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Amodel for the dark halos of galaxy clusters, based on theWeyl geometric scalar tensor theory of gravity (WST) with aMOND-like
approximation, is proposed. It is uniquely determined by the baryonic mass distribution of hot gas and stars. A first heuristic check
against empirical data for 19 clusters (2 of which are outliers), taken from the literature, shows encouraging results. Modulo a caveat
resulting from different background theories (Einstein gravity plusΛ𝐶𝐷𝑀 versusWST), the total mass for 15 of the outlier reduced
ensemble of 17 clusters seems to be predicted correctly (in the sense of overlapping 1𝜎 error intervals).

1. Introduction

In this paper the gravitational dynamics of galaxy clusters is
investigated from the point of view of Weyl geometric scalar
tensor theory of gravity (WST) with a nonquadratic kine-
matic Lagrange term for the scalar field (3L) similar to the first
relativistic MOND theory rAQUAL (“relativistic a-quadratic
Lagrangian”) [1]. To make the paper as self-contained as
possible, it starts with an outline of WST-3L (Section 2).
WST-3L has two (inhomogeneous) centrally symmetric static
weak field approximations: (i) the Schwarzschild-de Sitter
solution with its Newtonian approximation, which is valid if
the scalar field and the WST-typical scale connection plays
a negligible role; (ii) a MOND-like approximation which is
appropriate under the constraints that the scale connection
cannot be ignored but is still small enough to allow for
a Newtonian weak field limit of the (generalized) Einstein
equation. The acceleration in the MOND approximation
consists of a Newton term and additional acceleration of
which three-quarters are due to the energy density of the
scalar field and one-quarter is due to the scale connection
typical for Weyl geometric gravity.

In centrally symmetric constellations the scalar field
energy forms a halo about the baryonic mass concentrations.
Besides the acceleration derived from the (Riemannian) Levi-
Civita connection induced by the baryonic matter and the
scalar field energy an additional acceleration component due

to the Weyl geometric scale connection arises in the present
approach. If the latter is expressed by a fictitious mass in
Newtonian terms, a phantom halo can be ascribed to it.
It indicates the amount of mass one has to assume in the
framework of Newton dynamics to produce the same amount
of additional acceleration. The scalar field halo consists of
true energy derived from the energy momentum tensor;
it is independent of the reference system, as long as one
restricts the consideration to reference systems with low
(nonrelativistic) relative velocities. The phantom halo, on
the other hand, is a symbolical construct and valid only in
the chosen reference system (and scale gauge). For galaxy
clusters we find two components of the scalar field halo,
one deriving from the total baryonic mass in the MOND
approximation of the barycentric rest system of the cluster
(component 1) and one arising from the superposition of
all the scalar field halos forming around each single galaxy
in the MOND approximation of the latter’s rest system
(component 2). Because velocities of the galaxies with regard
to the cluster barycenter are small (nonrelativistic) and also
the energy densities are small, the two components can be
superimposed additively (linear approximation).With regard
to the barycentric rest system of the cluster a three-component
halo for clusters of galaxies arises, two components being due
to the scalar field energy and one purely phantom (Section 3).

The two-component scalar field halo is a distinctive
feature of the Weyl geometric scalar tensor approach; it is
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neither present in the nonrelativistic MOND approaches nor
in rAQUAL. One may pose the question whether it suffices
for explaining the deviation of the cluster dynamics from
the Newtonian expectation without additional dark matter.
If we call the totality of the three components the transparent
halo of the cluster (Section 3.5), the question is whether the
(theoretically derived) transparent halo can explain the dark
halo of galaxy clusters, observationally determined in the
framework of Einstein gravity and Λ𝐶𝐷𝑀.

Section 4 contains a first test of the model by confronting
it with empirical data on mass distribution available in the
astronomical literature. A full-fledged test would presuppose
an evaluation of raw observational data in the framework
of the present approach and is beyond the scope of this
study. Here we use recently published data on the total mass
(dark plus baryonic), hot gas, and the star matter for 19
galaxy clusters, which have been determined from different
observational data sources (and are thus more precise than
earlier ones) [2–4]. Two of the 19 clusters show a surprisingly
large relation of total mass to gas mass. They are separated as
outliers from the rest of the ensemble already by the authors
of the study and so do we. 17 nonoutlying clusters remain as
our core reference ensemble.

In the mentioned studies total mass, gas mass, and star
mass are determined on the background of Einstein gravity
plus Λ𝐶𝐷𝑀. That raises the problem of compatibility with
the WST framework. It is discussed in Sections 4.1 and 4.2
and leads to a certain caveat with regard to the empirical
values for the total mass (𝑀200,𝑀500) and the reference
distances 𝑟200, 𝑟500 to the cluster centers. But it does not
seem to obstruct the possibility for a first empirical check of
our model (Section 4.2). More refined studies are welcome.
They have to use the WST framework for evaluating the
observational raw data or, at least, to analyze the transfer
problem of mass data from one framework to the other in
more detail.

For 15 of the 17 main reference clusters the empirical and
the theoretical values for the total mass agree in the sense of
overlapping 1𝜎 error intervals. The remaining two overlap in
the 2𝜎 range.The two outliers of the original study do not lead
to overlapping intervals even in the 4𝜎 range (Section 4.6).
In the present approach the dynamics of the Coma cluster
is explained without assuming a component of particle dark
matter. It is being discussed in more detail than the other
clusters in Section 4.5.

A short comparison with the halos of Sanders’ 𝜇2-MOND
modelwith an additional neutrino core [5] andwith theNFW
halo [6] is given for Coma (Section 4.7).The paper is rounded
off by a short remark on the bullet cluster (Section 4.8) and a
final discussion (Section 5).

2. Theoretical Framework

2.1. Weyl Geometric Scalar Tensor Theory of Gravity (WST).
Among the family of scalar tensor theories of gravity the best
knownones and closest ones to Einstein gravity are thosewith

a Lagrangian containing a modified Hilbert term coupled
with a scalar field 𝜙. Their Lagrangian has the general form

𝐿 = 12 (𝜉𝜙)2 𝑅 + 𝐿𝜙 − 𝜆4𝜙4 ⋅ ⋅ ⋅ ,
L = 𝐿√󵄨󵄨󵄨󵄨𝑔󵄨󵄨󵄨󵄨, 󵄨󵄨󵄨󵄨𝑔󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨det𝑔󵄨󵄨󵄨󵄨 .

(1)

Here 𝑔 is an abbreviation for a 4-dimensional pseudo-
Riemannian metric 𝑔 = (𝑔𝜇]) of signature (−+++). 𝜙 is a
real valued scalar field on spacetime, 𝐿𝜙 its kinetic term,
and 𝜉 a constant coefficient and the dots indicate matter and
interaction terms. Under conformal rescaling of the metric,

𝑔𝜇] 󳨃󳨀→ 𝑔󸀠𝜇] = Ω2𝑔𝜇]
(Ω a positive real valued function) , (2)

the scalar field changes with weight −1; that is, 𝜙 󳨃→ 𝜙󸀠 =Ω−1𝜙. So far this is similar to the well known Jordan-Brans-
Dicke (JBD) scalar tensor theory of gravity [7–10]. But here
we work in a scalar tensor theory in the framework of Weyl’s
generalization of Riemannian geometry [1, 11–14].

Crucial for the Weyl geometric scalar tensor approach
(WST) is that the scalar curvature 𝑅 and all dynamical
terms involving covariant derivatives are expressed in Weyl
geometric scale covariant form. Fields 𝑋 are scale covariant
if they transform under rescaling by 𝑋 󳨃→ 𝑋̃ = Ω𝑤𝑋,
with 𝑤 ∈ 𝑄 (in most cases even in 𝑍); 𝑤 is called the
weight of 𝑋. Covariant derivatives of scale covariant fields
are defined such that the result of covariant derivation 𝐷𝜇𝑋
is again scale covariant of the same weight 𝑤 as 𝑋. The
Lagrangian density L is invariant under conformal rescaling
for any value of the coefficient 𝜉2 of themodifiedHilbert term.
For thematter and interaction terms of the standardmodel of
elementary particles, scale invariance is naturally ensured by
the coupling to the Higgs field which has the same rescaling
behaviour as the gravitational scalar field. Although there is
no complete identity, there is a close relationship between
scale and conformal invariance in quantum field theory [16].
For classical matter we expect that a better understanding
of the quantum to classical transition, for example, by the
decoherence approach, allows considering scale invariant
Lagrangian densities also. For the time being we introduce
the scale invariance of matter terms in the Lagrangian as a
postulate.

In our context an important consequence is the scale
covariance of the Hilbert energy momentum tensor

𝑇𝜇] = − 2
√󵄨󵄨󵄨󵄨𝑔󵄨󵄨󵄨󵄨

𝛿L𝑚𝛿𝑔𝜇] , (3)

which is of weight 𝑤(𝑇𝜇]) = −2. That is consistent with
dimensional considerations on a phenomenological level. It
has been shown that the matter Lagrangian of quantum
matter (Dirac field, Klein Gordon field) is consistent with
test particle motion along geodesics (autoparallels) 𝛾(𝜏) of
the affine connection, if the underlying Weyl geometry is
integrable (see (8)) [11]. For classical matter we assume the
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same. It is to be expected that it can be proven similar to
Einstein gravity.

We do not want to heap up too many technical details;
more can be found in the literature given above. But we have
to mention that a Weylian metric can be given by an equiva-
lence class of pairs (𝑔, 𝜑) consisting of a pseudo-Riemannian
metric 𝑔 = 𝑔𝜇]𝑑𝑥𝜇𝑑𝑥], the Riemannian component of the
Weyl metric, and a differentiable one-form 𝜑 = 𝜑𝜇𝑑𝑥𝜇,
the scale connection (or, in Weyl’s original terminology, the
“length connection”). 𝜑𝜇 is often called the Weyl covector or
even the Weyl vector field. In fact, 𝜑 denotes a connection
with values in the Lie algebra of the scale group (𝑅+, ⋅) and
can locally be represented by a differentiable 1-form. The
equivalence is given by rescaling the Riemannian component
of the Weylian metric according to (2), while 𝜑 has the
peculiar gauge transformation behaviour of a connection,
rather than that of an ordinary vector (or covector) field in
a representation space of the scale group:

𝜑𝜇 󳨃󳨀→ 𝜑󸀠𝜇 = 𝜑𝜇 − 𝜕𝜇ΩΩ (4)

or, shorter, 𝜑󸀠 = 𝜑 − 𝑑 logΩ.
A Weylian metric has a uniquely determined compatible

affine connection Γ; in physical terms it characterizes the iner-
tiogravitational guiding field. It can be additively composed of
the well known Levi-Civita connection 𝑔Γ of the Riemannian
component𝑔 of any gauge (𝑔, 𝜑) and an additional expression
𝜑Γ in the scale connection; in short

Γ = 𝑔Γ + 𝜑Γ with 𝜑Γ𝜇]𝜆 = 𝛿𝜇]𝜑𝜆 + 𝛿𝜇
𝜆
𝜑] − 𝑔]𝜆𝜑𝜇. (5)

Covariant derivatives 𝐷 in the Lagrangians (1) and
(below) (28) and consequently in the expression for the
energy momentum tensor of the scalar field (equations (35)
and (36)) below denote those of Weyl geometry. For a
covariant field𝑋] ofweight𝑤 the derivativation∇with regard
to Γ of (5) 𝐷 is supplemented by a term due to the scaling
weight 𝑤 of𝑋:

𝐷𝜇𝑋] = ∇𝜇𝑋] + 𝑤𝜑𝜇𝑋] = 𝜕𝜇𝑋] + Γ]𝜇𝜆𝑋𝜆 + 𝑤𝜑𝜇𝑋]. (6)

It turns out that for themetric𝑔𝜇] the full covariant derivative
is zero:

𝐷𝜆𝑔𝜇] = 0 ←→
∇𝜆𝑔𝜇] + 2𝜑𝜆𝑔𝜇] = 0. (7)

This is the Weyl geometric compatibility condition between
metric and affine connection (sometimes called “semimetric-
ity”).

In the low energy regime there are physical reasons to
constrain the scale connection to the integrable case with a
closed differentiable form 𝑑𝜑 = 0; that is, 𝜕𝜇𝜑] = 𝜕]𝜑𝜇. Then𝜑 is a gradient (at least locally) and may be given by

𝜑𝜇 = −𝜕𝜇𝜔. (8)

This constraint is part of the defining properties ofWST.Then
it is possible to “integrate the scale connection away” [11].

Having done so, the Weylian metric, given as (𝑔̃, 𝜑̃), is
characterized by its Riemannian component 𝑔̃𝜇] only (and a
vanishing scale connection 𝜑̃𝜇 = 0). By obvious reasons we
call this the Riemann gauge.This is the analogue of the choice
of Jordan frame in JBD theory.

In any case, the choice of representative 𝑔𝜇] also fixes𝜑𝜇; both together define a scale gauge of the Weylian metric.
Conformal rescaling of the metric is accompanied by the
gauge transformation of the scale connection (4). From a
mathematical point of view all the scale gauges are on an equal
footing, and the physical content of a WST model can be
extracted, in principle, from any scale gauge. One only needs
to form a proportion with the appropriate power of the scalar
field. From the physical point of view there are, however, two
particularly outstanding scale gauges. Of special importance
besides Riemann gauge is the gauge inwhich the scalar field is
scaled to a constant 𝜙𝑜 (scalar field gauge). For the particular
choice of the constant value such that

(𝜉𝜙𝑜)2 = (8𝜋𝐺)−1 = 𝐸2pl, (9)

with the Newton gravitational constant𝐺, this gauge is called
Einstein gauge (𝐸pl the reduced Planck energy). It is the
analogue of Einstein frame in JBD theory. In this gauge the
metrical quantities (scalar, vector, or tensor components) of
physical fields are directly expressed by the corresponding
field or field component of the mathematical model (without
the necessity of forming proportions).

