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With the ever increasing global energy demand and diminishing petroleum reserves, current advances in drilling technology have
resulted in numerous directional wells being drilled as operators strive to offset the ever-rising operating costs. In as much as
deviated-well drilling allows drillers to exploit reservoir potential by penetrating the pay zone in a horizontal, rather than vertical,
fashion, it also presents conditions under which the weighting agents can settle out of suspension. The present work is categorized
into two parts. In the first part, governing equations were built inside a two-dimensional horizontal pipe geometry and the finite
element method utilized to solve the equation-sets. In the second part, governing equations were built inside a three-dimensional
horizontal annular geometry and the finite volume method utilized to solve the equation-sets. The results of the first part of the
simulation are the solid concentration, mixture viscosity, and a prediction of the barite bed characteristics. For the second part,
simulation results show that the highest occurrence of barite sag is at low annular velocities, nonrotating drill pipe, and eccentric
drill pipe. The CFD approach in this study can be utilized as a research study tool in understanding and managing the barite sag
problem.

1. Introduction

With the ever increasing global energy demand and dimin-
ishing petroleum reserves, recent advances in drilling tech-
nology have resulted in numerous directional wells being
drilled as operators strive to offset the ever-rising operating
costs. Deviated-well drilling allows operators to exploit reser-
voir potential by penetrating the pay zone in a horizontal,
rather than vertical, fashion. With consideration of eliminat-
ing drilling problems such as stuck pipe, torque and drag,
wellbore instability, and low rates-of-penetration, these wells
are being drilled increasingly with invert-emulsion drilling
fluids.

In the drilling industry, the term “barite sag” refers to
the settling of weighting materials in drilling fluids under
flowing (pumping) or no flowing (no pumping) conditions.
In as much as there exist substitutes such as iron titanium
oxide, calcium carbonate, and manganese tetra oxide, barite
is used extensively since it provides high density with wide
accessibility and favourable economics and it is ecofriendly.
Notwithstanding mentioning, the API 13D defines barite sag
(in the field) as the change in drilling fluid density observed

when circulating bottoms-up; it is almost always character-
ized by drilling fluid having a density below nominal, being
followed by drilling fluid densities above nominal, and being
circulated out of the annulus [1].

Modelling and simulation studies employ a combination
of bothmathematical formulations and numerical techniques
where the governing equations for a problem definition are
solved by eitherwriting a computer program (code) following
a discretization scheme such as finite difference method
(FDM) or using CFD software to obtain a solution following
a numerical method such as finite element method (FEM)
or finite volume method (FVM). The solution obtained is
referred to as a numerical solution since a particular numer-
ical procedure is followed and the whole process generally
called numerical simulation. Numerous researchers have
studied the barite sag phenomenon by employing modelling
and simulation studies.

Paslay et al. [2] presented a fundamental theoretical effort
to describe dynamic sag in drilling fluids by considering
the behaviour of a system of particles in a non-Newtonian
Bingham fluid. The authors employed continuummechanics
to develop a model of dynamic sag in an inclined annulus
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in terms of the fluid and particle properties. They focused
on the period when pumping and rotation are stopped.
They indicated that the particles settle for a few minutes
immediately following the cessation of rotation and pumping
when the gelling properties of the stationary drilling fluid
have not been fully recovered. The analysis upon which the
results were deduced is laminar flow and the predictions
appeared to be consistent with the operational guidelines
presented by Dye et al. [3].

Nguyen et al. [4] described a fundamental mathematical
approach (based mainly on the continuum methodology) to
examine the sedimentation of barite particles in shear flow
of Newtonian fluids; they established a numerical method
to solve four partial differential equation-sets describing
dynamic barite sag in pipe flow of Newtonian fluids. They
calculated the concentration of solid in both the axial and
radial directions as a function of time by using an explicit
FDMmethod.

Hashemian et al. [6, 7] performed a study on barite sag
by (1) modelling of laminar flow of non-Newtonian fluid in
annulus to obtain velocity profile and (2) consideration of the
solid particles in the fluid to predict the particle traveling path
and time. The simulation was based on a proposed particle
tracking method called “Particle Elimination Technique.” It
is important to note that the simulation approach employed
is much dependent on a parallel experimental study. The
estimation of unknown parameters (𝑚̇, mass rate of barite
bed back to suspension, V, average velocity of the barite bed,
and 𝜇, viscosity of the barite bed) that are input parameters
in the simulation is based on the experimental results. This
is rather a shortcoming of this approach as it cannot be
performed independently and later make a comparison with
experimental data.

Kulkarni et al. [8] presented a novel method of pre-
dicting real-time sag behaviour in the wellbore by employ-
ing a comprehensive computational approach to model the
sag behaviour in wellbores using fluids composition (i.e.,
weight-material (barite) size/concentration and oil-water
ratio)/properties (i.e., rheology) and wellbore geometry (i.e.,
inclination and diameter)/operating conditions (i.e., temper-
ature, pressure, and time for which the fluid is uncirculated)
information. The model developed was referred to as the
wellbore sag model (WSM). The authors reported that,
generally, the WSM captured the appropriate characteristics
of the fluids and successfully predicted their respective sag
behaviour.

The objective of this paper is to present an entirely
independent numerical simulation study on barite sag in
pipe and annular sections by employing CFD. Additionally,
a CFD-DEM approach, based on preliminary results, is
proposed for future research on the study of barite sag in
annular sections.

2. Mathematical Approach

The mathematical approach is in two parts. In the first part,
the governing equations are built inside a two-dimensional
horizontal pipe geometry and the finite element method

(FEM) utilized to solve the equation-sets, for studying the
solid concentration distribution of a solid-liquid system
in pipe flow. In the second part, governing equations are
built inside a three-dimensional horizontal annular geometry
and the finite volume method (FVM) utilized to solve the
equation-sets, for studying the barite sag phenomenon in an
annulus under flow conditions.

2.1. Horizontal Pipe Section. Description of the Eulerian-
Eulerian approach to study the solid concentration distri-
bution in a pipe in shear flow of a solid-liquid system:
This model assumes that solid concentration only changes
in the axial and lateral directions. In addition, the model is
developed under laminar flow conditions.

2.1.1.Mass Balance. Assuming that themass transfer between
the two phases is zero, the following continuity relations hold
for the continuous and dispersed phase [9]:

𝜕𝜕𝑡 (𝜌𝑐𝜙𝑐) + ∇ ⋅ (𝜌𝑐𝜙𝑐u𝑐) = 0,
𝜕𝜕𝑡 (𝜌𝑑𝜙𝑑) + ∇ ⋅ (𝜌𝑑𝜙𝑑u𝑑) = 0.

