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This work focuses on the identification of optimal model parameters related to Abrasive Waterjet Milling (AWJM) process. The
evenly movement as well as variations of the jet feed speed was taken into account and studied in terms of 3D time dependent
AWJMmodel.This gives us the opportunity to predict the shape of the milled trench surfaces.The required trench profile could be
obtained with high precision in lack of knowledge about the model parameters and based only on the experimental measurements.
We use the adjoint approach to identify the AWJM model parameters. The complexity of inverse problem paired with significant
amount of unknowns makes it reasonable to use automatic differentiation software to obtain the adjoint statement. The interest in
investigating this problem is caused by needs of industrial milling applications to predict the behavior of the process. This study
proposes the possibility of identifying the AWJM model parameters with sufficiently high accuracy and predicting the shapes
formation relying on self-generated data or on experimental measurements for both evenly jets movement and arbitrary changes of
feed speed. We provide the results acceptable in the production and estimate the suitable parameters taking into account different
types of model and measurement errors.

1. Introduction

The abrasive waterjet (AWJ) machining is a nonconventional
low-cost process [1] that was developed to give the opportu-
nity to manufacture complex shapes with difficulty in cutting
andmillingmaterials regardless of their properties [2, 3].This
machining technique embraces low cutting forces [4] on the
target workpiece (reducing the possible risks of damaging the
sample) and does not have heat affected zone. The Abrasive
Waterjet Milling (AWJM) process involves the high-speed
waterjet produced by the water pump with a small nozzle
and abrasive particles included in the jet flow. This forms
the circular high-energy jet plume of water and abrasives
that impacts on the target surface and erodes the material.
The behavior of the material removing and the intensity of
the etching rate can be changed and controlled by different
machine parameters such as the feed speed of jet movement,
pump pressure, and mass flow rate of the abrasive particles.
All these parameters can be mathematically characterized by

etching rate function E which is inaccessible from the exper-
iments and plays key role in the modeling and prediction of
the trench surface.

One of themost challenging and crucial questions among
the industrial and manufacturing problems which can be
interpreted with partial differentiation equations (PDEs) is
the identification of the optimal model parameters. The goal
is to reproduce the required shapes and processes relying only
on the available experimental measurements related to the
real systems. In the conditions of complexity and nonlinearity
of the problem, the determination process becomes one of
the critical questions and leads to involvement of various
techniques and approaches.

There were several reported studies in consideration of
the direct problem when it is necessary to predict the trench
surface with a given model and its set of parameters. Some
well-known methods based on the statistical approaches
[5] and finite element methods [6–8] have been used and
reported. For solving the direct problem, which particularly
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involves a nonlinear PDE, some information about themodel
parameters such as coefficients or energy sources is required,
but often most of them are unavailable or unknown in
advance and need to be identified.

Even if the direct problems are linear under some
considerations, however, the inverse problems of the model
parameters identification are usually ill-posed [9, 10] and
measurement noise and model errors impose regularization
needs.The regularization techniques [11–13] in the identifica-
tion process can assist in performing and coping with such
aspects. The posed minimization problem for a cost function
(i.e., a mismatch between experimental measurements and
modeled estimation) underlies the identification problem.
Some common approaches and techniques for various gen-
eral and particular problems have been used and reported in
[14–17].

In this paper, we extend the work presented in [18] about
the mathematical method to identify required unknown
parameters of the generic AbrasiveWaterjet Milling (AWJM)
model.This model was previously developed and reported in
[19–22] according to the industrial needs for microwaterjet
footprints prediction.

The inverse problem consists of the identification of
AWJM model parameters from the experimental observa-
tions. These results have to be further used to simulate the
required surface profile. Recent research of linear AWJM
inverse problems focused on the identification of the beam
path has been previously reported in [23].

In our work, the gradient vector of the cost function,
which is required for all the family of the gradient descent
algorithms, is found numerically by use of the automatic
differentiation software TAPENADE [24]. Numerical opti-
mization method based on the limited memory Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm [25–27], real-
ized in the minimization package N2QN1 from the INRIA
MODULOPT library [28], is used to implement the min-
imization problem. In terms of the adjoint problem, the
minimization problem can be represented as an optimal
control problem based on the Lagrangian multiplier of the
model equations [29, 30].

The parameter identification problem significantly
depends on input measurements and is very unstable,
which is shown by inclusion of noise in the generated data.
In addition, we indicate the influence of using Tikhonov
regularization on accuracy of the surface prediction and
improvement of the AWJM model parameters identification
in case of noisy data.

The paper is organized as follows. Section 2 consists of
representation of the mathematical model describing the
AWJM process and explanation of the adjoint approach,
which is used to obtain the gradient of the cost function.
Further in this section we give a short description of gradient
descent algorithms, which are used for the minimization
problem. In Section 3 we present the model parameters
identification and actual numerical results for the moving
waterjet with fixed and varying feed speeds. Results based
on artificial and experimental observations are provided.
Section 4 presents the sensitivity study of the given AWJM
model, where the influence of the various measurement

noises is studied and several approaches to improving the
accuracy in the surface prediction are demonstrated. This
paper finalizes by Section 5 with some conclusions and
outcomes.

