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In this paper, we obtain new sufficient conditions of boundedness of L-index in joint variables for entire function in C𝑛 functions.
They give an estimate of maximummodulus of an entire function by its minimummodulus on a skeleton in a polydisc and describe
the behavior of all partial logarithmic derivatives and the distribution of zeros. In some sense, the obtained results are new for entire
functions of bounded index and 𝑙-index in C too. They generalize known results of Fricke, Sheremeta, and Kuzyk.

1. Introduction

In this paper, we find multidimensional sufficient conditions
of boundedness of L-index in joint variables, which describe
distribution of zeros and behavior of partial logarithmic
derivatives. Recently, we published a paper [1] where some
similar restrictions are established. Another approach was
used by a slice function 𝐹(𝑧0 + 𝑡b), where 𝑧0 ∈ C𝑛, 𝑡 ∈
C, b is a given direction in C𝑛 \ {0}, 𝐹 : C𝑛 → C

is an entire function. It is a background for concept of
function of bounded 𝐿-index in direction (see definition and
properties in [2, 3]). We proved that if an entire function in
C𝑛 function 𝐹 is of bounded 𝑙𝑗-index in every direction 1𝑗 =(0, . . . , 0, 1⏟⏟⏟⏟⏟⏟⏟

𝑗th place
, 0, . . . , 0), then 𝐹 is of bounded L-index in

joint variables for L = (𝑙1, . . . , 𝑙𝑛), 𝑙𝑗 : C𝑛 → R+ (Theorem 6,
[1]). It helped us to find restrictions by directional logarithmic
derivatives and distribution zeros in every direction 1𝑗, 𝑗 ∈{1, . . . , 𝑛}. We assumed that the logarithmic derivative in
direction 1𝑗 is bounded by a function 𝑙𝑗 outside some excep-
tional set, which contains all zeros of entire function 𝐹 (see
definition of 𝐺b

𝑟 (𝐹) below). Prof. Chyzhykov paid attention
in conversation with authors that this exceptional set is too
small because it does not contain neighborhoods of some

zeros of the function in C𝑛. Thus, it leads to the following
question: is there sufficient conditions of boundedness of L-
index in joint variables with larger exceptional sets? We give
a positive answer to this question (Theorem 10). Moreover,
we obtain sufficient conditions of boundedness of L-index
in joint variables by estimating the maximum modulus of
an entire function on the skeleton in polydisc by minimum
modulus (Theorem 7).Theorems 9 and 10 present restrictions
by a measure of zero set of an entire function 𝐹, under which𝐹 has bounded L-index in joint variables. Nevertheless, we do
not know whether the obtained conditions inTheorems 7–10
are necessary too inC𝑛, (𝑛 ≥ 2).Note that these propositions
are new even for entire functions of bounded index in joint
variables, i. e. L = (1, . . . , 1) (see definition and properties in
[4–8]).

It is known [9] that for every entire function 𝑓 with
bounded multiplicities of zeros there exists a positive con-
tinuity on [0; +∞) function 𝑙(𝑟) (𝑟 = |𝑧|) such that 𝑓 is
of bounded 𝑙-index. This result can be easily generalized for
entire functions inC𝑛.Thus, the concept of bounded L-index
in joint variables allows the study of growth properties of any
entire functions with bounded multiplicities of zero points.

It should be noted that the concepts of bounded 𝐿-index
in a direction and boundedL-index in joint variables have few
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advantages in the comparison with traditional approaches to
study properties of entire solutions of differential equations.
In particular, if an entire solution has bounded index [10],
then it immediately yields its growth estimates, a uniform
distribution of its zeros, a certain regular behavior of the
solution, and so forth. A full bibliography about application
in theory of ordinary and partial differential equations is in
[3, 11, 12].

The paper is devoted to two old problems in theory of
entire and meromorphic functions. The first problem is the
establishment of sharp estimates for the logarithmic deriva-
tives of the functions in the unit disc outside some exceptional
set. Chyzhykov et al. [13–16] considered various formulations
of the problem. The obtained estimates were used to study
properties of holomorphic solutions of differential equa-
tions. Instead, the authors assume that partial logarithmic
derivative in every variable satisfies some inequalities (28) or
(45).