(1)

Here 𝜙 (dimensionless) denotes the phase volume fraction,𝜌 (kg/m3) is the density, and u (m/s) is the velocity of each
phase.The subscripts 𝑐 and 𝑑 denote quantities relating to the
continuous and dispersed phase, respectively. The following
relation between the volume fractions must hold

𝜙𝑐 = 1 − 𝜙𝑑. (2)

Both phases are considered incompressible, in which case
(1) can be simplified as

𝜕𝜙𝑐𝜕𝑡 + ∇ ⋅ (𝜙𝑐u𝑐) = 0, (3)

𝜕𝜙𝑑𝜕𝑡 + ∇ ⋅ (𝜙𝑑u𝑑) = 0. (4)

When (3) and (4) are added together, a continuity
equation for the mixture is obtained:

∇ ⋅ (𝜙𝑑u𝑑 + u𝑐 (1 − 𝜙𝑑)) = 0. (5)

In order to control the mass balance of the two phases,
the Euler-Euler model interface solves (4) together with (5).
Equation (4) is used to compute the volume fraction of the
dispersed phase, and (5) is used to compute the mixture
pressure.
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2.1.2. Momentum Balance. Themomentum equations for the
continuous and dispersed phases, using the nonconservative
forms of Ishii [10], are

𝜌𝑐𝜙𝑐 [ 𝜕𝜕𝑡 (u𝑐) + u𝑐∇ ⋅ (u𝑐)]
= −𝜙𝑐∇𝑃 + ∇ ⋅ (𝜙𝑐𝜏𝑐) + 𝜙𝑐𝜌𝑐g + F𝑚,𝑐 + 𝜙𝑐F𝑐,

(6)

𝜌𝑑𝜙𝑑 [ 𝜕𝜕𝑡 (u𝑑) + u𝑑∇ ⋅ (u𝑑)]
= −𝜙𝑑∇𝑃 + ∇ ⋅ (𝜙𝑑𝜏𝑑) + 𝜙𝑑𝜌𝑑g + F𝑚,𝑑 + 𝜙𝑑F𝑑.

(7)

Here 𝑃 (Pa) is the mixture pressure, which is assumed to
be equal for the two phases. The viscous stress tensor for
each phase is denoted by 𝜏 (Pa), g (m/s2) is the vector
of gravitational acceleration, F𝑚 (N/m3) is the interphase
momentum transfer term (that is, the volume force exerted
on each phase by the other phase), and F (N/m3) is any other
volume force term.

For fluid-solid mixtures, (7) is modified in the manner of
Enwald et al. [11]

𝜙𝑑 [ 𝜕𝜕𝑡 (u𝑑) + u𝑑∇ ⋅ (u𝑑)]
= −𝜙𝑑∇𝑃 + ∇ ⋅ (𝜙𝑑𝜏𝑑) − ∇𝑃𝑠 + 𝜙𝑑𝜌𝑑g + F𝑚,𝑑

+ 𝜙𝑑F𝑑.
(8)

The fluid phases in the above equations are assumed to be
Newtonian and the viscous stress tensors are defined as

𝜏𝑐 = 𝜇𝐶 (∇u𝑐 + (∇u𝑐)𝑇) − 23 (∇ ⋅ u𝑐) I, (9a)

𝜏𝑑 = 𝜇𝐷 (∇u𝑑 + (∇u𝑑)𝑇) − 23 (∇ ⋅ u𝑑) I, (9b)

where 𝜇 (Pa⋅s) is the dynamic viscosity of the respective
phase.

In order to avoid singular solutionswhen the volume frac-
tions tend to zero, the governing equations above are divided
by the corresponding volume fraction. The implemented
momentum equations for the continuous and dispersed
phase are as given in (10) and (11), respectively.

𝜌𝑐 𝜕𝜕𝑡 (u𝑐) + 𝜌𝑐u𝑐∇ ⋅ (u𝑐)
= −∇𝑃 + ∇ ⋅ 𝜏𝑐 + ∇𝜙𝑐 ⋅ 𝜏𝑐𝜙𝑐 + 𝜌𝑐g + F𝑚,𝑐𝜙𝑐 + F𝑐,

(10)

𝜌𝑑 𝜕𝜕𝑡 (u𝑑) + 𝜌𝑑u𝑑∇ ⋅ (u𝑑)
= −∇𝑃 + ∇ ⋅ 𝜏𝑑 + ∇𝜙𝑑 ⋅ 𝜏𝑑𝜙𝑑 − ∇𝑃𝑠𝜙𝑑 + 𝜌𝑑g +

F𝑚,𝑑𝜙𝑑
+ F𝑑.

(11)

2.1.3. Dispersed Phase Viscosity. Using an expression for
the mixture viscosity, the default values for the dynamic
viscosities of the two interpenetrating phases are taken as

𝜇𝐶 = 𝜇𝐷 = 𝜇mix. (12)

A simpler mixture viscosity covering the entire range of
particle concentrations is the Krieger type [12]:

𝜇mix = 𝜇𝐶(1 − 𝜙𝑑𝜙𝑑,max
)−2.5𝜙𝑑,max , (13)

where 𝜙𝑑,max is the maximum packing limit, by default 0.62
for solid particles. Equation (13) can be applied when 𝜇𝑐 ≪𝜇𝑑.

On the other hand, user-defined expressions for the
dispersed phase and mixture viscosity can be employed [4]:

𝜇𝑑 = 3.5𝜇𝑐, (14a)

𝜇𝑑 = 3.5𝜇𝑐 + 35𝐶6, (14b)

𝜇mix = 𝐶𝜇𝑑 + (1 − 𝐶) 𝜇𝑐, (14c)

where 𝜇 (SI unit: Pa⋅s) is viscosity and the subscripts 𝑐, 𝑑,
and mix represent continuous phase, dispersed phase, and
mixture, respectively;𝐶 is the dispersed phase concentration.

2.1.4. Interphase Momentum Transfer. The drag force added
to the momentum equation is defined as

Fdrag,𝑐 = −Fdrag,𝑑 = 𝛽uslip, (15)

where Fdrag,𝑐 is the drag force on the continuous phase, Fdrag,𝑑
is the drag force on the dispersed phase, 𝛽 is a drag force
coefficient, and the slip velocity is defined as

uslip = u𝑑 − u𝑐. (16)

2.1.5. Dilute Flows. For dilute flows the drag force coefficient𝛽 can be modelled as

𝛽 = 3𝜙𝑑𝜌𝑐𝐶𝑑4𝑑𝑑
󵄨󵄨󵄨󵄨󵄨uslip󵄨󵄨󵄨󵄨󵄨 . (17)

In this case drag coefficient can be computed from the
Schiller-Naumannmodel in (18), where the particle Reynolds
number is given as in (19):

𝐶𝑑 = {{{
24
Re𝑃

(1 + 0.15Re0.687𝑃 ) , Re𝑃 ≤ 1000,
0.44, Re𝑃 > 1000, (18)

Re𝑃 = 𝜙𝑐𝑑𝑑𝜌𝑐 󵄨󵄨󵄨󵄨󵄨uslip󵄨󵄨󵄨󵄨󵄨𝜇𝑐 . (19)

2.1.6. Solid Pressure. For fluid-solid mixtures, a model for the
solid pressure,𝑃𝑠, in (11), is needed.The solid pressuremodels
the particle interaction due to collisions and friction between
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the particles. The solid pressure model implemented uses a
gradient diffusion based assumption:

∇𝑃𝑠 = −𝐺 (𝜙𝐶) ∇𝜙𝐶, (20)

where the empirical function 𝐺 (21) is given by (22) as
described in Enwald et al. [11]

𝐺 (𝜙𝐶) = 10𝐵1𝜙𝐶+𝐵2 , (21)

𝐺 (𝜙𝐶) = 10−8.76𝜙𝐶+5.43, (22a)

𝐺 (𝜙𝐶) = 10−10.5𝜙𝐶+9.0, (22b)

𝐺 (𝜙𝐶) = 10−10.46𝜙𝐶+6.577. (22c)

2.2. Horizontal Annular Section. Description of the 3Dmodel
employed to study the behaviour of barite particles in an
annulus based on the CFD approach is as follows.