In Riemann gauge Γ reduces to 𝑔Γ by definition. Thus,
in this gauge, the guiding field is given by the ordinary
expression for the Levi-Civita connection.On the other hand,
in Einstein gauge the measuring behaviors of clocks are
most immediately represented by the metric field and also
other physical observables are most directly expressed by
the field values in this scale. Then the expressions for the
gravitational field and the accelerations contain contributions
from theWeylian scale connection.Thus a specific dynamical
difference to Einstein gravity and Riemannian geometry (and
to JBD theory) arises even in the case of WST with its
integrable Weyl geometry.

Writing the scalar field 𝜙̃ in Riemann gauge (𝑔̃, 0) in
exponential form, 𝜙̃ = 𝑒𝜔, turns its exponent

𝜔 fl ln 𝜙̃ (10)

into a scale invariant expression for the scalar field. In the
followingwe shall omit the tilde sign to simplify notation.The
scale connection 𝜑 = 𝜑̂ in scalar field gauge is then

𝜑̂ = −𝑑𝜔, (11)

because Ω = 𝜙̃ = 𝑒𝜔 is the rescaling function from Riemann
gauge to scalar field gauge. For more details see [1, 12, 13, 17,
18].

For the sake of consistency under rescaling we consider
scale covariant geodesics 𝛾(𝜏) with scale gauge dependent
parametrizations of the geodesic curves of weight𝑤(𝛾̇) = −1:

𝑢̇𝜆 + Γ𝜆𝜇]𝑢𝜇𝑢] − 𝜑𝜇𝑢𝜇𝑢𝜆 = 0, 𝑢𝜇 = 𝛾̇𝜇. (12)
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Here the affine connection contains a 𝜑-dependent term
in addition to the well known Levi-Civita connection 𝜑Γ𝜆𝜇]
derived from 𝑔𝜇] (5). The last term on the l.h.s. of (12) takes
care of the scale dependent parametrization (compare (6)). In
this way we work with a projective family of paths.

For any gauge of the Weylian metric and the scalar field,(𝑔, 𝜑, 𝜙), any timelike geodesic has thus a generalized proper
time parametrization 𝛾(𝜏) with 𝑔𝜇]𝑢𝜇𝑢] = −1, where 𝑢𝜇 =𝛾̇𝜇. Inverting the coordinate time function 𝑡(𝜏) along the
geodesic by 𝜏(𝑡) we have, in abbreviated notation, 𝜏󸀠𝑡󸀠 = 1
and thus

𝑑2𝑥𝑖𝑑𝑡2 = 𝑑𝜏𝑑𝑡 𝑑𝑑𝜏 (𝑑𝜏𝑑𝑡 𝑑𝑥
𝑖

𝑑𝜏 )
= (𝑑𝜏𝑑𝑡 )

2 𝑑2𝑥𝑖𝑑𝜏2 − ( 𝑑𝑡𝑑𝜏)
−3 𝑑2𝑡𝑑𝜏2 𝑑𝑥

𝑖

𝑑𝜏 .
(13)

With (12) and indices 𝑖, 𝑗, 𝑘 = 1, 2, 3, 𝜇, ], . . . = 0, 1, 2, 3 this
leads to

𝑑2𝑥𝑖𝑑𝑡2 = (𝑑𝜏𝑑𝑡 )
2 (−Γ𝑖𝜇] 𝑑𝑥𝜇𝑑𝜏 𝑑𝑥]𝑑𝜏 + 𝜑𝜇 𝑑𝑥𝑖𝑑𝜏 𝑑𝑥𝜇𝑑𝜏 )

− (𝑑𝜏𝑑𝑡 )
3 𝑑𝑥𝑖𝑑𝜏 (−Γ0𝜇] 𝑑𝑥𝜇𝑑𝜏 𝑑𝑥]𝑑𝜏 + 𝜑𝜇 𝑑𝑡𝑑𝜏 𝑑𝑥

𝜇

𝑑𝜏 )
= −Γ𝑖𝜇] 𝑑𝑥𝜇𝑑𝑡 𝑑𝑥]𝑑𝑡 + 𝜑𝜇 𝑑𝑥𝑖𝑑𝑡 𝑑𝑥𝜇𝑑𝑡

+ Γ0𝜇] 𝑑𝑥𝜇𝑑𝑡 𝑑𝑥]𝑑𝑡 𝑑𝑥𝑖𝑑𝑡 − 𝜑𝜇 𝑑𝑥𝜇𝑑𝑡 𝑑𝑥𝑖𝑑𝑡 .

(14)

Happily, the length connection terms coming from the scale
covariance modification of the geodesic equation (12) cancel
the equation of motion for mass points in Weyl geometric
gravity, parametrized in coordinate time, becomes

𝑑2𝑥𝑖𝑑𝑡2 = −Γ𝑖00 + Γ000 𝑑𝑥𝑖𝑑𝑡 − 2Γ𝑖0𝑗 𝑑𝑥𝑗𝑑𝑡 − Γ𝑖𝑗𝑘 𝑑𝑥𝑗𝑑𝑡 𝑑𝑥𝑘𝑑𝑡
+ 2Γ00𝑗 𝑑𝑥𝑖𝑑𝑡 𝑑𝑥𝑗𝑑𝑡 + Γ0𝑗𝑘 𝑑𝑥𝑖𝑑𝑡 𝑑𝑥𝑗𝑑𝑡 𝑑𝑥𝑘𝑑𝑡 .

(15)

In the result the dynamics of mass points in Weyl geometric
gravity is governed by the guiding field (the affine connec-
tion), as in the semi-Riemannian case [19, equ. (9.1.2)]. Note,
however, that in (15) the length connection enters into the affine
connection and influences the dynamics because of (5).

The geodesic equation thus contains terms in the scale
connection 𝜑𝜇. In the low velocity, weak field regime the
equation of motion reduces to the form well known from
Einstein gravity 𝑑2𝑥𝑗/𝑑𝑡2 = −Γ𝑗00. Here Γ𝑗00 = 𝑔Γ𝑗00 + 𝜑Γ𝑗00
(𝑗 = 1, 2, 3) are the coefficients of the Weyl geometric
affine connection with 𝜑Γ𝑗00 given by (5). This is the crucial
modifying term for gravity in the Weyl geometric approach
(low velocity case).

2.2.TheWeak Field Static Approximation. Wewant to under-
stand the scale connection for the motion of point particles.

The free fall of test particles inWeyl geometric gravity follows
scale covariant geodesics. It is governed by a differential
equation formally identical to the one in Einstein gravity (15).
Here we look at the weak field static case for low velocities in
order to study the dynamics of stars in galaxies and galaxies in
clusters. For studies of the gas dynamics and its modification
in our framework the velocity dependent terms of (15) have
to be taken into account. This is not being done here.

Analogous to Einstein gravity, the coordinate acceleration𝑎 for a low velocity motion 𝑥(𝜏) in proper time parametriza-
tion is given by

𝑎𝑗 = 𝑑2𝑥𝑗𝑑𝜏2 ≈ −Γ𝑗𝑜𝑜. (16)

According to (5) the total acceleration decomposes into

𝑎𝑗 = − 𝑔Γ𝑗𝑜𝑜 − 𝜑Γ𝑗]𝜆 = 𝑎𝑗𝑅 + 𝑎𝑗𝜑 (17)

(𝑗 = 1, 2, 3 indices of the spacelike coordinates), where
𝑎𝑗𝑅 = − 𝑔Γ𝑗𝑜𝑜 (18)

is the Riemannian component of the acceleration known
from Einstein gravity. Clearly

𝑎𝑗𝜑 = − 𝜑Γ𝑗𝑜𝑜 (19)

represents an additional acceleration due to the Weylian
scale connection. For a diagonal Riemannian metric 𝑔 =
diag(𝑔𝑜𝑜, . . . , 𝑔33) the general expression (5) simplifies to− 𝜑Γ𝑗𝑜𝑜 = −𝑔𝑜𝑜𝜑𝑗. General considerations on observable
quantities and consistency with Einstein gravity show that, in
order to confront it with empirically measurable quantities,
we have to take its expression in Einstein gauge if we want to
avoid additional rescaling calculations [14, sec. 4.6].

For a (diagonalized) weak field approximation in Einstein
gauge,

𝑔𝜇] = 𝜂𝜇] + ℎ𝜇], 󵄨󵄨󵄨󵄨󵄨ℎ𝜇]󵄨󵄨󵄨󵄨󵄨 ≪ 1, (20)

with 𝜂 = 𝜖sig diag(−1, +1, +1, +1), the Riemannian compo-
nent of the acceleration is the same as in Einstein gravity. Its
leading term (neglecting 2nd-order terms in ℎ) is

𝑎𝑗𝑅 = 𝑔Γ𝑗𝑜𝑜 ≈ 12𝜂𝑗𝑗𝜕𝑗ℎ𝑜𝑜 (no summation over 𝑗) . (21)

In the limit, Φ𝑁 fl −(1/2)ℎ𝑜𝑜 behaves like a Newtonian
potential

𝑎𝑅 ≈ −∇Φ𝑁, (22)

where ∇ is understood to operate in the 3-spacelike coordi-
nate space with Euclidean coefficients as the leading term of
the metric.

In Einstein gauge the Weylian scale connection 𝜑̂𝜇 arises
from Riemann gauge by rescaling with Ω = 𝑒𝜔, 𝜑̂𝜇 = −𝜕𝜇𝜔
(4), and 𝑎𝑗𝜑 ≈ 𝜑𝑗. In other words, the additional acceleration
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due to the scale connection (19) is generated by the scale
invariant representative 𝜔 of the scalar field as its potential:

𝑎𝜑 ≈ −∇𝜔. (23)

If we compare with Newton gravity, we can calculate the
fictitious mass density which one had to assume on the right-
hand side of the Poisson equation, in addition to the real
masses, in order to generate the same amount of additional
acceleration. Obviously here it is

𝜌ph = (4𝜋𝐺)−1 ∇2𝜔. (24)

In the terminology of the MOND literature the acceleration
due to the Weylian scale connection corresponds to a phan-
tom energy density 𝜌ph (see, e.g., [20], p. 48). We see that
already on the general level the dynamics of WST differs
from Einstein gravity. Only for trivial scalar field, 𝜔 = const,
the usual Newton limit is recovered; otherwise it is modified.
We shall explore how this modification relates to the usual
MOND approaches.

2.3. WST Gravity with Cubic Kinematic Lagrangian (WST-
3L). Themost common formof the kinetic term for the scalar
field is that of a Klein Gordon field, 𝐿𝜙2 = −(𝛼/2)𝐷]𝜙𝐷]𝜙,
quadratic in the norm of the (scale covariant) gradient (in
WST 𝐷] denotes the a scale covariant derivative of 𝜙, 𝐷]𝜙 =𝜕]𝜙 − 𝜙𝜑]). For our form of the gravitational Lagrangian
(1) it is conformally coupled for 𝛼 = −6𝜉2. Inspired by
the approach of the relativistic “a-quadratic Lagrangian”
(rAQUAL), the first relativistic attempt of a MOND theory
of gravity [21, 22], we find that aWeyl geometric scalar tensor
theory of gravity leads to aMOND-like phenomenology if we
add a cubic term to the kinetic Lagrangian of the scalar field

𝐿𝜙 = 𝐿𝜙2 + 𝐿𝜙3. (25)

The crucial difference to the early approach of rAQUAL is
the scale covariant reformulation in the framework of Weyl
geometry. It results in a different behaviour of the scalar field
energy density. Bekenstein/Milgrom’s model relied crucially
on implementing a transition function 𝑓(𝑦) between the
Newton and the deep MOND regime into the kinetic term.
The constraint of scale invariance of the Lagrangian reduces
the underdetermination of the Lagrangian and suggests a
slightly different form of the kinetic term. It is still quite near
to the one of the relativistic AQUAL theory.

In the review paper [22] Bekenstein gives the rAQUAL
Lagrangian in the form (his equation (6))

𝐿𝜓 = − (8𝜋𝐺𝑁)−1 𝐿−2𝑓 (𝐿2𝜕]𝜓𝜕]𝜓) , (26)

where 𝐿 is “a constant with dimension of length introduced
for dimensional consistency” (later it is identified as the
MOND acceleration 𝑎𝑜 via 𝑐2𝐿−1 = 𝑎𝑜). Asymptotically𝑓(𝑦) ∼ (2/3)𝑦3/2 for𝑦 ≪ 1 (MOND regime); similarly𝑓(𝑦) ∼𝑦 for 𝑦 ≫ 1 (Newton regime).𝜓 is the logarithm of a rescaling
function between the Jordan frame metric 𝑔̃𝜇] (called the
“physical”metric) and the Einstein frame (“primitive”)metric

𝑔𝜇], 𝑔̃𝜇] = 𝑒2𝜓𝑔𝜇]. Its role is very close to our 𝜔 in (10). A
corresponding scale covariant form of the Lagrangian could
be

𝐿𝜙3 = (𝜉𝜙)2 (𝜂−1𝜙)2 𝑓((𝜂−1𝜙)−2 𝜕]𝜔𝜕]𝜔) , (27)

where 𝜂−1𝜙𝑜 in Einstein gauge plays a role similar to 𝑎𝑜. The
sign has deliberately been changed; the reasons are given
below (39).

We are here interested in additive modifications (19) of
Einstein gravity, mainly in a domain in which the effects of
the scale connection 𝜑] = −𝜕]𝜔, compared with those of the
Riemannian component of the metric, cannot be neglected.
This will be called a regime with MOND approximation. For
nontimelike ∇𝜔 the Lagrangian (27) then becomes

𝐿𝜙3 = 23 (𝜉𝜙)2 (𝜂−1𝜙)−1 (𝐷]𝜙𝐷]𝜙)3/2
= 23𝜉2𝜂𝜙 |∇𝜔|3 ,

(28)

where we have used the abbreviation

|∇𝜔| fl 󵄨󵄨󵄨󵄨𝜕]𝜔𝜕]𝜔󵄨󵄨󵄨󵄨1/2 (29)

(| ⋅ ⋅ ⋅ | absolute value) (for timelike ∇𝜔 see [1]. Here we
exclusively deal with the spacelike (or null) case). 𝜂 denotes a
constant coefficient responsible for the relative strength of the
cubic kinetic term and 𝜔 is the scale invariant representative
of the scalar field introduced in (10) and∇ its gradient (𝑤(𝜙) =−1 and𝑤(‖∇𝜔‖) = −1 imply the scale weight𝑤(𝐿𝜙3) = −4, as
it must be for scale invariance ofL𝜙3).