2. AWJM Direct and Adjoint Model

2.1. Proposed AWJM Model. The milling process perpetrated
by abrasive waterjet machine is represented as a nonlinear
partial differential equation with initial and boundary con-
ditions. This model characterizes the process of the trench
surface formation by the jet impact on the workpiece and
is suitable for various jet feed speeds independently of the
target material properties. To define the problem, we suppose
the time interval of the continuous milling process [0, 𝑇] and
denote byΩ a bounded domain ofR2 where the process takes
place.

The proposed Abrasive Waterjet Milling model, coming
from previous works [19–21] and already partially studied in
[18], is presented as

𝜕Z
𝜕𝑡

= −
E (𝑥, 𝑦) 𝑒𝑎Z

(1 + |∇Z|2)
𝑘/2

in Ω × [0, 𝑇] , (1)

with initial and boundary conditions:

Z (𝑥, 𝑦) = 0 on 𝜕Ω,

Z (𝑥, 𝑦) = Z
0

at 𝑡 = 0.
(2)

The given AWJM model in (1) describes the trench
creation by impact of an abrasive waterjet of radius 𝑎 with
the forces caused by etching rate function E(𝑥, 𝑦) on the
primarily flat surface.

The final form of the trench, which is described here as a
functionZ(𝑥, 𝑦, 𝑡), depends on the different physical parame-
ters such as pump pressure, abrasives mass flow, velocity, and
waterjet nozzle diameter. According to the announced math-
ematical model, these machine settings could be described
and represented as set of model parameters 𝑢, defining the
intensity of the jet impact. The vertical position of the jet
is fixed during the process relative to the zero level of the
workspace, and the intensity of the jet impact continuously
depends on the trench depth.

The schematic representation of the problem is illustrated
in Figure 1.

2.2. Cost Function and Adjoint Model. In order to identify
the optimal AWJM model parameters u = {𝑎, 𝑘,E} that are
needed for the reconstruction of the required surface, we
formulate a minimization problem.Thus, we pose a problem
to find u∗ such that

J (u∗) = infu J (u) , (3)
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Figure 1: Schematic of the AWJM process and jet footprint.

where the cost function J(u) consists of the difference
between the model solution and experimental observations
and additional regularization term

J (u) = ∫
Ω

󵄩󵄩󵄩󵄩󵄩
Z (𝑥, 𝑦, 𝑇) − Zexp (𝑥, 𝑦)

󵄩󵄩󵄩󵄩󵄩

2

d𝑥 d𝑦

+ 𝛼
󵄩󵄩󵄩󵄩u − u

𝑏

󵄩󵄩󵄩󵄩
2

,

(4)

under the constraint that Z is the solution of the direct
problem, obtained with input set of parameters u ∈ R+ ×

R+ × L2(Ω,R+).
In expression (4), Zexp are the experimental measure-

ments, by u
𝑏
we denote an a priori estimation of the set of

AWJM model parameters u, and 𝛼 > 0 is the Tikhonov
regularization coefficient.

To obtain the solution of minimization problem (3), we
consider it an optimal control problem, when the Lagrangian
multipliers based approach can be used [29, 30]. Hence,
we find the solution of the optimal control problem by
examining the critical “points” of the Lagrangian functional
L(u,Z,P) associated with the constrained minimization [18],
with Lagrangian multiplier P ∈ H1

0
(Ω) under the constraint

that Z is a solution of (1).
To solve the minimization problem and find an optimal

solution u∗, the gradient of the cost function ∇J(u) is needed
for the iterative gradient descent minimization algorithms
from the quasi-Newton family.

It is necessary to consider not the continuous but the
discrete system to figure out numerically the optimal problem
and to find its solution. Actually we have to minimize the
discrete cost function which requires the gradient of the dis-
crete cost function. We involve the automatic differentiation
software (i.e., TAPENADE) to obtain the gradient of the
discretized cost function. Once the gradient is computed we
can solve minimization problem (3) using it.

2.3. Minimization Process. Mainly most minimization tech-
niques, which are used to evaluate approximate gradients
for constrained problems and to find local minimum of
cost functions, are iterative gradient descent algorithms. The
quasi-Newton type methods to compute the approximate
gradient and descent step of the minimization process have
been applied due to complexity and high costs to compute
the Hessian on each iteration. To perform the minimization
process, we use the N2QN1 minimization package for con-
strained optimization problems from “MODULOPT” library
[28] which considers the L-BFGS update algorithms [18].

The L-BFGS [26] algorithm, named for limited BFGS
quasi-Newton approximation, uses an approximation of the
inverse Hessian. This method truncates the standard BFGS
update to store and use the last 𝑚 values of u

𝑗
and ∇J(u

𝑗
),

thus reducing the required memory.The update formulas for
L-BFGS algorithm can be found in [25].