Another interesting considered problem concerns zero
sets of holomorphic function in C𝑛. The different estimates
of measure of zero set and its geometrical properties are
investigated in [17–22]. We suppose that zero points of entire
functions admit uniform distribution in some sense, that is,
(29).

Below we use results from Ukrainian papers [23, 24], but
they are also included in English monographs [3, 11].

2. Main Definitions and Notations

Weneed some standard notations. LetR+ = [0, +∞). Denote
0 = (0, . . . , 0) ∈ R𝑛+, 1 = (1, . . . , 1) ∈ R𝑛+, 2 = (2, . . . , 2) ∈ R𝑛+,
1𝑗 = (0, . . . , 0, 1⏟⏟⏟⏟⏟⏟⏟

𝑗th place
, 0, . . . , 0) ∈ R𝑛+.

For 𝑅 = (𝑟1, . . . , 𝑟𝑛) ∈ R𝑛+ and 𝐾 = (𝑘1, . . . , 𝑘𝑛) ∈ Z𝑛+
denote ‖𝑅‖ = 𝑟1+⋅ ⋅ ⋅+𝑟𝑛,𝐾! = 𝑘1!⋅. . .⋅𝑘𝑛!. For= (𝑎1, . . . , 𝑎𝑛) ∈
C𝑛, 𝑏 = (𝑏1, . . . , 𝑏𝑛) ∈ C𝑛, 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛, we will
use formal notations without violating the existence of these
expressions:

|𝑎| = (𝑎1 , 𝑎2 , . . . , 𝑎𝑛) ,𝐴 ± 𝐵 = (𝑎1 ± 𝑏1, . . . , 𝑎𝑛 ± 𝑏𝑛) ,𝐴𝐵 = (𝑎1𝑏1, . . . , 𝑎𝑛𝑏𝑛) ,𝐴𝐵 = (𝑎1𝑏1 , . . . , 𝑎𝑛𝑏𝑛 ) ,𝐴𝐵 = 𝑎𝑏11 𝑎𝑏22 ⋅ . . . ⋅ 𝑎𝑏𝑛𝑛 ,𝑑𝑧 = 𝑑𝑧1𝑑𝑧2 ⋅ ⋅ ⋅ 𝑑𝑧𝑛.

(1)

If 𝑎, 𝑏 ∈ R𝑛 the notation 𝑎 < 𝑏 means that 𝑎𝑗 < 𝑏𝑗 (𝑗 =1, . . . , 𝑛); similarly, the relation 𝑎 ≤ 𝑏 is defined.
The polydisc {𝑧 ∈ C𝑛 : |𝑧𝑗 − 𝑧0𝑗 | < 𝑟𝑗, 𝑗 = 1, . . . , 𝑛} is

denoted byD𝑛(𝑧0, 𝑅), its skeleton {𝑧 ∈ C𝑛 : |𝑧𝑗−𝑧0𝑗 | = 𝑟𝑗, 𝑗 =1, . . . , 𝑛} is denoted by T𝑛(𝑧0, 𝑅), and the closed polydisc {𝑧 ∈
C𝑛 : |𝑧𝑗 − 𝑧0𝑗 | ≤ 𝑟𝑗, 𝑗 = 1, . . . , 𝑛} is denoted by D𝑛[𝑧0, 𝑅].

For 𝐾 = (𝑘1, . . . , 𝑘𝑛) ∈ Z𝑛+ and partial derivatives of entire
function 𝐹(𝑧) = 𝐹(𝑧1, . . . , 𝑧𝑛) we will use the notation

𝐹(𝐾) (𝑧) = 𝜕‖𝐾‖𝐹𝜕𝑧𝐾 = 𝜕𝑘1+⋅⋅⋅+𝑘𝑛𝑓𝜕𝑧𝑘11 ⋅ ⋅ ⋅ 𝜕𝑧𝑘𝑛𝑛 . (2)

