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We apply a new series representation of martingales, developed by Malliavin calculus, to characterize the solution of the second-
order path-dependent partial differential equations (PDEs) of parabolic type. For instance, we show that the generator of the
semigroup characterizing the solution of the path-dependent heat equation is equal to one-half times the second-order Malliavin
derivative evaluated along the frozen path.

1. Introduction

In this paper we consider semilinear second-order path-
dependent PDEs (PPDEs) of parabolic type. These equations
were first introduced by Dupire [1] and Cont and Fournie [2]
and will be defined properly in the next section.

Tomotivate our result, we first consider the heat equation
expressed in terms of a backward time variable. For 𝑡 ≤ 𝑇 we
look for a function V(𝑥, 𝑡) that solves

𝜕V (𝑥, 𝑡)𝜕𝑡 + 12 𝜕
2V (𝑥, 𝑡)𝜕2𝑥 = 0; (1)

V (𝑥, 𝑇) = Ψ (𝑥) . (2)

It is well known (see, e.g., [3], chapter 9.2 or [4]) that the
solution is given by the flow of the semigroup 𝑆(𝑡); that is,
V(⋅, 𝑡) = 𝑆(𝑡)Ψ, where

𝑆 (𝑡) Ψ (𝑥) = exp(12 𝜕2𝜕𝑥2 (𝑇 − 𝑡))Ψ (𝑥)
fl

∞∑
𝑖=0

(𝑇 − 𝑡)𝑖2𝑖𝑖! 𝜕2𝑖Ψ (𝑥)𝜕𝑥2𝑖 .
(3)

The differential operator (1/2)(𝜕2/𝜕𝑥2) is said to be the
(infinitesimal) generator of the semigroup 𝑆(𝑡). Consider now
the path-dependent version of the heat equation:

𝐷𝑡V (𝑥𝑝𝑡 , 𝑡) + 12𝐷𝑥𝑥V (𝑥𝑝𝑡 , 𝑡) = 0;
V (𝑥𝑝𝑇, 𝑇) = Ψ (𝑥𝑝𝑇) ,

(4)

where 𝑥𝑝𝑡 is a continuous path on the interval [0, 𝑡] and
the derivatives are Dupire’s path derivatives. Our goal is to
find the generator of the semigroup (flowing the solution) of
PPDEs, which we will refer to as the semigroup of the PPDE.
It turns out that 1/2𝐷𝑥𝑥, that is, one-half times the second-
order vertical derivative, is not the appropriate infinitesimal
generator, because of path dependence. Indeed, the vertical
derivative is the rate of change of the functional V(⋅, 𝑡) for a
change at time 𝑡. The correct infinitesimal generator is equal
to (1/2)𝜔𝑡 ∘ D2𝑠 , where D2𝑠 is the second-order Malliavin
derivative of 𝐹(𝜔) ≡ Ψ(𝑥𝑝𝑇(𝜔)). An important difference
is that 𝐹 is now viewed as a random variable, and the
(first-order) Malliavin derivative is a stochastic process in
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the canonical probability space for Brownian motion. The
stopping path operator 𝜔𝑡 was introduced in [5]. Informally,
the action of the stopping path operator (which we define
rigorously later) is to freeze the path after time 𝑡:

𝜔𝑡 ∘ 𝐹 (𝜔) = 𝐹 (𝜔𝑡) , (5)

where 𝜔𝑡 is the stopped path. The stopped Malliavin deriva-
tive 𝜔𝑡 ∘ D𝑠 is thus an extension of both

(i) the Dupire derivative; while the Dupire derivative
corresponds to changes of the path at only one time,
the iterated derivatives 𝜔𝑡 ∘ D𝑛𝑠1 ,...,𝑠𝑛 are taken with
respect to changes of the canonical path at many
different times 𝑠1, . . . , 𝑠𝑛;

(ii) the Malliavin derivative; while the Dupire derivative
can be taken pathwise, as far as we know, the con-
struction of the Malliavin derivative necessitates the
introduction of a probability space.

The proof of the representation result is straightforward.
Let us consider the path-independent case (1). Let 𝐵 be
Brownian motion. By Itô’s lemma, it is obvious that V(𝐵(𝑡), 𝑡)
is amartingale, say𝑀𝑡, and that the value of thismartingale is
the conditional expectation at time 𝑡 of Ψ(𝐵(𝑇)). Consider
now a general path-dependent terminal condition Ψ(𝐵),
in [5], Jin et al. gave a new representation of Brownian
martingales 𝑀𝑡 (with 𝑡 ≤ 𝑇) as an exponential of a time-
dependent generator, applied to the terminal value 𝑀𝑇 ≡Ψ(𝐵):

𝑀𝑡 = exp(12 ∫
𝑇

𝑡
𝜔𝑡 ∘ D2𝑠d𝑠)Ψ (𝐵) . (6)

By the functional Feynman-Kac formula introduced in
[1, 6], it is immediate that 1/2𝜔𝑡 ∘ D2. is the generator of the
semigroup of the PPDE.

The main advantage of the semigroup method is that the
solution of the PPDE can be constructed semianalytically:
indeed, the method is similar to the Cauchy-Kowalewsky
method, of calculating iteratively all theMalliavin derivatives
of Ψ; (6) can be rewritten indeed as

𝑀𝑡 = ∞∑
𝑖=0

12𝑖𝑖! ∫[𝑡,𝑇]𝑖 𝜔𝑡 ∘ (D2𝑠𝑖 ⋅ ⋅ ⋅D2𝑠1Ψ (𝐵)) d𝑠𝑖 ⋅ ⋅ ⋅ d𝑠1. (7)

The main disadvantage can be seen immediately by
considering (7): the terminal condition Ψ must be infinitely
Malliavin differentiable. In contradistinction, the viscosity
solution given in [7] necessitates Ψ to be only bounded and
continuous. However, compared to the result shown in [6],Ψ
needs only to be defined on continuous paths.

This paper is composed of two parts. In the first part, we
give a rigorous proof of the result (7). Indeed, we complete the
proof ofTheorem2.3 in our article [5]; although the statement
was correct in that paper, one step of the proof was not
obvious to finish. In the second part we characterize the
generator of the semilinear PPDE.

2. Martingale Representation

Wefirst introduce some basic notations ofMalliavin calculus.
For a detailed introduction, we refer to [8] and our paper [5].
Let Ω = 𝐶([0, 𝑇],R) and (Ω,F, {F𝑡}𝑡≥0,P) be the complete
filtered probability space, where the filtration {F𝑡}𝑡≥0 is the
usual augmentation of the filtration generated by Brownian
motion 𝐵 on R. The canonical Brownian motion can be also
denoted by 𝐵(𝑡) = 𝐵(𝑡, 𝜔) = 𝜔(𝑡), 𝑡 ∈ [0, 𝑇], 𝜔 ∈ Ω, by
emphasizing its sample path.We denote by 𝐿2(P) the space of
square integrable random variables. For simplicity, we denote(d𝑢)⊗𝑘 fl d𝑢1 ⋅ ⋅ ⋅ d𝑢𝑘.

We denote the Malliavin derivative of order 𝑙 at time𝑡1, . . . , 𝑡𝑛 by D𝑙𝑡1 ,...,𝑡𝑛 . We call D∞([0, 𝑇]) the set of random
variables which are infinitely Malliavin differentiable and
F𝑇-measurable, that is, for any integer 𝑛 and 𝐹 ∈ D∞([0, 𝑇]):

𝐸[[( sup
𝑠1 ,...,𝑠𝑛∈[0,𝑇]

D𝑛𝑠1 ,...,𝑠𝑛𝐹)
2]
] < +∞. (8)

Definition 1. For any deterministic function 𝑓 ∈ 𝐿2([0, 𝑇]),
we define the “stopping path” operator 𝜔𝑡 for 𝑡 ≤ 𝑇 as

𝜔𝑡 ∘ ∫𝑇
0
𝑓 (𝑠) d𝐵 (𝑠) fl ∫𝑡

0
𝑓 (𝑠) d𝐵 (𝑠) . (9)

In particular, 𝜔𝑡 ∘ 𝐵(𝑠) = 𝐵(𝑠 ∧ 𝑡) that is to “freeze” Brownian
motion after time 𝑡.

From the definition, it is not hard to obtain that, for any 𝑛-
variable smooth function𝑔,𝜔𝑡∘𝑔(𝐵(𝑠1), . . . , 𝐵(𝑠𝑛)) = 𝑔(𝐵(𝑠1∧𝑡), . . . , 𝐵(𝑠𝑛 ∧ 𝑡)). For a general random variable 𝐹 ∈ 𝐿2(P),𝜔𝑡 ∘𝐹 refers to the value of 𝐹 along the stopping scenario𝜔𝑡 ≡𝜔𝑡(𝜔) of Brownian motion. According to the Wiener-Chaos
decomposition, for any 𝐹 ∈ 𝐿2(P), there exists a sequence of
deterministic function {𝑓𝑛}𝑛≥1 such that 𝐹 = ∑∞𝑚=0 𝐼𝑚(𝑓𝑚)
with convergence in 𝐿2([0, 𝑇]𝑛). Therefore, in order to obtain
an explicit representation of𝜔𝑡 acting on a general variable 𝐹,
we first show the following proposition.