3. Identification of AWJM Model Parameters

3.1. Evenly Moving Waterjet

3.1.1. Standing with Self-Generated Data. In case of evenly
moving abrasive waterjet, we assume the proposed AWJM
model in (1) with initial and boundary conditions which
describes the formation of the trench surface by the impact
of the waterjet beam in the ideal conditions when no
measurement or model errors are considered:

𝜕Z
𝜕𝑡

= −
E (𝑥, 𝑦) 𝑒𝑎Z

(1 + Z2
𝑥
+ Z2
𝑦
)
𝑘/2

, (5)

Z|𝑡=0 = 0,

Z|
𝜕Ω
1

= 0.
(6)
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Figure 2: Comparison of the identified etching rate function with the original one, used for the direct simulation.

In this subsection we study two different cases, when the
input data are considered self-generated surfaces or averaged
experimental observations.

For the numerical implementation we define a domain
Ω
1
= {(𝑥, 𝑦) : 𝑥 ∈ [−𝑥

1
; 𝑥
1
], 𝑦 ∈ [0; 𝑦

1
]}, where 𝑥

1
always

depends on the actual experimental parameters or measure-
ments, due to the changes of the jets radius, and 𝑦

1
= 10×𝑥

1
.

In fact, we restrain the minimization problem to a squared
part in the middle of the trench Ω

2
= {(𝑥, 𝑦) : 𝑥 ∈ [−𝑥

1
; 𝑥
1
],

𝑦 ∈ [𝑦
1
/2 − 𝑥

1
; 𝑦
1
/2 + 𝑥

1
]}. From the experiments done

in collaboration with STEEP project partners, we set 𝑥
1
=

0.5472mm. A regular grid of 228×1140 points with the steps
Δ𝑥 = Δ𝑦 = 0.048mm is chosen for discretizing Ω

1
. For

both cases, the time interval is taken as unit 𝑡 ∈ [0, 1] with
Δ𝑡 = Δ𝑥

2
/4. The general centred difference approximation

for several variables in space and forward difference in time
is used for the numerical implementation.

In order to obtain a smooth solution (𝐸(𝑥, 𝑦) ∈ H1(Ω)

instead of L2(Ω)), we change the regularization term to the
one with the gradient of the etching rate function:

J (u) = ∫
Ω
2

󵄩󵄩󵄩󵄩󵄩
Z (𝑥, 𝑦, 𝑇) − Zexp (𝑥, 𝑦)

󵄩󵄩󵄩󵄩󵄩

2

d𝑥 d𝑦

+ 𝛼 ‖∇E‖2 .
(7)

The value of Tikhonov regularization multiplier 𝛼 = 10
−5

suitable for this concrete problem was obtained by L-curve
method [31, 32].

The “pseudoexperimental” surface was generated with
arbitrary values of model parameters 𝑎 = 0.25 and 𝑘 = 0.1

and etching rate function E
0
(𝑥) defined on Ω

2
. To overcome

the possible increase of the computing costs and instability
in behavior of the etching rate function, we estimate it as the
circularly symmetrical projection of the centred vector by the
cubic spline interpolation [33].

Based on the demonstrated correctness of the identi-
fication process reported in the previous work [18], the
determined etching rate function and comparison of the
corresponding trench cross-section with the input data are
presented in Figure 2.Theminimization process is performed
using N2QN1 minimizer from the “MODULOPT library”
[28].

From the results shown in Figure 2 we can notice that due
to the ill-posedness of the inverse problem the final obtained
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shape of the etching rate function differs from the original but
is suitable for AWJM model and leads to very high accuracy
in reconstruction of the trench surface (Figure 3) in the ideal
conditions under the consideration that no measurement
noise or model errors are included.

Further, we base our search of the AWJM model
unknowns on the trench surface obtained from the real
experimental measurements by extending the average cross-
section in the direction of the jet movement (Figure 4). This
input data has some peculiarity caused to some extent by
specific of the milling process and corresponds to milling
process with a jet feed speed of 2000mm/min and nozzle
diameter of AWJ machine of 0.5mm. This value was used
as a background to estimate the model parameter 𝑎. All
the numerical settings stay the same as in the previous
experiment except the value of the Tikhonov regularization
factor 𝛼, which is now equal to 10−6.

Unlike the previous occasion, we have no estimation of
the etching rate function that was used in the produced
experiment; thus we start the determination from the zero
assumption E

0
= 0.
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Here, we provide the results of the identification of
AWJMmodel parameters, inaccessible from the experiments,
which should be used in the direct simulation to reproduce
the required workpiece shape. The identified etching rate
function (Figure 5(a)), which describes the formation of the
waterjet energy beam, takes acceptable uniform shape, where
the highest effect is focused in the centre of the beam. The
use of these results in direct simulation gives us the next
match between cross-section of the numerical solution and
experimentalmeasurements (Figure 5(b)).Thus, the required
surface can be numerically reconstructed with an accuracy
𝜀 in terms of 𝐿2 norm smaller than 6% by the following
expression:

𝜀 =

√∫
Ω
2

(Z (𝑥, 𝑦) − Zexp (𝑥, 𝑦))
2

d𝑥 d𝑦

√∫
Ω
2

(Zexp (𝑥, 𝑦))
2

d𝑥 d𝑦
. (8)

One can observe the mismatch on the edges of the slopes
of the trench, but this aspect was not considered andmodeled
in the used AWJM model in (1). In practice, these effects
are explained by the redeposition of the target material and
appear as the result of high power of the waterjet impact.