2.2.1. Governing Equations for Fluid Flow. The local averaged
Navier-Stokes equations describe the 3D equations of motion
of viscous, unsteady, and incompressible fluid phase.

Mass Conservation Equations. The mass conservation equa-
tion is expressed as

𝜕 (𝛼𝑓𝜌𝑓)𝜕𝑡 + ∇ ⋅ (𝛼𝑓𝜌𝑓u𝑓) = 0, (23)

where u𝑓 is the fluid velocity, 𝜌𝑓 is the fluid density, 𝛼𝑓 is the
volume fraction of the fluid phase, and 𝑡 is the time.

MomentumConservation Equations.Themomentum conser-
vation equation is expressed as

𝜕 (𝛼𝑓𝜌𝑓u𝑓)𝜕𝑡 + ∇ ⋅ (𝛼𝑓𝜌𝑓u𝑓u𝑓)
= −𝛼𝑓∇𝑝 + ∇ ⋅ (𝛼𝑓𝜏𝑓) + 𝛼𝑓𝜌𝑓g − S𝑓,

(24)

where 𝑝 is the fluid pressure, 𝜏𝑓 is the viscous stress tensor,
and S𝑓 is the volume-averaged (on a cell) interaction forces
(interphase momentum transfer source term between the
particles and fluid). The stress tensor is defined as [13]

𝜏 = 2𝜇𝑓 ( ̇𝛾)D, (25a)

𝜏 = 𝜇𝑓 [∇u𝑓 + (∇u𝑓)𝑇 − 2
3
(∇ ⋅ u𝑓) I] , (25b)

where 𝜇𝑓 is the solvent viscosity which is dependent on the
shear rate, ̇𝛾 is the shear rate, andD is the rate of deformation
tensor (25a). In (25b), I is an identity matrix and the equation
is valid for laminar flow. The shear rate is calculated from
the second invariant of the rate of deformation tensor this is
defined in (27).

̇𝛾 = √(2D : D), (26)

D = L + L𝑇. (27)

And L = (∇u𝑓)𝑇, where u𝑓 is the velocity field.

Rheology Model. The relationship between the shear stress
and shear rate in the fluid phase is described by the non-
Newtonian generalized power law model. The mathematical
representation is shown in [13]

𝜇 ( ̇𝛾) = 𝑎𝑇 ⋅ 𝐾 ̇𝛾𝑛−1, (28a)

𝜇min

< {{{{{{{
𝑎𝑇 (𝜇0) when ( ̇𝛾 ≤ ( 𝜏0𝜇0))
𝑎𝑇(𝜏0 + 𝐾 (𝑎𝑇 ( ̇𝛾 − (𝜏0/𝜇0)))𝑛𝑎𝑇 ̇𝛾 ) when ( ̇𝛾 > ( 𝜏0𝜇0))

< 𝜇max,

(28b)

where 𝑎𝑇 is the temperature shift factor (for an isothermal
flow, 𝑎𝑇 = 1), 𝜏0 is the yield stress threshold, 𝜇0 is the yielding
viscosity, 𝜇min is the minimum viscosity limit, 𝜇max is the
maximum viscosity limit, 𝑛 is the power law exponent, and𝐾
is the consistency factor. The value of 𝑛 determines the class
of the fluid; that is, for 𝑛 = 1, the fluid is Newtonian, 𝑛 > 1,
the fluid is shear-thickening (dilatant), and 𝑛 < 1, the fluid is
shear-thinning (pseudoplastic) or viscoelastic.

2.2.2. Governing Equations for Particle Flow

(I) Dispersed Phase Modelled as Lagrangian Phase

Basic Equations ofMotion.Themost basic particle description
involves only its position 𝑟𝑝(𝑡) and velocity k𝑝(𝑡). These two
quantities relate through the equation of motion [13]:

𝑑𝑟𝑝𝑑𝑡 = u𝑝 − u𝑔. (29)

The grid velocity u𝑔(x, 𝑡) is evaluated at the particle position𝑟𝑝(𝑡); its appearance in (29) indicates that the convection is
that u𝑝(𝑡) is the absolute velocity of the particle, whereas 𝑟𝑝(𝑡)
is the position of the particle with respect to the frame of
reference.

For parcels, individual particles are not tracked; instead
a single parcel represents a set of identical particles, at some
mean centroid 𝑟𝜋(𝑡). The velocity of the parcel is assumed to
be the same as its constituent particles; hence its equation of
motion is

𝑑𝑟𝜋𝑑𝑡 = u𝑝 − u𝑔. (30)

Mass Balance for a Material Particle.The equation of conser-
vation of mass of a material particle is

𝑑𝑚𝑝𝑑𝑡 = 𝑚̇𝑝, (31)

where 𝑚𝑝 is the mass of the particle and 𝑚̇𝑝 the rate of mass
transfer to the particle.

Mass Transfer. The rate of mass transfer to a single particle
from the continuous phase is 𝑚̇𝑝.
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Momentum Balance for a Material Particle. The generic form
of the equation of conservation of momentum of a material
particle is

𝑚𝑝 𝑑u𝑝𝑑𝑡 = F𝑆 + F𝐵, (32)

where F𝑆 represents the forces acting on the surface of the
particle, and F𝐵 the body forces. These forces are in turn
decomposed into

F𝑆 = F𝐷 + F𝑃, (33a)

F𝐵 = F𝑔 + F𝑢, (33b)

where F𝐷 is the drag force, F𝑃 is the pressure gradient force,
F𝑔 is the gravity force, and F𝑢 is the user-defined body force.

(a) Drag Force. The equation for drag force is [14]

F𝐷 = 12𝐶𝑑𝜌𝑓𝐴𝑃 󵄨󵄨󵄨󵄨u𝑠󵄨󵄨󵄨󵄨 u𝑠, (34)

where 𝐶𝑑 is the drag coefficient, 𝜌𝑓 is the density of the fluid
(continuous phase), 𝐴𝑃 is the projected area of the particle,
and u𝑠 is the particle slip velocity (and is given as u𝑠=u𝑓−u𝑝).
(b) Drag Coefficient.The Schiller-Naumann correlation [14] is
suitable for spherical solid particles (and liquid droplets and
small-diameter bubbles). For a viscous continuous phase, the
correlation is as defined in (18).

(c) Pressure Gradient Force. The equation for the pressure
gradient force is [14]

F𝑃 = −𝑉𝑃∇𝑃static, (35)

where 𝑉𝑃 is the volume of the particle, and ∇𝑃static is the
gradient of the static pressure in the continuous phase.

(d) User-Defined Body Force. The equation for the user-
defined body force is

F𝑢 = 𝑉𝑝fu, (36)

where fu is the user body force (per unit volume).

(e) Particle Shear Lift Force.This applies to a particle moving
relative to a fluid where there is a velocity gradient in the fluid
orthogonal to the relative motion. Saffman [12] gives the lift
force as

FLS = 1.615𝑑2𝑝 (𝜌𝑓𝜇𝑓)0.5 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝛿u𝛿𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (u𝑓 − u𝑃) , (37)

where the 𝑦 direction is the direction of the velocity gradient.
The 3D version of (38) is

FLS = 𝐶LS
𝜌𝑓𝜋8 𝑑3𝑝 [(u𝑓 − u𝑝) × 𝜔𝑓] , (38)

where 𝜔𝑓 is the curl of the fluid velocity (𝜔𝑓 = ∇ × u𝑓)
and 𝐶LS is the shear lift coefficient. 𝐶LS can be defined using

either of two published definitions. Saffman [12] provides
a definition that recovers the original Saffman asymptotic
solution for low Reynolds numbers (39) and on the other
hand, Sommerfeld [14] provides a definition for a broader
range of Reynolds numbers (41).