Proposition 2. Let 𝑓𝑛 ∈ 𝐿2([0, 𝑇]𝑛), an 𝑛-variable square
integrable deterministic function; then

𝐼𝑛 (𝑓𝑛𝜒[0,𝑡]) = 𝜔𝑡 ∘ 𝐼𝑛 (𝑓𝑛)
+ ⌊𝑛/2⌋∑

𝑘=1

𝑛!2𝑘 (𝑛 − 2𝑘)! ∫𝑡≤𝑢1≤⋅⋅⋅≤𝑢𝑘≤𝑇 𝜔𝑡
∘ 𝐼𝑛−2𝑘 (𝑓𝑛) (𝑢1, 𝑢1, . . . , 𝑢𝑘, 𝑢𝑘) (d𝑢)⊗𝑘 .

(10)
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Therefore

𝜔𝑡 ∘ 𝐼𝑛 (𝑓𝑛) = 𝑛!⌊𝑛/2⌋∑
𝑘=0

(−1)𝑘2𝑘 (𝑛 − 2𝑘)!𝑘! ∫[𝑡,𝑇]𝑘 ∫[0,𝑡]𝑛−2𝑘 𝑓𝑛 (𝑠1, . . . , 𝑠𝑛−2𝑘, 𝑢1, 𝑢1, . . . , 𝑢𝑘, 𝑢𝑘) (d𝐵𝑠)⊗(𝑛−2𝑘) (d𝑢)⊗𝑘 , (11)

as well as the isometry:

𝐸 [(𝜔𝑡 ∘ 𝐼𝑛 (𝑓𝑛))2] = 𝑛!2⌊𝑛/2⌋∑
𝑘=0

122𝑘 ((𝑛 − 2𝑘)!𝑘!)2 ∫[𝑡,𝑇]𝑘 ∫[0,𝑡]𝑛−2𝑘 𝑓𝑛 (𝑠1, . . . , 𝑠𝑛−2𝑘, 𝑢1, 𝑢1, . . . , 𝑢𝑘, 𝑢𝑘)2 (d𝑠)⊗(𝑛−2𝑘) (d𝑢)⊗𝑘 . (12)

Theorem 3. Let 𝐹 ∈ 𝐿2(P). Then for any fixed time 𝑡 and𝑡 ≤ 𝑠 < 𝑇, there exists a sequence {𝐹𝑁}𝑁≥0 that satisfies the
following:

(i) 𝐹𝑁 → 𝐹 in 𝐿2(P);
(ii) 𝐷𝑢𝐹𝑁 = 𝐷𝑠+1/𝑁𝐹𝑁 for any 𝑢 ∈ (𝑠, 𝑠 + 1/𝑁];
(iii) there exist 𝜀 ∈ (0, 1) and a constant 𝐶 which does not

depend on𝑁 such that

𝐸 [(𝜔𝑡 ∘ (𝐹𝑁 − 𝐹))2] ≤ 𝐶𝑁2+𝜀
. (13)

We introduce the derivative d in 𝐿2(P) as, for any process𝐹𝑠,
𝐺𝑠 fl d𝐹𝑠

d𝑠
is defined by lim

𝜀→0
𝐸[(𝐹𝑠+𝜀 − 𝐹𝑠𝜀 − 𝐺𝑠)2] = 0. (14)

Then we can set up an operator differential equation for 𝐸𝑠.
The following theorem is a generalization of Theorem 2.2. in
[5] to functionals that are not discrete.

Theorem 4. For 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑇, assuming that 𝐹 ∈ D6([0, 𝑇]),
one has

d𝜔𝑡 ∘ 𝐸 [𝐹 | F𝑠]
d𝑠 = −𝜔𝑡 ∘ 12D2𝑠𝐸 [𝐹 | F𝑠] . (15)

Then our main theorem is the integral version of this
operator differential equation. We first introduce the conver-
gence condition.

Condition 1. For any 𝑛 ≥ 0, 𝐹 satisfies

(𝑇 − 𝑡)2𝑛(2𝑛𝑛!)2 𝐸[[( sup
𝑢1,...,𝑢𝑛∈[𝑡,𝑇]

𝜔𝑡 ∘ D2𝑢𝑛 ⋅ ⋅ ⋅D2𝑢1𝐹)
2]
]

→
𝑛→∞

0.
(16)

According to isometry (12), this condition impliesD∞([0,𝑇]).

Remark 5. We claim that other conditions exist which are
easier to check than Condition 1. One of them is the
convergence of the terms of series (23):

(𝑇 − 𝑡)𝑛2𝑛𝑛! sup
𝑢1,...,𝑢𝑛∈[𝑡,𝑇]

𝜔𝑡 ∘ D2𝑢𝑛 ⋅ ⋅ ⋅D2𝑢1𝐹 →𝑛→∞ 0 a.s. (17)

To this “ local” condition, that is, a condition based on the
calculation along the frozen path only, one needs to add a
“global” condition involving all the paths tomake it sufficient;
that is, 𝐸[(D𝑛𝑠𝐹)2] < 𝑐2𝑛 for any 𝑠 ∈ [𝑡, 𝑇] and 𝑛 ≥ 1, with a
constant 𝑐.

Moreover, with different structures of𝐹, we have different
alternative conditions which are easier to check for practical
calculations. Here we list two examples.

(1) If 𝐹 = 𝑓(∫𝑇
0
𝑔(𝑠)d𝐵(𝑠)) with smooth deterministic

function 𝑓 and square integrable deterministic func-
tion 𝑔, it is not hard to obtain

(𝑇 − 𝑡)𝑛2𝑛𝑛! sup
𝑢1,...,𝑢𝑛∈[𝑡,𝑇]

𝜔𝑡 ∘ D2𝑢𝑛 ⋅ ⋅ ⋅D2𝑢1𝐹
= (𝑇 − 𝑡)𝑛2𝑛𝑛! ( sup

𝑥∈[𝑡,𝑇]

𝑔 (𝑥))2𝑛

⋅ (𝑓(2𝑛) (∫𝑡
0
𝑔 (𝑠) d𝐵 (𝑠))) .

(18)

Therefore, if there exists a constant𝐶 such that, for all𝑛 ≥ 1,
sup𝑥∈R

𝑓(2𝑛) (𝑥) ≤ ( 𝑛𝐶)
2𝑛 , (19)

with thehelpofStirling approximation 𝑛!∼√2𝜋𝑛(𝑛/𝑒)𝑛,
Condition 1 is satisfied.
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(2) If𝐹 has its chaos decomposition𝐹 = ∑∞𝑚=0 𝐼𝑚(𝑓𝑚), we
have

𝜔𝑡 ∘ D2𝑢𝑛 ⋅ ⋅ ⋅D2𝑢1𝐹
= ∞∑
𝑚=2𝑛

𝑚!(𝑚 − 2𝑛)!𝜔𝑡
∘ 𝐼𝑚−2𝑛 (𝑓𝑚 (⋅, 𝑢1, 𝑢1, . . . , 𝑢𝑛, 𝑢𝑛)) .

(20)

Then according to (12), Condition 1 can be replaced
by

𝐶 (𝑇 − 𝑡)2𝑛(2𝑛𝑛!)2
∞∑
𝑚=2𝑛

( 𝑚!(𝑚 − 2𝑛)!)
2

⋅ sup
𝑢1 ,...,𝑢𝑛∈[𝑡,𝑇]

∫
[0,𝑡]𝑚−2𝑛

𝑓𝑚 (𝑠1, . . . , 𝑠𝑚−2𝑛, 𝑢1, 𝑢1, . . . , 𝑢𝑛,
𝑢𝑛)2 (d𝑠)⊗𝑚−2𝑛 →

𝑛→∞
0,

(21)

with some constant 𝐶 or some much stronger but
easier conditions like the following: for𝑚 ≥ 1 sup

𝑠1 ,...,𝑠𝑚∈[0,𝑇]

𝑓𝑚 (𝑠1, . . . , 𝑠𝑚)2
 ≤

𝐶𝑚! . (22)

Then we have the following main result.

Theorem 6. Suppose that 𝐹 satisfies Condition 1 and is F𝑇-
measurable. For 𝑡 ≤ 𝑇, then, in 𝐿2(P),

𝐸 [𝐹 | F𝑡] = exp(12 ∫
𝑇

𝑡
𝜔𝑡 ∘ D2𝑠d𝑠) 𝐹. (23)

The importance of the exponential formula (23) stems
from the Dyson series representation, which we rewrite
hereafter in a more convenient way:

𝐸 [𝐹 | F𝑡] = 𝜔𝑡 ∘ 𝐹 + 12 ∫
𝑇

𝑡
𝜔𝑡 ∘ D2𝑠𝐹 d𝑠

+ 14 ∫
𝑇

𝑡
∫𝑇
𝑠1

𝜔𝑡 ∘ D2𝑠1D2𝑠2𝐹 d𝑠2d𝑠1 + ⋅ ⋅ ⋅ .
(24)

3. Representation of Solutions of Path-
Dependent Partial Differential Equations

3.1. Functional Itô Calculus. We now introduce some key
concepts of the functional Itô calculus introduced by Dupire
[1]. For more information, the reader is referred to [6], which
we copy hereafter almost verbatim. Let 𝑇 > 0 be fixed. For
each 𝑡 ∈ [0, 𝑇] we denote by Λ 𝑡 the set of càdlàg (right con-
tinuouswith left limits)R-valued functions on [0, 𝑡]. For each𝛾𝑡 ∈ Λ 𝑡, the value of 𝛾𝑡 at 𝑠 ∈ [0, 𝑡] is denoted by 𝛾(𝑠). DenoteΛ = ⋃𝑡∈[0,𝑇] Λ 𝑡. For each 𝛾𝑡 ∈ Λ, 𝑇 ≥ 𝑠 ≥ 𝑡, and 𝑥 ∈ R,
we define𝛾𝑥𝑡 (𝑟) fl 𝛾 (𝑟) 1[0,𝑡) (𝑟) + (𝛾 (𝑡) + 𝑥) 1{𝑡} (𝑟) ,

𝑟 ∈ [0, 𝑡] ,
𝛾𝑡,𝑠 (𝑟) fl 𝛾 (𝑟) 1[0,𝑡) (𝑟) + 𝛾 (𝑡) 1[𝑡,𝑠] (𝑟) , 𝑟 ∈ [0, 𝑠] .