We introduce the constant 𝑎̃𝑜 defined in Einstein gauge(𝑔̂, 𝜑̂) with constant scalar field 𝜙̂ š 𝜙𝑜,
𝑎̃𝑜 fl 𝜂−1𝜙𝑜. (30)

Then the cubic term of the kinetic Lagrangian in Einstein
gauge reads

𝐿𝜙3 ≐ 23 (8𝜋𝐺𝑎̃𝑜)−1 |∇𝜔|3 . (31)

The dotted equality sign “≐” indicates that the respective
equation is not scale invariant but presupposes a special gauge
made clear by the context. Here, as in most cases in this
paper, it indicates the Einstein gauge (similar for ≈̇). 𝑎̃𝑜 has
the dimension of inverse length/time and will play a role
analogous to the MOND acceleration 𝑎𝑜 ≈ [𝑐]𝐻, where 𝐻
is the Hubble parameter (at “present”) and 𝑐 is the velocity
of light. Coefficients of type [𝑐] will often be suppressed in
the following general considerations. They will be plugged in
only in the final step. Below we shall see that for 𝑎̃𝑜 = 𝑎𝑜/16 ≈𝐻/100 the WST model with cubic kinematic Lagrangian
(WST-3L) acquires a MOND-like phenomenology in a weak
gravitational field in which the scalar field and the scale
connection cannot be neglected.

A reasonable choice of adaptable parameters brings 𝜉 and𝜂 to nearby orders of magnitude, 𝜂 = 𝛽𝜉, with
𝛽 = 𝜉−1𝜂, 𝛽 ∼ 100. (32)
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On the other hand, because of (9) and (30) the product of
both coefficients is a “large number” in the sense of 𝜂 ⋅ 𝜉 =𝐸pl/𝑎̃𝑜 = 𝑎̃−1𝑜 /𝐿pl ∼ 1063. To the kinetic Lagrangian of the
scalar field a potential term is added. It must be of order 4 to
provide for scale invariance of the density (1):

𝐿𝑉4 = −𝜆4𝜙4. (33)

Variation of the Lagrangian leads to the dynamical
equations of WST, the Einstein equation, and the scalar field
equation.The scale invariant Einstein equation is (this means
that not only the equation but all of its constitutive (additive)
terms are scale invariant)

Ric − 𝑅2 𝑔 = (𝜉𝜙)−2 𝑇(𝑚) + Θ, (34)

where 𝑔 denotes the whole collection of metrical coefficients
and 𝑇(𝑚) the energy tensor of matter (3). The scalar field
contributes to the total energy momentum with two terms,Θ = Θ(𝐼)+Θ(𝐼𝐼), the first of which is proportional to themetric
(thus formally similar to a vacuum energy tensor) (see, e.g.,
[23], [18, pp. 96ff.]):

Θ(𝐼) = 𝜙−2 (−𝐷𝜆𝐷𝜆𝜙2 + 𝜉−2 (𝐿𝑉4 + 𝐿𝜙)) 𝑔, (35)

Θ(𝐼𝐼)𝜇] = 𝜙−2 (𝐷𝜇𝐷]𝜙2 − 2𝜉−2 𝜕𝐿𝜙𝜕𝑔𝜇]) . (36)

Varying with regard to 𝜙 gives the scalar field equation.
Subtracting the trace of the Einstein equation for a confor-
mally coupled 𝐿𝜙2 term (𝛼 = −6𝜉2) strongly simplifies it
and introduces the trace of the matter tensor into the scalar
field equation. In Einstein gauge, with 𝑔 the Riemannian
component of the metric, it can be written in terms of
the covariant derivative 𝑔∇ with regard to 𝑔 (Levi-Civita
connection in Einstein gauge) as ([1, pp. 15f., sec. 7.2, postprint
version arXive v4])

𝑔∇] (|∇𝜔| 𝜕]𝜔) ≐ −4𝜋𝐺𝑎̃𝑜tr𝑇(𝑚). (37)

If we introduce the corresponding Riemannian covariant
operator

𝑔◻𝑀 𝜔 = 𝑔∇] (|∇𝜔| 𝜕]𝜔)
= (𝜕] |∇𝜔| 𝜕]𝜔 + |∇𝜔| 𝑔∇] 𝜕]𝜔) , (38)

the scalar field equation for a fluid withmatter density 𝜌𝑚 and
pressure 𝑝𝑚 simplifies to the covariantMilgrom equation

𝑔◻𝑀 𝜔 ≐ 4𝜋𝐺𝑎̃𝑜 (𝜌𝑚 − 3𝑝𝑚) . (39)

In this derivation, with tr𝑇(𝑚) entering by subtracting the
trace of the Einstein equation, a sign choice like in (26) leads
to the wrong sign on the r.h.s. of the Milgrom equation. This
explains our sign choice in (27). By obvious reasons (38) will
be called the covariant Milgrom operator. In the static weak
field static case 𝜔 does not depend on the time coordinate.

Moreover with 𝑔𝜇] ≈ 𝜂𝜇], the expression ∇](|∇𝜔|𝜕]𝜔) turns
into the nonlinear Laplace operator ∇ ⋅ (|∇𝜔|∇𝜔) of the
MOND theory with Euclidean scalar product ⋅ and norm| ⋅ ⋅ ⋅ |.

In the general case we have to complement (39) with the
Einstein equation in Einstein gauge

Ric − 𝑅2 𝑔 ≐ 8𝜋𝐺𝑇(𝑚) + Θ, (40)

In vacuum, the trivial scalar field 𝜔 = const is a basic
solution of (39). Then WST reduces to Einstein gravity. In
particular, the Schwarzschild and the Schwarzschild-de Sitter
solutions of Einstein gravity are special (degenerate) solutions
of WST-3L equations for 𝜆/4 = 0 or 𝜆/4 ≈ 6, respectively. In
fact, they solve (40) and (39) for 𝜙 ≐ const in Riemann gauge,
that is, in the case of Einstein gauge equal to Riemann gauge(𝑔̂, 𝜑̂) = (𝑔̃, 0). The Riemannian component of the metric
(𝑔̃ = 𝑔̂ š 𝑔) is given by

𝑑𝑠2 = −(1 − 2𝑀𝑟 − 𝜅𝑟2)𝑑𝑡2

+ (1 − 2𝑀𝑟 − 𝜅𝑟2)−1 𝑑𝑟2
+ 𝑟2 (𝑑𝑥22 + sin2𝑥2𝑑𝑥3)2 .

(41)

Then Ric − (𝑅/2)𝑔 = −3𝜅𝑔 and Θ = Θ(𝐼) = −(𝜆/4)𝛽2𝑎̃2𝑜𝑔.
Therefore the Einstein equation is satisfied for 3𝜅 =(𝜆/4)𝛽2𝑎̃2𝑜; that is, 𝜅 ≈ 2𝐻2 for 𝜆/4 ≈ 6 and 𝛽 ≈ 100. We
see that in the case of a negligible Weylian scale connection
the classical (nonhomogeneous) point symmetric solutions
of Einstein gravity are valid also for the dynamics of WST.
This implies that in the case of a negligible scale connection
Newton dynamics is an effective approximation for point
symmetric solutions of WST (in Einstein gauge).

In order to make such a type of Einstein limit compatible
with our Lagrangian, a suppression of the 𝐿𝜙3-term for
sufficiently large accelerations 𝑎𝑅 of (18) is necessary. One
may consider plugging a factor 𝑓̃(𝑎𝑜/|𝑎𝑅|) with a function𝑓̃ such that 𝑓̃(𝑦) ∼ 1 for 𝑦 > 0.01 and 𝑓̃(𝑦) ∼ 0 for𝑦 ≪ 1 into the r.h.s. expression of (28) for 𝐿𝜙3 but such
a choice would have the blemish of a coordinate dependent
argument of the function. A better alternative is provided
by the hypothesis that the scalar field inhomogeneities are
suppressed if any of the sectional curvatures 𝜅 (with respect to
the Riemannian component of the metric in Einstein gauge)
surpasses a certain threshold (e.g., |𝜅| ≥ (109 𝑎𝑜 [𝑐−2])2). In
the next section we investigate the case of a nonnegligible
scale connection. Amore detailed discussion of the transition
between the two domains has to be left open for another
occasion.

2.4. A WST Approach with MOND-Like Phenomenology. If
the conditions for the weak field approximation (20) are
given, it is possible to identify a MOND regime as a region
in which the Newton acceleration 𝑎𝑁 is smaller than 𝑎𝑜 (here
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𝑎𝑁 can be identified with 𝑎𝑅 in (22)). Then the scalar field
equation (39) reduces, in reliable approximation, to

∇ ⋅ (|∇𝜔| ∇𝜔) ≐ −4𝜋𝐺𝑎̃𝑜tr𝑇(𝑚), (42)

with the Euclidean ∇-operator. We call this aMOND approx-
imation. For pressureless matter with energy density 𝜌𝑚 we
get

∇ ⋅ (|∇𝜔| ∇𝜔) ≐ 4𝜋𝐺𝑎̃𝑜𝜌𝑚. (43)

That is similar to theAQUALapproach [21, 22].Note that only
thematter energy momentum tensor, without the scalar field
energy density, appears on the r.h.s. of (42).

Straightforward verification shows that, independent of
symmetry conditions, a solution of (43) is given by 𝜔 with a
gradient ∇𝜔 = −𝑎𝜑 such that

𝑎𝜑 = √ 𝑎̃𝑜󵄨󵄨󵄨󵄨𝑎𝑁󵄨󵄨󵄨󵄨 𝑎𝑁 = √𝑎̃𝑜 󵄨󵄨󵄨󵄨𝑎𝑁󵄨󵄨󵄨󵄨 𝑎𝑁󵄨󵄨󵄨󵄨𝑎𝑁󵄨󵄨󵄨󵄨 , (44)

where 𝑎𝑁 denotes the Newton acceleration of the given mass
density,

∇2Φ𝑁 = 4𝜋𝐺𝜌𝑚,
𝑎𝑁 = −∇Φ𝑁 (45)

(calculations in the approximating Euclidean space with
norm | ⋅ ⋅ ⋅ |). The solution of the nonlinear Poisson equation
(43) ismuch simpler than onemight expect at a first glance. In
a first step the linear Poisson equation of theNewton theory is
to be solved and then an algebraic transformation of type (44)
leads to the acceleration due to the solution of the nonlinear
partial differential equation (43). In fact, 𝑎𝜑 has the form of
the deep MOND acceleration of the ordinary MOND theory
(but with different constant 𝑎̃𝑜) (44). In the terminology of
the MOND community, the MOND approximation of WST-
3L behaves like a special case of a QMOND theory [20, pp.
46ff.].

This raises the question of the Newtonian limit. Equation
(44) implies |𝑎𝜑| ≪ |𝑎𝑁| in regions, where |𝑎𝑁| ≫ 𝑎𝑜 (> 𝑎̃𝑜).
Therefore 𝑎𝜑 can effectively be neglected in the case of “large”
values of |𝑎𝑁|derived from (45).Then, according to the obser-
vation at the end of Section 2.3, the Newton approximation
is also reliable in WST gravity. That is true irrespective of
the question of how to characterize the transition between
the MOND and the Newton approximation. Here we shall
consider the MOND approximation in an “upper transition”
regime only, where roughly |𝑎𝑁| ≤ 102𝑎𝑜. One might speak
of the upper transition regime for 𝑎𝑜 ≤ |𝑎𝑁| ≤ 100𝑎𝑜 of the
MOND regime if |𝑎𝑁| ≤ 𝑎𝑜 and of the deep MOND regime for,
let us say, |𝑎𝑁| ≤ 10−2𝑎𝑜 [1, sec. 7.3].

For centrally symmetric mass distributions 𝜌(𝑟) with
mass 𝑀(𝑟) integrated up to 𝑟 (where 𝑟 = |𝑦| denotes the
Euclidean distance from the symmetry center,𝑦 = (𝑦1, 𝑦2, 𝑦3)

the coordinates of the approximating Euclidean space) this
implies

𝑎𝜑 = −∇𝜔 ≈̇ − √𝐺𝑀(𝑟) 𝑎̃𝑜 𝑦󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨2 ,
󵄨󵄨󵄨󵄨󵄨𝑎𝜑󵄨󵄨󵄨󵄨󵄨 = √𝐺𝑀(𝑟) 𝑎̃𝑜𝑟 .

(46)

But this is only the most immediate modification of
Newton gravity. There is also the additional term in (40) of
the energy density due to the scalar field, 𝜌sf = (8𝜋𝐺)−1Θ𝑜𝑜. It
modifies the r.h.s. of the Newton limit of Einstein gravity (in
contrast 𝜌sf does not enter the r.h.s. of the scalar field equation
(39) and therefore does not enter the r.h.s. of (45)).

