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The soft mode dynamical model has been used to study dielectric properties and ultrasonic attenuation in KDP-type ferroelectric
crystals.Themodel Hamiltonian proposed by Blinc and Zeks has beenmodified by considering lattice anharmonicity up to fourth-
order. The correlations appearing in the dynamical equation have been evaluated using double-time thermal retarded Green’s
functions method and Dyson’s equation. Without any decoupling, the higher order correlations, appearing in the dynamical
equation, have been evaluated using the renormalized Hamiltonian. The expressions for collective frequencies, width, dielectric
constant, ultrasonic attenuation, and tangent loss have been calculated.The dielectric properties and ultrasonic attenuation strongly
depend on the relaxational mode behavior of stochastic motion of H

2
PO
4
group in KDP-type ferroelectrics. By fitting model

values of physical quantities, the temperature dependence of ⟨𝑆𝑧
𝑞
⟩ and ⟨𝑆

𝑥

𝑞
⟩ for different value of four-body coupling coefficient and

dielectric constant and loss tangent has been calculated. The calculated and observed results have been found in good agreement.

1. Introduction

The oscillations of atoms in solids are responsible for differ-
ent characteristics, such as specific heat, optical, dielectric,
and electrical properties. The anharmonicity in solids is
responsible for existence of thermal expansion, temperature
variation of elastic constants, lattice thermal conductivity,
deviation of specific heat from Dulong-Petit law at high
temperature, existence of ferroelectricity in certain materials,
and so forth. Many attempts have been made theoretically
and experimentally to find the explanation of these phe-
nomena in terms of anharmonicity. Extensive reviews [1, 2]
are available discussing the contribution of anharmonicity to
various properties of crystals.

In order-disorder type ferroelectrics, as Potassium Dihy-
drogen Phosphate (KH

2
PO
4
), the transition is associated

with the tunneling of proton through a barrier between
two positions of minimum potential energy in double well
potential in the hydrogen bond at the transition temperature
[3]. Busch [4] was the first to show that KDP (KH

2
PO
4
)

exhibits a phase transition at low temperature. KDP is pro-
totype of a family of crystals with bridging hydrogen bonds

and its physical properties have been extensively studied
[3, 5–10].

Kaminow and Damen [11] first observed the soft mode
associated with the ferroelectric phase transition of the KDP-
type crystal at 122.3 K bymeasuring the low frequency Raman
scattering in 𝑥(𝑦𝑥)𝑦 configuration. Since then 𝐵

2
(𝑧) soft

mode which is connected to the susceptibility along the
crystalline 𝑐-axis through the Lyddane-Sachs-Teller relation
[12] has been extensively studied by Scott [13] and interpreted
using the pseudospin model [14–16] and its modifications
in [3, 17]. In these theories, such a particular mode of
protonmotions along hydrogen bonds in 𝑎-𝑏 plane is coupled
to other ion modes, bearing an electrical dipole moment
along 𝑐-axis is considered to play an essential role for the
ferroelectric transition, and therefore little attention has been
paid to themodes other than𝐵

2
(𝑧) softmode. InKDP crystal,

however, there are four tunneling protons in a primitive unit
cell of the paraelectric (hereafter referred to as PE) phase
and consequently four normal modes are belonging to 𝐵

2
(𝑧),

a doubly degenerate 𝐸(𝑥, 𝑦), and 𝐴
2
modes [18]. 𝐸(𝑥, 𝑦)

mode, which is both infrared and Raman active, provides
valuable information, because this mode and 𝐵

2
(𝑧) mode
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reflect the nature of collective proton motion which triggers
the phase transition, and, moreover, in contrast to 𝐵

2
(𝑧), it

is directly related to the polarization along the crystalline 𝑎-
axis.

At first, Pak [19] employed Green’s function methods
in the order-disorder type ferroelectrics and, however, did
not consider the anharmonic interactions. The phonon
anharmonic interactions have been found very important in
explaining dielectric, thermal, and scattering properties of
solids by many authors [6–9, 20, 21] in the past. Pak’s theory
was further developed by Ramakrishnan and Tanaka [22],
who calculated the excitation spectrum of the system but
did not consider the anharmonic interactions.Their attempt,
however, established the superiority of Green’s function
method over the other methods. Ganguli et al. [23] modified
Ramakrishnan and Tanaka theory by considering anhar-
monic interaction. Their treatment explains many features
of order-disorder ferroelectrics. However, due to insufficient
treatment of anharmonic interactions, they could not explain
quantitatively good results and could not describe some very
interesting properties, like dielectric properties, ultrasonic
attenuation, relaxation rate, and so forth.