(25)

Definition 7. Given a function �̂� : Λ → R, there exists 𝑝 ∈ R

such that

�̂� (𝛾𝑥𝑡 ) = �̂� (𝛾𝑡) + 𝑝𝑥 + 𝑜 (|𝑥|) as 𝑥 → 0. (26)

Thenwe say that �̂� is vertically differentiable at 𝛾𝑡 ∈ Λ and
define 𝐷𝑥�̂�(𝛾𝑡) fl 𝑝. The function �̂� is said to be vertically
differentiable if 𝐷𝑥�̂�(𝛾𝑡) exists for each 𝛾𝑡 ∈ Λ. The second-
order derivative𝐷𝑥𝑥 is defined similarly.

Definition 8. For a given 𝛾𝑡 ∈ Λ, if
�̂� (𝛾𝑡,𝑠) = �̂� (𝛾𝑡) + 𝑎 (𝑠 − 𝑡) + 𝑜 (|𝑠 − 𝑡|)

as 𝑠 → 𝑡, 𝑠 ≥ 𝑡, (27)

then we say that �̂� is horizontally differentiable at 𝛾𝑡 and
define 𝐷𝑡�̂�(𝛾𝑡) fl 𝑎. The function �̂� is said to be horizontally
differentiable if𝐷𝑥�̂�(𝛾𝑡) exists for each 𝛾𝑡 ∈ Λ.
Definition 9. The function �̂� is said to be in C1,2

𝑙,Lip(Λ) if 𝐷𝑡�̂�,𝐷𝑥�̂�, and𝐷𝑥𝑥�̂� exist and we have
𝜑 (𝛾𝑡) − 𝜑 (𝛾𝑡) ≤ 𝐶 (1 + 𝛾𝑡𝑘 + 𝛾𝑡𝑘) 𝑑∞ (𝛾𝑡, 𝛾𝑡)

for each 𝛾𝑡, 𝛾𝑡 ∈ Λ,
(28)

where 𝜑 = �̂�, 𝐷𝑡�̂�, 𝐷𝑥�̂�, 𝐷𝑥𝑥�̂�, 𝐶 and 𝑘 are some constants
depending only on 𝜑, and
𝑑∞ (𝛾𝑡, 𝛾𝑡) fl sup

𝑠∈[0,𝑡∨𝑡]

𝛾 (𝑠 ∧ 𝑡) − 𝛾 (𝑠 ∧ 𝑡) + 𝑡 − 𝑡1/2 (29)

is the distance on Λ. The classes C0,1
𝑙,Lip and C0,2

𝑙,Lip are defined
analogously.

For each 𝑡 ∈ [0, 𝑇], we denote byΩ𝑡 the set of continuous
R-valued functions on [0, 𝑡]. We denote Ω = ⋃𝑡∈[0,𝑇]Ω𝑡.
ClearlyΩ ⊆ Λ. Given �̂� : Λ → R and 𝑢 : Ω → R, we say that𝑢 is consistent with �̂� onΩ if (since we already use the symbol𝜔𝑡 to denote our freezing path operator (see Definition 1), we
here use 𝜔𝑡 to denote a sample path) for each 𝜔𝑡 ∈ Ω,

𝑢 (𝜔𝑡) = �̂� (𝜔𝑡) . (30)

Definition 10. The function 𝑢 : Ω → R is said to be in
C1,2
𝑙,Lip(Ω) if there exists a function �̂� ∈ C1,2

𝑙,Lip(Λ) such that (30)
holds and for 𝜔𝑡 ∈ Ω we denote

𝐷𝑡𝑢 (𝜔𝑡) = 𝐷𝑡�̂� (𝜔𝑡) ,
𝐷𝑥𝑢 (𝜔𝑡) = 𝐷𝑥�̂� (𝜔𝑡) ,
𝐷𝑥𝑥𝑢 (𝜔𝑡) = 𝐷𝑥𝑥�̂� (𝜔𝑡) .

(31)

Note. In the introduction, we use the notation {V(⋅, 𝑡)} for a
family of nonanticipative functionals where V(⋅, 𝑡) : Λ 𝑡 →
R. In order to highlight the symmetry between PDEs and
PPDEs, the notation V(𝑥𝑝𝑡 , 𝑡) in PPDEs shows that 𝑥𝑝𝑡 is the
counterpart of the argument 𝑥 in PDEs and is used instead of𝜔𝑡. This is in spirit closer to the original notation of [1, 2].The
reader will have no problem identifying 𝑢(𝑥𝑝𝑡 ) = V(𝑥𝑝𝑡 , 𝑡).
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3.2. Non-Markovian BSDEs. As in [6], we use F𝑡
𝑟 to denote

the completion of the 𝜎-algebra generated by 𝐵(𝑠) − 𝐵(𝑡)
with 𝑠 ∈ [𝑡, 𝑟]. Then we introduce H2(𝑡, 𝑇), the space
of all F𝑡

𝑠-adapted R-valued processes (𝑋(𝑠))𝑠∈[𝑡,𝑇] with
𝐸[∫𝑇

𝑡
|𝑋(𝑠)|2d𝑠] < ∞, and 𝑆2(𝑡, 𝑇), the space of all F𝑡

𝑠-
adapted R-valued continuous processes (𝑋(𝑠))𝑠∈[𝑡,𝑇] with𝐸[sup𝑠∈[𝑡,𝑇]|𝑋(𝑠)|2] < ∞. Denote now 𝛾𝛾𝑥𝑡 (𝑟) = 𝛾(𝑟)1[0,𝑡)(𝑟) +(𝛾(𝑟) + 𝑥)1[𝑡,𝑇](𝑟).

We will make the following assumptions:
(H1)Φ is a R-valued function defined on Λ 𝑇. Moreover,Φ ∈ C1,2

𝑙,Lip(Λ 𝑇).
(H2) The drift 𝑎(𝛾𝑡) is a given R-valued continuous

function defined on Λ (see [6] for a definition of continuity).
For any 𝛾𝑡 ∈ Λ and 𝑠 ∈ [0, 𝑡], the function 𝑥 → 𝑎((𝛾𝑡)𝛾𝑥𝑠 ) is
differentiable and its derivative d𝑎((𝛾𝑡)𝛾𝑥𝑠 )/d𝑥 fl 𝜑(𝑥) satisfies
𝜑 (𝑥) − 𝜑 (𝑦) ≤ 𝐶 (1 + |𝑥|𝑘 + 𝑦𝑘) 𝑥 − 𝑦 ,

∀𝑥, 𝑦 ∈ R, (32)

where 𝐶 and 𝑘 are constants depending only on 𝜑.
We now assume that (H1) and (H2) hold. We consider a

non-Markovian BSDE, which is a particular case of (3.2) in
[6]. From Theorem 2.8 in [6], for any 𝛾𝑡 ∈ Λ, there exists a
unique solution (𝑌𝛾𝑡(𝑠), 𝑍𝛾𝑡(𝑠))𝑡≤𝑠≤𝑇 ∈ 𝑆2(𝑡, 𝑇) × H2(𝑡, 𝑇) of
the following BSDE:

𝑌𝛾𝑡 (𝑠) = Φ (𝐵𝛾𝑡) + ∫𝑇
𝑠
𝑎 (𝐵𝛾𝑡𝑟 ) 𝑌𝛾𝑡 (𝑟) d𝑟

− ∫𝑇
𝑠
𝑍𝛾𝑡 (𝑟) d𝐵 (𝑟) ,

(33)

where

𝐵𝛾𝑡 (𝑢) fl 𝛾 (𝑢) 1[0,𝑡) (𝑢)
+ (𝛾 (𝑡) + 𝐵 (𝑢) − 𝐵 (𝑡)) 1(𝑡,𝑇] (𝑢) . (34)

In particular, 𝑌𝛾𝑡(𝑡) defines a deterministic mapping from Λ
to R.

3.3. Path-Dependent PDEs. The drift 𝑎 and terminal condi-
tionΨ are required to be extended to the space of càdlàg paths
because of the definition of theDupire derivatives.We require
the following (see [6] again):

(B1) The function Ψ is a R-valued function defined onΩ𝑇. Moreover, there is a function Φ ∈ C1,2
𝑙,Lip(Λ 𝑇) such thatΨ = Φ on Ω𝑇.

(B2) The drift 𝑎(𝜔𝑡) is a given R-valued continuous
function defined on Ω × R × R (see [6] for a definition of
continuity). Moreover, there exists a function 𝑏 satisfying
(H2) such that 𝑎 = 𝑏 onΩ.