Neglecting contributions at the order of magnitude of
cosmological terms (∼H) the energy density of the scalar field
in Einstein gauge simplifies to ([1, sec. 4.3])

𝜌sf ≈̇ (4𝜋𝐺)−1 (∇2𝜔 + Γ𝑗
𝑗𝑘
𝜕𝑘𝜔) , (47)

where Latin indices 𝑗, 𝑘, . . . refer to space coordinates only.
In the central symmetric case with Euclidean metric in

spherical coordinates and amass function𝑀(𝑟)with𝑀󸀠(𝑟) =0 for 𝑟 > 𝑟𝑜 (for some distance 𝑟𝑜), we find from (46)∇2𝜔 = √𝑎̃𝑜𝐺𝑀(𝑟)/𝑟2 and Γ𝑗
𝑗𝑘
𝜕𝑘𝜔 = (2/𝑟)(√𝑎̃𝑜𝐺𝑀(𝑟)/𝑟) =

2∇2𝜔; (for 𝑑𝑠2 = 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2𝜃𝑑𝜗2) the crucial affine
connection components are Γ111 = 0, Γ221 = Γ331 = 𝑟−1, and
thus

𝜌sf ≈̇ (4𝜋𝐺)−1 3∇2𝜔. (48)

That is three times the value of the phantom energy density
corresponding to the acceleration of the scale connection
(24).The total “anomalous” additive acceleration (in compar-
ison to Newton gravity) is therefore

𝑎add = 𝑎𝜑 + 𝑎sf = 4𝑎𝜑. (49)

In the central symmetric case

󵄨󵄨󵄨󵄨𝑎add󵄨󵄨󵄨󵄨 = 4√𝐺𝑀(𝑟) 𝑎̃𝑜𝑟 . (50)

For consistencywith the deepMONDacceleration 𝑎𝑜 wehave
to set

𝑎̃𝑜 = 𝑎𝑜16 ≈ 10−2𝐻[𝑐] ≈ 6 ⋅ 10−10 cm s−2. (51)

Because of (44) the total acceleration 𝑎 is then
𝑎 = 𝑎𝑁 + 𝑎add = 𝑎𝑁(1 + √ 𝑎𝑜󵄨󵄨󵄨󵄨𝑎𝑁󵄨󵄨󵄨󵄨) ,

󵄨󵄨󵄨󵄨𝑎add󵄨󵄨󵄨󵄨 = √𝑎𝑜 󵄨󵄨󵄨󵄨𝑎𝑁󵄨󵄨󵄨󵄨.
(52)
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2.5. Comparison with Usual MOND Theories. We can now
compare our approach with other models of the MOND
family. Simply adding a deep MOND term to the Newton
acceleration of a point mass is unusual. Milgrom rather
considered a multiplicative relation between the MOND
acceleration 𝑎 and the Newton acceleration 𝑎𝑁 by a kind of
“dielectric analogy,”

𝑎𝑁 = 𝜇( 𝑎𝑎𝑜)𝑎, with 𝜇 (𝑥) 󳨀→ {{{
1 for 𝑥 󳨀→ ∞
𝑥 for 𝑥 󳨀→ 0, (53)

or the other way round (here 𝜇(𝑥) → 𝑥 means 𝜇(𝑥) − 𝑥 =
O(𝑥); i.e., (𝜇(𝑥) − 𝑥)/𝑥 remains bounded for 𝑥 → 0. Cf. [20,
pp.51f.])

𝑎 = ](𝑎𝑁𝑎𝑜 )𝑎𝑁,

with ] (𝑦) 󳨀→ {{{
1 for 𝑦 󳨀→ ∞
𝑦−1/2 for 𝑦 󳨀→ 0.

(54)

From this point of view our acceleration (52) is specified by
well defined transition functions

𝜇𝑤 (𝑥) = 1 + 1 − √1 + 4𝑥2𝑥 ,
]𝑤 (𝑦) = 1 + 𝑦−1/2.

(55)

One has to keep in mind, however, that our transition func-
tions 𝜇, ] are reliable only in the MOND regime and the upper
transitional regime (roughly 𝑎𝑁 ≤ 102𝑎𝑜). They cannot be
used for discussing the Newtonian limit. It will be important
to see how they behave in the light of empirical data, in
particular galactic rotation curves and cluster dynamics.

In the MOND literature the amount of a (hypothetical)
mass which in Newton dynamics would produce the same
effects as the respective MOND correction 𝑎add is called
phantom mass 𝑀ph. For any member of the MOND family
the additional acceleration can be expressed by the modified
transition function ]̃ = ] − 1 with ] as in (54)

𝑎add = ]̃(󵄨󵄨󵄨󵄨𝑎𝑁󵄨󵄨󵄨󵄨𝑎𝑜 )𝑎𝑁. (56)

The phantom mass density 𝜌ph attributed to the potentialΦph satisfies 4𝜋𝐺𝜌ph = ∇2Φph and ∇Φph = −𝑎add. A short
calculation shows that it may be expressed as

𝜌ph = ]̃(󵄨󵄨󵄨󵄨𝑎𝑁󵄨󵄨󵄨󵄨𝑎𝑜 )𝜌𝑚 + (4𝜋𝐺𝑎𝑜)−1 ]̃󸀠 (
󵄨󵄨󵄨󵄨𝑎𝑁󵄨󵄨󵄨󵄨𝑎𝑜 ) (∇ 󵄨󵄨󵄨󵄨𝑎𝑁󵄨󵄨󵄨󵄨)

⋅ 𝑎𝑁.
(57)

It consists of a contribution proportional to 𝜌𝑚 with factor ]̃,
which dominates in regions of ordinary matter, and a term

derived from the gradient of |𝑎𝑁| dominating in the “vacuum”
(where however scalar field energy is present). For the
Weyl geometric model with ]̃𝑤(𝑦) = 𝑦−1/2, ]̃󸀠𝑤(𝑦) =−(1/2)𝑦−3/2𝜌ph turns into

𝜌𝑡 = ( 𝑎𝑜󵄨󵄨󵄨󵄨𝑎𝑁󵄨󵄨󵄨󵄨)
1/2 𝜌𝑚 + (8𝜋𝐺)−1 ( 𝑎𝑜󵄨󵄨󵄨󵄨𝑎𝑁󵄨󵄨󵄨󵄨) ∇ (󵄨󵄨󵄨󵄨𝑎𝑁󵄨󵄨󵄨󵄨)

⋅ 𝑎𝑁,
(58)

𝜌sf = 34𝜌𝑡,
𝜌ph = 14𝜌𝑡.

(59)

The first expression of (59) is compatible with (47).
In our case it would be utterly wrong to consider the

whole of 𝜌𝑡 as “phantom energy.”Three-quarters of it is due to
the scalar field energy density and the scalar field halo 𝜌sf and
expressed a true energy density. This energy density appears
on the right-hand side of the Einstein equation (40) and the
Newtonian Poisson equation as its weak field, static limit. It
is decisive for lensing effects of the additional acceleration.
Only one-quarter, 𝜌ph, is phantom, that is, a fictitious mass
density producing the same acceleration as the Weylian scale
connection (24). Only for the sake of comparison with other
MOND models we may speak of 𝜌𝑡 as some kind of gross
phantom energy, in contrast to the “net” phantom energy𝜌ph1.

We have to distinguish between the influence of the
additional structure, scalar field, and scale connection, on
light rays and on (low velocity) trajectories of mass particles.
Bending of light rays is influenced by the scalar field halo only,
the acceleration of massive particles with velocities far below𝑐 by the scalar field halo and the scale connection.

Also in another respect our theory differs from the usual
MOND approaches. In MOND external acceleration fields of
a system under consideration are difficult to handle. In WST,
as in GR, a freely falling (small) system does not feel the
external acceleration field if it is sufficiently small, relative
to the inhomogeneities of the external gravitational field, for
neglecting tidal forces. In this sense, the external acceleration
problem does not arise in the WST MOND approximation
(42).

Another important consequence follows: the scalar field
energy formed around a freely falling subsystem of a larger
gravitating system, calculated in the MOND approximation
of the freely falling subsystem, contributes to the r.h.s. of the
Einstein equation of any other subsystem (in relative motion)
and also to that of a superordinate larger system. In principle
that presupposes that the whole energy momentum tensors
(35) and (36) (and its system dependent representation) are
considered. For slow motions and weak field approximation
a superposition of energy densities as in Newton dynamics
seems legitimate. This has to be taken into account for
modeling the dynamics of clusters of galaxies.
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2.6. Short Resumé. We have derived the most salient features
of theWeyl geometricMONDapproximation (WSTMOND)
and are prepared for a comparisonwith empirical data. Before
we do so, it may be worthwhile to collect the results which
are necessary for applying it to real constellations in a short
survey.

Consider a gravitating system which in the Newton
approximation of Einstein gravity is described by the bary-
onic matter density 𝜌𝑚, the acceleration 𝑎𝑚, and potentialΦ𝑚
with

∇2Φ𝑚 = 4𝜋𝐺𝜌𝑚,
𝑎𝑚 = −∇Φ𝑚. (60)

The modification due to WST MOND leads to additional
acceleration 𝑎add with the following features:

(i) The total acceleration 𝑎 is 𝑎 = 𝑎𝑚 + 𝑎add with
𝑎 = 𝑎𝑚(1 + ( 𝑎𝑜󵄨󵄨󵄨󵄨𝑎𝑚󵄨󵄨󵄨󵄨)

−1/2) = ](󵄨󵄨󵄨󵄨𝑎𝑚󵄨󵄨󵄨󵄨𝑎𝑜 )𝑎𝑚, (61)

where ](𝑦) = 1 + 𝑦−1/2. For 𝑎𝑚 ≫ 𝑎𝑜 the
Newton approximation applies. Equation (61) holds
for |𝑎𝑚| ≤ 102𝑎𝑜 only (“upper” transition regime). No
information can be drawn from it for |𝑎𝑚| larger but
not yet≫ 𝑎𝑜 (the “lower” transition regime).

(ii) The “reciprocal” transformation function defined by𝑎𝑚 = 𝜇(|𝑎|/|𝑎𝑚|) 𝑎 is
𝜇 (𝑥) = 1 + 1 − √1 + 4𝑥2𝑥 . (62)

(iii) 𝑎add consists of two components 𝑎add = 𝑎𝜑+𝑎sf = 4𝑎𝜑.
The first one is derived from a potential 𝜔 satisfying
the nonlinear Poisson equation

∇ ⋅ (|∇𝜔| ∇𝜔) = 𝜋4 𝑎𝑜𝐺𝜌𝑚,
𝑎𝜑 = −∇𝜔. (63)

(iv) The second one, 𝑎sf , can be understood as Newton
acceleration due to the energy density 𝜌sf of a scalar
field (part of the modified gravitational structure). Its
potential satisfies a Newtonian Poisson equation. It
satisfies

−∇𝑎sf = 4𝜋𝐺𝜌sf (64)

with energy density

𝜌sf = 34 ( 𝑎𝑜󵄨󵄨󵄨󵄨𝑎𝑚󵄨󵄨󵄨󵄨)
1/2 (𝜌𝑚 + (8𝜋𝐺)−1 ∇ (󵄨󵄨󵄨󵄨𝑎𝑚󵄨󵄨󵄨󵄨) ⋅ 𝑎𝑚󵄨󵄨󵄨󵄨𝑎𝑚󵄨󵄨󵄨󵄨) . (65)

𝜌sf is part of the energy momentum tensor of the
scalar field 𝜙 and in this sense “real” rather than
phantom.

(v) 𝑎𝜑 is formally derivable in Newton dynamics from a
fictitious energy density

𝜌ph = 13𝜌sf . (66)

𝜌ph is the net phantom energy of WST MOND. For
comparison with other models of the MOND family
one may like to consider 𝜌ph + 𝜌sf = 𝜌𝑡 as a kind of
“gross phantom energy” (although the larger part of
it is real). It is transparent rather than “dark” (see (75)
below).

(vi) (i)–(v) are reliable approximations also for small
(local) gravitating systems freely falling in a larger
gravitating system, if 𝑎𝑚 ⪅ 102𝑎𝑜 in the local system.
The subsystem can be considered as “small” with
respect to the supersystem, if tidal forces of the super-
system can be neglected. In hierarchical systems like
galaxy clusters the energy density contributions 𝜌sf
of the subsystems and the supersystem (calculated in
different reference coordinate systems) add up to the
total energy density of the scalar field, if the velocities
of the subsystems relative to the barycenter of the
supersystem are small. This is a crucial difference
betweenWSTMOND and ordinaryMOND theories.
If one likes, 𝜌sf can be considered as the “darkmatter”
component of WST MOND although the energy
density of the scalar field it is not constituted by
the usual (hypothetical) quantum particles (WIMPs,
axions, etc.). To demarcate this difference it might
better be called transparent matter/energy of WST.

(vii) Gravitational lensing is due to the scalar field energy
density only (𝜌sf ), while the dynamics of WST corre-
sponds to the total phantom density (𝜌𝑡 = 𝜌sf + 𝜌ph).
It remains to be seen whether such a difference is in
agreement with observations.

3. Halo Model for Clusters of Galaxies

3.1. Cluster Models for Baryonic Mass (Hot Gas and Stars).
In the astronomical literature, the density profile of hot gas
and (smeared) star/galaxy matter in a galaxy cluster is often
described by a centrally symmetric profile of the following
form:

𝜌 (𝑟) = 𝜌𝑜 (1 + ( 𝑟𝑟𝑐)
2)−(3/2)𝛽 . (67)

𝛽 is the ratio of the specific energies of the galaxies and the
gas, 𝜌𝑜 the central density, and 𝑟𝑐 the core radius [5, 15, 24] (𝑟𝑐
is the distance from the cluster center at which the projected
galaxy density is half the central density 𝜌𝑜). Equation (67)
is called a 𝛽-model for the mass distribution. For our test we
assume density models for the gas mass 𝜌gas(𝑟) and for the
galaxy mass 𝜌star(𝑟) with the same form parameters 𝛽 and 𝑟𝑐.
We thus work with an idealized model using proportional
density profiles for the hot gas and for the galaxies with
parameters𝛽, 𝑟𝑐 determined fromobservations of the hot gas.
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The central densities 𝜌𝑜 can, in principle, be determined from
mass data for gas 𝑀gas(𝑟1), respectively, stars 𝑀star(𝑟1), at a
given distance 𝑟1. The empirical determination of 𝑀gas(𝑟1)
and 𝑀star(𝑟1) from directly observable quantities is a subtle
question; it will be discussed in Section 4.1.