𝐶LS = 4.1126
Re0.5𝑠

, (39)

𝐶LS = 4.1126
Re0.5𝑠

𝑓 (Re𝑃,Re𝑠) , (40)

𝑓 (Re𝑃,Re𝑠)
= {{{

(1 − 0.3314𝛽0.5) 𝑒−Re𝑃/10 + 0.3314𝛽0.5, Re𝑃 ≤ 40,
0.0524 (𝛽 ⋅ Re𝑃)0.5 , Re𝑃 > 40,

(41)

in which 𝛽 = 0.5Re𝑠/Re𝑃 (0.005 < 𝛽 < 0.4) and Reynolds
number for shear flow is Re𝑠 = 𝜌𝑓𝑑2𝑝|𝜔𝑓|/𝜇𝑓.
Momentum Transfer. The rate of momentum transfer to a
single particle from the continuous phase is F𝑆+𝑚̇𝑝u𝑝, where
F𝑆 is as defined in (33a).

Boundary Interface Mode. It is important to formulate the
Lagrangian phase boundary interaction mode [13].

Rebounding particles remain active in the simulation;
the mode is distinguished by its treatment of the particle
velocity. The rebound velocity relative to the wall velocity is
determined by the impingement velocity and user-defined
restitution coefficients:

(u𝑝 − u𝑤)𝑅 = 𝜖𝑡 (u𝑝 − u𝑤)𝐼𝑡 − 𝜖𝑛 (u𝑝 − u𝑤)𝐼𝑛 . (42)

The superscripts 𝑅 and 𝐼 denote rebound and impingement,
respectively; the subscripts 𝑛 and 𝑡 denote wall-normal and
tangential, respectively. Since the left hand side of (42) can be
split into orthogonal 𝑛 and 𝑡 components, it can be split into
two equations

(u𝑝 − u𝑤)𝑅 = 𝜖𝑡 (u𝑝 − u𝑤)𝐼𝑡 , (43a)

(u𝑝 − u𝑤)𝑅 = −𝜖𝑛 (u𝑝 − u𝑤)𝐼𝑛 , (43b)

which serve to emphasize the definition of the restitution
coefficients as the constants of proportionality between
impingement and rebound velocities. Both coefficients may
range from 0 to 1; the latter is “perfect” elastic rebound. The
tangential velocity of a wall boundary is zero unless a value
is explicitly prescribed through a wall sliding option. In other
words, it is nonzero only at no-slip walls.

(II) Dispersed Phase Modelled as DEM Particles.The detailed
description is shown in the appendix.

3. Model Configuration

3.1. 2D Model: Horizontal Pipe Section. For the physical
model of a horizontal pipe section with ID 0.0508m (2 in.)
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Figure 1: Horizontal pipe section, 𝐿 = 3.65m (12 ft) and ID = 0.0508m (2 in.).

Figure 2: Mesh for the horizontal pipe geometry.

and length 3.65m (12 ft) see Figure 1. For the discretized rep-
resentation of the computational domain which the physics
solvers use to provide a numerical solution, the mesh is
shown in Figure 2. Table 1 lists the inputs used in the 2D
configuration. Additionally, the assumptions and boundary
conditions are listed below.

Assumptions
(i) Every single phase of the mixture behaves as if it was

a lone phase, with the exception of the case when
interacting with the other phase.

(ii) The equations of motion describing the mixture
are similarly those for a single phase and are the
consequence of the summation motion equations for
the individual phases over all phases.

(iii) Flow of the liquid phase is in one direction (that
is, axial), whereas that of the solid phase is in two
directions (both axial and radial).

(iv) The liquid and solid densities are constant; in other
words, phases are incompressible.

(v) There is no consideration of Brownian motion.
(vi) There is no particle interaction arising from collisions

and friction between the particles. Thus, solid pres-
sure is neglected.

(vii) Wall effects are neglected.
(viii) Isothermal and laminar flow are considered.

Boundary Conditions
(i) No-slip condition at the walls.
(ii) Inlet boundary conditions, that is, velocity inlet.
(iii) Outlet boundary conditions, that is, pressure outlet.

3.2. 3D Model: Horizontal Annular Section. The physical
model is an annular test section as depicted in Figure 3.
Figure 3(a) shows the physicalmodel for a concentric annular
section whereas Figure 3(b) depicts an eccentric annular sec-
tion. For the discretized representation of the computational
domain which the physics solvers use to provide a numerical
solution, themesh is shown in Figure 4. Table 2 lists the inputs
used in the 3D configuration. Additionally, the assumptions
and boundary conditions are listed below.

Assumptions

(i) Flow of the liquid phase is in one direction (that
is, axial), whereas that of the solid phase is in two
directions (both axial and radial).

(ii) The phases are incompressible; that is, the densities of
the solid and liquid are constant.

(iii) Interaction forces such as shear lift force, drag force,
and pressure gradient force exist between the liquid
and solid phase.

(iv) Solid particles are spherical.
(v) Solid particles are considered as Lagrangian phases.
(vi) The liquid phase is a generalized power law (non-

Newtonian) fluid.
(vii) Isothermal and laminar flow are considered.

Boundary Conditions

(i) No-slip condition at the walls.
(ii) Inlet boundary conditions, that is, velocity inlet.
(iii) Outlet boundary conditions, that is, pressure outlet.
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Figure 3: Physical model for the annular section: (a) concentric geometry, (b) eccentric geometry.
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Figure 4: Mesh for the annular section: (a) concentric section, (b) eccentric section.

4. Results and Discussion

4.1. 2D Model: Horizontal Pipe Section. The 2D-CFD model
is compared with the mathematical model of Nguyen et al.
[4].The variation of solid concentration in both the axial and
lateral (radial) directions is shown in Figures 5 and 6 for an
initial concentration of solid, 𝐶𝑜 = 0.067; inlet fluid velocity,𝑢 = 0.1556m/s; and deviation angle, 𝜃 = 90∘ (from vertical).
Comparison between the CFD model and the mathematical
model shows a reasonable match in the observed trend for
the solid concentration distribution in both the axial and
radial directions. However, it should be noted that there is
variance in the observed magnitude of solid concentration.
This is majorly attributed to the difference in the time taken
to achieve the solution; for example, a simulation time of 1 s is
equivalent to a physical time ofmany hours (or days).This is a
plausible explanation as sufficient circulating time is required,
in practice, to achieve considerable sedimentation (sag). The
other possible reason(s) for the apparent discrepancy is/are
unknown at the time. Note that the minimum time for the
fluid to flow from inlet to outlet at a velocity of 0.1556m/s is
23.5 s.

4.1.1. Solid Concentration Distribution. Initially, when 𝑡 =
0 seconds, the solid concentration is 𝐶𝑜 = 0.067. As time
progresses, the concentration of solid increases in both

the axial and lateral directions. The major increase in the
concentration of solid occurs at the bottom of the pipe.
Figure 7 displays that the concentration of solid increases
rapidly near the inlet of the test section and thereafter appears
to be constant.The concentration of solid at the upper section
of the pipe does not decrease with time; it is nearly equal to
the initial concentration of the solid (Figure 8). Additionally,
Figure 8 shows that major increase in concentration of solid
occurs at the bottom of the pipe.