We can now define the following quasilinear parabolic
path-dependent PDE:

𝐷𝑡𝑢 (𝜔𝑡) + 𝑎 (𝜔𝑡)𝐷𝑥𝑢 (𝜔𝑡) + 12𝐷𝑥𝑥𝑢 (𝜔𝑡) = 0,
𝜔𝑡 ∈ Ω, 𝑡 ∈ [0, 𝑇) ;
𝑢 (𝜔𝑇) = Ψ (𝜔𝑇) ,

𝜔𝑇 ∈ Ω𝑇.
(35)

Theorem 4.2 in [6] states the following: let 𝑢 ∈ 𝐶1,2
𝑙,Lip(Ω)

be a solution of the above equation. Then we have 𝑢(𝜔𝑡) =𝑌𝜔𝑡(𝑡) for each 𝜔𝑡 ∈ Ω, where (𝑌𝜔𝑡(𝑠), 𝑍𝜔𝑡(𝑠))𝑡≤𝑠≤𝑇 is the
unique solution of BSDE (33).

Theorem 11. Suppose that, for each 𝑡 ∈ [0, 𝑇], the random
variable

𝐹 ≡ exp(∫𝑇
𝑡
𝑎 (𝐵𝜔𝑡 (𝑟)) d𝑟)Ψ (𝐵𝜔𝑡) (36)

satisfies Condition 1. Then the solution of (35) is

𝑢 (𝜔𝑡) = exp(12 ∫
𝑇

𝑡
𝜔𝑡 ∘ D2𝑢d𝑢)𝐹. (37)

Proof. According to (2.20) in [9] page 351, the solution of (33)
is, for 𝑡 ≤ 𝑠 ≤ 𝑇,
�̂�𝜔𝑡 (𝑠) = 𝐸 [exp(∫𝑇

𝑠
𝑎 (𝐵𝜔𝑡 (𝑟)) d𝑟)Φ (𝐵𝜔𝑡) | F𝑠] . (38)

The result now follows byTheorem 6 and the fact that 𝑢(𝜔𝑡) =𝑌𝜔𝑡(𝑡).
We note that, in the case of no drift (𝑎 = 0), we recover

the result (6).

3.4. Proof of Proposition 2. This proof is made up by several
inductions. Therefore we separate them into several steps.

Step 1. We first apply Itô’s lemma and integration by parts
formula of the Skorohod integral of Brownian motion to
provide an explicit expansion for 𝐼𝑛(𝑓𝑛). The goal of the
following step is to transform Skorohod integrals into time-
integrals. For example, 𝑓(𝑠1, 𝑠2) is symmetric:

𝐼2 (𝑓) = ∫𝑇
0
∫𝑇
0
𝑓 (𝑠1, 𝑠2) d𝐵 (𝑠2) d𝐵 (𝑠1)

= ∫𝑇
0
(𝐵 (𝑇) 𝑓 (𝑠1, 𝑇)

− ∫𝑇
0
𝐵 (𝑠2) 𝑓𝑠2 (𝑠1, 𝑠2) d𝑠2) d𝐵 (𝑠1) .

(39)
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By the integration by parts formula (see (1.49) in [8]),

𝐼2 (𝑓) = 𝐵 (𝑇)∫𝑇
0
𝑓 (𝑠1, 𝑇) d𝐵 (𝑠1) − ∫𝑇

0
𝑓 (𝑠1, 𝑇) d𝑠1

− ∫𝑇
0
(𝐵 (𝑠2) ∫𝑇

0
𝑓𝑠2 (𝑠1, 𝑠2) d𝐵 (𝑠1)

− ∫𝑠2
0
𝑓𝑠2 (𝑠1, 𝑠2) d𝑠1) d𝑠2 = 𝐵 (𝑇)2 𝑓 (𝑇, 𝑇)

− 𝐵 (𝑇)∫𝑇
0
𝑓𝑠1 (𝑠1, 𝑇) 𝐵 (𝑠1) d𝑠1 − ∫𝑇

0
𝑓 (𝑠1, 𝑇) d𝑠1

− ∫𝑇
0
𝐵 (𝑠2) 𝐵 (𝑇) 𝑓𝑠2 (𝑇, 𝑠2) d𝑠2

+ ∫𝑇
0
∫𝑇
0
𝐵 (𝑠1) 𝐵 (𝑠2) 𝑓𝑠1𝑠2 (𝑠1, 𝑠2) d𝑠1d𝑠2

+ ∫𝑇
0
∫𝑠2
0
𝑓𝑠2 (𝑠1, 𝑠2) d𝑠1d𝑠2 = (𝐵 (𝑇)2 𝑓 (𝑇, 𝑇)

− 2𝐵 (𝑇)∫𝑇
0
𝑓𝑠1 (𝑠1, 𝑇) 𝐵 (𝑠1) d𝑠1

+ ∫𝑇
0
∫𝑇
0
𝐵 (𝑠1) 𝐵 (𝑠2) 𝑓𝑠1𝑠2 (𝑠1, 𝑠2) d𝑠1d𝑠2)

− ∫𝑇
0
𝑓 (𝑢, 𝑢) d𝑢.

(40)

Based on this idea, for 𝑛 ≥ 1 and 1 ≤ 𝑟 ≤ 𝑛, we define
𝐴𝑇𝑟 (𝑠𝑟+1, . . . , 𝑠𝑛) fl 𝐵 (𝑇)𝑟 + 𝑟∑

𝑘=1

(−1)𝑘 (𝑟𝑘)𝐵 (𝑇)𝑟−𝑘

⋅ ∫
[0,𝑇]𝑘

𝜕𝑓𝑛 (𝑠1, . . . , 𝑠𝑘, 𝑇, . . . , 𝑇, 𝑠𝑟+1, . . . , 𝑠𝑛)𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘 𝐵 (𝑠1)
⋅ ⋅ ⋅ 𝐵 (𝑠𝑘) (d𝑠)⊗𝑘

(41)

and 𝐴𝑇0(𝑠1, . . . , 𝑠𝑛) = 1. For 𝑛 = 0, 𝐴𝑇0 = 1. Then we are going
to prove

𝐼𝑛 (𝑓𝑛) = ⌊𝑛/2⌋∑
𝑘=0

(−1)𝑘 𝑛!2𝑘 (𝑛 − 2𝑘)!𝑘!
⋅ ∫
[0,𝑇]𝑘

𝐴𝑇𝑛−2𝑘 (𝑢1, 𝑢1, . . . , 𝑢𝑘, 𝑢𝑘) (d𝑢)⊗𝑘
(42)

based on the following recurrence formula of 𝐴𝑟: for any 𝑟 =0, . . . , 𝑛 − 1
∫𝑇
0
𝐴𝑇𝑟 (𝑠𝑟+1, . . . , 𝑠𝑛) d𝐵 (𝑠𝑟+1)
= 𝐴𝑇𝑟+1 (𝑠𝑟+2, . . . , 𝑠𝑛)
− 𝑟∫𝑇

0
𝐴𝑇𝑟−1 (𝑢, 𝑢, 𝑠𝑟+2, . . . , 𝑠𝑛) d𝑢.

(43)

To prove (43), we apply the integration by parts formula.
For simplicity, we only keep the variables 𝑠1, . . . , 𝑠𝑘 and 𝑠𝑟+1.
Thenotation𝑥means that the variable𝑥 is not an argument of
a function. We also emphasize again the symmetricity of
function 𝑓𝑛:

∫𝑇
0
𝐴𝑇𝑟 (𝑠𝑟+1) d𝐵 (𝑠𝑟+1) = 𝑟∑

𝑘=0

(−1)𝑘 (𝑟𝑘)∫
[0,𝑇]𝑘

(∫𝑇
0

𝜕𝑓𝑛 (𝑠1, . . . , 𝑠𝑘, 𝑠𝑟+1)𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘 𝐵 (𝑇)𝑟−𝑘 𝐵 (𝑠1) ⋅ ⋅ ⋅ 𝐵 (𝑠𝑘) d𝐵 (𝑠𝑟+1)) (d𝑠)⊗𝑘

= 𝑟∑
𝑘=0

(−1)𝑘 (𝑟𝑘){∫
[0,𝑇]𝑘

𝐵 (𝑇)𝑟−𝑘 𝐵 (𝑠1) ⋅ ⋅ ⋅ 𝐵 (𝑠𝑘) ∫𝑇
0

𝜕𝑓𝑛 (𝑠1, . . . , 𝑠𝑘, 𝑠𝑟+1)𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘 d𝐵 (𝑠𝑟+1) (d𝑠)⊗𝑘

− ∫
[0,𝑇]𝑘

𝑘∑
𝑖=1

𝐵 (𝑇)𝑟−𝑘 ∫𝑠𝑖
0
𝐵 (𝑠1) ⋅ ⋅ ⋅ 𝐵 (𝑠𝑖) ⋅ ⋅ ⋅ 𝐵 (𝑠𝑘) 𝐵 (𝑠𝑟+1) 𝜕𝑓𝑛 (𝑠1, . . . , 𝑠𝑘, 𝑠𝑟+1)𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘 d𝑠𝑟+1 (d𝑠)⊗𝑘