Large scale gravitational effects on the cluster level are
often modelled in the Newton approximation of Einstein
gravity with baryonic matter and an assumed dark matter
halo which is inferred from its gravitational effects (in
Einstein/Newton gravity). Another minority approach in the
literature works with an evaluation of the data in a MOND
limit of the most well known relativistic MOND theory
TeVeS. Sanders is one of its protagonists; he concludes that in
this approach a much smaller amount of unseen matter has
to be assumed in addition to the baryonic mass. Its value is
consistent with the hypothesis of a halo of sterile neutrinos,
concentrated about the cluster center [5]. Here we want to
explore the feasibility of the WST approach, in particular
regarding the question of how much unseen matter has to
be added to the gravitational effects of the model in order to
reproduce (“predict”) the observed acceleration, respectively,
their measurable effects.

3.2. Two Contributions to the Scalar Field Energy in Clusters
of Galaxies. The mass distribution of the hot gas 𝜌gas in a
galaxy cluster is described by a 𝛽-profile (67) in a locally
static coordinate system with origin at the barycenter of
the cluster. The averaged star mass will be represented by
a continuous distribution 𝜌star of a 𝛽-profile with the same
parameters 𝛽, 𝑟𝑐, but with a different value of 𝜌𝑜. Both
together form a continuity model of the baryonic mass
distribution 𝜌bar = 𝜌gas+𝜌star. Estimates show that Newtonian
gravitational acceleration induced by𝜌bar (far away frommass
concentrations stars, galaxies, and galactic centers) is below102 ⋅ 𝑎𝑜. They are small enough for allowing working in a
weak field static approximation with the scalar field equation
in theMONDapproximation (43).The resulting contribution
to the scalar field energy will be called 𝜌sf1. The additional
acceleration of the Weyl geometrical scale connection (66)
can be expressed in terms of a phantom mass density which
will be called 𝜌ph1.

In this first approximation the star mass is approximated
on a par with the hot gas; that is, it is described by its
continuously smeared outmeandensity. But stars are agglom-
erated in galaxies which form freely falling subsystems of
the cluster with considerable interspaces in the supersystem
(the cluster). For each subsystem a locally static coordinate
system with origin at the respective galactic center can be
chosen. In this system the local inhomogeneities of star mass
distribution in the cluster and the resulting inhomogeneities
of the gravitational field in the vicinity of the galaxy can
be calculated. On the galaxy level the MOND theory has
proven effective for modelling gravitational effects deviating
from Einstein and Newton gravity without assuming real
dark matter [20]. Although we expect that the MOND
approximation of WST gravity shows similar features, this is
not the point in the present investigation.

Here we are interested in the neighbouring regions
of galaxies as subsystems of their respective cluster. These
subsystems form scalar field halos of their own which contain
real energy (different from the classical MOND theory which
leads to phantomhalos only). In the framework of the present
approach, the scalar field halos in the neighbourhood of
each galaxy contribute to the energy density which adds
up globally, that is, on the cluster level, to a component of
scalar field energy 𝜌sf2 which has been suppressed in the
first continuity approximation of the total baryonic mass.
In a second step we therefore determine this component
approximately and add it to the total the scalar field halo.

3.3. Scalar Field andPhantomHalos𝜌sf1 and𝜌ph1 in theCluster
Barycentric MONDApproximation. Thebaryonic mass up to
radius 𝑟,

𝑀bar (𝑟) = 4𝜋∫𝑟
0
𝜌bar (𝑢) 𝑢2𝑑𝑢, (68)

determines the Newton acceleration 𝑎bar = 𝐺(𝑀(𝑟)/𝑟2) due
to the total baryonic mass. The densities of the scalar field
halo 𝜌sf1 and the phantom halo of WST MOND follow from
(65) and (66). They are

𝜌sf1
= 34 ( 𝑎𝑜󵄨󵄨󵄨󵄨𝑎bar󵄨󵄨󵄨󵄨)

1/2 (𝜌𝑚 + (8𝜋𝐺)−1 ∇ (󵄨󵄨󵄨󵄨𝑎bar󵄨󵄨󵄨󵄨) ⋅ 𝑎bar󵄨󵄨󵄨󵄨𝑎bar󵄨󵄨󵄨󵄨) , (69)

𝜌ph1 = 13𝜌sf1. (70)

The respective masses of the halos 𝑀sf1,𝑀ph1 arise from
integration.

3.4. Scalar Field Halos of Galaxies in Their Respective Galac-
tocentric MOND Approximations. As already indicated in
Section 3.2 (69) and (70) do not make allowance for the fact
that the star matter forms a discrete structure of an ensemble
of galaxies each of which is falling freely in the inertiogravita-
tional field of the supersystem (hot gas and other galaxies).
Every galaxy possesses a local MOND approximation with
regard to its own barycentric static reference system. The
acceleration 𝑎bar of the supersystem (with respect to the
barycenter rest system of the hot gas) is transformed away
in each of the local MOND approximations. The latter leads
to a galactic scalar field halo which persists under changes of
reference systems with small, that is, nonrelativistic, relative
velocities. It contributes to the total energy of the scalar field,
calculated in the cluster barycentric system. (Of course this
is not the case for the phantom halo of the single galaxies.)
In principle, we have to add up all of these effects to a scalar
field energy density 𝜌sf2 in order to fill in these lacunae. But
an exact calculation would have to solve a highly nontrivial𝑁-body problem for the motion of the galaxies.

The experience with the calculation of the combined
MOND halos of stars inside galaxies shows that a resolution
of the star matter inside galaxies down to individual galaxies
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is not necessary to achieve good results. In the outer region
of galaxies a continuity model for the distribution of star
matter in the galactic disk gives reliable approximations for
the MOND acceleration. Similarly we want to check whether
also here a continuity model for the system of galaxies
alone, abstracting from the gas mass, leads to an acceptable
approximation for 𝜌sf2. For this calculation, the gas mass has
to be omitted because the galaxies are falling freely in the
outer field of the cluster; the gravitational potential of the
latter does not enter the local MOND approximation of the
galaxies.

Using (65) again we get for the second (inhomogeneity)
component of the scalar field energy

𝜌sf2 = 34 ( 𝑎𝑜󵄨󵄨󵄨󵄨𝑎star󵄨󵄨󵄨󵄨)
1/2

⋅ (𝜌star + (8𝜋𝐺)−1 ∇ (󵄨󵄨󵄨󵄨𝑎star󵄨󵄨󵄨󵄨) ⋅ 𝑎star󵄨󵄨󵄨󵄨𝑎star󵄨󵄨󵄨󵄨) ,
(71)

with |𝑎star(𝑟)| = 𝐺(𝑀star(𝑟)/𝑟2) and 𝑀star(𝑟) the integral
analogous to (68) for the star density 𝜌star.

We finally arrive at a halo model for galaxy clusters
constituted by the components 𝜌sf1, 𝜌sf2, and 𝜌ph1. All of
them are determined by the two component baryonic profile
of the cluster.

3.5. A Three-Component Halo Model for Clusters of Galaxies.
In addition to the Newtonian gravitational effects of the
baryonic mass density

𝜌bar = 𝜌gas + 𝜌star, (72)

modeled by a 𝛽-model of type (67), the WST MOND
approach predicts acceleration generated by the scalar field
halos (69) and (71). Because of their small values their com-
bined effect can be approximated by a linear superposition in
the barycentric reference system of the cluster, and because
of slow (i.e., nonrelativistic) relative velocities of the galaxies
the energy densities of their respective scalar field halos can
be taken over to the cluster barycentric reference system:

𝜌sf ≈ 𝜌sf1 + 𝜌sf2. (73)

Moreover, there arises acceleration 𝑎𝜑 due to the scale
connection in the barycentric rest system of the cluster (45).
Its gravitational effects are representable by the fictitious (net)
phantom halo 𝜌ph1 of (70)

𝜌ph1 = 13𝜌sf1. (74)

On the other hand, the phantom energies of the individual
freely falling galaxies do not survive the transformation to the
cluster rest system and do not play a role on the cluster level.

In the usual MOND theories there is no scalar field
energy; all additional effects with regard toNewton dynamics
may be ascribed to a (fictitious) phantom energy density.
Phantom energy densities of single galaxies do not survive

the transformation to the cluster barycentric system. In
MOND there is therefore no analogy to 𝜌sf2; the latter is the
crucial distinctive feature between the two approaches. For a
comparison of WST-3L and usual MOND approaches with
regard to galaxy clusters it is not sufficient to evaluate the
difference between the transformation functions 𝜇(𝑥) (55).

For an even wider comparison with other approaches
it may be useful to add up the scalar field and phantom
halos to a kind of “dark matter” halo or, more precisely, to
a substitute for the latter. But one must not forget that in
the present model there is no dark matter in the ordinary
sense. Here we only find a transparent halo made up of the
(real) energy density of the scalar field and the (fictitious)
phantom energy density ascribed to the acceleration effects
of the scale connection in Einstein gauge (with respect to the
cluster barycentric rest system):

𝜌𝑡 = 𝜌sf + 𝜌ph1. (75)

From the gravitational lensing point of view, it would be even
more appropriate to consider 𝜌sf alone as theWST equivalent
of a darkmatter halo, not forgetting that even the real halo 𝜌sf
is not due to fermionic particles, but to the scalar field, and
thus to the extended gravitational structure of WST. From a
quantum point of view, the scalar field has to be quantized if
one wants to search for a (bosonic) particle content of 𝜌𝑡 or𝜌sf .

The total dynamical mass of the model (up to some
distance 𝑟 from the center of the cluster) is

𝑀tot = 𝑀bar +𝑀𝑡,
𝑀𝑡 = 𝑀sf +𝑀ph1,
𝑀sf = 𝑀sf1 +𝑀sf2

(76)

with𝑀bar = 𝑀gas +𝑀star. The lensing mass is a bit smaller,

𝑀lens = 𝑀bar +𝑀sf . (77)

Mathematically, the integral of the scalar field energy
density to arbitrary distances diverges. As in the dark matter
approach a virial radius of a cluster may be defined, which
roughly delimits the gravitational binding zone of the cluster.
Comparing 𝜌𝑡 (resp., (𝜌sf )) with the critical energy density𝜌crit of the universe, one may, for example, choose 𝑟200 with

𝜌𝑡 (𝑟200) ≈ 200𝜌crit (78)

as a representative of the virial radius.
Not far beyond the gravitational binding zone of the

cluster, the energy density will have fallen to such a small
amount that its centrally symmetric component is inconceiv-
ably stronger than the density fluctuations in the intercluster
space. To continue the integration into this region andbeyond
has no physical meaning. In the long range the energy density
of the scalar field approaches the cosmic mean energy value.
A physical limit of integration has to be chosen close to the
virial radius beyondwhich the gravitational binding structure
of the cluster is fading out.
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4. A First Comparison with Empirical Data

4.1. Empirical Determination ofMassData forGalaxyClusters.
For a first empirical exploration we confront theWST cluster
model with recent mass data for 19 clusters obtained on
the background of Einstein/Newton gravity and ΛCDM
by a group of astronomers about Zhang et al. [2, 4]. We
use the form parameters 𝛽, 𝑟𝑐 of the 𝛽-models of these
clusters, published in an earlier study by one author of
the group [15]. In the present study we have to take the
mass data and the form parameters essentially at face value.
Methodological questions arising from this procedure are
discussed in the next subsection. There seem to be sufficient
reasons for expecting that the different background theories
do not principally invalidate the results thus obtained. Of
course, an authoritative empirical study would presuppose an
evaluation of observational data on the background of WST
itself; it can be done only by astronomers, if they get interested
in the present approach.

The studies of Zhang et al. have the great advantage
to build upon three independent observational datasets for
determining the gas mass𝑀gas,500, the star mass 𝑀∗,500, and
the total mass𝑀500 (assuming a dark matter explanation for
the observed gravitational effects) at the reference distance𝑟500. The latter is determined for each cluster at the distance𝑟500 from the cluster center at which the total gravitational
acceleration indicates a total mass density 500 times the
critical density.

(i) 𝑀gas,500 has been extracted fromX-ray data on the hot
intracluster medium (ICM) collected by XMM New-
ton and ROSAT. Surface brightness data have been
used to infer an ICM radial electron number density
profile, and spectral analysis data gave information on
the radial temperature distribution. From that a gas
density distribution has been reconstructed and the
gas masses at 𝑟500 by integration (an outline of the
procedure and literature for more details is given in
[4, p.3]).

(ii) 𝑀∗,500 has been determined from optical imaging
data due to SDSS 7 in two steps. First the total lumi-
nosity of the cluster has been determined bymeans of
a “galaxy luminosity function” (GLF); then the mass
is estimated using mass-to-light ratios depending on
the cluster mass. In the last step models of the star
development in the respective galaxy, elliptical or
spiral, enter. They depend on assumptions on an
“initial mass function” (IMF). Two possibilities for
the IMF (Salpeter versus Kroupa) are considered and
compared in [2, 4]. According to the authors the
difference of the stellar mass estimate can result in
factor 2 [4, p.4].

(iii) The total cluster mass 𝑀500 has been determined
on the basis of the velocity dispersion of galaxies,
using spectroscopic data from [25, tab. 1]. The mass
estimator used is equation (2) of [26]

𝑀V = 𝐴( 𝜎V103 km s−1
)3 × 1014 h−1𝑀⊙, (79)

where 𝐴 = 1.50 ± 0.02 and 𝜎V is the 3-dimensional
velocity dispersion inside a sphere of virial radius (by
convention 𝑟V = 𝑟200). Reasons for this choice are
given in [26, sec. 3].𝑀500 was then determined from𝑀200 by a NFWmodel.

4.2. Theory Dependence of Mass Data for Galaxy Clusters.
Mass densities of the hot gas and of star matter in galaxy clus-
ters are indirectly inferred from observable quantities; they
are thus theory dependent. Even inside the same background
theory they may depend on choices of models and methods
of evaluation.