In the present study, the four-particle cluster model
Hamiltonian with the phonon anharmonicity up to fourth-
order has been taken to theoretical study of dielectric prop-
erties and ultrasonic attenuation in KDP-type crystals, using
double time Green’s functions method and Dyson’s equation.
Proton Green’s function and phonon Green’s function have
been solved for the collective system. Expressions for collec-
tive mode frequency shifts, widths, transition (Curie) tem-
perature, and the expectation value of the proton collective
mode components at site 𝑞 (⟨𝑆𝑧

𝑞
⟩,⟨𝑆𝑥
𝑞
⟩) have been derived

and discussed in KDP-type crystals. By fitting model values
of physical quantities, the temperature dependence of ⟨𝑆

𝑧

𝑞
⟩

and ⟨𝑆
𝑥

𝑞
⟩ for different value of four-body coupling, dielectric

constant, and loss tangent has been calculated.The calculated
and observed results have been found in good agreement.

2. The Model Hamiltonian and
Green’s Function

For KDP crystal, the four-particle cluster model Hamiltonian
[24] along with third- and fourth-order phonon anharmonic
interaction terms is expressed as

𝐻 = −2Ω∑
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(1)

where the first two terms constitute the original pseu-
dospin model Hamiltonian and the third is the quadrupole

contribution (the four-body interaction). 𝑆𝑥
𝑖
is the tunnel-

ing operator which measures the tunneling power of the
proton between the hydrogen double well, Ω the tunneling
frequency, and 𝑆

𝑧

𝑖
the half of the difference of the occupation

probabilities for the proton in the two equilibrium positions
of hydrogen bond. 𝐽

𝑖𝑗
is the two-body coupling coefficient and

is the same for every pair of protons in KDP and the four-
body coupling coefficient, and 𝐽



𝑖𝑗𝑘𝑙
refers to the four hydrogen

bonds in the PO
4
group in KDP. In the last fourth terms 𝜔

𝑘

is bare phonon frequency, 𝐴
𝑘
and 𝐵

𝑘
are displacement and

momentum operators, 𝑉
𝑖𝑘
is proton-lattice interaction term,

and 𝑉
3
and 𝑉

4
are the third- and fourth-order anharmonic

coefficients.

2.1. Collective Proton Wave Width and Shift. The correlations
appearing in the proton response function can be evaluated
using double time thermal retarded Green’s function [25]
using the symmetrical decoupling scheme, after applying
Dyson’s treatment:

𝐺
𝑧𝑧

𝑞𝑞
 (𝑡 − 𝑡


) = (𝑆

𝑧

𝑞
(𝑡) ; 𝑆
𝑧

𝑞
 (𝑡

))

= −𝑗𝜃 (𝑡 − 𝑡

) ⟨[𝑆
𝑧

𝑞
(𝑡) , 𝑆
𝑧

𝑞
 (𝑡

)]⟩ ,

(2)

where the angular brackets denote the average over the large
canonical ensemble and 𝜃(𝑡) is the Heaviside step function
having properties

𝜃 (𝑡) = 1 for 𝑡 > 1,

𝜃 (𝑡) = 0 for 𝑡 < 1, 𝑗 = (−1)
1/2

.
(3)

Differentiating (2) twice with respect to time “𝑡,” using
Hamiltonian (1) taking Fourier transformation, one obtains

(𝜔
2
− Ω
2
)𝐺
𝑧𝑧

𝑞𝑞
 =

Ω⟨𝑆
𝑥
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+

Ω

𝜋
𝐸 (𝜔) , (4)

where 𝐸(𝜔) is higher order Green’s functions:

𝐸 (𝜔) = (𝐹
𝑞
(𝑡) ; 𝑆
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𝑞
) , (5)

with
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)] .