− ∫
[0,𝑇]𝑘

(𝑛 − 𝑘) 𝐵 (𝑇)𝑟−𝑘−1 ∫𝑇
0
𝐵 (𝑠1) ⋅ ⋅ ⋅ 𝐵 (𝑠𝑘) 𝜕𝑓𝑛 (𝑠1, . . . , 𝑠𝑘, 𝑠𝑟+1)𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘𝜕𝑠𝑟+1 d𝑠𝑟+1 (d𝑠)⊗𝑘}

(44)

= 𝑟∑
𝑘=0

(−1)𝑘 (𝑟𝑘){∫
[0,𝑇]𝑘

𝐵 (𝑇)𝑟−𝑘+1 𝐵 (𝑠1) ⋅ ⋅ ⋅ 𝐵 (𝑠𝑘) 𝜕𝑓𝑛 (𝑠1, . . . , 𝑠𝑘, 𝑇)𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘 (d𝑠)⊗𝑘 (45)

− ∫
[0,𝑇]𝑘+1

𝐵 (𝑇)𝑟−𝑘 𝐵 (𝑠1) ⋅ ⋅ ⋅ 𝐵 (𝑠𝑘) 𝐵 (𝑠𝑟+1) 𝜕𝑓𝑛 (𝑠1, . . . , 𝑠𝑘, 𝑠𝑟+1)𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘𝜕𝑠𝑟+1 d𝑠𝑟+1 (d𝑠)⊗𝑘 (46)
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− ∫
[0,𝑇]𝑘

𝑘𝐵 (𝑇)𝑟−𝑘 𝐵 (𝑠1) ⋅ ⋅ ⋅ 𝐵 (𝑠𝑘−1) 𝜕𝑓𝑛 (𝑠1, . . . , 𝑠𝑘−1, 𝑠𝑘, 𝑇)𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘−1 d𝑠𝑘 (d𝑠)⊗𝑘−1 (47)

+ ∫
[0,𝑇]𝑘−1

∫𝑇
0
𝑘𝐵 (𝑇)𝑟−𝑘 𝐵 (𝑠1) ⋅ ⋅ ⋅ 𝐵 (𝑠𝑘−1) 𝜕𝑓𝑛 (𝑠1, . . . , 𝑠𝑘−1, 𝑢, 𝑢)𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘−1 (d𝑠)⊗𝑘−1 d𝑢 (48)

− ∫
[0,𝑇]𝑘+1

(𝑛 − 𝑘) 𝐵 (𝑇)𝑟−𝑘−1 𝐵 (𝑠1) ⋅ ⋅ ⋅ 𝐵 (𝑠𝑘) 𝜕𝑓𝑛 (𝑠1, . . . , 𝑠𝑘, 𝑠𝑟+1, 𝑇)𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘 d𝑠𝑟+1 (d𝑠)⊗𝑘} . (49)

Observing the properties of the binomial coefficients,

( 𝑟
𝑘 + 1) (𝑘 + 1) − (𝑟𝑘) (𝑟 − 𝑘) = 0;

(𝑟𝑘) + ( 𝑟
𝑘 + 1) = (𝑟 + 1𝑘 + 1) ;
(𝑟𝑘) 𝑘 = 𝑟(𝑟 − 1𝑘 − 1) .

(50)

We can see that, under the summation over 𝑘, (47) and (49)
cancel each other, (45) and (46) combine into 𝐴𝑇𝑟+1, and (48)
remains as the integral of 𝐴𝑇𝑟−1. Rigorously, we proved (43).

To prove (42), we use induction. Supposing that case 𝑛 is
correct, we observe case 𝑛 + 1: by (43),

∫𝑇
0
𝐼𝑛 (𝑓𝑛) (𝑠𝑛+1) d𝐵 (𝑠𝑛+1) = ⌊𝑛/2⌋∑

𝑘=0

(−1)𝑘 𝑛!2𝑘 (𝑛 − 2𝑘)!𝑘!
⋅ ∫
[0,𝑇]𝑘

∫𝑇
0
𝐴𝑇𝑛−2𝑘 (𝑠𝑛+1, 𝑢1, 𝑢1, . . . , 𝑢𝑘, 𝑢𝑘) d𝐵 (𝑠𝑛+1) (d𝑢)⊗𝑘

= ⌊𝑛/2⌋∑
𝑘=0

(−1)𝑘 𝑛!2𝑘 (𝑛 − 2𝑘)!𝑘! ∫[0,𝑇]𝑘 (𝐴𝑇𝑛+1−2𝑘 (𝑢1, 𝑢1, . . . , 𝑢𝑘, 𝑢𝑘)

− (𝑛 − 2𝑘) ∫𝑇
0
𝐴𝑇𝑛−1−2𝑘 (𝑢1, 𝑢1, . . . , 𝑢𝑘, 𝑢𝑘, 𝑢𝑘+1, 𝑢𝑘+1) d𝑢𝑘+1) (d𝑢)⊗𝑘

= ⌊(𝑛+1)/2⌋∑
𝑘=0

(−1)𝑘 (𝑛 + 1)!2𝑘 (𝑛 + 1 − 2𝑘)!𝑘!
⋅ ∫
[0,𝑇]𝑘

∫𝑇
0
𝐴𝑇𝑛+1−2𝑘 (𝑠𝑛+1, 𝑢1, 𝑢1, . . . , 𝑢𝑘, 𝑢𝑘) d𝐵 (𝑠𝑛+1) (d𝑢)⊗𝑘 .

(51)

Step 2. Now we are going to consider the action of the
freezing path operator. We first prove that for all 𝑟 ≤ 𝑛

𝜔𝑡 ∘ 𝐴𝑇𝑟 (𝑠𝑟+1, . . . , 𝑠𝑛) = 𝐴𝑡𝑟 (𝑠𝑟+1, . . . , 𝑠𝑛) . (52)

We only present the proof of 𝑟 = 𝑛 and the general case is
the same. By definition, we know that 𝜔𝑡 ∘ 𝐵𝑠 = 𝐵𝑠𝜒[0,𝑡](𝑠) +𝐵𝑡𝜒[𝑡,𝑇](𝑠). Therefore

𝜔𝑡 ∘ 𝐴𝑇𝑛 = 𝑛∑
𝑘=0

(−1)𝑘

⋅ (𝑛𝑘)∫
[0,𝑇]𝑘

𝜕𝑓𝑛 (𝑠1, . . . , 𝑠𝑘, 𝑇, . . . , 𝑇)𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘 𝐵 (𝑡)𝑛−𝑘 𝜔𝑡

∘ (𝐵 (𝑠1) ⋅ ⋅ ⋅ 𝐵 (𝑠𝑘)) (d𝑠)⊗𝑘 = 𝑛∑
𝑘=0

(−1)𝑘

⋅ (𝑛𝑘)∫
[0,𝑇]𝑘

𝜕𝑓𝑛 (𝑠1, . . . , 𝑠𝑘, 𝑇, . . . , 𝑇)𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘 𝐵 (𝑡)𝑛−𝑘

⋅ 𝑘∏
𝑖=1

(𝐵 (𝑠𝑖) 𝜒[0,𝑡] (𝑠𝑖) + 𝐵 (𝑡) 𝜒[𝑡,𝑇] (𝑠𝑖)) (d𝑠)⊗𝑘

= 𝑛∑
𝑘=0

(−1)𝑘 (𝑛𝑘)
𝑘∑

𝑘1=0

( 𝑘
𝑘1)

⋅ ∫
[0,𝑡]𝑘1×[𝑡,𝑇]𝑘−𝑘1

𝜕𝑓𝑛 (𝑠1, . . . , 𝑠𝑘, 𝑇, . . . , 𝑇)𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘 𝐵 (𝑡)𝑛−𝑘1
⋅ 𝐵 (𝑠1) ⋅ ⋅ ⋅ 𝐵 (𝑠𝑘1) (d𝑠)⊗𝑘 .

(53)

Now we recall a basic integration rule for a smooth function𝑔𝑛 as
∫
[𝑡,𝑇]𝑛

𝜕𝑔𝑛 (𝑠1, . . . , 𝑠𝑛)𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑛 (d𝑠)⊗𝑘

= 𝑛∑
𝑗=0

(−1)𝑗 (𝑛𝑗)𝑔𝑛(𝑇, . . . , 𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−𝑗

, 𝑡, . . . , 𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑗

) .
(54)

We apply (54) on (53) and obtain

𝜔𝑡 ∘ 𝐴𝑇𝑛 = 𝑛∑
𝑘=0

𝑘∑
𝑘1=0

𝑘−𝑘1∑
𝑗=0

(−1)𝑘+𝑗 (𝑛𝑘)( 𝑘
𝑘1)(𝑘 − 𝑘1𝑗 )

⋅ ∫
[0,𝑡]𝑘1

𝜕𝑓𝑛𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘 (𝑠1, . . . , 𝑠𝑘1 , 𝑇, . . . , 𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘−𝑘1−𝑗

, 𝑡, . . . , 𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑗

,

𝑇, . . . , 𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−𝑘

)𝐵 (𝑡)𝑛−𝑘1 𝐵 (𝑠1) ⋅ ⋅ ⋅ 𝐵 (𝑠𝑘1) (d𝑠)⊗𝑘1 .