4.1.2. Barite Bed Characteristics. For low annular velocities
(i.e., 0.1556m/s), there is rapid formation of a barite bed at
the bottom (lower) section of the pipe. The concentration of
solid in this bed is not much greater than the concentration
of solid in the fluid, which flows in the top (upper) side of
the pipe. Put differently, the bed is actually the fluid with a
greater concentration of solid and can be easily removed.This
layer is what is referred to as the fluidized bed (see Figure 9,
the intermediate section). As time progresses, the bed gets
compacted and comes to be more solid. Note that the bed
is called a “solidified bed” (Figure 9, the bottom section)
when it has been compacted in a time period and cannot be
dispatched by only raising annular velocity without initiating
pipe rotation.

In brief, there exist three layers during the sedimentation
of barite particles in the pipe: the clarified fluid layer (i.e.,
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Table 1: Input data for the simulation – 2D CFD model.

Parameter Variable Value Units
Diameter of pipe 𝐷𝑃 0.0508 (2) m (in.)
Length of pipe L 3.65 (12) m (ft.)
Fluid inlet velocity 𝑢𝑓 0.1556 (30.64) m/s (ft/min)
Viscosity of liquid 𝜇𝐿 0.062 (62) Pa⋅s (cP)
Density of liquid 𝜌𝐿 898.78 (7.5) kg/m3 (lbm/gal)
Density of solid 𝜌𝑠 4198.92 (35) kg/m3 (lbm/gal)
Diameter of solid 𝑑𝑠 0.000025 (25) m (𝜇m)
Initial concentration of the solid 𝐶𝑜 0.067
Deviation angle 𝜃 90 ∘ (from vertical)
Number of CFD elements 63,790
CFD time-step Δ𝑡CFD 0.1 s
Physical time simulated 𝑡end 36 s
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Figure 5: Comparison between the CFD model and the mathematical model of Nguyen et al. [4] for axial solid concentration distribution,𝐶𝑜 = 0.067, 𝑢 = 0.1556m/s, 𝜃 = 90∘ (from vertical).
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Figure 6: Comparison between the CFD model and the mathematical model of Nguyen et al. [4] for lateral solid distribution, 𝐶𝑜 = 0.067,𝑢 = 0.1556m/s, 𝜃 = 90∘ (from vertical).
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Table 2: Input for the simulation – 3D CFD model; dispersed phase modelled as Lagrangian phase.

Parameter Variable Value Units
Drill string length 𝐿 1.8288 (6) m (ft.)
Pipe diameter 𝐷𝑝 0.0508 (2) m (inch)
Hole diameter 𝐷ℎ 0.1016 (4) m (inch)
Angle of inclination 𝜃 0–90 ∘ (degrees)
Fluid inlet velocity 𝑢𝑓 0.1524 (30)–0.762 (150) m/s (ft./min)
Dynamic viscosity 𝜇𝑓
Density of liquid 𝜌𝑓 958.61 (8.0) kg/m3 (ppg)
Fluid behaviour index 𝑛 0.44 —
Consistency index 𝐾 0.63 (1.316) Pa⋅s𝑛 (lbfs𝑛/100 ft2)
Drill pipe rotation speed 𝜔drillpipe 0–100 rpm
Eccentricity ratio 𝑒 0, 1 —
Shape of particles spherical
Particle diameter 𝑑𝑝 0.0000249 (24.9) m (microns)
Particle density (dry density) 𝜌𝑝 4193.92 (35.0) kg/m3 (ppg)
Coefficient of restitution 𝜖 1.0 —
Number of CFD cells 84,102
CFD time-step Δ𝑡CFD 0.01 s
Physical time simulated 𝑡end 36 s
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Figure 7: Plot of concentration of solid profile in axial direction, 𝐶𝑜 = 0.067, 𝜌 = 7.5 ppg, 𝑢 = 0.1556m/s, 𝜃 = 90∘ (from vertical).
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Figure 8: Plot of concentration of solid profile in lateral direction, 𝐶𝑜 = 0.067, 𝜌 = 7.5 ppg, 𝑢 = 0.1556m/s, 𝜃 = 90∘ (from vertical).
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Figure 9: Solid concentration distribution along the pipe in the axial direction, prediction of the barite bed characteristics.
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Figure 10: 2D CFD contour plots for the dispersed phase volume fraction. (a) Fluid-solid mixture nonsegregated. (b) Fluid-solid mixture
segregated; developing solidified bed and suspension layers can be visualized. The colored box represents magnitude of the volume fraction
of the dispersed phase.

the fluid that flows upward), the fluidized bed, and the
solidified bed layer. The dispersed phase volume fraction
contour plots are shown in Figure 10. Additionally, Figure 11
shows the developing three regions during the accumulation
of barite particle in the pipe. Note that the dispersed phase
volume fraction, 𝛼𝑆, is related to the solid (dispersed) phase
concentration by the equation

𝛼𝑆 = 𝐶𝜌𝑆 . (44)

In this case, the initial dispersed phase volume fraction
corresponds to

𝛼𝑆,𝑜 = 𝐶𝑜𝜌𝑆 = 1.598 × 10−5. (45)

4.1.3.Mixture Viscosity. Therelationship between continuous
phase, dispersed phase, and mixture viscosity follows the
correlations presented in (14a)–(14c). The influence of mix-
ture viscosity on barite sedimentation in the pipe section is
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Figure 11: 2D CFD contour plot for the dispersed phase volume fraction. Notice the development of the clarified fluid region, suspension
layer, and the solidified bed at the bottom of the pipe. The colored box represents magnitude of the volume fraction of the dispersed phase.
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Figure 12: Comparison betweenCFDmodel and results ofNguyen et al. [4] andNguyen [5]. Effect of solid concentration onmixture viscosity,𝐶𝑜 = 0.067, 𝜌 = 7.5 ppg, 𝑢 = 0.1556m/s, 𝜃 = 90∘ (from vertical).

depicted in Figure 12. The outcomes of the CFD model show
that the mixture viscosity is constant and satisfies Einstein’s
formula. This is in agreement with the experimental and
modelling data of Nguyen et al. [4] and Nguyen [5], up to
a solid concentration of less than or equal to 0.4. Beyond a
solid concentration of 0.4, the viscosity is a function of solid
concentration.

4.2. 3D Model: Horizontal Annular Section. The minimum
flow time from inlet to outlet at a velocity of 0.1524m/s
(lowest annular velocity) is 12 s and 2.4 s for a velocity of
0.762m/s (highest annular velocity). The visualization of
barite accumulation clearly illustrates the tendency for the
particles to aggregate on the bottom (lower) side of the test
section (particularly in the case of an eccentric annulus).This
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Figure 13: 3D visualization of the apparent barite accumulation on the lower side of a fully eccentric annulus (horizontal configuration) at𝑢𝑓 = 0.1524m/s, 𝜔drillpipe = 0 rpm (a), redistribution of the barite particles into the flow stream at 𝑢𝑓 = 0.1524m/s, 𝜔drillpipe = 50 rpm.
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Figure 14: Visualization of barite particle distribution at low annular velocity and stationary drill pipe for a horizontal concentric annular
section, that is, 𝑢𝑓 = 0.1524m/s, 𝜔drillpipe = 0 rpm. On the right are sectional views as viewed from the inlet, (a) 𝑡 = 12 s, (b) 𝑡 = 24 s.

is for the case of a low annular velocity, in this case 0.1524m/s
(30 ft/min) with a stationary drill pipe. The redistribution
of barite particles into the fluid stream, at a low annular
velocity, is due to rotation of the drill pipe (Figure 13).
The simulation outcome is a reasonable match with the
experimental observations of Hashemian et al. [6, 7].