(6)

𝐸(𝜔) is calculated by differentiating (5) twice with respect to
“𝑡” using Hamiltonian (1) and then taking Fourier transfor-
mation; one obtains

𝐸 (𝜔) =
𝜋 (𝜔
2
− Ω
2
)𝐺
𝑧𝑧

𝑞𝑞


𝑗Ω
−

𝐸 (𝜔)

𝑗
, (7)

and higher order Green’s functions

𝐸 (𝜔) = (𝐹
𝑞
(𝑡) ; 𝐹
𝑞
 (𝑡

)) (8)
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with
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(9)

Substituting the value of 𝐸(𝜔) from (7) into (4) and using
Dyson’s equation, one obtains

𝐺
𝑧𝑧

𝑞𝑞
 (𝜔 + 𝑗𝜀) =

Ω⟨𝑆
𝑥

𝑞
⟩ 𝛿
𝑞𝑞


𝜋 [𝜔2 − Ω̃ − (Ω/2𝜋 ⟨𝑆𝑥
𝑞
⟩)𝐸 (𝜔)]

, (10)

where the renormalized frequency is

Ω̃
2

= 𝑎
2
+ 𝑏
2
− 𝑏𝑐, (11)

with
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𝑧
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3

, (11a)

𝑏 = 2Ω, (11b)

𝑐 = 𝐽
0
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Higher order Green’s functions 𝐸(𝜔) are calculated using
symmetrical decoupling scheme, the cross combinations are
not considered because they do not contribute significantly,
and (10) can be written as

Limit
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, (12)

where ̃̃
Ω is the proton renormalized frequency of the coupled

system, which on solving self-consistently takes the form

̃̃
Ω
2

= Ω̃
2

+ 2ΩΔ
𝑠
(𝑞, 𝜔) . (13)

The real and imaginary parts of (12) are obtained by using the
formula
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1
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=

1

𝑥
∓ 𝑗𝜋𝛿 (𝑥) . (14)

Δ
𝑠
(𝑞, 𝜔) and Γ

𝑠
(𝑞, 𝜔) represent collective proton mode fre-

quency shift and width given as
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with
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(17)

2.2. Collective Phonon Half Width and Mode Frequency Shift.
The acoustic phonon frequency width and shift are obtained
analogously from acoustic phonon Green’s function:

𝐺(𝑡 − 𝑡

) = (𝐴
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+

𝑞
) . (18)

Differentiating (18) twice with respect to time “𝑡,” using
Hamiltonian (1) taking Fourier transformation, one has
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2
) . (20a)

Higher order Green’s functions are evaluated without any
decoupling and using renormalizedHamiltonian. Putting the
evaluated value of higher order Green’s function in (19), one
gets
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The real part of 𝑃(𝑞, 𝜔) is obtained by using (14) and the
collective mode frequency shift is obtained as
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/2) is occupation number and
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𝐵
being Boltzmann’s constant and 𝑇 being the

absolute temperature. Calculating (20) self-consistently and
approximating, the collective mode frequency is given by
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Equation (22a) is obtained using model Hamiltonian (1), and
(22b) and (22c) are obtained without decoupling and using
the renormalized Hamiltonian
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The imaginary part of 𝑃(𝑞, 𝜔) is obtained by using (19) and
collective phonon half width is obtained as

Γ
𝑝
(𝑞, 𝜔) = 𝜋 Im𝑃 (𝑞, 𝜔) = 𝜋

3

∑
𝑖=3

𝐺


𝑖𝑝
(𝑞, 𝜔) . (25)

2.3. Order Parameter Values of ⟨𝑆
𝑥

𝑞
⟩, ⟨𝑆
𝑦

𝑞
⟩, and ⟨𝑆

𝑧

𝑞
⟩. The

expectation values of the proton collective mode component
at site “𝑞” have been obtained by Blinc and Zeks [26] as

⟨𝑆
𝑥

𝑞
⟩ =

Ω

Ω̃
tanh(

𝛽Ω̃

2
) ,

⟨𝑆
𝑦

𝑞
⟩ = 0,

⟨𝑆
𝑧

𝑞
⟩ =

𝑎

2Ω̃
tanh(

𝛽Ω̃

2
) .

(26)

In PE phase (𝑇 > 𝑇
𝑐
), (26) represent a system of 3𝑁 equations

for the average value of the collective mode components.The
solution of this system will, however, be stable only if they
minimize the free energy, that is, if ⟨𝑆𝑧

𝑞
⟩ = ⟨𝑆

𝑦

𝑞
⟩ = 0, and so

⟨𝑆
𝑥

𝑞
⟩ =

Ω

(4Ω2 − 2Ω𝐽
0
⟨𝑆𝑥
𝑞
⟩)
1/2

⋅ tanh(
(4Ω
2
− 2Ω𝐽

0
⟨𝑆
𝑥

𝑞
⟩)
1/2

2𝑘
𝐵
𝑇

) ,

(27)

in the ferroelectric phase (𝑇 < 𝑇
𝑐
) [27]. Consider

⟨𝑆
𝑥

𝑞
⟩ =

2Ω

𝐽
0
+ 𝐽
0
⟨𝑆𝑧
𝑞
⟩
2
,

⟨𝑆
𝑦

𝑞
⟩ = 0,

⟨𝑆
𝑧

𝑞
⟩ =

1

2
tanh(

𝑎

2𝑘
𝐵
𝑇
) .