3.1.2. Experimental Measurement Based Identification. Ac-
cording to the considered mathematical model, we assume
the constant movement of the jet in straight direction and
in this subsection we base our determination process on the
original measurements of the real experiments done with
waterjet machining tool (Figure 6) but not on the average of
the trench profiles.

Usually parameter identification problems induce various
difficulties caused by model errors and rather measurement
noise. To be able to search unknowns from rough and noisy
initial measurements, we include in the AWJM model the
error term 𝜀exp, which represents the measurement errors
as random variables with a Gaussian probability density
function and a zero mean.

For the direct simulations, we use the following model:

𝜕Z
𝜕𝑡

= −
E (𝑥, 𝑦) 𝑒𝑎Z

(1 + Z2
𝑥
+ Z2
𝑦
)
𝑘/2

+ 𝜆𝜀exp, (9)

where 𝜆 is the factor corresponding to the percentage of the
applied calibrated uncorrelated noise, 𝜀exp ∼ N(0, 1).

Here the available experimental measurements differ
from the previous ones and correspond to waterjet milling
process with the jet feed speed of 3000mm/min. Due to
provided data, we define the squared domain Ω

2
by setting

𝑥
1
= 0.384mm with the steps Δ𝑥 = Δ𝑦 = 0.024mm related

to the chosen part of the milled trench, where we minimize
the cost function.

Results of the determination of the etching rate function
and comparison of the reproduced surface with original
profile are given in Figures 7(a) and 7(b). We can notice
that, respectively, to the decrease of the density of the input
measurements we have the small loss in the smoothness of
the final function shape which causes not significant loss in
the surface restoring precision. Despite this, we still have
very high accuracy in the surface prediction using presented
identification technique which is expressed as level of error
(less than 5%) in terms of 𝐿2 norm.

3.2. Waterjet Feed Speed Variations. To extend the possibility
of the application of demonstrated identification mechanism
in the manufacturing, we include another particular case
belonging to the variations of the waterjet feed speed during
the milling process. To meet the practical capabilities of
waterjet machine, we assume that it accelerates constantly
during the movement from the initial position to the final
one. For the numerical implementation, it can be described
as a change of the time spent by jet beam on each position of
the workpiece where we examine the problem.

We define the domain Ω
1
by choosing 𝑥

1
= 0.396mm

to capture the most effective area where the trench profile
changes due to the jet speed according to available experi-
mental measurements. Previously, the regular grid with the
stepsΔ𝑥 = Δ𝑦 = 0.033mmwas used to discretize the domain
Ω
1
to satisfy numerical simulations with the experimental

measurements.The existing input data (Figure 8) correspond
to the abrasive milling process done with AWJ machine with
permanent acceleration from the feed speed of 600mm/min
to 2000mm/min. In order to level and smooth the noisy
input data, a noise filter was applied based on the averaging
of measurements of the several trenches done with identical
machining parameters. The real feed speed of the waterjet
was recorded and correspondingly adjusted to the numerical
simulations.

A Tikhonov regularization factor 𝛼 = 10
−11 was chosen

with L-curve method for this specific problem.This allows us
to regularize the solution and to accelerate the minimization
process.

Results of the identification of etching rate function E
and comparisons of the simulated central trench profile
with the experimnetal input are shown in Figures 9(a) and
9(b), respectively. These results confirm the possibility of
identifying the unknown etching rate function suitable for
the AWJ machining to predict the trench surface in case of
varied waterjet feed speed. Due to the increase of complexity
of the problem and changeability of the surface profile, one
can observe some decrease of the accuracy in the surface
prediction in comparisonwith the results related to the evenly
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Symmetrized experimental measurements, 3000mm/min

0.2
0.4

x-direction

y-direction

−0.2

0.01
−0.01

−0.03

−0.05

−0.07

0.01
0

−0.02

−0.04

−0.06

−0.01

−0.03

−0.05

−0.07

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

0

−0.4

Z
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moving waterjet. Even so we still have the opportunity to
predict the shape formation with acceptable level of error
around 7% in terms of 𝐿2 norm.

4. Sensitivity Study in Case of Uniform
AWJ Movement

4.1. Variety of Input Measurements. Sensitivity study plays
one of the key roles in the plenty of the parameters identi-
fication problems. By this, it is possible to deeply understand
the behavior of the model and improve the correctness
of the identification process. Observation of the influences
and sensitivity of the AWJM model on measurement or
model errors provides us with the opportunity to see what
the possibilities of reconstructing the required shape of the
trench are regardless of the input data.

In this subsection we demonstrate and compare the
numerical results of the proposed approach to identify the
etching rate function E under different levels of measurement

errors in the simulated data. Using the given AWJM model
(9), we generated various trench surfaces with predetermined
parameters E = E

0
, 𝑎 = 𝑎

0
, and 𝑘 = 𝑘

0
, respectively, to

different levels of uncorrelated noise up to 40%. Further, these
noisy trenches are used separately or in superposition as the
only input of the suggested identification method to find out
the unknown AWJM model parameters suitable for the sur-
face prediction requirements. For the numerical implemen-
tation, the same as in Section 3.1.2, initial assumptions and
parameters of the discretization are used except Δ𝑥 = Δ𝑦 =

0.012mm which are used in order to increase the density
of the grid and improve the accuracy. We also assume that
initial etching rate function E

0
is circularly symmetric and

obtained by the cubic interpolation from the centred vector.
As explained above, the simulated input data is obtained

by adding a Gaussian white noise of various levels of intensity
to the initial trench surface (e.g., Figure 10(a) demonstrates
the case of 15% noise), generated by use of the etching rate
function E

0
(Figure 10(b)).