(55)

Since the number of variable𝑇 is 𝑛−𝑘+𝑘−𝑘1−𝑗 = 𝑛−𝑘1−𝑗,
which does not depend on 𝑘, it enlightens us to change the



8 International Journal of Stochastic Analysis

order of summations. We want to sum over 𝑘 first. Observe
that ∑𝑛𝑘=0∑𝑘𝑘1=0∑𝑘−𝑘1𝑗=0 = ∑𝑛𝑘1=0∑𝑛−𝑘1𝑗=0 ∑𝑛𝑘=𝑗+𝑘1 ; we obtain

𝜔𝑡 ∘ 𝐴𝑇𝑛 = 𝑛∑
𝑘1=0

𝑛−𝑘1∑
𝑗=0

𝑛∑
𝑘=𝑗+𝑘1

(−1)𝑛−𝑘 (𝑛 − 𝑘1 − 𝑗𝑛 − 𝑘 )

⋅ (−1)𝑛−𝑗 𝑛!𝑘1!𝑗! (𝑛 − 𝑘1 − 𝑗)! ∫[0,𝑡]𝑘1
𝜕𝑓𝑛𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘 (𝑠1, . . . , 𝑠𝑘1 , 𝑡, . . . , 𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗

, 𝑇, . . . , 𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−𝑘1−𝑗

)𝐵 (𝑡)𝑛−𝑘1 𝐵 (𝑠1) ⋅ ⋅ ⋅ 𝐵 (𝑠𝑘1) (d𝑠)⊗𝑘1 .
(56)

According to the property of binomial coefficient again

𝑛∑
𝑘=𝑗+𝑘1

(−1)𝑛−𝑘 (𝑛 − 𝑘1 − 𝑗𝑛 − 𝑘 ) = 0 when 𝑛 > 𝑗 + 𝑘1. (57)

We claim that (56) is not 0 only when 𝑛 = 𝑗 + 𝑘1. Thus we
have

𝜔𝑡 ∘ 𝐴𝑇𝑛 = ∑
𝑗+𝑘1=𝑛

(−1)𝑘1

⋅ ( 𝑛
𝑘1)∫

[0,𝑡]𝑘1

𝜕𝑓𝑛𝜕𝑠1 ⋅ ⋅ ⋅ 𝜕𝑠𝑘 (𝑠1, . . . , 𝑠𝑘1 , 𝑡, . . . , 𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑗

)
⋅ 𝐵 (𝑡)𝑛−𝑘1 𝐵 (𝑠1) ⋅ ⋅ ⋅ 𝐵 (𝑠𝑘1) (d𝑠)⊗𝑘1 = 𝐴𝑡𝑛.

(58)

Step 3. Now we can prove recurrence formula (10).
By (52) and (42), we have

𝐼𝑛 (𝑓𝑛𝜒[0,𝑡]) = ⌊𝑛/2⌋∑
𝑘=0

(−1)𝑘 𝑛!2𝑘 (𝑛 − 2𝑘)!𝑘!
⋅ ∫
[0,𝑡]𝑘

𝐴𝑡𝑛−2𝑘 (𝑢1, 𝑢1, . . . , 𝑢𝑘, 𝑢𝑘) (d𝑢)⊗𝑘 ;
𝜔𝑡 ∘ 𝐼𝑛 (𝑓𝑛) = ⌊𝑛/2⌋∑

𝑘=0

(−1)𝑘 𝑛!2𝑘 (𝑛 − 2𝑘)!𝑘!
⋅ ∫
[0,𝑇]𝑘

𝐴𝑡𝑛−2𝑘 (𝑢1, 𝑢1, . . . , 𝑢𝑘, 𝑢𝑘) (d𝑢)⊗𝑘 .

(59)

Now we calculate the right hand side of (10):

⌊𝑛/2⌋∑
𝑘=0

𝑛!2𝑘 (𝑛 − 2𝑘)! ∫𝑡≤𝑢1≤⋅⋅⋅≤𝑢𝑘≤𝑇 𝜔𝑡 ∘ 𝐼𝑛−2𝑘 (𝑓𝑛) (𝑢1, 𝑢1, . . . , 𝑢𝑘, 𝑢𝑘) (d𝑢)⊗𝑘

= ⌊𝑛/2⌋∑
𝑘=0

⌊𝑛/2⌋−𝑘∑
𝑘1=0

∫
[𝑡,𝑇]𝑘

∫
[0,𝑇]𝑘1

𝑛!2𝑘 (𝑛 − 2𝑘)! (−1)𝑘1 (𝑛 − 2𝑘)!2𝑘1 (𝑛 − 2𝑘 − 2𝑘1)!𝑘1!𝐴𝑡𝑛−2𝑘−2𝑘1 (𝑢1, 𝑢1, . . . , 𝑢𝑘1 , 𝑢𝑘1 , V1, V1, . . . , V𝑘, V𝑘) (d𝑢)⊗𝑘1 (dV)⊗𝑘 .
(60)

Let𝑚 = 𝑘 + 𝑘1 and we continue the above formula:

= ⌊𝑛/2⌋∑
𝑘=0

⌊𝑛/2⌋∑
𝑚=𝑘

∫
[𝑡,𝑇]𝑘

∫
[0,𝑇]𝑚−𝑘

(−1)𝑚 𝑛!2𝑚 (𝑛 − 2𝑚)!𝑚! (−1)𝑘 (
𝑚
𝑘)𝐴𝑡𝑛−2𝑚 (𝑢1, 𝑢1, . . . , 𝑢𝑚−𝑘, 𝑢𝑚−𝑘, V1, V1, . . . , V𝑘, V𝑘) (d𝑢)⊗𝑚−𝑘 (dV)⊗𝑘

= ⌊𝑛/2⌋∑
𝑚=0

𝑚∑
𝑘=0

∫
[𝑡,𝑇]𝑘

∫
[0,𝑇]𝑚−𝑘

(−1)𝑚 𝑛!2𝑚 (𝑛 − 2𝑚)!𝑚! (−1)𝑘 (
𝑚
𝑘)𝐴𝑡𝑛−2𝑚 (𝑢1, 𝑢1, . . . , 𝑢𝑚−𝑘, 𝑢𝑚−𝑘, V1, V1, . . . , V𝑘, V𝑘) (d𝑢)⊗𝑚−𝑘 (dV)⊗𝑘 .

(61)

Now we apply another basic rule of integration, for a 𝑚-
variable symmetric function 𝑔𝑚

∫
[0,𝑡]𝑚

𝑔𝑚 (d𝑢)⊗𝑚 = ∫
([0,𝑇]\[𝑡,𝑇])𝑚

𝑔𝑚 (d𝑢)⊗𝑚 = 𝑚∑
𝑘=0

∫
[𝑡,𝑇]𝑘

∫
[0,𝑇]𝑚−𝑘

(−1)𝑘 (𝑚𝑘)𝑔𝑚 (𝑢1, . . . , 𝑢𝑚−𝑘, V1, . . . , V𝑘) (d𝑢)⊗(𝑚−𝑘) (dV)⊗𝑘 . (62)
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Now apply (62) in (61) and we finally obtain

⌊𝑛/2⌋∑
𝑘=0

𝑛!2𝑘 (𝑛 − 2𝑘)! ∫𝑡≤𝑢1≤⋅⋅⋅≤𝑢𝑘≤𝑇 𝜔𝑡 ∘ 𝐼𝑛−2𝑘 (𝑓𝑛) (𝑢1, 𝑢1, . . . ,
𝑢𝑘, 𝑢𝑘) (d𝑢)⊗𝑘

= ⌊𝑛/2⌋∑
𝑚=0

∫
[0,𝑡]𝑚

(−1)𝑚 𝑛!2𝑚 (𝑛 − 2𝑚)!𝑚!𝐴𝑡𝑛−2𝑚 (𝑢1, 𝑢1, . . . , 𝑢𝑚,
𝑢𝑚) (d𝑢)⊗𝑚 = 𝐼𝑛 (𝑓𝑛𝜒[0,𝑡]) .

(63)

Step 4. Wenow use induction to prove (11), based on (10). For
simplicity, we introduce

𝑎𝑛−2𝑘
fl ∫

[𝑡,𝑇]𝑘
𝜔𝑡 ∘ 𝐼𝑛−2𝑘 (𝑓𝑛) (𝑢1, 𝑢1, . . . , 𝑢𝑘, 𝑢𝑘) (d𝑢)⊗𝑘 ;

𝑏𝑛−2𝑘
fl ∫

[𝑡,𝑇]𝑘
𝐼𝑛−2𝑘 (𝑓𝑛𝜒[0,𝑡]) (𝑢1, 𝑢1, . . . , 𝑢𝑘, 𝑢𝑘) (d𝑢)⊗𝑘

(64)

for 𝑘 ≤ ⌊𝑛/2⌋. Then (10) implies

𝑎𝑛 = 𝑏𝑛 − ⌊𝑛/2⌋∑
𝑘=1

𝑛!2𝑘 (𝑛 − 2𝑘)!𝑘!𝑎𝑛−2𝑘. (65)

We calculate the right hand side of (11) with (65): let𝑚 = 𝑘+𝑘1
𝑛!⌊𝑛/2⌋∑
𝑘=0

(−1)𝑘2𝑘 (𝑛 − 2𝑘)!𝑘!𝑏𝑛−2𝑘

= 𝑛!⌊𝑛/2⌋∑
𝑘=0

⌊𝑛/2⌋−𝑘∑
𝑘1=0

(−1)𝑘2𝑘 (𝑛 − 2𝑘)!𝑘!
⋅ (𝑛 − 2𝑘)!2𝑘1 (𝑛 − 2𝑘 − 2𝑘1)!𝑘1! 𝑎𝑛−2𝑘−2𝑘1
= ⌊𝑛/2⌋∑

𝑘=0

⌊𝑛/2⌋−𝑘∑
𝑘1=0

(−1)𝑘 𝑛!2𝑘+𝑘1 (𝑛 − 2 (𝑘 + 𝑘1))!𝑘1!𝑘!𝑎𝑛−2𝑘−2𝑘1

= ⌊𝑛/2⌋∑
𝑚=0

(−1)𝑚 𝑛!2𝑚 (𝑛 − 2𝑚)!𝑚!𝑎𝑛−2𝑚
𝑚∑
𝑘1=0

(−1)𝑘1 (𝑚𝑘1) = 𝑎𝑛
= 𝜔𝑡 ∘ 𝐼𝑛 (𝑓𝑛) .