(28)

2.4. Dielectric Constant and Tangent Loss. Following Kubo
[28] and Zubarev [25] the real part of dielectric constant is
given by

𝜀

(𝜔) − 1 = −8𝜋

2
𝑁𝜇
2
𝐺

(𝜔) , (29)

where 𝜇 is the effective dipole moment per unit cell and𝑁 is
the number of unit cells in the sample.

The dielectric loss (tan 𝛿) is defined as the ratio of
imaginary and real parts of dielectric constant and can be
written as

tan 𝛿 =
𝐺

(𝜔)

𝐺 (𝜔)
. (30)

Thus retarded phonon Green’s function is enough to deter-
mine the dielectric constant and loss tangent. Using (29) and
(22), the real part of dielectric constant can be written as

𝜀

(𝜔) − 1 =

−8𝜋𝑁𝜇
2
�̃� (𝜔
2
− ̃̃𝜔
2

)

[(𝜔2 − ̃̃𝜔
2

)
2

+ 4𝜔2Γ2
𝑝
(𝜔)]

. (31)
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For the experimental range of frequencies 𝜔 ≪ ̃̃𝜔 (as well as
𝜔𝜏
𝑝
≪ 1 for KDP crystals), (31) can be reduced to

𝜀

(𝜔) ≅

8𝜋𝑁𝜇
2
�̃�

̃̃𝜔
2

, as 𝜀

(𝜔) ≫ 1, (32)

where ̃̃𝜔
2

is given by (20) and �̃� is given by (20a).
The tangent loss is given by

tan 𝛿 =
𝜀


𝜀
=

−𝜔Γ
𝑝

[(𝜔2 − ̃̃𝜔
2

)]
, (33)

where Γ
𝑝
is given by (25). For 𝜔 ≪ ̃̃𝜔, (33) becomes

tan 𝛿 =
−𝜔Γ
𝑝

̃̃𝜔
2

=
𝜔 (𝛼 + 𝛽𝑇 + 𝛾𝑇

2
)

(𝑇 − 𝑇
𝑐
)

, (34)

where 𝛼 is harmonic and defect contribution, 𝛽 and 𝛾 are due
to three and four phonon anharmonic interaction terms of
the lattice.

2.5. Ultrasonic Attenuation. The expression for ultrasonic
attenuation constant is given by

𝛼
𝑝
(𝑞, 𝜔) =

Γ
𝑠
(𝑞, 𝜔)

𝐶
𝜇
(𝑞)

, (35)

where damping constant is given by (17) and 𝐶
𝜇
(𝑞) is the

ultrasonic velocity. For small 𝑞 limit, we obtain the collective
proton mode frequency width, for 𝜔 ≪ ̃̃𝜔, from (17)
expressed as

Γ
𝑠
=

2𝑉
2

𝑞
⟨𝑆
𝑥
⟩ 𝜔
2
𝜏
𝑝

̃̃𝜔
2

𝑞
Ω(1 + 𝜔2𝜏2

𝑝
)

+
𝜋𝑏𝑐
2

2Ω̃
{𝛿 (𝜔 − Ω̃) − 𝛿 (𝜔 + Ω̃)}

+
𝜋𝑎
2
Ω̂

2𝑏
{𝛿 (𝜔 − Ω̂) − 𝛿 (𝜔 + Ω̂)} ,

(36)

where 𝜏
𝑝
is polarization relaxation time and is given by Litov

and Garland [29] as

𝜏
𝑝
=

2Γ
𝑝

̃̃𝜔
2

−

. (37)

Similar expressions for frequency shift and ultrasonic atten-
uation have been derived by Zurek [30], using the Landau-
Khalatnikov theory. If the collective mode damping is
neglected, a discontinuity in sound velocity is obtained at
𝑇 = 𝑇

𝑐
, since ̃̃𝜔

2

−
is proportional to (𝑇

𝑐
− 𝑇) for 𝑇 ≤ 𝑇

𝑐
. the

effect of factor (1+𝜔
2
𝜏
2

𝑝
)
−1 is to smooth out the discontinuity.