Let L(𝑧) = (𝑙1(𝑧), . . . , 𝑙𝑛(𝑧)), where 𝑙𝑗(𝑧) are positive con-
tinuous functions of 𝑧 ∈ C𝑛, 𝑗 ∈ {1, 2, . . . , 𝑛}. An entire
function, 𝐹(𝑧), 𝑧 ∈ C𝑛, is called a function of bounded L-
index in joint variables [1] if there exists a number 𝑚 ∈ Z+
such that for all 𝑧 ∈ C𝑛 and 𝐽 = (𝑗1, 𝑗2, . . . , 𝑗𝑛) ∈ Z𝑛+𝐹(𝐽) (𝑧)𝐽!L𝐽 (𝑧) ≤ max{𝐹(𝐾) (𝑧)𝐾!L𝐾 (𝑧) : 𝐾 ∈ Z

𝑛
+, ‖𝐾‖ ≤ 𝑚} . (3)

If 𝑙𝑗 = 𝑙𝑗(|𝑧𝑗|) then we obtain a concept of entire functions
of bounded L-index in a sense of definition given in [24]. If𝑙𝑗(𝑧𝑗) ≡ 1, 𝑗 ∈ {1, 2, . . . , 𝑛}, then the entire function is called
a function of bounded index in joint variables [4–8, 25].

The least integer𝑚 for which inequality (3) holds is called
L-index in joint variables of the function 𝐹 and is denoted by𝑁(𝐹, L).

For 𝑅 ∈ R𝑛+, 𝑗 ∈ {1, . . . , 𝑛} and L(𝑧) = (𝑙1(𝑧), . . . , 𝑙𝑛(𝑧)) we
define

𝜆1,𝑗 (𝑅) = inf
𝑧0∈C𝑛

inf { 𝑙𝑗 (𝑧)𝑙𝑗 (𝑧0) : 𝑧 ∈ D
𝑛 [𝑧0, 𝑅

L (𝑧0)]} ,
𝜆2,𝑗 (𝑅) = sup

𝑧0∈C𝑛
sup{ 𝑙𝑗 (𝑧)𝑙𝑗 (𝑧0) : 𝑧 ∈ D

𝑛 [𝑧0, 𝑅
L (𝑧0)]} ,

Λ 1 (𝑅) = (𝜆1,𝑗 (𝑅) , . . . , 𝜆1,𝑛 (𝑅)) ,Λ 2 (𝑅) = (𝜆2,1 (𝑅) , . . . , 𝜆2,𝑛 (𝑅)) .
(4)

By𝑄𝑛 we denote a class of functions L(𝑧)which for every𝑅 ∈ R𝑛+ and 𝑗 ∈ {1, . . . , 𝑛} satisfy the condition
0 < 𝜆1,𝑗 (𝑅) ≤ 𝜆2,𝑗 (𝑅) < +∞. (5)

If 𝑛 = 1 then 𝑄 ≡ 𝑄1.
Let L̃(𝑧) = (̃𝑙1(𝑧), . . . , �̃�𝑛(𝑧)). A notation L ≍ L̃means that

there exist Θ1 = (𝜃1,𝑗, . . . , 𝜃1,𝑛) ∈ R𝑛+, Θ2 = (𝜃2,𝑗, . . . , 𝜃2,𝑛) ∈
R𝑛+ such that ∀𝑧 ∈ C𝑛 𝜃1,𝑗 �̃�𝑗(𝑧) ≤ 𝑙𝑗(𝑧) ≤ 𝜃2,𝑗 �̃�𝑗(𝑧).
3. Auxiliary Propositions

We need the following theorems.

Theorem 1 ([11, p. 158,Th. 4.2], see also [23]). Let L ∈ 𝑄𝑛 and
L ≍ L̃. An entire function 𝐹 : C𝑛 → C has bounded L̃-index
in joint variables if and only if 𝐹 has bounded L-index in joint
variables.

Theorem 2 (see [1]). Let L ∈ 𝑄𝑛. An entire function 𝐹 is of
bounded L-index in joint variables if and only if, for any 𝑅,
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𝑅, 0 < 𝑅 < 𝑅, there exists a number 𝑝1 = 𝑝1(𝑅, 𝑅) ≥ 1
such that for every 𝑧0 ∈ C𝑛 inequality

max{|𝐹 (𝑧)| : 𝑧 ∈ T
𝑛 (𝑧0, 𝑅

L (𝑧0))}
≤ 𝑝1max{|𝐹 (𝑧)| : 𝑧 ∈ T

𝑛 (𝑧0, 𝑅
L (𝑧0))} .