That makes it a difficult task to compare our model with
empirical data. A fine-grained judgement presupposes an
evaluation of observational raw data on the background of
WST gravity or, at least, a detailed estimation of systematic
errors resulting from a comparison of different background
theories (Einstein gravity with Λ𝐶𝐷𝑀 and Newton approx-
imation or alternatively TeVeS-MOND, in comparison with
WST and its MOND approximation). This task has to be left
to astronomers, if they become sufficiently interested in the
present approach. But, taking this caveat inmind, it still seems
possible to confront available data from, for example, the
Einstein gravity-Λ𝐶𝐷𝑀-Newton approximation framework
with our model, in order to get a first impression of its
potential usefulness. A comparison with mass data derived
in a TeVeS-MOND background would give welcome supple-
mentary information. This is not attempted here.

Let us discuss the possibility and the problems of a
confrontation of these data with the MOND approximation
of WST:

(1) Themass of the hot gas (intraclustermedium)𝑀gas,500
(at 𝑟500) has been determined in the mentioned study
from X-ray data obtained by XMM Newton and
ROSAT. The temperature of the gas is estimated by a
fit to the measured spectrum. The gas density 𝜌(𝑟) is
reconstructed, using model assumptions, from inten-
sity observables and then integrated up to 𝑟500 (in this
evaluation the hydrostatic assumption was corrected
by taking the velocity dispersion into account [4, sec.
2.2f.]). Up to usual model dependence, the transfer of
the mass data from the standard gravity background
to WST seems to be relatively uncritical.

(2) Several methods for determining the stellar mass𝑀∗,500 are mentioned in [4]. In this study the star
mass is gained from optical imaging data due to SDSS
7 in two steps indicated in (ii) above. According to
the authors the difference of the stellar mass estimate
due to different initial mass functions can result in
factor 2 [4, p.4]. Another approach would be to
estimate stellar masses of the individual galaxies and
“to construct the stellar mass functions in order to
sum the stellar masses” (ibid., p.1). Moreover, an
additional component of starmatter can be associated
with the intracluster light. All in all, the estimate of the
star mass concentrated in galaxies seems to depend
more on models of galactic star evolution than on
the background gravity theory. In spite of that the
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precision cannot be expected to be better than by
factor 2 (resp., 0.5).

(3) In Einstein gravity/Λ𝐶𝐷𝑀 the cluster mass can, in
principle, be estimated from the velocity dispersion 𝜎
of galaxies at distance 𝑅 (from the center) by an esti-
mator derived from the virial theorem𝑀 ≈ 𝐺−1𝜎2𝑅.
The additional acceleration of WST-3L 𝑎add = 𝑎𝜑 +𝑎sf
(49) is dynamically indistinguishable from the effects
of “true” Newtonian masses. So far it seems as if the
estimation of total mass can be transferred to the
MOND approximation of WST without problems.
But if the radius 𝑅 does not include the “whole”
cluster mass (however defined) as is here the case
(item (iii), Section 4.8) a surface pressure term must
be taken into account. That complicates the case.
In standard gravity the necessary correction is imple-
mented by a cubic mass estimator 𝑀 ∼ 𝜎3 given
above as (79). Moreover, the authors of our reference
study [4] reconstruct𝑀500 and 𝑟500 from these values
using theNFWprofile. Because of the different profile
for the scalar field halo of WST this is a critical step
for our exercise (an ex post comparison of the NFW
halo and the WST halo for the Coma cluster is given
in Figure 6). On the other hand, if the resulting
systematic errors are smaller than the error intervals
of𝑀tot (76), implied by the observational errors of the
other quantities, they donot disturb a rough empirical
check of the model.

(4) Finally the dependency of the data evaluation on the
background cosmology has to be taken into account.
The data of the 19 clusters used in the following have
redshift 𝑧 < 0.1. The geometrical and dynamical
corrections implied by the Λ𝐶𝐷𝑀 cosmology are
correspondingly small. An evaluation in, for example,
a Lemaitre-de Sitter model (or even a nonexpanding
Weyl geometric model with redshift) [1, section 4.2]
would affect the data only by aminor expansion of the
error intervals.

The points (1), (2), and (4), in particular the estimate of
stellar mass concentrated in galaxies and gas mass, are fairly
insensitive against a change of the background theory from
Einstein gravity to WST. The theory dependence of 𝑟500 is
uncritical in our context. Any other reference radius could
have been taken, as long as it is specified in astronomical
distance units. The estimate for the total masses at 𝑟500 and𝑟200 is the critical point for our purpose (item (3)). However,
if the difference of the halo profiles between the scalar field
energy density of WST and NFW dark matter does not push
the estimates for the totalmasses𝑀500,𝑀200 outside the error
intervals of our halo model (due to observational input data),
wemay still be able to draw first inferences from the following
evaluation.

4.3. Empirical Data for 19 Clusters. The studies [2, 4]
contain new data on the baryon content and the total
gravitational mass for 19 clusters of galaxies (as it appears
in an Einstein gravity, Λ𝐶𝐷𝑀 framework with Newton

approximation) [2] contains a correction to the main paper
[4]. Here, of course, we use the corrected data). The mass
data 𝑀500,𝑀gas,500, and 𝑀∗,500 are given in columns (5),(7), and (8) of Table 1 in [2]. It is reproduced in our Table 1.
The values for 𝑟500 are published in [3, tab. 1, col. (5)] (here
Table 2). A comparison of the total cluster masses derived
from the velocity dispersion with a mass estimate derived
from the gas mass shows that the two clusters A2029 and
A2065 are outliers, with total cluster masses considerably
higher than the corresponding gas masses would let us
expect. The authors therefore separate the two outliers from
the rest of the data, with the remaining 17 clusters as a reliable
dataset [4, p.3]. We shall do the same.

Parameters (𝛽, 𝑟𝑐) for the models of these galaxy clusters
(as well as of many more) have been published earlier
in [15, tab. 4.1]. This publication also contains mass data𝑀200,𝑀gas,200 at 𝑟200 (with error intervals) and mass values𝑀𝐴,𝑀gas𝐴 (without error interval) at the Abell radius, here
defined as 𝑟𝐴 = 2.14Mpc, but no data for star masses (eval-
uated for the value of 𝐻𝑜 assumed in the later publications
[2, 4], ℎ = 0.7). In [15] the methods for determining the total
mass and the gas mass were not yet as refined as in the later
study. It is therefore not possible to aggregate the different
datasets to one coherent ensemble (the values for 𝑀500 and𝑀gas,500 given here differ from the ones in [4] outside the
error intervals). As no updated values for the parameters
(𝛽, 𝑟𝑐) of themass profileswere available to the present author,
the values of [15] are here used as estimators for the form
parameters of the 𝛽model.

We consider 𝑀500,𝑀gas,500,𝑀∗,500, and 𝑟500 from [2, 4]
as our crucial mass data (including reference radii). Mass
data at 𝑟200 (as well as 𝑟200 itself) from the older study are
welcome as additional information; but they will not be used
as core criteria for the empirical test of our model. Table 2
collects the data used (for error intervals see the respective
source, [2, 15]). It shows that the cluster ensemble covers an
order of magnitude variation for the gas mass 𝑀gas,500 and
one and a half orders of magnitude variation in total mass𝑀500. The selection method by intersecting the cluster sets of
different raw data sources does not seem to be influenced by
any particular bias. We thus may consider the collection as a
reasonable dataset for testing our cluster halo model.

4.4. Adapting the WST Halo Model to the Data. For the
construction of the model we have to work in Einstein gauge
(9). Consistency with the deepMOND acceleration demands
(51). Taken together these conditions fix the coefficients of
the Lagrangian (1) and (28), independently of the convention
chosen for 𝜙𝑜.With a value for 𝜆 on the order ofmagnitude 10
(e.g., 𝜆/4 = 6 as at the end of Section 2.3) the contribution of
the 𝐿𝑉4 term lies many orders of magnitude below the energy
densities, the dominant term, in (35) and is negligible in our
context.

In agreement with Section 3 the test of our halomodel for
each of the 19 galaxy clusters can now proceed as follows:

(1) Specification of the 𝛽 models (67) for gas and
for star mass and parameters (𝛽, 𝑟𝑐) from [15], 𝜌𝑜
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Table 1: Properties of the 19 galaxy clusters (Table 1 of [2]).
Name X-ray center (J2000) Redshift 𝑀500 𝑀500,𝑀−𝑀gas

𝑀gas,500 𝑀∗,500 Undisturbed/cool-core
RA Dec 1014𝑀⊙ 1014𝑀⊙ 1013𝑀⊙ 1012𝑀⊙

A0085 00:41:50.306 −09:18:11.11 0.0556 6.37 ± 1.00 5.68 ± 0.37 8.13 ± 0.38 7.36 ± 1.00 Y/S
A0400 02:57:41.349 +06:01:36.93 0.0240 1.83 ± 0.39 1.07 ± 0.07 1.36 ± 0.05 4.39 ± 1.06 N/N
IIIZw54 03:41:18.729 +15:24:13.91 0.0311 1.91 ± 0.58 1.18 ± 0.08 1.45 ± 0.26 4.57 ± 0.56 Y/W
A1367 11:44:44.501 +19:43:55.82 0.0216 1.76 ± 0.27 2.11 ± 0.14 2.07 ± 0.07 4.35 ± 0.74 N/N
MKW4 12:04:27.660 +01:53:41.50 0.0200 0.50 ± 0.14 0.58 ± 0.04 0.47 ± 0.02 1.16 ± 0.22 Y/S
ZwCl1215 12:17:40.637 +03:39:29.66 0.0750 4.93 ± 0.98 4.34 ± 0.28 6.10 ± 0.29 7.05 ± 0.83 Y/N
A1650 12:58:41.885 −01:45:32.91 0.0845 3.44 ± 0.66 4.28 ± 0.27 5.09 ± 0.73 7.47 ± 1.13 Y/W
Coma 12:59:45.341 +27:57:05.63 0.0232 6.55 ± 0.79 6.21 ± 0.40 8.42 ± 0.63 13.14 ± 1.80 N/N
A1795 13:48:52.790 +26:35:34.36 0.0616 3.41 ± 0.63 4.46 ± 0.29 5.11 ± 0.14 6.21 ± 0.98 Y/S
MKW8 14:40:42.150 +03:28:17.87 0.0270 0.62 ± 0.12 1.10 ± 0.07 0.80 ± 0.12 1.61 ± 0.23 N/N
A2029 15:10:55.990 +05:44:33.64 0.0767 14.70 ± 2.61 6.82 ± 0.44 13.35 ± 0.53 9.59 ± 1.11 Y/S
A2052 15:16:44.411 +07:01:12.57 0.0348 1.39 ± 0.28 2.03 ± 0.13 1.86 ± 0.10 3.53 ± 0.40 Y/S
MKW3S 15:21:50.277 +07:42:11.77 0.0450 1.45 ± 0.34 2.29 ± 0.15 2.13 ± 0.09 3.90 ± 0.43 Y/S
A2065 15:22:29.082 +27:43:14.39 0.0721 11.18 ± 1.78 3.35 ± 0.22 7.66 ± 1.44 7.32 ± 0.75 N/W
A2142 15:58:19.776 +27:14:00.96 0.0899 7.36 ± 1.25 10.26 ± 0.66 13.76 ± 0.73 8.42 ± 0.77 Y/W
A2147 16:02:16.305 +15:58:18.46 0.0351 4.44 ± 0.67 3.63 ± 0.23 5.04 ± 0.53 6.84 ± 0.90 N/N
A2199 16:28:37.126 +39:32:53.29 0.0302 2.69 ± 0.42 2.64 ± 0.17 2.97 ± 0.30 4.76 ± 0.50 Y/S
A2255 17:12:54.538 +64:03:51.46 0.0800 7.13 ± 1.38 4.08 ± 0.26 7.11 ± 0.33 6.74 ± 0.97 N/N
A2589 23:23:56.772 +16:46:33.19 0.0416 3.03 ± 0.75 1.88 ± 0.12 2.54 ± 0.17 5.12 ± 0.56 Y/W
Notes. The cluster mass,𝑀500,𝑀−𝑀gas , is derived from the𝑀500 −𝑀gas,500 relation and only used for comparison with the cluster mass,𝑀500, derived from the
“harmonic” velocity dispersion. “S,” “W,” and “N” denote strong cool-core, weak cool-core, and noncool-core clusters.

determined by fitting to 𝑀gas,500 and 𝑀∗,500 at 𝑟500,
respectively [4].

(2) Determination of the Newton acceleration of the
baryonic mass components due to (68).

(3) Calculation of the scalar field halo and the phantom
halo of the baryonic mass by (69), and(66).

(4) Calculation of the scalar field halo of the system of
freely falling galaxies (71).

(5) Aggregation of these to the total halo (75) and choice
of fading out functions beyond 𝑟200 (see Appendix).

(6) Integration of the densities to the corresponding
masses: scalar field energy of the galaxies𝑀sf2 of the
gasmass𝑀sf1, total scalar field halo𝑀sf , net phantom
energy of the baryonicmassMph1, and finally the total
transparentmatter𝑀𝑡 and the lensingmass𝑀lens (76)
and (77).

(7) Calculation of the error intervals of the model at
selected distances (𝑟500, 𝑟200).

(8) Comparison of the empirical value for 𝑀500 (resp.,𝑀200) with themodel value𝑀𝑡(𝑟500) (resp.,𝑀𝑡(𝑟200)).
The results of this test are given in Section 4.6 Before we turn
to the overall evaluation, we shall have a look at one cluster as
an exemplary case.

4.5. TheWST Halo Model with the Coma Cluster as Test Case.
For a first check of our model we choose the Coma cluster.
According to item (1) of the last section we use the empirical
input data from Table 2 (units given there):

(𝛽, 𝑟𝑐, 𝑟500,𝑀gas,500,𝑀∗,500)
= (0.654, 246, 1.278, 8.42, 13.14) , (80)

(𝑟𝑐 in kpc, 𝑟500 in Mpc, 𝑀gas,500 in 1013𝑀⊙, and 𝑀∗,500
in 1012𝑀⊙). The different components of the cluster halo
integrate tomasses (up to distance 𝑟) documented in Figure 1.