4.2.1. Influence of Drill Pipe Rotation on Barite Accumulation
for a Concentric Annulus. Particles (barite particles) are
injected into the fluid stream, at the inlet, at a mass flow

rate of 0.055 kg/s. This configuration simulates the case of
high particle concentration (i.e., 𝛼𝑃 > 10−4). The inlet
fluid velocity is 0.1524m/s (in this case, the lowest annular
velocity). Figure 14 shows the barite particle distribution at
this low annular velocity and stationary drill pipe for a hor-
izontal concentric annular test section. As can be observed
from the sectional views on the right, barite accumulation
in a concentric annulus is rather uniform (Figure 14(a)) and
only has a slight nonuniform distribution (Figure 14(b)).
Therefore, barite accumulation in a horizontal concentric
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Figure 15: Visualization of barite particle distribution at low annular velocity and rotating drill pipe for a horizontal concentric annular
section, that is, 𝑢𝑓 = 0.1524m/s, 𝜔drillpipe = 50 rpm. On the right are sectional views as viewed from the inlet, (a) 𝑡 = 12 s, (b) 𝑡 = 24 s.
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Figure 16: Visualization of barite behaviour in a horizontal concentric annulus at a high fluid inlet velocity and drill pipe rotation; 𝑢𝑓 =
0.762m/s, 𝜔drillpipe = 50 rpm. (a) 𝑡 = 2.5 s, (b) 𝑡 = 5 s.

annulus results into a smaller reduction in circulating drilling
fluid density. Figure 15 shows the influence of drill pipe
rotation at a low annular velocity on the barite accumulation
in a horizontal concentric annulus. Observations from the
sectional views on the right indicate that drill pipe rotation
results into a uniform distribution of the barite particles
in the concentric annular section. Overall, this has a slight
effect on the barite accumulation. The simulation outcome
is a reasonable match with the experimental observations of
Hashemian et al. [6, 7].

4.2.2. Combined Effect of High Annular Velocity and Drill Pipe
Rotation on Barite Accumulation for a Concentric Annulus.
Particles (barite particles) are injected into the fluid stream, at
the inlet, at a particle flow rate which defines both the period
of injection and the injection velocity. Additionally, this
configuration simulates the case of low particle concentration
(i.e., 𝛼𝑃 < 10−4). The inlet fluid velocity is 0.762 m/s and drill
pipe rotation speed is 50 rpm.

Initiated at the start of circulation: Figure 16 shows the
barite particle behaviour in a horizontal annulus at a high
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Figure 17: Visualization of the particle tracks coloured according to the velocity of the particles in Figures 4–12. (a) 𝑡 = 2.5 s, (b) 𝑡 = 5 s.
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Figure 18: Visualization of barite behaviour in a horizontal eccentric annulus at a high fluid inlet velocity and drill pipe rotation; 𝑢𝑓 =
0.762m/s, 𝜔drillpipe = 50 rpm.

inlet fluid velocity and drill pipe rotation. As can be observed,
there is no tendency for barite accumulation in the test
section. Even for the particles that are in the lower bottom,
they are at a high velocity and thus there is no possibility for
sedimentation.The simulation outcome is a reasonablematch
with the experimental observations of Hashemian et al. [6, 7].
Additionally, Figure 17 shows the particle tracks coloured by
the velocity of particles. As can be observed, the particles
further away from the inlet are at a higher velocity than the
overall particles in the annular section, still indicating no
possibility of barite accumulation.

4.2.3. Combined Effect of High Annular Velocity and Drill Pipe
Rotation on Barite Accumulation for an Eccentric Annulus.
Particles (barite particles) are injected into the fluid stream, at
the inlet, at a particle flow rate which defines both the period
of injection and the injection velocity. Additionally, this

configuration simulates the case of low particle concentration
(i.e., 𝛼𝑃 < 10−4). The inlet fluid velocity is 0.762m/s and drill
pipe rotation speed is 50 rpm.

Initiated at the start of circulation: Figure 18 shows the
barite particle behaviour in a horizontal annulus at a high
inlet fluid velocity and drill pipe rotation. As can be observed,
almost all particles in the test section, slightly further from the
inlet, are at a relatively uniform higher velocity. In contrast
to Figure 16(a), the combined effect of high annular velocity
and rotation of drill pipe has a pronounced effect on barite
accumulation in the eccentric scenario than in the concentric
scenario.

5. Limitations and Further Development

In as much as significant efforts have been made to address
the key critical issues in numerical simulation of barite sag,
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Figure 19: Flow stream populated with barite particles: case of a concentric annular section. (a) Particle velocity scene: red band shows
particles with highest velocity. (b) Residence time scene: red band shows highest travel time; particles that have reached an extreme end of a
section.

some simplifications have also been made:

(i) The 2D model configuration for the horizontal pipe
does not account for pipe rotation. Additionally, the
influence of mean velocity on dynamic barite sag is
not accounted for.

(ii) The 3D model configuration for the horizontal annu-
lus does not account for different shapes and sizes
of particles as it assumes uniform spherical particles.
Different particle shapes and sizes can be introduced
by employing different particle-shape models in the
simulation and then observing the sag tendency.

(iii) In the 3D model, only a qualitative analysis of the
results is considered. At low particle concentrations,
the quantitative results are comparable to those
available in published literature and at very high
particle concentrations; the model suffers from a
convergence problem and thus does not produce rea-
sonable results.Therefore, there is a need to perform a
convergence improvement study so as to improve on
the accuracy of the results and aid in the quantitative
analysis of the results.

(iv) In both models, no inclination angle other than 90∘
is considered. Inclination angles between 30∘ and 90∘
can be introduced in the simulation and the resulting
sag tendency observed and analysed.

(v) In the 3D model, based on the CFD-DEM approach,
only a theoretical background for the governing equa-
tions (see the appendix) is provided and one stage
of simulation successfully performed (see Figure 19);
the implementation scheme employed is depicted in

Figure 20. A complete simulation can be performed
by using the implementation scheme in Figure 20
or Figure 21 to investigate the different aspects of
barite sag under influencing factors, such as annular
velocity, drill pipe rotation speed, and eccentric drill
pipe.

Nevertheless, the 3D model developed above, to the
authors’ knowledge, is the first attempt to perform an inde-
pendent numerical simulation to investigate dynamic barite
sag in an annular section. Furthermore, the model based
on the CFD-DEM approach is the first attempt to propose
the use of the CFD-DEM method for the investigation of
barite sag behaviour, keeping in mind that the system is a
liquid-solid flow. Past researchers [15–18] have employed this
approach in the study and analysis of other systems, but only
considering gas-solid flows. The only exception is Zhao and
Shan [19] and Akhshik et al. [20] who performed simulation
of the behaviour of fluid-particle interactions for applications
relevant to mining and geotechnical engineering [19] and the
investigation of the effect of drill pipe rotation on cuttings
transport behaviour [20].