(66)

The proposition is proved.

3.5. Proof of Theorem 3. The proof is constructive. For any
fixed 𝑡 ∈ [0, 𝑇], if 𝐹 has its chaos decomposition ∑∞𝑛=0 𝐼𝑛(𝑓𝑛),
then for fixed 𝑁 (depending on 𝑀), we will study 𝐹𝑀,𝑁 fl∑𝑀𝑛=0 𝐼𝑛(𝑓𝑁𝑛 ), where

𝑓𝑁𝑛 (𝑠1, . . . , 𝑠𝑛) fl 𝑓𝑛 (𝑡𝜒[𝑠,𝑠+1/𝑁] (𝑠1)
+ 𝑠1𝜒[0,𝑇]\[𝑠,𝑠+1/𝑁] (𝑠1) , . . . , 𝑡𝜒[𝑠,𝑠+1/𝑁] (𝑠𝑛)
+ 𝑠𝑛𝜒[0,𝑇]\[𝑠,𝑠+1/𝑁] (𝑠𝑛)) .

(67)

In other words, the kernel 𝑓𝑁𝑛 is constant when its arguments
lie between 𝑠 and 𝑠+1/𝑁.Then we have the following lemma.

Lemma 12. 𝜔𝑡 ∘ 𝐼𝑛(𝑓𝑁𝑛 ) 𝐿2(P)→
𝑁→∞

𝜔𝑡 ∘ 𝐼𝑛(𝑓𝑛) and in particular

𝐸 [(𝜔𝑡 ∘ 𝐼𝑛 (𝑓𝑁𝑛 ) − 𝐼𝑛 (𝑓𝑛))2] ≤ 𝐶 (𝑛!)2 𝑛7𝑁3
, (68)

where 𝐶 is a constant which does not depend on𝑁 and 𝑛.
Proof. For any fixed 𝑛, we define a sequence of sets{𝐴𝑘1 ,𝑘2

}𝑘1+𝑘2≤𝑛 as
𝐴𝑘1 ,𝑘2

fl {𝑠1, . . . , 𝑠𝑛 : 0 ≤ 𝑠1 ≤ ⋅ ⋅ ⋅ ≤ 𝑠𝑘1 ≤ 𝑡 ≤ 𝑠𝑘1+1
≤ ⋅ ⋅ ⋅ ≤ 𝑠𝑘1+𝑘2 ≤ 𝑡 + 1𝑁 ≤ 𝑠𝑘1+𝑘2+1 ≤ ⋅ ⋅ ⋅ ≤ 𝑠𝑛 ≤ 𝑇} .

(69)

Observe that on 𝐴𝑘1 ,0
the kernels 𝑓𝑛 and 𝑓𝑁𝑛 coincide.

According to (67), we obtain

𝜔𝑡 ∘ 𝐼𝑛 (𝑓𝑛) − 𝜔𝑡 ∘ 𝐼𝑛 (𝑓𝑁𝑛 )
= 𝑛! ∑

𝑘1+𝑘2≤𝑛,𝑘2 ̸=0

𝜔𝑡

∘ ∫
𝐴𝑘1,𝑘2

(𝑓𝑛 − 𝑓𝑁𝑛 ) (𝑠1, . . . , 𝑠𝑛) (d𝐵 (𝑠))⊗𝑛 .
(70)

To bound (70), we apply Proposition 2 to obtain

𝐸 [(𝜔𝑡 ∘ 𝐼𝑛 (𝑓𝑛))2] = (𝑛!)2 𝑛∑
𝑘=0

1(𝑘!)2 ∫[𝑡,𝑇]𝑘 ∫{0≤𝑠1≤⋅⋅⋅≤𝑠𝑛−𝑘≤𝑡} 𝑓𝑛 (𝑠1, . . . , 𝑠𝑛−𝑘, 𝑢1, . . . , 𝑢𝑘)2 (d𝑠)⊗𝑛−𝑘 (d𝑢)⊗𝑘 < ∞. (71)
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Now we apply (71) on (70) and by Cauchy-Schwartz inequal-
ity, we have

𝐸 [(𝜔𝑡 ∘ 𝐼𝑛 (𝑓𝑁𝑛 ) − 𝜔𝑡 ∘ 𝐼𝑛 (𝑓𝑛))2] ≤ (𝑛𝑛!)2 ∑
𝑘1+𝑘2≤𝑛,𝑘2 ̸=0

𝐸[(𝜔𝑡 ∘ ∫
𝐴𝑘1,𝑘2

(𝑓𝑛 − 𝑓𝑁𝑛 ) (𝑠1, . . . , 𝑠𝑛) (d𝐵 (𝑠))⊗𝑛)
2] = (𝑛𝑛!)2

⋅ ∑
𝑘1+𝑘2≤𝑛,𝑘2 ̸=0

𝑛∑
𝑘=𝑛−𝑘1

1(𝑘!)2 ∫[𝑡,𝑇]𝑘 ∫{0≤𝑠1≤⋅⋅⋅≤𝑠𝑛−𝑘≤𝑡} (𝑓𝑛 − 𝑓𝑁𝑛 ) (𝑠1, . . . , 𝑠𝑛−𝑘, 𝑢1, . . . , 𝑢𝑘)2 𝜒𝐴𝑘1,𝑘2 (𝑠1, . . . , 𝑠𝑛) (d𝑠)⊗𝑛−𝑘 (d𝑢)⊗𝑘 .
(72)

Since𝑓𝑛 is differentiable with respect to 𝑠1, . . . , 𝑠𝑛, there exists
a constant 𝐶𝑛 such that

𝑓𝑛 (𝑠1, 𝑥1, . . . , 𝑠𝑛, 𝑥𝑛) − 𝑓𝑛 (𝑡, 𝑥1, . . . , 𝑡, 𝑥𝑛)
≤ 𝐶𝑛𝑛( sup

𝑠1 ,...,𝑠𝑛

(𝑠𝑖 − 𝑡)) . (73)

Therefore following (72), we obtain

𝐸 [(𝜔𝑡 ∘ 𝐼𝑛 (𝑓𝑁𝑛 ) − 𝜔𝑡 ∘ 𝐼𝑛 (𝑓𝑛))2] ≤ 𝐶 (𝑛𝑛!)2 𝑛5𝑁3
, (74)

where 𝐶 is a constant which does not depend on 𝑛 and𝑁.
Now we construct 𝐹𝑁 by ∑∞𝑛=0 𝐼𝑛(𝑓𝑁𝑛 ). To prove the

theorem, we introduce two subseries 𝐹𝑀,𝑁 and 𝐹𝑀 by

𝐹𝑀,𝑁 fl
𝑀∑
𝑛=0

𝐼𝑛 (𝑓𝑁𝑛 ) 𝑀→∞→
𝐿2(P)

𝐹𝑁;
𝐹𝑀 fl

𝑀∑
𝑛=0

𝐼𝑛 (𝑓𝑛) 𝑀→∞→
𝐿2(P)

𝐹.
(75)

For enough large 𝑁, we choose 𝑀 such that(𝑀7(𝑀!)2)1/3𝑀 ≤ 𝑁. Then by Lemma 12 and Cauchy-
Schwarz inequality, there exists a constant 𝜀 ∈ (0, 1) such
that

𝐸 [(𝜔𝑡 ∘ (𝐹𝑀,𝑁 − 𝐹𝑀))2]
= 𝐸[[(

𝑀∑
𝑛=0

(𝜔𝑡 ∘ 𝐼𝑛 (𝑓𝑛) − 𝜔𝑡 ∘ 𝐼𝑛 (𝑓𝑁𝑛 )))
2]
]

≤ 𝐶𝑀(𝑀∑
𝑛=0

(𝑛𝑛!)2 𝑛5𝑁3
) ≤ 𝐶𝑁2+𝜀

.
(76)

Then using triangle inequality, we prove the theorem.