The scalar field halo (SF) of the total baryonic mass 𝜌sf1
contributes the lion share to the total transparent energy.The
SF of the galaxy system 𝜌sf2 carries about as much energy
as the net phantom component 𝜌ph1 in the barycentric rest
system of the cluster. It surpasses the gas mass close to the
reference radius 𝑟500. Figure 2 shows the fast increase of
the gravitational mass of the scalar field halo of the galactic
system.

If we add all baryonic and halo contributions, the picture
given in Figure 3 emerges. It shows an encouraging agreement
of the observed values 𝑀500 at 𝑟500 = 1278 kpc with the
prediction of the Weyl geometric halo model 𝑀tot(𝑟500) (in
the range of the observational errors and of model errors):

𝑀tot (𝑟500) = 5.66+0.97−0.68 × 1014𝑀⊙,
𝑀500 = 6.55+0.79−0.79 × 1014𝑀⊙.

(81)
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Table 2: Dataset used for halo model (error intervals omitted).

Cluster 𝛽 𝑟𝑐 𝑟500 𝑀500 𝑀gas500 𝑀∗500 𝑀200 𝑟200 𝑀𝐴
Coma 0.654 246 1.278 6.55 8.42 13.14 13.84 2.3 12.86
A85 0.532 59.3 1.216 6.37 8.13 7.36 7.71 1.9 8.72
A400 0.534 110. 0.712 1.83 1.36 4.39 1.48 1.09 2.93
IIIZw54 0.887 206 0.731 1.91 1.45 4.57 2.81 1.35 4.51
A1367 0.695 274 0.893 1.76 2.07 4.35 4.06 1.53 5.77
MKW4 0.44 7.86 0.58 0.5 0.47 1.16 0.71 0.86 1.79
ZwCl215 0.819 308 1.098 4.93 6.1 7.05 10.37 2.09 10.65
A1650 0.704 201 1.087 3.44 5.09 7.47 11.14 2.15 11.11
A1795 0.596 55.7 1.118 3.41 5.11 6.21 10.99 2.14 11.04
MKW8 0.511 76.4 0.715 0.62 0.8 1.61 2.38 1.28 4.0
A2029 0.582 59.3 1.275 14.7 13.35 9.59 13.42 2.29 12.59
A2052 0.526 26.4 0.875 1.39 1.86 3.53 2.21 1.25 3.79
MKW3S 0.581 47 0.905 1.45 2.13 3.9 3.46 1.45 5.11
A2065 1.162 493 1.008 11.18 7.66 7.32 16.69 2.45 14.46
A2142 0.591 110 1.449 7.36 13.76 8.42 15.03 2.36 13.61
A2147 0.444 170. 1.064 4.44 5.04 6.84 3.46 1.45 5.15
A2199 0.655 99.2 0.957 2.69 2.97 4.76 4.80 1.62 6.37
A2255 0.797 423 1.072 7.13 7.11 6.74 13.32 2.27 12.52
A2589 0.596 84.3 0.848 3.03 2.54 5.12 3.58 1.47 5.24
Source: 𝛽, 𝑟𝑐,𝑀200, 𝑟200, and𝑀𝐴 from [15]; 𝑟500 from [3];𝑀500,𝑀gas500, and
𝑀∗500 from [2].
Units. 𝑟𝑐 in kpc, 𝑟500, 𝑟200 inMpc,𝑀500 in 10

14 𝑀⊙,𝑀gas,500 in 10
13 𝑀⊙, and

𝑀∗,500 in 10
12 𝑀⊙.
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Figure 1: Halo components of Coma cluster: transparent matter
halo 𝑀𝑡 = 𝑀sf + 𝑀ph1, total scalar field (SF) halo 𝑀sf , SF halo
of freely falling galaxies 𝑀sf2, and net phantom energy 𝑀ph1 (in
barycentric rest system). Empirical data (violet dot, bar): galaxy and
total mass (with error intervals) at 𝑟500 = 1280 kpc.

Model error bars have been estimated by varying the input
data (80) in their respective error intervals. The reconstruc-
tion of star mass from observational raw data is a particularly
delicate point. Depending on the assumptions on the stellar
dynamics and the resulting data evaluation model “one can
obtain up to a factor of 2 fewer stars” [2, p.6]. For obtaining
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Figure 2: Comparison of the contribution of the scalar field halo of
the galaxies with the baryonic mass for the Coma cluster (empirical
data𝑀bar,500 violet dot).

1500 2000 25001000
r (kpc)

5.0 × 10
14

1.0 × 10
15

1.5 × 10
15

C
om

aM
(r
)

in
 (1
M

⊙
)

Mph1

Msf

Mt Mbar

Mtot

Figure 3: Contribution of the baryonic mass 𝑀bar, of the scalar
field and phantom energies 𝑀sf ,𝑀ph1 to the transparent mass 𝑀𝑡
and to the total mass 𝑀tot of the Coma cluster in the WST model.
Model errors indicated at 𝑟500 and 𝑟200 (black). Empirical data for𝑀bar (violet dot) and for totalmass𝑀500 with error bars (violet) from
[2]. Additional empirical data at 𝑟200 (yellowish) from [15].

our model errors we allowed a variation in stellar masses by
factors 0.5 and 2.

At the Abell radius 𝑟𝐴 = 2.14Mpc (in the convention of
[15]) we get the model values

𝑀tot (𝑟𝐴) ≈ 10.64 × 1014𝑀⊙,
𝑀lens (𝑟𝐴) ≈ 8.82 × 1014𝑀⊙ (82)

for the dynamical total mass and the lensing mass (77). Due
to the net phantom energy the dynamical mass is about
20% higher than the lensing mass. This is an effect by
which the model can, in principle, be tested empirically and
discriminated from others. The baryonic masses in the 𝛽
model are 𝑀gas(𝑟𝐴) ≈ 11.73 × 1013𝑀⊙, 𝑀∗(𝑟𝐴) ≈ 1.83 ×1013𝑀⊙. Thus not only does the total mass 𝑀tot(𝑟500) given
by our model agree with the empirical value 𝑀500 inside
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Table 3: Empirical and model values for total mass at 𝑟500, 𝑟200.
Cluster 𝑟500 𝑀tot(𝑟500) 𝑀500 𝑟200 𝑀tot(𝑟200) 𝑀200
Coma 1278 5.66+0.97−0.68 6.55+0.79−0.79 2300 14.38+2.71−1.90 13.84+1.49−1.41
A85 1216 4.95+0.62−0.43 6.37+1−1 1900 10.88+1.38−0.97 7.71 +0.8−0.74
A400 712 1.38 +0.3−0.19 1.83+0.39−0.39 1093 3.08+0.68−0.44 1.48+0.21−0.18
IIIZw54 731 1.45+0.38−0.28 1.91+0.58−0.58 1350 3.56+1.34−1.09 2.81+2.74−1.1
A1367 893 1.95+0.34−0.23 1.76+0.27−0.27 1529 4.67+0.93−0.62 4.06+0.45−0.4
MKW4 580 0.6+0.11−0.08 0.5+0.14−0.14 857 1.33+0.26−0.17 0.71+0.07−0.06
ZwCl215 1098 3.94+0.55−0.38 4.93+0.98−0.98 2093 9.8+1.64−1.17 10.37+3.51−2.62
A1650 1087 3.65+0.71−0.05 3.44+0.66−0.66 2150 10.48+2.91−2.41 11.14+5.77−3.46
A1795 1118 3.65+0.49−0.32 3.41+0.63−0.63 2136 10.84+1.47−0.99 10.99+2.26−2.09
MKW8 715 0.94 +0.2−0.15 0.62+0.12−0.12 1279 2.80+0.74−0.6 2.38+1.04−0.59
A2029 1275 6.75+0.73−0.51 14.7+2.61−2.61 2286 17.9+2.01−1.42 13.42+2.43−2.26
A2052 875 1.78+0.31−0.21 1.39+0.28−0.28 1250 3.43+0.61−0.41 2.21+0.06−0.08
MKW3S 905 1.96+0.33−0.22 1.45+0.34−0.34 1450 4.5+0.78−0.52 3.46+0.36−0.34
A2065 1008 4.08+0.81−0.74 11.18+1.78−1.78 2450 10.83+5.06−3.34 16.69+21.34−6.73
A2142 1449 7.5+0.81−0.59 7.36+1.25−1.25 2364 16.83+1.89−1.39 15.03 +3.9−2.64
A2147 1064 3.53+0.61−0.45 4.44+0.67−0.67 1450 6.39+1.26−0.99 3.46+1.17−0.74
A2199 957 2.43+0.44−0.32 2.69+0.42−0.42 1621 5.8+1.14−0.82 4.81+0.37−0.36
A2255 1072 4.13+0.53−0.37 7.13+1.38−1.38 2271 12.04+1.88−1.37 13.32+1.44−1.19
A2589 848 2.08+0.39−0.26 3.03+0.75−0.75 1471 5.44+1.06−0.73 3.58+3.86−1.54
Model values 𝑀tot(𝑟𝑁00) and empirical values 𝑀𝑁00 in 10

14 𝑀⊙, 𝑟𝑁00
(empirical) in kpc (𝑁 = 2, 5).

the error bounds but also 𝑀𝐴 and 𝑀200 are reasonably well
recovered.

This is the case without assuming any component of
particle dark matter besides the (real) energy of the scalar
field and the (phantom) energy ascribed to the additional
acceleration 𝑎𝜑 induced by theWeylian scale connection.This
might still be a coincidence. In order to learn more about
the question whether the findings at the Coma cluster are
exemplary or not, we have to consider the data of all 19 galaxy
clusters, respectively, the 17 of the reliable subensemble.

4.6. Halos and Total Mass for 17(+2) Clusters of Galaxies.
The mass values of the halo models for the 19 clusters are
calculated as described in Section 4.3 with the choice of
fadeout functions beyond 𝑟 = 𝑟200 (see Appendix).The results
are documented in Tables 3 and 4 and Figures 4 and 5 (for
Coma see Figure 3).

For 15 clusters our model reproduces the total mass
at 𝑟500 correctly, that is, inside the error margins of data
and model. This is achieved without any further adjustable
parameter, only on the basis of the parameters for the 𝛽-
model for baryonicmass and𝑀gas(𝑟500),𝑀∗(𝑟500).The fading
out functions do not intervene below 𝑟200. Moreover, for the
majority of these and paradoxically for all other four, the less
precisely determined data at 𝑟200 have overlapping 1𝜎 error

Table 4: Model values for halo and baryonic masses at 𝑟200.
Cluster 𝑀𝑡 𝑀sf 𝑀sfgal 𝑀ph1 𝑀gas 𝑀∗ 𝑓∗ 𝑓𝑡
Coma 12.32 9.91 2.66 2.42 1.78 0.278 0.16 6.9
A85 9.08 7.22 1.61 1.87 1.65 0.15 0.09 5.5
A400 2.7 2.21 0.73 0.49 0.29 0.093 0.32 9.4
IIIZw54 3.21 2.62 0.86 0.59 0.27 0.085 0.32 11.8
A1367 4.16 3.37 0.99 0.79 0.42 0.088 0.21 10.
MKW4 1.2 0.97 0.3 0.22 0.1 0.0260 0.25 11.5
ZwCl215 8.54 6.82 1.66 1.72 1.14 0.131 0.12 7.5
A1650 9.16 7.36 1.94 1.81 1.15 0.169 0.15 8.
A1795 9.39 7.51 1.86 1.88 1.29 0.157 0.12 7.3
MKW8 2.53 2.05 0.6 0.48 0.22 0.045 0.2 11.3
A2029 14.58 11.53 2.37 3.05 3.1 0.223 0.07 4.7
A2052 3.03 2.44 0.70 0.58 0.34 0.065 0.19 8.9
MKW3S 3.97 3.21 0.91 0.77 0.44 0.081 0.18 9.
A2065 9.63 7.66 1.75 1.97 1.12 0.107 0.1 8.6
A2142 13.93 10.98 2.13 2.95 2.74 0.168 0.06 5.10
A2147 5.38 4.31 1.11 1.07 0.89 0.121 0.14 6.
A2199 5.10 4.1 1.11 1. 0.61 0.098 0.16 8.4
A2255 10.4 8.27 1.88 2.13 1.51 0.143 0.09 6.9
A2589 4.74 3.83 1.11 0.91 0.59 0.119 0.2 8.
Mass values in 1014 𝑀⊙, 𝑓∗ = 𝑀∗/𝑀gas,𝑓𝑡 = (𝑀𝑡/𝑀gas)(𝑟200); for 𝑟200 see
Table 3.

intervals. This indicates a surprising agreement between the
(theoretically derived) transparent halo and the empirically
determined dark halo,𝑀𝑡 ≈ 𝑀dm.

For 4 clusters, MKW8, A2255, and outliers A2029 and
A2065, the error intervals of empirical data and model data
do not overlap. For the first two of them, MKW8 and A2255,
the model predictions are consistent with the empirical data
within doubled error intervals (2𝜎 range). Only the two
outliers (A2029, A2065) lie farther apart (A2029 has the
surprising property that the empirical value for the total
mass at 𝑟500 surpasses the one at 𝑟200, 𝑀500 > 𝑀200).
Otherwise the model data are in good agreement with an
assumption of normally distributed statistical errors andwith
the assumption that the evaluation bias due to the use of the
NFW profile for dark matter (item (3) in Section 4.2) does not
shift the mass estimates outside the error intervals.