6. Conclusions

A numerical simulation approach has been undertaken to
investigate the different aspects of barite sag behaviour
under influencing factors, such as annular velocity, drill pipe
rotation speed, and eccentric drill pipe, as well as the rheology
of drilling fluid, that is, Newtonian and non-Newtonian fluid.
For the Newtonian fluid case, governing equations were built
inside a 2D horizontal pipe geometry and the finite element
method (FEM) utilized to solve the equation-sets whereas for
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Figure 20: Illustration of an integrated CFD-DEM solver implementation scheme.
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Figure 21: Illustration of the CFD-DEM coupled implementation scheme.

the non-Newtonian fluid case, the governing equations were
built inside a 3D horizontal annular geometry and the finite
volume method (FVM) utilized to solve the equation-sets.
Furthermore, it is worth noting that the drill pipe motion
is modelled as a grid flux in the convective term, instead
of a body force due to system rotation in the momentum
equations.

The 2D-CFDmodel shows that the concentration of solid
increases with time at the bottom (lower) section of the pipe.
For a Newtonian fluid, which has viscosity of 0.062 Pa⋅s, the

CFD model results indicate that, at low fluid inlet velocity
(i.e., 0.1556m/s), there is rapid formation of a barite bed
at the bottom (lower) section of the pipe. Additionally, the
model results show that there exist three layers during the
sedimentation of barite particles in the pipe: the clarified
fluid layer (i.e., the fluid that flows upward), the fluidized
bed, and the solidified bed layer. There exists a critical solid
concentration below which mixture viscosity is independent
of solid concentration and beyond which the converse is
true.
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The developed 3D-CFDmodel outputs positive results in
contrast to some experimentally reported observations in the
study of the dynamic barite sag phenomenon:

(i) For the case of low annular velocity (i.e., 0.1524m/s),
drill pipe rotation serves to disturb the apparent barite
bed and redistribute the barite particles back into the
flow stream.

(ii) The effect of drill pipe rotation has a pronounced
effect for the eccentric annulus compared to the
concentric scenario.

(iii) The combined effect of high annular velocity (i.e.,
0.762m/s) and drill pipe rotation (i.e., 50 rpm) results
in a tremendous reduction in the barite sag occur-
rence. Still, the effect is more pronounced for the
eccentric annulus than the concentric scenario.

(iv) Maintaining the drilling fluid circulation at a high
annular velocity and with rotating drill pipe ensures
that no barite sag occurs.

Appendix

Momentum Balance for the DEM Particle. The momentum
balance for a DEM particle (barite) is derived from the
momentum balance of the material particle (see (A.1))

𝑚𝑖 𝜕u𝑖𝜕𝑡 = F𝑆 + F𝐵, (A.1)

where 𝑚𝑖 is the mass of 𝑖th barite particle, F𝑆 represents the
forces acting on the surface of the particle, and F𝐵 represents
the body forces. These forces are in turn decomposed, as
shown in (33a) and (33b).

The DEM modelling introduces extra body force rep-
resenting interparticle interaction due to particle contacts
with other particles and with mesh boundaries. Thus, (33b)
becomes

F𝐵 = F𝑔 + F𝑢 + F𝑐, (A.2a)

where

F𝑐 = ∑
neighbour particles

Fcontact

+ ∑
neighbour particles

Fcontact. (A.2b)

Putting together the above considerations, (A.1) can then
be written as

𝑚𝑖 𝜕u𝑖𝜕𝑡 = 𝑚𝑖g + (∑
𝑗

F𝑖𝑐,𝑗) + F𝐷 + F𝑠 + F𝑀 + F𝑝, (A.3)

where F𝑖𝑐,𝑗 is the contact force acting from 𝑗th barite particle
on 𝑖th barite particle, F𝑠 denotes the shear lift force, and F𝑀
represents the rotational lift force.

Note that the momentum transfer to the particle from
the continuous phase is simply F𝑆. However, when two-way

coupling is activated, F𝑆 is accumulated over all the parcels
and applied in the continuous phase momentum equation.

Besides the standard Lagrangian linearmomentum equa-
tion, the DEM particle equations of motion incorporate
angular momentum conservation equations:

𝑑𝑑𝑡 (I𝑃𝜔𝑃) = ∑
neighbour particles

Tcontact

+ ∑
neighbour boundaries

Tcontact,
(A.4)

where I𝑃 is the particle moment of inertia, and 𝜔𝑃 is the
particle angular velocity. Since the rotational motion is also
affected by the drag torque, which is produced by the slip-
rotation, (A.4) can be expressed as

I𝑃 (𝑑𝜔𝑃𝑑𝑡 ) = ∑
𝑗

(T𝑖𝑡,𝑗 + T𝑖𝑟,𝑗) + T𝑖DT, (A.5)

where T𝑖𝑡,𝑗 and T𝑖𝑟,𝑗 are the torque vectors produced by the
tangential and normal contact force acting from 𝑗th barite
particle on the 𝑖th barite particle, respectively. T𝑖DT is the drag
toque.

Contact Forces and Torques. Following the Hertz-Mindlin
nonslip contact model [21], the forces between two spheres
(barite particles), 𝑖 and 𝑗, are described by the following set of
equations (see Figure 22):

F𝑖𝑐,𝑗 = F𝑛,𝑖𝑗 + F𝑑𝑛,𝑖𝑗 + F𝑡,𝑖𝑗 + F𝑑𝑡,𝑖𝑗, (A.6)

where F𝑛,𝑖𝑗 denotes the normal contact force given as [21]

F𝑛,𝑖𝑗 = 43𝐸eq√𝑅eq𝛿3/2𝑛,𝑖𝑗 , (A.7)

in which 𝛿𝑛,𝑖𝑗 is the normal overlap, 𝐸eq is the equivalent
Young modulus (𝐸eq = [(1 − V2𝑖 )/𝐸𝑖 + (1 − V2𝑗)/𝐸𝑗]−1), and 𝑅eq

is the equivalent radius (𝑅eq = [2/𝑑𝑖+2/𝑑𝑗]−1)with𝐸𝑖, V𝑖, 𝑑𝑖
and 𝐸𝑗, V𝑗, 𝑑𝑗 being Young’s modulus, Poisson ratio, and
diameter of each element in contact. F𝑑𝑛,𝑖𝑗 denotes the normal
damping force given by [21]

F𝑑𝑛,𝑖𝑗 = −2√56 ln 𝜖𝑛√𝜋2 + (ln 𝜖𝑛)2√𝑆𝑛,𝑖𝑗𝑚eqk𝑛,𝑖𝑗, (A.8)

where 𝑚eq is the equivalent barite particle mass ([1/𝑚𝑖 +1/𝑚𝑗]−1) with 𝑚𝑖 and 𝑚𝑗 being the mass of each element
in contact, 𝑆𝑛,𝑖𝑗 = 2𝐸eq√𝑅eq𝛿𝑛,𝑖𝑗 is the normal stiffness, k𝑛,𝑖𝑗
is the normal component of the relative velocity of contact
point, and 𝜖𝑛 is the normal coefficient of restitution.