The general purpose is to identify the unknown param-
eter E. The use of this value in direct AWJM model (5)
will produce the closest trench to the initial one. The mid-
dle cross-sections of the experimental trenches are named
“Target” in the figures in this section. In order to find
the smooth solution which is acceptable in manufacturing,
we base the minimization process on the cost function in
(7) using Tikhonov regularization term on the gradient,
which will bring the essential absence of high oscillations.
Regularization coefficient has to be reestimated through L-
curve method because of the modification of the grid size.

Results of the identification of the etching rate function
E based on a single trench measurement in case of applied
noise with levels of 5%, 15%, and 30% and comparison of the
middle cross-sections of noisy, original, and rebuilt trenches
are given in Figures 11(a)–11(c). Here let us notice that it is still
possible to find out the unknown AWJM model parameter
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Figure 7: Identification of the etching rate function and comparison of the cross-sections of obtained solution and experimental
measurements in case of evenly moving waterjet.

0.05

−0.05

−0.15

−0.25

−0.35

−0.45

0.05

0

−0.05

−0.1

−0.15

−0.2

−0.25

−0.3

−0.35

−0.4

−0.45

0 1 2 3 4 5 6 7 8 9

0
0.2

0.4

y-direction x-direction

−0.4

−0.2

Z

Experimental measurements: acceleration from 600 to 2000mm/min

Figure 8: Averaged experimental measurements of the trench,
milled bymicrowaterjet machine with a feed speed change from 600
to 2000mm/min.

E even from the measurements with very high level of the
noise. The use of these obtained values leads to high enough
accuracy in themodeling and prediction of the trench surface
despite the not ideal matching of the identified function E to
the initial one.

Further we assume that there are several different avail-
able experimental measurements of exactly the same trench
that can be used to identify the unknown AWJM model
parameters and to model the required surface. We generate
them identically with the same parameters, but the distribu-
tion of the noise is always random, so the difference between
them is only the random noise applied to the initial surface.
To diversify the study we assume two different cases when
there are three and ten available measurement inputs, which
are shown in Figures 12(a) and 12(b).

Here the identification is based on the minimization of
the cost function, which measures the difference between

numerical solution and each of the experimental observa-
tions. In both cases, our cost function transforms to

J (u) =
𝑛

∑
𝑖=1

1

𝑛
∫
Ω
2

󵄩󵄩󵄩󵄩󵄩
Z (𝑥, 𝑦, 𝑇) − Zexp

𝑖

(𝑥, 𝑦)
󵄩󵄩󵄩󵄩󵄩

2

d𝑥 d𝑦

+ 𝛼 ‖∇E‖2 ,

(10)

where 𝑛 = {3, 10} is the number of available trench mea-
surements which are taken as the input for the identification
process.

The use of several independent trench measurements
leads to the following results for the identification of the
unknown function E and reproducing the required trench
surface (Figure 13) in case of 15%of the noise in the input data,
based on ten independent measurements.

The given numerical results of the surface prediction
(Figure 13) demonstrate very similar accuracy of matching
the modeled surface to the original trench regardless of the
use of more inputs and do not bring very high change in
the surface reconstruction precision. From the other side, it
means that our identification approach allows determining
the AWJM model unknowns fairly truly even with only one
available input, despite the high oscillations in the data caused
by the measurement noise. But, looking more attentively at
the identified etching rate function E, smoothness of the
solution has been increased. This effect may be essential in
the further realization of themicrowaterjet milling process in
the real manufacturing, where the form and behavior of the
beam energy parameters need to be strictly determined and
suitable for machine parameters.

Considering several independent trench measurements
can be interpreted as the averaging of the surfaces in some
sense, but to clarify this aspect we demonstrate another
case of our identification problem with the use of several
superposed trench measurements. In theory, the use of the
average of the noisy trenches will provide less rough and
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noisy input data and will lead to the identification of model
parametersmore precisely, which in its turn implies the better
reproducing of the required surface. Based on that propo-
sition, we introduce the superposition of the experimental
observation, taken from the previous test and introduced in
the cost function as follows:

J (u)

= ∫
Ω
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Z (𝑥, 𝑦, 𝑇) − (
∑
𝑛

𝑖=1
Zexp

𝑖

(𝑥, 𝑦)

𝑛
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

d𝑥 d𝑦

+ 𝛼 ‖∇E‖2 .

(11)

A comparison of the various configurations of the cost
function is represented in Figure 14.

Holding the acceptable level of accuracy (less than 10%)
in the surface reconstruction in comparison with the experi-
mental measurements, using several inputs or either of their
averages in (10) and (11) provides better opportunity tomatch
the required trench profile.The use of the average of the input

measurements demands in its turn to adapt the regularization
coefficient due to the change of the behavior of the input.