The ultrasonic attenuation peaks for 𝜔𝜏
𝑝
≅ 1 and 𝜔

𝑞
(i.e.,

̃̃𝜔
−
) goes to zero as𝑇 → 𝑇

𝑐
. For temperature such as𝜔𝜏

𝑝
≪ 1,

the attenuation will have the form

𝛼 (𝑞) =
Λ𝜔
2
𝜏
𝑝

𝑇𝑐 − 𝑇

+ 𝛼
0
, (38)

where

𝛼
0
=

𝜋𝑏𝑐
2

2Ω̃𝐶
𝜇

[𝛿 (𝜔 − Ω̃) − 𝛿 (𝜔 + Ω̃)]

+
𝜋𝑎
2
Ω̂

2𝑏𝐶
𝜇

[𝛿 (𝜔 − Ω̂) − 𝛿 (𝜔 + Ω̂)] ,

Λ =
2𝑉
2

𝑞
⟨𝑆
𝑥
⟩

Ω𝐶
𝜇
𝛾

.

(39)

The dependence of ultrasonic attenuation on applied fre-
quency (𝜔) and the collective mode frequency ( ̃̃𝜔

−
) may be

expected to apply also to the displacive phase transition [31],
for which the coupling is linear to the strain and bilinear to
the soft optical normal mode coordinates, independent of
whether the phonon instability occurs at 𝑞 = 0, 𝑞 = 𝑞

𝑘
, or

at a general point in the Brillouin zone. Though the linear
dependence of ( ̃̃𝜔

−
) on (𝑇−𝑇

𝑐
) has been assumed for 𝑇 ≅ 𝑇

𝑐
,

this dependence presumably breaks down sufficiently close to
𝑇
𝑐
.

2.6. Transition Temperature. In the PE phase ⟨𝑆
𝑧

𝑞
⟩ = 0, and

the stability limit of PE phase is determine by the temperature
where ̃̃𝜔

𝑞−
approaches zero as 𝑇 → 𝑇

𝑐
. Consider

̃̃𝜔
2

𝑞−
= (

𝜕̃̃𝜔
2

𝑞−

𝜕𝑇
)

𝑇=𝑇
𝑐

(𝑇 − 𝑇
𝑐
) , (40)

̃̃𝜔
2

𝑞−
≅ 𝛾 (𝑇 − 𝑇

𝑐
) , (41)

using (13), where

𝛾 =
Ω
2
�̂�

[𝑘
𝐵
𝑇2
𝑐
cosh2 (Ω/𝑘

𝐵
𝑇
𝑐
)]

, (42)

with effective exchange coupling constant

�̂� = 𝐽
0
+

2𝑉
2

𝑞
𝜔
𝑞

�̃�
𝑞

𝑇=𝑇
𝑐

, (43)

as well as transition temperature

𝑇
𝑐
= Ω[𝑘

𝛽
tanh−1 (4Ω

�̂�
)]

−1

. (44)

3. Comparison with Experiments
and Discussion

3.1. Numerical Calculations. The parameters in our calcula-
tion are listed in Table 1. The calculated values of ⟨𝑆𝑧

𝑞
⟩ and

⟨𝑆
𝑥

𝑞
⟩ for KDP-type crystals for different values of four-body

coupling coefficient (𝐽), collective phonon mode frequency
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Table 1: Blinc-de Gennes model parameters for KDP-type crystals as given by Ganguli et al. [23].

Ω (cm−1) 𝐽 (cm−1) 𝐽
 (cm−1) 𝑉

𝑖𝑘
(cm−1) 𝜔

𝑘
(cm−1) 𝜇 × 10

18 (cgs) 𝑇
𝑐
(K) 𝑉/𝑘𝑇

𝑐

82 334 440 25.56 153 1.8 123 0.299

Table 2: Calculated values of ⟨𝑆𝑧
𝑞
⟩ and ⟨𝑆

𝑥

𝑞
⟩ for KDP crystal for different values of four-body coupling coefficient (𝐽).

⟨𝑆
𝑧

𝑞
⟩ ⟨𝑆

𝑥

𝑞
⟩

Temperature (K) 𝐽

= 𝐽/3 𝐽


= 4𝐽/3 𝐽


= 7𝐽/3 𝐽


= 𝐽/3 𝐽


= 4𝐽/3 𝐽


= 7𝐽/3

Present study Present study
20 0.500 0.499 0.499 0.454 0.369 0.311
40 0.498 0.499 0.499 0.455 0.369 0.311
60 0.459 0.481 0.498 0.460 0.376 0.312
80 0.257 0.278 0.487 0.482 0.446 0.317
100 0.137 0.143 0.454 0.489 0.479 0.332
120 0.102 0.104 0.409 0.490 0.485 0.354
122 0.100 0.100 0.403 0.491 0.486 0.357
123 0.000 0.000 0.400 0.492 0.492 0.358
125 0.000 0.000 0.398 0.484 0.484 0.449
130 0.000 0.000 0.389 0.468 0.468 0.457
135 0.000 0.000 0.373 0.446 0.446 0.443
140 0.000 0.000 0.352 0.426 0.426 0.436
145 0.000 0.000 0.320 0.408 0.408 0.410
150 0.000 0.000 0.300 0.396 0.396 0.392