3.6. Proof of Theorem 4. For any 𝐹 ∈ 𝐿2(P), 𝑠 ∈ [𝑡, 𝑇], we
choose the sequence {𝐹𝑁}𝑁≥0 constructed in Theorem 3.
Then by the Clark-Ocone formula, we obtain

𝐸 [𝐹𝑁 | F𝑠−1/𝑁]
= 𝐸 [𝐹𝑁 | F𝑠] − ∫𝑠

𝑠−1/𝑁
𝐸 [D𝑠𝐹𝑁 | F𝑠] d𝐵 (𝑠1)

+ ∫𝑠
𝑠−1/𝑁

∫𝑠
𝑠1

𝐸 [D2𝑠𝐹𝑁 | F𝑠] d𝐵 (𝑠2) d𝐵 (𝑠1)
− 𝑅3[𝑠−1/𝑁,𝑠],

(77)

where

𝑅3[𝑠−1/𝑁,𝑠]
= ∫𝑠

𝑠−1/𝑁
∫𝑠
𝑠1

∫𝑠
𝑠2

𝐸 [D3𝑠𝐹𝑁 | F𝑠3
] d𝐵 (𝑠3) d𝐵 (𝑠2) d𝐵 (𝑠1) . (78)

On one hand, by Lemma 5.2 in [5], we obtain

𝐸 [(𝑅3[𝑠−1/𝑁,𝑠])2]
≤ 3∑
𝑖=0

𝐸 [(D6−𝑖𝑠 𝐹𝑁)2](3𝑖)
4 𝑖!(3!)2 1𝑁6−𝑖

. (79)

On the other hand, we can compute

𝜔𝑡 ∘ (−∫𝑠
𝑠−1/𝑁

𝐸 [D𝑠𝐹𝑁 | F𝑠] d𝐵 (𝑠1))
= 1𝑁𝜔𝑡 ∘ 𝐸 [D2𝑠𝐹𝑁 | F𝑠] ;

𝜔𝑡 ∘ (∫𝑠
𝑠−1/𝑁

∫𝑠
𝑠1

𝐸 [D2𝑠𝐹𝑁 | F𝑠] d𝐵 (𝑠2) d𝐵 (𝑠1))
= 𝜔𝑡
∘ (− 12𝑁𝐸 [D2𝑠𝐹𝑁 | F𝑠] + 12𝑁2

𝐸 [D4𝑠𝐹𝑁 | F𝑠]) .

(80)
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Then we can establish the equation as

𝐸[(𝜔𝑡 ∘ 𝑁 (𝐸 [𝐹𝑁 | F𝑠−1/𝑁] − 𝐸 [𝐹𝑁 | F𝑠]) + 𝜔𝑡
∘ 12D2𝑠𝐸 [𝐹𝑁 | F𝑠])2] ≤ 2𝐸 [(𝜔𝑡
∘ 12𝑁𝐸 [D4𝑠𝐹𝑁 | F𝑠])2] + 2𝐸 [(𝜔𝑡 ∘ 𝑅3[𝑠−1/𝑁,𝑠])2]
= 𝑂( 1𝑁2

) ,

(81)

where the last equality follows from (79), Proposition 2.Thus
combining (77), (79), (80), and (81) as well as the assumption𝐹 ∈ D6([0, 𝑇]) and Proposition 2, we have

𝜔𝑡 ∘ (𝑁 (𝐸 [𝐹𝑁 | F𝑠−1/𝑁] − 𝐸 [𝐹𝑁 | F𝑠])
− 12D2𝑠𝐸 [𝐹𝑁 | F𝑠]) 𝐿2(P)→

𝑁→∞
0. (82)

Here, for simplicity, we define 𝐿2 norm ‖ ⋅ ‖2𝐿2(P) fl 𝐸[(⋅)2].
Then, from Theorem 3 and the closability of the Malliavin
derivative operator, for some constant 𝜀 < 1,

𝜔𝑡 ∘ 𝐸 [D𝑠𝐹𝑁 | F𝑠] − 𝜔𝑡 ∘ 𝐸 [D𝑠𝐹 | F𝑠]2𝐿2(P)
≤ 𝐶𝑁2+𝜀

. (83)

With triangle inequality and Cauchy-Schwartz inequality, we
finally have, using (81) and (83),

𝜔𝑡 ∘ 𝑁 (𝐸 [𝐹 | F𝑠−1/𝑁] − 𝐸 [𝐹 | F𝑠]) − 𝜔𝑡 ∘ 12
⋅ D2𝑠𝐸 [𝐹 | F𝑠]

2

𝐿2(P)
≤ 𝜔𝑡 ∘ 𝑁 (𝐸 [𝐹 | F𝑠−1/𝑁]

− 𝐸 [𝐹𝑁 | F𝑠−1/𝑁])2𝐿2(P) + 𝜔𝑡 ∘ 𝑁 (𝐸 [𝐹 | F𝑠]
− 𝐸 [𝐹𝑁 | F𝑠])2𝐿2(P) + 𝜔𝑡
∘ (𝑁 (𝐸 [𝐹𝑁 | F𝑠] − 𝐸 [𝐹𝑁 | F𝑠−1/𝑁]) − 𝜔𝑡
∘ 12D2𝑠𝐸 [𝐹𝑁 | F𝑠])

2

𝐿2(P)
+ 𝜔𝑡 ∘ 12

⋅ D2𝑠𝐸 [𝐹𝑁 | F𝑠] − 𝜔𝑡 ∘ 12D2𝑠𝐸 [𝐹 | F𝑠]
2

𝐿2(P)

≤ 𝐶𝑁𝜀

(84)

or in other words

d𝜔𝑡 ∘ 𝐸 [𝐹 | F𝑠]
d𝑠 = −𝜔𝑡 ∘ 12D2𝑠𝐸 [𝐹 | F𝑠] . (85)

3.7. Proof of Theorem 6. For 𝑖 = 1, . . . , 𝑁(𝑇 − 𝑠), define
𝑥𝑁𝑖 fl 𝑁𝜔𝑡 ∘ (𝐸 [𝐹 | F𝑠+(𝑖−1)/𝑁] − 𝐸 [𝐹 | F𝑠+𝑖/𝑁]

− 12𝑁D
2
𝑠+1/𝑁𝐸 [𝐹 | F𝑠+𝑖/𝑁]) .

(86)

We rewrite (84) as

𝐸[(𝑥𝑁𝑖𝑁 )2] ≤ 𝐶𝑁2+𝜀
. (87)

Jensen’s inequality states that

𝑁∑
𝑖=1

𝐸[(𝑥𝑁𝑖𝑁 )2] ≤ ∑𝑁𝑖=1 𝐸 [(𝑥𝑁𝑖 )2]𝑁 ≤ 𝐶𝑁𝜀
. (88)

Since ∫𝑇
𝑠
(1/2)D2𝑢𝐸[𝐹 | F𝑢]d𝑢 is bounded in 𝐿2(P), then

𝑁∑
𝑖=1

𝑥𝑁𝑖𝑁 𝑁→∞→
𝐿2(P)

𝜔𝑡

∘ (𝐸 [𝐹 | F𝑠] − 𝐹 − ∫𝑇
𝑠

12D2𝑢𝐸 [𝐹 | F𝑢] d𝑢) .
(89)

Using (88), we thus proved that, in 𝐿2(P),
𝜔𝑡 ∘ 𝐸 [𝐹 | F𝑠] = 𝜔𝑡 ∘ 𝐹

+ ∫𝑇
𝑠
𝜔𝑡 ∘ 12D2𝑠𝐸 [𝐹 | F𝑢] d𝑢. (90)

Then for positive integer 𝑛 we define the operator 𝑇(𝑛)𝑠 by

𝑇(𝑛)𝑠 𝐹 fl
𝑛∑
𝑖=0

A𝑖,𝑠𝐹, (91)

where

A𝑖,𝑠𝐹 fl ∫
𝑠≤𝑠1≤⋅⋅⋅≤𝑠𝑖≤𝑇

12𝑖D2𝑠1 ⋅ ⋅ ⋅D2𝑠𝑖𝐹 (d𝑠)⊗𝑖 . (92)

Then by iterating (90) we obtain the following: for 𝑛 > 0
𝜔𝑡 ∘ 𝐸 [𝐹 | F𝑠] = 𝜔𝑡 ∘ (𝑇(𝑛−1)𝑠 𝐹) + 12𝑛

⋅ ∫
𝑠≤𝑢1≤⋅⋅⋅≤𝑢𝑛≤𝑇

𝜔𝑡 ∘ D2𝑠1 ⋅ ⋅ ⋅D2𝑠𝑛𝐸 [𝐹 | F𝑢𝑛
] (d𝑢)⊗𝑛 . (93)

Thus according to Condition 1,

𝐸 [(𝜔𝑡 ∘ ((𝐸𝑠 − 𝑇(𝑛−1)𝑠 ) 𝐹))2] = 𝐸[( 12𝑛
⋅ ∫
𝑠≤𝑢1≤⋅⋅⋅≤𝑢𝑛≤𝑇

𝜔𝑡

∘ D2𝑠1 ⋅ ⋅ ⋅D2𝑠𝑛𝐸 [𝐹 | F𝑢𝑛
] (d𝑢)⊗𝑛)2] ≤ (𝑇 − 𝑠)2𝑛(2𝑛𝑛!)2

⋅ 𝐸 [ sup
𝑢1 ,...,𝑢𝑛∈[0,𝑇]

𝜔𝑡 ∘ D2𝑠1 ⋅ ⋅ ⋅D2𝑠𝑛𝐹2] →
𝑛→∞

0.

(94)
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We now take 𝑠 = 𝑡 and obtain

𝐸 [𝐹 | F𝑡] = 𝐸𝑡𝐹 = 𝜔𝑡 ∘ (𝑇(∞)𝑡 𝐹)
= ∞∑
𝑛=0

12𝑛 ∫𝑡≤𝑢1≤⋅⋅⋅≤𝑢𝑛≤𝑇 𝜔𝑡 ∘ D2𝑠1 ⋅ ⋅ ⋅D2𝑠𝑛𝐹 (d𝑢)⊗𝑛 .
(95)
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