The difference between using one and several measure-
ments is not very impressive due to random nature of the
noise applied to the input and could be strongly increased by
involving hundreds of experimental observations to reduce
the influence of the errors and by adjusting the regularization
coefficient according to the averaging of the input. The
given overview of the identification based on 1, 3, or 10
trenches shows us that, from the other side, we can identify
unknowns with reasonable accuracy even with only one
trench measurement.

Cost functions (11) and (10) for 𝑛 = 10 are not identical,
but theoretically they have the same gradient. Nevertheless,
numerical implementation of these two cases shows the
difference in obtained results and gives the flexibility to find
more suitable way for each particular problem.More detailed
and precise results of the surface prediction are given in
Table 1.

The analysis of the obtained results induces thinking
about the particular randomdistribution of the noise, applied
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Figure 11: Results of numerical identification of the etching rate functions for AWJM model and prediction of the surface shapes based on
single trench measurement with applied noises of 5%, 15%, and 30%, respectively.
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Table 1: Comparison of the accuracy in the trench surface prediction, corresponding to different cases of the cost functions and different
levels of applied noise.

Trenches 1% 2% 5% 10% 15% 20% 30% 40%
1 trench 3.74 × 10−2 3.92 × 10−2 3.65 × 10−2 4.08 × 10−2 5.46 × 10−2 7.62 × 10−2 0.118329 0.142537
3 trenches 3.75 × 10−2 3.95 × 10−2 3.61 × 10−2 4.14 × 10−2 6.02 × 10−2 7.73 × 10−2 0.115635 0.138153
10 trenches 3.75 × 10−2 3.97 × 10−2 3.61 × 10−2 4.22 × 10−2 5.67 × 10−2 7.45 × 10−2 0.108759 0.100952
Superposition of 10 3.75 × 10−2 3.97 × 10−2 3.54 × 10−2 4.10 × 10−2 5.67 × 10−2 7.45 × 10−2 0.108724 0.115774
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with high level to the original input, which has very high
influence on the identification process. The trench surface
simulated with the use of the identified etching rate function
is quite close to the input (noisy or average of several
trenches) in all the cases, which were not aligned and fitted
to the original surface due to the fairly random distribution
of the noise. It engenders the conclusion that the use of much
larger number of measurements can negotiate the noises or
make them more uniform, calibrate and fit by this the inputs
to the original data, and improve the accuracy of the surface
prediction.

Mostly, the use of several trenches (and their average)
instead of only one can essentially improve the accuracy in
the parameters identification, conducting to reduction of the
errors in the surface prediction up to 20% in cases of adverse
available inputs. Certainly, it should be noted that sometimes
only one measurement is available, and it might be enough
to obtain the model parameters required to reconstruct the
profile.

4.2. Noise as Model Parameter

4.2.1. Identification of the Measurement Noise. The identifica-
tion of the unknown AWJMmodel parameters in Section 4.1
demonstrates a high dependency on the accuracy of the level
of the noise. One of the possibilities of improving the quality
and accuracy of the identification process is to take into
account and identify the measurement errors by considering
them as unknown model parameters. We now assume that
u = 𝑎, 𝑘,E, 𝜀exp and we consider the following new cost
function:

J (u) = ∫
Ω
2

󵄩󵄩󵄩󵄩󵄩
Z (𝑥, 𝑦, 𝑇) − Zexp (𝑥, 𝑦)

󵄩󵄩󵄩󵄩󵄩

2

d𝑥 d𝑦

+ 𝛼 ‖∇E‖2 + 𝛽
󵄩󵄩󵄩󵄩󵄩
𝜀exp

󵄩󵄩󵄩󵄩󵄩

2

,

(12)

where 𝛽 is the Tikhonov regularization coefficient corre-
sponding to the measurement noise.

To ensure first the correctness and possibility of the
identification of the existing noise in the input data, we first
use the “true” values of E

0
as the initial estimation of the

etching rate function and focus on the identification of noise,
which is represented as normally distributed random values
among all the working domain Ω

2
. Numerically, it leads to

the growth of the amount of unknowns and slows down the
minimization process.Here and in all the next numerical tests
in this section we use the same parameters and assumptions
as in Section 4.1.

Firstly, it is necessary to check if the minimizer is able
to faithfully determine the randomly distributed values of
the model parameter. The initial noise applied to the trench
with the level of 5% is shown in Figure 15(a), and the
result of the identification is given in Figure 15(b). The main
achievement of this experiment is to show the availability
of the minimizer to identify quite acceptable values of the
simulated measurement errors regardless of error intensity.

Usually there is no information about the behavior and
type of the etching rate function E that should be used to
predict the right form of the surface. Moreover, most of
the available measurements are noisy and unclear, so we
now need to identify the unknown model parameter E and
measurement errors 𝜀exp at the same time, in order to improve
the quality of the surface reconstruction.

We start with some assumptions about the form of the
etching rate function E, which we have already obtained
in Section 4.1, to simplify the continuation of identification
process.

The results of the identification of themeasurement errors
for the cases of 5% and 30% are presented in Figure 16. The
comparison of the cross-sections of initial and identified
etching rate functions and trench prediction results for the
5% case are given in Figure 17.