Table 3: Calculated values of ̃̃𝜔
−
, 𝜀
𝑎
(0), 𝜀
𝑐
(0), tan 𝛿

𝑎
, and tan 𝛿

𝑐
for KDP-type crystals.

Temperature
(K)

Collective
phonon mode
frequency
̃̃𝜔
−
(cm−1)

(present study)

Transverse
dielectric
constant
𝜀
𝑎
(0)

(present study)

Observed
dielectric
constant
𝜀
𝑐
(0)

(present study)

Loss tangent
along the
𝑎-axis
(tan 𝛿

𝑎
)

(present study)

Loss tangent
along the
𝑐-axis
(tan 𝛿

𝑐
)

(present study)
125 45.65 63 35741 0.004 0.067
130 57.04 62 6144 0.00398 0.035
135 58.69 61 2286 0.00397 0.0261
140 63.04 60 874 0.00396 0.0255
145 65.91 59 486 0.00365 0.0250

(̃̃𝜔
−
), transverse dielectric constant {𝜀

𝑎
(𝑜)}, observed dielec-

tric constant {𝜀
𝑐
(𝑜)}, and tangent loss along 𝑎-axis (tan 𝛿

𝑎
)

and 𝑐-axis (tan 𝛿
𝑐
) for KDP-type crystals are listed in Tables 2

and 3.Their variations with temperature are shown in Figures
1–4.

3.2. Temperature Dependence of ⟨𝑆𝑧
𝑞
⟩ and ⟨𝑆

𝑥

𝑞
⟩ for KDP-Type

Crystal for Different Values of 𝐽
. Using Blinc-de Gennes

model parameter values for KDP-type ferroelectrics crystals
as given by Ganguli et al. [23], putting these values into (27)
and (28), we have calculated temperature dependence of ⟨𝑆𝑧

𝑞
⟩

and ⟨𝑆
𝑥

𝑞
⟩ for KDP-type crystal for different values of 𝐽, and

variation is shown in Figure 1.
In Figure 1, the curve (a) is the case of 𝐽 = 𝐽/3 < 4𝐽/3,

curve (b) is 𝐽

= 4𝐽/3 < 7𝐽/3, and curve (c) is 𝐽


= 7𝐽/3 >

4𝐽/3. In curves (a) and (b) the value of ⟨𝑆𝑧
𝑞
⟩ increases to the

saturated value 0.5 from zero, when temperature decreases
from transition temperature.That is the case of second-order
phase transition. But in curve (c) the change of ⟨𝑆

𝑧

𝑞
⟩ with

the temperature starts from a nonzero value ⟨𝑆
𝑧

𝑞
⟩ at point

“A”; that is to say, when temperature decreases ⟨𝑆𝑧
𝑞
⟩ increases

to the saturation value from the finite value of ⟨𝑆𝑧
𝑞
⟩. This is

the case of first-order phase transition. The temperature at
point “A” is transition temperature, and the value of ⟨𝑆𝑧

𝑞
⟩ at

“A” is the discontinuity of ⟨𝑆𝑧
𝑞
⟩. The value of ⟨𝑆𝑥

𝑞
⟩ decreases

when temperature decreases in the ferroelectric phase. On
the other hand, in PE phase the value of ⟨𝑆𝑥

𝑞
⟩ decreases when

temperature increases from transition temperature.