The tangential component of the contact force, F𝑡,𝑖𝑗, is
expressed as [21]

F𝑡,𝑖𝑗 =
{{{{{{{
−𝛿𝑡,𝑖𝑗𝑆𝑡,𝑖𝑗, for 󵄨󵄨󵄨󵄨󵄨F𝑡,𝑖𝑗󵄨󵄨󵄨󵄨󵄨 < 𝜇𝑠 󵄨󵄨󵄨󵄨󵄨F𝑛,𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ,
𝜇𝑠 󵄨󵄨󵄨󵄨󵄨F𝑛,𝑖𝑗󵄨󵄨󵄨󵄨󵄨 v𝑡,𝑖𝑗󵄨󵄨󵄨󵄨󵄨v𝑡,𝑖𝑗󵄨󵄨󵄨󵄨󵄨 , for 󵄨󵄨󵄨󵄨󵄨F𝑡,𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ≥ 𝜇𝑠 󵄨󵄨󵄨󵄨󵄨F𝑛,𝑖𝑗󵄨󵄨󵄨󵄨󵄨 , (A.9)
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Figure 22: Contact forces acting on 𝑖th particle in contact with 𝑗th particle during collisions.

where 𝑆𝑡,𝑖𝑗 = 8𝐺eq√𝑅eq𝛿𝑡,𝑖𝑗 is the tangential stiffness in which𝐺eq is the equivalent shear modulus (𝐺eq = [2(2 − V𝑖)(1 +
V𝑖)/𝐸𝑖 + 2(2 − V𝑗)(1 + V𝑗)/𝐸𝑗]−1), 𝛿𝑡,𝑖𝑗 is the tangential overlap,𝜇𝑠 is the sliding friction coefficient, and k𝑡,𝑖𝑗 is the relative
tangential velocity of contact point.

The tangential damping force, F𝑑𝑡,𝑖𝑗, is expressed as

F𝑑𝑡,𝑖𝑗 = −2√56 ln 𝜖𝑡√𝜋2 + (ln 𝜖𝑡)2√𝑆𝑡,𝑖𝑗𝑚eqk𝑡,𝑖𝑗. (A.10)

Accordingly, the tangential torques acting on 𝑖th barite
particle due to barite particle collision (𝑗th barite particle) is
expressed as [15]

T𝑖𝑡,𝑗 = r𝑖𝑗 × (F𝑡,𝑖𝑗 + F𝑑𝑡,𝑖𝑗) , (A.11)

and the torque to resist rolling action on 𝑖th barite particle
due to barite particle collision (𝑗th barite particle) is given as
[15]

T𝑖𝑟,𝑗 = −𝜇𝑟 󵄨󵄨󵄨󵄨󵄨r𝑖𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨F𝑛,𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝜔𝑖𝑗󵄨󵄨󵄨󵄨󵄨𝜔𝑖𝑗󵄨󵄨󵄨󵄨󵄨 , (A.12)

where r𝑖𝑗 is a vector from the center of mass of barite particle𝑖 to the contact point, 𝜇𝑟 is the rolling friction coefficient, and
𝜔𝑖𝑗 is the relative angular velocity of barite particle 𝑖 to particle𝑗, (𝜔𝑖 − 𝜔𝑗). The torques T𝑖𝑡,𝑗 and T𝑖𝑟,𝑗 are generated by the
tangential contact forces and the rolling friction, respectively.

Note that, for particle-wall collisions, the formulas stay
the same, but the wall radius and mass are assumed to be𝑅wall = ∞ and𝑀wall = ∞, so the equivalent radius is reduced
to 𝑅eq = 𝑅particle and𝑀wall = 𝑀particle.

Drag Force and Drag Torque.The equation for the drag force
is as defined in (34). The drag coefficient is given by the
Gidaspow drag coefficientmethod, which is a combination of
the Wen-Yu and Ergun methods where a cutoff void fraction
determines the point at which one method switches to the
other. Equation (A.13) (Wen-Yu) and (A.14) (Ergun) are the
relevant method equations:

𝐶𝑑 = 43 (150(
1 − 𝛼𝑓𝛼𝑓Re𝑃) + 1.75) , if 𝛼𝑓 < 𝛼min. (A.13)

Otherwise:

𝐶𝑑 = 24𝛼𝑓Re𝑃 (1 + 0.15 (𝛼𝑓Re0.687𝑃 )) 𝛼−2.65𝑓 , (A.14)

where 𝛼𝑓 is the void fraction, 𝛼min is the cutoff void fraction,
and Re𝑃 is the particle Reynolds number and is given as

Re𝑃 = 𝜌𝑓 󵄨󵄨󵄨󵄨󵄨u𝑓 − u𝑝
󵄨󵄨󵄨󵄨󵄨2−𝑛 𝑑𝑛𝑝𝐾 . (A.15)

Note that, during implementation, 𝛼min is user-defined and
also the exponent in (A.13) can be user-defined.

Drag torque reduces the difference in the rotational
differences between a particle and the fluid in which it is
immersed.The drag is a torque applied to a DEMparticle [14]

T𝑖DT = 𝜌𝑝2 (𝑑𝑝2 )
5 𝐶DR |Ω|Ω, (A.16)

where 𝐶DR is the rotational drag coefficient, 𝑑𝑝 is the particle
diameter, and Ω is the relative angular velocity of the barite
particle to the fluid (Ω = (1/2)∇ × u𝑓 − 𝜔𝑝).
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The rotational drag coefficient, 𝐶DR, is defined as [14]

𝐶DR =
{{{{{{{

12.9
Re0.5𝑅

+ 128.4
Re𝑅

, 32 ≤ Re𝑅 < 1000,64𝜋
Re𝑅

, Re𝑅 < 32, (A.17)

in which the Reynolds number of barite particle rotation is
given by

Re𝑅 = 𝜌𝑓𝑑2𝑝 |Ω|𝜇𝑓 . (A.18)

Pressure Gradient Force. The equation for pressure gradient
force is as defined in (35).

DEM Lift Forces. Lift forces in DEM simulations can arise
from particle spin, particle shear, or both.Thus, lift forces are
taken to mean forces normal to the particle velocity; they are
not necessarily forces in the upward direction.

(a) Particle Shear Lift Force. This force applies to a particle
moving relative to a fluid where there is a velocity gradient in
the fluid orthogonal to the relative motion; it is as defined in
(37)–(41).

(b) Particle Spin Lift Force. This force applies to a spinning
particle moving relative to a fluid; it is given by [14]

F𝑀 = 𝜋8 𝑑3𝑝𝜌𝑓𝐶LR
󵄨󵄨󵄨󵄨󵄨u𝑓 − u𝑝

󵄨󵄨󵄨󵄨󵄨 [Ω × (u𝑓 − u𝑝)]|Ω| , (A.19)

where 𝐶LR is the rotational lift coefficient and is given by [14]

𝐶LR = 0.45 + (Re𝑅Re𝑃
− 0.45) 𝑒−0.5684⋅Re0.4𝑅 ⋅Re0.3𝑃 ,

for Re𝑃 < 140,
(A.20)

where Re𝑅 is as defined in (A.18).
Note that (A.20) is a 3D version; the 2D equivalent has a

term 𝑑2𝑝.
Nomenclature

CFD: Computational fluid dynamics
DEM: Discrete element method
FDM: Finite difference method
FEM: Finite element method
FVM: Finite volume method
2D: 2-dimensional
3D: 3-dimensional
Re: Reynolds number𝑎𝑇: Temperature shift factor𝑒: Eccentricity ratio𝐶𝑑: Drag coefficient𝐿: Length of pipe/drill string length𝑑: Diameter𝐷𝑝: Diameter of pipe𝐷ℎ: Diameter of hole𝑝: Pressure𝜌: Density

𝜇: Viscosity𝛼: Volume fractioṅ𝛾: Shear rate𝑛: Power law exponent𝐾: Consistency factor𝜃: Deviation/inclination angle𝜖: Coefficient of restitution
𝜔: Angular velocity.

Subscripts

𝑛: Normal𝑡: Tangential𝑠: Solid𝑝: Particle𝐿: Liquid𝑓: Fluid.
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