All in all, the assessment of the WST-3L halo model
has surprisingly well passed, in spite of the main caveat
of item (3) (Section 4.2). The outcome found for Coma
seems to be typical also for the other clusters. Moreover, the
good agreement of the model with the data of the reliable
subensemble of 17 clusters supports the assumption stated in
the last phrase (3) (Section 4.2) (no large systematic errors
due to data transfer from Einstein/Λ𝐶𝐷𝑀 to the WST-
3L framework). But we cannot exclude the possibility of
cancelling between model errors and data transfer errors.
Thus we have only found empirical support for the conjecture
that, on the level of galaxy clusters, the observed dark matter
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Figure 4: Halo models for clusters 2–9 in Table 2: total mass𝑀tot (black line) with model error bars at 𝑟500, 𝑟200, transparent matter halo𝑀𝑡
constituted by scalar field halo𝑀sf , and net phantom halo (in barycentric rest system of cluster)𝑀ph1 and baryonic mass (gas and stars)𝑀bar.
Empirical data for the total mass with error intervals at 𝑟500 (violet) from [2]. Additional empirical data at 𝑟200 (yellow) from [15].
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Figure 5: Halo models for clusters 10–19 in Table 2. For description see Figure 4.
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effects encoded in 𝑀dm may solely be due to the combined
impact of the halo 𝑀sf of the scalar field and of the scale
connection,𝑀ph1:

𝑀dm ≈ 𝑀sf +𝑀ph1 = 𝑀𝑡 (cf . (76)) . (83)

4.7. Comparison with TeVeS and NFW Halos. It is surprising
that in the WST-3L approach the total amount of observed
dark matter 𝑀dm seems to be explained by the energy
of the scalar field and the phantom halo, 𝑀𝑡 = 𝑀sf +𝑀ph1 and 𝑀dm ≈ 𝑀𝑡. No missing mass is left. In usual
relativisticMOND approaches this is not the case for clusters,
although it is essentially so for galaxies [20]. Based on a
study of about 40 galaxy clusters, Sanders has proposed
the hypothesis of a neutrino component “between a few
times 1013 and 1014𝑀⊙,” mostly concentrated close to the
center of the cluster, in a region up to twice the core radius,
supplementing the baryonic mass and the phantom energy of
the TeVeS model [5, p. 902]. In our approach, this hypothesis
is unnecessary. Where does this difference arise from?

Amodel calculation for the Coma cluster, evaluating (57)
for the transition function 𝜇2 = 𝑥(1 + 𝑥2)−1/2 (53) and the
corresponding ]2 (54) used by Sanders in [5], shows that the
neutrino core had to be tuned to 𝑀] ≈ 1.8 × 1014𝑀⊙ in
order to give agreement with the empirical value𝑀dm(𝑟500) =𝑀500 −𝑀bar(𝑟500) ≈ 4.7 × 1014𝑀⊙, where in this framework
“𝑟500” and “𝑟200” are to be defined by a formal conventionwith
regard to a (fictitious) NFW halo.

Table 4 shows the amount of scalar field energy up to a
radius 𝑟 ≈ 𝑟200 in the WST model. It varies between about2 × 1013 and 9 × 1014𝑀⊙, that is, roughly in the range found
necessary by Sanders for the (hypothetical) neutrino halo.
Moreover, a comparison of the transition functions𝜇𝑤(𝑟) (55)
and 𝜇2(𝑥) shows that the gross phantom energy 𝜌𝑡 of theWST
approach is larger than in an 𝜇2-MOND model [1]. Roughly
half of the missing mass of Sanders’ model is covered by this
effect; the other half is due to the scalar field halo of the system
of galaxies up to 𝑟200.

A comparison of the twoMOND-like approaches is given
in Figure 6. Here one has to keep in mind that the TeVeS-𝜇2
model has a free adaptable parameter (mass of the neutrino
core), while theWSThas not.The general profiles of the “dark
matter” halos of both models are similar. The TeVeS-𝜇2 mass
starts from a higher score because of its neutrino core; the
WST transparent mass starts from a lower initial value but
rises faster because of the increasing contribution of the scalar
field halo of the galaxies.

On the other hand, the best known profile for darkmatter
distribution, used inmost structure formation simulations, is
the NFW halo (Navarro/Frank/White). Its profile is

𝜌 (𝑟) = 𝜌𝑜(𝑟/𝑟𝑐) (1 + 𝑟/𝑟𝑐)2 , (84)

with density parameter 𝜌𝑜 and core radius 𝑟𝑐 (at which the
density has reduced to half the reference value). For a first
comparison of the interior halos we take 𝑟𝑐 ≈ 180 h−1 kpc
(ℎ = 0.7), following [6] (in studies of the exterior halo
of the Coma cluster, Geller et al. have found fit values

2.0 × 10
14

4.0 × 10
14

6.0 × 10
14

8.0 × 10
14

1.0 × 10
15

1.2 × 10
15

1.4 × 10
15

500 1000 1500 2000 25000
r (kpc)

Mt WST
Mdm NFW
Mphm TeVeS

M
dm

in
 (1
M

⊙
)

Figure 6: Comparison of dark/transparent/phantommass halos for
Coma inNFW,WST, and TeVeSmodels, free parameters of halos for
NFWand TeVeS (𝜇2 with neutrino core) adapted tomass data (black
error bars) at 𝑟500 = 1280 kpc. Red error bar indicates variability
of NFW halo values at 𝑟200 ≈ 2300 kpc (fitting the NFW profile
inside the margins of empirical error bars at 𝑟500); blue error bars
give model errors of WST model at 𝑟500 and 𝑟200.

0.182+0.03−0.03 , 0.167+0.029−0.029 , 0.192+0.035−0.035 in units h−1Mpc for 𝑟𝑐
[6]) and determine the central density parameter 𝜌𝑜 such that
the total integrated mass𝑀NFW assumes the empirical value
of [2] at 𝑟500 = 1289 kpc (Figure 6).The error intervals for 𝑟500
give upper and lower model values for 𝜌𝑜 and corresponding
model error bars (red) for 𝑀NFW(𝑟200). This version of the
NFW halo satisfies one set of empirical data by construction
(at 𝑟500); our main interest thus goes to the other empirical
dataset available at 𝑟200 = 2300 kpc. The NFW model error
interval overlaps with the empirical error bar at 𝑟200 and with
the error interval of the WST model.

There is a conspicuous difference between the mass
profiles of the NFW halo on one side and the halo profiles
ofWST or 𝜇2-TeVeS on the other. More and precise empirical
data of the interior halos of galaxy clusters ought to be able
to discriminate between the two model classes. An empirical
discrimination between the two MOND-like approaches
would need more, and more precise, profile data. At the
moment theWeyl geometric MOND-like model survives the
comparison fairly well, even though it has no free parameter
which would allow adapting it to the halo data.

4.8. A Side-Glance at the Bullet Cluster. At the end of
this section let us shed a side-glance at the bullet cluster
1E0657-56. It is often claimed that the latter provides direct
evidence in favour of particle dark matter and rules out
alternative gravity approaches. Our considerations show that
this argument is not compelling. The energy content of the
scalar field halos of the colliding clusters endows them with
inertia of their own. The shock of the colliding gas exerts
dynamical forces on the gas masses only, not directly on
the scalar field halos. During the encounter the halos will
roughly follow the inertial trajectories of their respective
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clusters before collision, and they will continue to do so for
a while. It will take time before a readaptation of the mass
systems and the respective scalar field halos has taken place.
Clearly the MOND approximation is unable to cover such
violent dynamical processes. It describes only the relatively
stable states before collision and in some distant future after
collision. But a separation of halos and gas masses for a
(cosmically “short”) period is to be expected, just as in the
case of a particle halo with appropriate clustering properties.

For the time being, cluster 1E0657-56 does not help to
decide between the overarching alternative research strate-
gies, particle dark matter, or alternative gravity. It may be
able to do so, once the dynamics of gas and of the halos has
been modeled with sufficient precision in both approaches.
Then a proper comparison can be made. But that is an
overtly complicated task. It seems more likely that other
types of empirical evidence will offer a simpler path to a
differential evaluation of the two strategies and help clarifying
the alternative.

5. Discussion

We have analyzed a three-component halo model for clusters
of galaxies, consisting of

(i) the scalar field energy induced by the overall baryonic
matter in the barycentric rest system of a cluster
(under abstraction of the discrete structure of the star
matter clustering in freely falling galaxies) (69), with
integrated mass equivalent𝑀sf1,

(ii) an additional contribution to the scalar field energy,
forming around the freely falling galaxies (71), inte-
grating to𝑀sf2,

(iii) the phantom energy of the total baryonic mass in the
barycentric rest system of the cluster, due to the addi-
tional acceleration of theWeylian scale connection in
Einstein gauge (70) with mass equivalent𝑀ph1.

The first two components add up to a real energy content
of the scalar field with mass equivalent 𝑀sf = Msf1 + 𝑀sf2;
the third one,𝑀ph1, arises from a theoretical attribution in a
Newtonian perspective and has fictitious character. The mass
equivalent of the integrated energy components combines to
a total dark matter-like quantity 𝑀𝑡 = 𝑀sf1 + 𝑀sf2 + 𝑀ph1
(73).

All of the three components arise from gravitational
effects of the cluster’s baryonic mass 𝑀bar = 𝑀gas + 𝑀star in
the framework of a Weyl geometric scalar tensor theory of
gravity (1), with its scale connection as the specific difference
to Riemannian geometry (8), (4). In Weyl geometric scalar
tensor theory the scalar field 𝜙 is the new dynamical variable,
while the scale curvature 𝑑𝜑 = 𝑓 vanishes.The latter would be
even more striking and even irritating difference to Rieman-
nian geometry (see [27]); in integrableWeyl geometry it plays
no role. A second speciality of the theoretical framework is
the cubic kinetic term of the Lagrangian (28), analogue to
the AQUAL approach but in scale covariant form. Observ-
able quantities are directly given by the model in Einstein
gauge (9).

The total dynamical mass of the model,𝑀tot = 𝑀bar +𝑀𝑡
(76), has been heuristically confrontedwith the empirical val-
ues for of 17+2 galaxy clusters given in [2, 4], complemented
by data from [15]. The problem of data transfer between dif-
ferent theoretical frameworks (in particular between Einstein
gravity/Λ𝐶𝐷𝑀 and WST-3L) leads to a certain caveat with
regard to uncorrected taking-over of the values for the total
mass. But it does not seem to obstruct a meaningful first
comparison of the WST halo model with available mass data
of clusters collected in the Einstein/Λ𝐶𝐷𝑀 framework.

The result of this comparison shows a surprisingly good
agreement of the total mass predicted by the model 𝑀tot,
on the basis of data for the baryonic mass components,
with the empirically determined total mass 𝑀500 (at the
main reference distance 𝑟500). Moreover the model shows an
acceptably good agreement with additional empirical values
at the distance 𝑟200 given in [15] (determined on a slightly
less refined data basis and evaluationmethod). For 15 clusters
the model predicts values for 𝑀tot(𝑟500) with error intervals
(due to the observational errors for the baryonic data) which
overlap with the empirical error intervals of𝑀500. The Coma
cluster is among them. Two clusters have overlapping error
intervals in the 2𝜎 range. The remaining two are outliers and
have been identified as such already in [4].

In the result we have found empirical support for con-
jecturing that the observed dark matter at galaxy cluster level
may be due to the transparent halo of the scalar field and the
phantom halo of the scale connection of WST (83).

Details for the constitution of the total transparent matter
halo from its specific components (i), (ii), and (iii) have been
investigated for the Coma cluster (Section 4.5). They seem
to be exemplary for the whole collection of galaxy clusters.
A particular feature of the model is the scalar field energy
formed in the interspaces between the galaxies. Its integrated
energy contribution surpasses the baryonic mass between
1 and 1.5Mpc (see Figure 2 and Table 4, column 4). It is
crucial for this model’s capacity to explain the total dynamic
mass on purely gravitational grounds, without any additional
darkmatter component. An overall comparisonwith Sanders’
TeVeS-MOND model for galaxy clusters and the NFW halo
is given in Section 4.7.

At the moment the Weyl geometric scalar tensor model
with a cubic term in the kinetic Lagrangian of the scalar
field fares well in all the mentioned respects. It would
be very helpful if astronomers decided to evaluate old or
new raw data in the framework of WST. That could lead
to empirical discrimination of the different models. But
already independent of the outcome of such a revision, the
scalar field 𝜙 and the scale connection 𝜑𝜇 of WST have a
remarkable property from a theoretical point of view. They
complement the classical Einstein-Riemannian expression
for the gravitational structure, the metric field 𝑔𝜇], by a
feature which carries proper energy momentum (35) and
(36). The energy momentum of the scalar field plays a crucial
role in the constitution of the transparent matter halo. In the
present approach it seems to express the self-energy of the
extended gravitational structure. It remains to be seenwhether
this is more than a model artefact.
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Appendix

Remarks on the Numerical Implementation

The calculations described in Sections 3.3 to 3.5 and 4.4
have been implemented in Mathematica 10 and run on a
PC. Integrations of the mass values have been realized by
numerical interpolation routines in distance intervals of100 kpc. A comparison with refined distance intervals 10 kpc
showed differences at the order of magnitude 10−4 of the
respective values, thus below the rounding precision.

If one wants to investigate the external halo (beyond 𝑟200)
one has to choose fading out functions. The main part of
our investigation deals with the internal halo. Only in the
Discussion, Section 5, questions of the external halo come
into the play. The fading out for the scalar field and phantom
halos beyond 𝑟200 has been modeled by the cubic expression:

𝑓 (𝑥, 𝐴, 𝐵) = 𝜒 (𝑥; −∞,𝐴)
+ ( 11 + (𝑥 − 𝐴) /𝐵)

3 𝜒 (𝑥; 𝐴,∞) , (A.1)

with𝜒(𝑥; 𝑎, 𝑏) the characteristic function of the interval [𝑎, 𝑏].
The fading out of 𝑓(𝑥, 𝐴, 𝐵) starts at 𝐴 and declines to 1/2 at𝐴 + 𝐵. In our case we start the fading out close to the virial
radius, 𝐴 = 1.1𝑟200, and set 𝐵 = 0.5𝑟200 (see Figure 7).
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