3.3. Temperature Dependence of Collective Phonon Mode
Frequency (̃̃𝜔

−
) in PE Phase. Using (23) and (41) and model
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Figure 1: Temperature dependence of ⟨𝑆𝑧
𝑞
⟩ and ⟨𝑆

𝑥

𝑞
⟩ for KDP-type

crystal for different values of 𝐽. (a) 𝐽 = 𝐽/3, (b) 𝐽 = 4𝐽/3, and (c)
𝐽

= 7𝐽/3 (present study).
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Figure 2: Temperature dependence of collective phonon mode fre-
quency ( ̃̃𝜔

−
) in PE phase for KDP-type crystals. Present calculation

(shown by ∘) and solid line representing experimental results of
Baumgartner [32] and Choi and Lockwood [33].

parameters values from Table 1, the temperature variation
of collective phonon mode frequency in PE phase is shown
in Figure 2. In the PE phase the temperature dependence
of normalized collective phonon frequency enables one to
calculate the transition temperature (44), as well as effective
exchange coupling constant (43), which increases due to
proton-phonon coupling and decreases due to anharmonic
interactions. By fitting model values of physical quanti-
ties, temperature dependence of collective phonon mode
frequency has been calculated which compares well with
experimental results of Baumgartner [32] and Choi and
Lockwood [33].

3.4. Temperature Dependence of Dielectric Constant. Putting
calculated values for different temperature into (32) we
obtain dielectric constant for KDP-type crystals. ̃̃𝜔

+
mode

(𝜀

c)

(𝜀

a)

Busch [4]
Deguchi and Nakamura [37]
Kaminow and Harding [35]

Present study
Tokunaga and Tatsuzaki [5]
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Figure 3: Temperature dependence of dielectric constant for KDP
type crystals obtained by Busch [4] (shown by +), Deguchi and
Nakamura [37] (shown by ×), and Kaminow and Harding [35]
(shown by ), and obtained from Raman intensity [5] (shown by ∘)
and solid line represents the theoretical results of present study.
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Figure 4: Temperature dependence of tangent loss for KDP-type
crystals at 9.2 GHz for fields along the 𝑎-axis (tan 𝛿

𝑎
), for field along

the 𝑐-axis (tan 𝛿
𝑐
). Present calculation is represented by ‘∘’, and solid

line represents experimental results of Kaminow and Harding [35].

corresponds to transverse 𝐸(𝑥, 𝑦) mode, which is responsible
for the observed transverse dielectric properties of KDP.
In the simplest approximation ̃̃𝜔

+
can be written ( ̃̃𝜔

+
=

𝐾
1
+ 𝐾
2
𝑇), where 𝐾

1
and 𝐾

2
are temperature independent

parameters. The results for transverse dielectric constant
𝜀


𝑎
obtained from the integrated intensity of Raman spec-

troscopy [34] and thosemeasured by Busch [4] andKaminow
and Harding [35] are shown in Figure 3, together with the
theoretical results of Havlin et al. [36]. This indicates that
low frequency ̃̃𝜔

+
{𝐸(𝑥, 𝑦) mode} is closely related to the

macroscopic dielectric constant 𝜀


𝑎
. This also suggests that
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the 𝐸-mode Raman spectrum originates neither from the
second-order Raman scattering nor from the density of
states due to the local disorder above 𝑇

𝑐
but from one of

the collective modes at the centre of the Brillouin zone.
It should be mentioned here that the low frequency 𝐸-
mode continuum appears also in a deuterated KDP (DKDP),
although the intensity is about one-third of that of KDP,
which indicates the possibility that the spectrum is due to
the hydrogen collective motion. Using (23) for ̃̃𝜔

+
mode, it

can be seen that the 𝐸-mode collective hydrogen motion has
characteristics damping factor which slowly increases as the
temperature approaches 𝑇

𝑐
, while for that of ̃̃𝜔

−
{𝐵
2
(𝑧)} soft

mode the damping factor slowly decreases down to a finite
value, which agrees with the observations of Kaminow and
Damen [11].

The present results agree with the behaviour of the
observed 𝐸-mode Raman spectrum in the following aspects:
(i) ̃̃𝜔
+
does not change appreciably as 𝑇 → 𝑇

𝑐
in PE phase,

(ii) Γ
𝑝
(𝜔
+
) is weakly dependent on temperature, and (iii)

because of the factor (𝜔2 − ̃̃𝜔
2

) in the numerator of (31), the
susceptibility derived changes the corresponding spectrum
from a simple overdamped form to a more flat one, like the
𝐸-mode Raman spectrum of KH

2
PO
4
[27].

The observed dielectric constant (𝜀


𝑐
) of KH

2
PO
4
along

𝑐-axis is shown in Figure 3. The ̃̃𝜔
−
{𝐵
2
(𝑧)} mode may be

assigned for the observed temperature dependence of 𝜀
𝑐
. As

from (41) ̃̃𝜔
2

𝑞
∝ (𝑇−𝑇

𝑐
), the real part of the dielectric constant

associated with this mode, from (32), can be expressed as

𝜀


𝑐
=

𝐶

(𝑇 − 𝑇
𝑐
)
, (45)

which explains the Curie-Weiss behaviour of dielectric con-
stant along the 𝑐-axis of KH

