paper and two papers of Sultana and
Dyer [11, 12] related to common issue of existence of time-
dependent null horizons. In [11], they considered a conformal
transformation 𝑔 = Ω2𝑔 to a stationary, asymptotically
flat space-time (𝑀, 𝑔) admitting a Killing horizon 𝐻. They
have shown that such a hypersurface 𝐻 is null geodesic,
called a conformal Killing horizon (CKH) if and only if the
twist of the conformal Killing trajectories on 𝑀 vanishes.
Moreover, CKHs are time-dependent and they have a link
with an event horizon. In [12] they constructed an example
of CKH in de-Sitter space-time. Consequently, although their
result on existence of time-dependent CKH is similar to the
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conclusions ofTheorems 1 and 7, their work is only limited to
null hypersurfaces of asymptotically flat space-time whereas
our results in this paper are applicable to a variety of GRW
space-time.

5. Future Prospects

(A) Since an event horizon refers to infinity, it is more
appropriate (see details in [23]) to use one of the three
types of isolated horizons which can easily locate a
black hole. For this reason, one may try different
approach to show the existence of a family of ENHs of
a prescribed class of GRW space-time which relate to
isolated horizons. This opens the possibility of using
the global splitting Theorem 10 and then proving a
result similar to Theorem 1 for existence of ENHs
related to an isolated horizon.

(B) We know that an event horizon always exists in
black hole asymptotically flat space-time and isolated
horizons approximate event horizons of a black hole
at late stages of gravitational collapse and can be easily
located, as stated in our previous papers. However,
the following question still remains open: Does there
always exist an ENH of black hole space-time?

(C) Since an ENH comes from a family of null hypersur-
faces, its existence and uniqueness are questionable,
which is still an open problem.Weneed an input from
interested readers for these open problems.
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[2] L. J. Aĺıas, A. Romero, andM. Sánchez, “Spacelike hypersurfaces
of constant mean curvature and Calabi-Bernstein type prob-
lems,” Tohoku Mathematical Journal, vol. 49, no. 3, pp. 337–345,
1997.
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