Considering the identification result for all the range
of noise levels, we can note that, with the decrease of the
measurement errors, their influence on the surface formation
decreases as well and becomes less significant. It leads to
the modification of the form of identified noise, which can
be distinctly seen in Figure 16(a), where the noise takes
in some sense the shape of the trench surface. This kind
of results can be very useful to understand how the final
identified form of E (Figure 17(a)) should be actualized to
reconcile the form of the noise and to improve the accuracy
in the surface prediction via direct simulation with the use
of optimal AWJM model parameters. From the other side,
when the measurement errors are much higher (e.g., 30%
in Figure 16(b)), its the values and influence greatly rise up
in comparison with etching rate function E, and it turns
into several problems for the minimizer to correct the exact
unknowns in the right ways and inability to adjust model
parameters more precisely. But even with actual results the
level of errors in the surface prediction is less than 4% in
terms of 𝐿2 norm.

4.2.2. Removing the Measurement Noise. One more interest-
ing aspect of this work is the ability to improve the surface
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Figure 18: Numerical results corresponding to the removed noise of 20% from the initial measurements and prediction of the milled trench.

Table 2: Accuracy in the trench surface prediction, corresponding to different levels of applied noise. One measurement as input.

Measurement errors 1% 2% 5% 10% 15% 20% 30% 40%
Removed noise 2.87 × 10

−2
2.94 × 10

−2
2.54 × 10

−2
2.98 × 10

−2
2.57 × 10

−2
3.27 × 10

−2
2.66 × 10

−2
3.50 × 10

−2

Noisy input 3.74 × 10
−2

3.92 × 10
−2

3.65 × 10
−2

4.08 × 10
−2

5.46 × 10
−2

7.62 × 10
−2 0.118329 0.142537

reconstruction by the improvement of the input data. Assume
now that we identified quite acceptable and useful values of
themeasurement errors (e.g., Figure 15(b)), which affectmost
strongly the identification of the AWJM model parameter E
and the accuracy of surface prediction. We can further use
this information to reduce the measurement errors, even if it
is not ideally determined, from the initial input and obtain
much smooth and clear trench (e.g., Figure 18(a) in case of
20%).

After the use of suchmanipulation, we can perform again
the identification of the unknown AWJM model parameter
E as demonstrated in Section 4.1. By such decision we
are able to reduce the influence of the measurement and
model errors and really enhance the accuracy of the surface
prediction; see Figure 18(b). The complete description of the
identification results for all the span of the error levels is given
in Table 2. One could see that almost for all the cases our
identification approach gives the very high accuracy in the
surface prediction regardless of the type of input record and
let us predict the surface in direct simulation with level of
error less than 3%. In cases of 15% and 20% of noise, we have
the increase of the precision inmore than two times, while for
30% and 40% of noise we improve the accuracy of the surface
prediction in more than four times.

5. Conclusion

Parameter identification is a highly challenging problem in
AWJM problem, particularly from the noisy experimental

measurements and in case of uneven movement of the
waterjet with varied feed speed in 3D case. In this paper
we demonstrated the possibility of using the application of
inverse problems theory, based on minimization problems,
in the real manufacturing problems to estimate the process
behavior and forecast the trench shape formation.Thegeneral
high precision of the AWJMmodel parameters identification
provides good opportunity to predict and simulate themilled
trench surfaces regardless of the quality and density of
available experimental observations. We showed the capa-
bility of the proposed method to cope with different cases
independently of type and size of the input data, depth of
the milled trench, microwaterjet feed speed, kind of the jet
movement, and level of the measurement noise. We gave an
overview of how an even minor and insensitive level of noise
can affect the accuracy of the results and occasionally leads to
considerable errors in surface reconstruction.

We presented the comparison of different approaches of
the cost function formulation in accordance with various
number of available data, which leads to several particular
improvements in cases of high measurement errors. More-
over, we demonstrated the importance of the regularization
terms, which have to be considered and carefully adjusted
to obtain a more real and precise surface shape. In order
to control the surface prediction under noisy conditions,
we introduced and implemented a technique to identify
the measurement noise independently of the other model
parameters and to remove it from the input data of the
minimization problem, thereby increasing the quality of the
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identification. Also, the combined identification of all the
possible and not fixedmodel parameterswas presented in this
work, to explain how widely this approach can be used.

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

The authors would like to acknowledge the funding sup-
port of the EU-FP7-ITN (Grant no. 316560) for the works
presented as a part of the STEEP ITN project. The authors
thank Mr. Pablo Lozano Torrubia from the University of
Nottingham for his help in the experimental work.

References

[1] D. A. Axinte, B. Karpuschewski,M. C. Kong et al., “High Energy
Fluid Jet Machining (HEFJet-Mach): from scientific and tech-
nological advances to niche industrial applications,” CIRP
Annals—Manufacturing Technology, vol. 63, no. 2, pp. 751–771,
2014.

[2] D. K. Shanmugam, J. Wang, and H. Liu, “Minimisation of kerf
tapers in abrasivewaterjetmachining of alumina ceramics using
a compensation technique,” International Journal of Machine
Tools and Manufacture, vol. 48, no. 14, pp. 1527–1534, 2008.