2
PO
4
crystal in the PE phase

observed by Deguchi and Nakamura [37], Busch [4], and
Kaminow and Harding [35], shown in Figure 3. For tem-
perature 𝑇 → 𝑇

𝑐
, 𝜀


𝑐
tends to maximum value, which is

consistent with the theory of Hill and Ichiki [38] for TGS
and KDP crystals, while Mason monodisperse theory [39]
gives 𝜀



𝑐
→ 0 as 𝑇 → 𝑇

𝑐
. The origin of this difference in

the temperature dependence of 𝜀


𝑐
is easily traced back in

monodisperse theory, and the critical slowing down of the
relaxation time has a dominant effect over the Curie-Weiss
law of static dielectric constant, while theHill-Ichiki theory of
distribution function of relaxation time makes contribution
to finite 𝜏 ̸= 0 to 𝜀



𝑐
more dominant.

There are actually, however, many cases in which 𝜀


𝑐
takes

a minimum of finite value at 𝑇 = 𝑇
𝑐
being neither zero as in

Mason’s theory nor maximum as in Hill and Ichiki theory.

3.5. Temperature Dependence of Tangent Loss. The tangent
loss is associated with damping parameter (25). Damping can
be understood as the creation of a virtual polarization mode
excited by the transverse electromagnetic radiation and its
subsequent decay into the real phonons by scattering from
crystal defects, higher order phonon anharmonicities, and
so forth. At higher temperature the loss deviates from the

Curie-Weiss type behaviour and increases linearly with tem-
perature.This behaviour suggests that at higher temperatures
the phonon anharmonicity contributes significantly to the
observed loss.

The calculated values of tangent loss from (33) and
(34) and experimental result of Kaminow and Harding [35]
are shown in Figure 4 and given in Table 3. The loss was
calculated at 9.2 GHz because experimental data is available
only at that frequency range. The theoretical results of the
present study are in good agreement with experimental
results of Kaminow and Harding [35]. The temperature
dependence of loss does not appear to be exponential. Thus,
third- and fourth-order anharmonicity may be responsible
for the observed behaviour of loss tangent. In the microwave
frequency rage, an increase in frequency is followed by an
increase in transverse and longitudinal dielectric loss tangent.
The loss decreases with increase in temperature for KDP-
type crystals, in their PE phase. This shows Curie-Weiss type
behaviour of the dielectric loss tangent.

In this paper the four-particle cluster model Hamiltonian
with the anharmonic contributions up to fourth-order has
been taken into consideration in study of dielectric prop-
erties and ultrasonic attenuation in KDP-type ferroelectric
crystals. Using double time thermal Green’s functionmethod
and Dyson’s equation the collective mode frequencies and
widths have been calculated. These parameters lead to the
expressions for the dielectric constant and loss tangent. The
observed dielectric properties have been explained in terms
of present study. The expressions for dielectric constant and
loss tangent have been derived and compared with the exper-
imental results. Using Blinc-de Gennes model parameter
values given by Ganguli et al. [23] we have calculated tem-
perature variations of these quantities for KDP- type crystals.
It is observed that these results are in good agreement with
each other and with the results obtained by other methods.
The present results reduce to the results of others [22, 23, 40]
if the width and shift are neglected. Only Ganguli et al. [23]
modified the Ramakrishnan and Tanaka theory by consider-
ing anharmonic interaction. Their treatment explains many
features of order-disorder ferroelectrics. However, due to
insufficient treatment of anharmonic interactions, they could
not obtain quantitatively good results and could not describe
some very interesting properties, like dielectric properties,
acoustic attenuation, and so forth.

Thus, from the present study, it is concluded that the
consideration of four-cluster Hamiltonian along with the
third- and fourth-order anharmonicities for the KDP-type
ferroelectrics leads to the renormalization and stabilization
of the relaxational soft mode and the renormalization of the
pseudospin exchange interaction constant.The decoupling of
the correlations appearing in the dynamical equation after
applying Dyson’s equation results in shift in frequency and
facilitates the calculation of damping parameter, which is
related to the loss tangent. The anomalous behaviour in
order-disorder KDP-type ferroelectrics finds explanation by
the consideration of collective proton-phonon interaction
and third- and fourth-order anharmonicities in the four-
particle cluster Hamiltonian. The dielectric properties and
ultrasonic attenuation strongly depend on the relaxational
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KDP-type ferroelectrics.
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