[3] D. A. Axinte, D. S. Srinivasu, M. C. Kong, and P. W. Butler-
Smith, “Abrasive waterjet cutting of polycrystalline diamond:
a preliminary investigation,” International Journal of Machine
Tools and Manufacture, vol. 49, no. 10, pp. 797–803, 2009.

[4] A. W. Momber, “Energy transfer during the mixing of air and
solid particles into a high-speed waterjet: An Impact-Force
Study,” Experimental Thermal and Fluid Science, vol. 25, no. 1-
2, pp. 31–41, 2001.

[5] D. S. Srinivasu, D. A. Axinte, P. H. Shipway, and J. Folkes,
“Influence of kinematic operating parameters on kerf geometry
in abrasive waterjet machining of silicon carbide ceramics,”
International Journal ofMachine Tools andManufacture, vol. 49,
no. 14, pp. 1077–1088, 2009.

[6] L. Ma, R.-H. Bao, and Y.-M. Guo, “Waterjet penetration simu-
lation by hybrid code of SPH and FEA,” International Journal of
Impact Engineering, vol. 35, no. 9, pp. 1035–1042, 2008.

[7] Y.-F. Wang and Z.-G. Yang, “Finite element model of erosive
wear on ductile and brittle materials,” Wear, vol. 265, no. 5-6,
pp. 871–878, 2008.

[8] S. Anwar, D. A. Axinte, and A. A. Becker, “Finite element
modelling of abrasive waterjet milled footprints,” Journal of
Materials Processing Technology, vol. 213, no. 2, pp. 180–193,
2013.

[9] M.M. Lavrentiev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed
Problems of Mathematical Problems, vol. 64, AMS, Providence,
RI, USA, 1986.

[10] A. Tarantola, Inverse Problem Theory and Methods for Model
Parameter Estimation, SIAM, Philadelphia, Pa, USA, 2005.

[11] R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estima-
tion and Inverse Problems, Elsevier, New York, NY, USA, 2nd
edition, 2013.

[12] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed
Problems, John Wiley & Sons, New York, NY, USA, 1977.

[13] A. N. Tikhonov and V. B. Glasko, “Use of the regularization
method in non-linear problems,”ZhurnalVychislitel’noiMatem-
atiki i Matematicheskoi Fiziki, vol. 5, no. 3, pp. 463–473, 1965.

[14] U. Tautenhahn, “Lavrentiev regularization of nonlinear ill-
posed problems,” Vietnam Journal of Mathematics, vol. 32, pp.
29–41, 2004.

[15] A. M. Denisov, E. V. Zaharov, A. V. Kalinin, and V. V. Kalinin,
“Application of tikhonov regularization method for numerical
solution of inverse problem of electrocardiography,”MSU Vest-
nik, vol. 15, 2008.

[16] B. Kaltenbacher, A. Neubauer, and O. Scherzer, Iterative Reg-
ularization Methods for Nonlinear Illposed Problems, vol. 6
of Radon Series on Computational and Applied Mathematics,
Walter de Gruyter GmbH & Co, Berlin, Germany, 2008.

[17] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of
Inverse Problems, vol. 375 of Mathematics and Its Applications,
Kluwer Academic, Dordrecht, Netherlands, 1996.

[18] D. Auroux and V. Groza, “Optimal parameters identification
and sensitivity study for abrasive waterjet milling model,”
https://arxiv.org/abs/1605.08583.

[19] D. A. Axinte, D. S. Srinivasu, J. Billingham, and M. Cooper,
“Geometrical modelling of abrasive waterjet footprints: a study
for 90∘ jet impact angle,”CIRPAnnals—Manufacturing Technol-
ogy, vol. 59, no. 1, pp. 341–346, 2010.

[20] M. C. Kong, S. Anwar, J. Billingham, and D. A. Axinte, “Mathe-
matical modelling of abrasive waterjet footprints for arbitrarily
moving jets—part I: single straight paths,” International Journal
of Machine Tools & Manufacture, vol. 53, no. 1, pp. 58–68, 2012.

[21] J. Billingham,C. B.Miron,D.A.Axinte, andM.C.Kong, “Math-
ematical modelling of abrasive waterjet footprints for arbitrarily
moving jets—part II: overlapped single and multiple straight
paths,” International Journal of Machine Tools & Manufacture,
vol. 68, pp. 30–39, 2013.

[22] P. L. Torrubia, J. Billingham, and D. A. Axinte, “Stochastic sim-
plified modelling of abrasive waterjet footprints,” Proceedings
of the Royal Society A: Mathematical, Physical and Engineering
Science, vol. 472, no. 2186, 2016.

[23] A. Bilbao Guillerna, D. Axinte, and J. Billingham, “The linear
inverse problem in energy beam processing with an applica-
tion to abrasive waterjet machining,” International Journal of
Machine Tools and Manufacture, vol. 99, pp. 34–42, 2015.

[24] L. Hascoet and V. Pascual, “The Tapenade automatic differ-
entiation tool: principles, model, and specification,” ACM
Transactions on Mathematical Software, vol. 39, no. 3, 2013.
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