(6)

holds.

Remark 3. It was also proved that the condition “for any 𝑅,𝑅, 0 < 𝑅 < 𝑅, there exists a number 𝑝1 = 𝑝1(𝑅, 𝑅) ≥ 1”
in Theorem 2 can be replaced by the condition “there exist𝑅, 𝑅, 0 < 𝑅 < 1 < 𝑅, and 𝑝1 = 𝑝1(𝑅, 𝑅) ≥ 1”. It is
Theorem 5 in [1].

Now we relax the restriction 𝑅 < 1 < 𝑅 in sufficient
conditions.

Theorem 4. Let L ∈ 𝑄𝑛, 𝐹 : C → C𝑛 be an entire function. If
there exist 𝑅, 𝑅, 0 < 𝑅 < 𝑅, and 𝑝1 = 𝑝1(𝑅, 𝑅) ≥ 1 such
that for every 𝑧0 ∈ C𝑛 inequality (6) holds; then the function 𝐹
has bounded L-index in joint variables.

Proof. From (6) with 0 < 𝑅 < 𝑅 it follows that
max{|𝐹 (𝑧)| : 𝑧 ∈ T

𝑛 (𝑧0, 2𝑅𝑅 + 𝑅 𝑅 + 𝑅2L (𝑧0) )}
≤ 𝑃1max{|𝐹 (𝑧)| : 𝑧 ∈ T

𝑛 (𝑧0, 2𝑅𝑅 + 𝑅 𝑅 + 𝑅2L (𝑧0) )} .
(7)

Denoting L̃(𝑧) = 2L(𝑧)/(𝑅 + 𝑅), we obtain
max{|𝐹 (𝑧)| : 𝑧 ∈ T

𝑛 (𝑧0, 2𝑅(𝑅 + 𝑅) L̃ (𝑧0))}
≤ 𝑃1max{|𝐹 (𝑧)| : 𝑧 ∈ T

𝑛 (𝑧0, 2𝑅(𝑅 + 𝑅) L̃ (𝑧0))} ,
(8)

where 0 < 2𝑅/(𝑅 + 𝑅) < 1 < 2𝑅/(𝑅 + 𝑅). In
view of Remark 3, 𝐹 has bounded L̃-index in joint variables.
By Theorem 1, the function 𝐹 is bounded L-index in joint
variables.

Note that Theorem 4 is new even if L(𝑧) ≡ 1.

Lemma 5. If 𝐿 : C𝑛 → R+ is a continuous function such
that (∀𝑅 ∈ R𝑛+) Λ 2(𝑅) < ∞ then (∀𝑅 ∈ R𝑛+) Λ 1(𝑅) ≥
1/Λ 2(𝑅Λ 2(𝑅)) > 0.
Proof. Let (∀𝑅 ∈ R𝑛+) Λ 2(𝑅) < ∞ i.e. ∀𝑗 ∈ {1, . . .,𝑛} 𝜆2,𝑗(𝑅) < +∞. Hence, we have 𝑙𝑗(𝑧) ≤ 𝜆2,𝑗(𝑅)𝑙𝑗(𝑧0) for

𝑧 ∈ 𝐷𝑛(𝑧0, 𝑅/L(𝑧0)). This means that |𝑧𝑗 − 𝑧0𝑗 | ≤ 𝑟𝑗/𝑙𝑗(𝑧0) ≤𝑟𝑗𝜆2,𝑗(𝑅)/𝑙𝑗(𝑧). Using definition of 𝜆1,𝑗(𝑅), we deduce
inf { 𝑙𝑗 (𝑧)𝑙𝑗 (𝑧0) : 𝑧 ∈ D

𝑛 (𝑧0, 𝑅
L (𝑧0))}

= 1
sup {𝑙𝑗 (𝑧0) /𝑙𝑗 (𝑧) : 𝑧 ∈ D𝑛 (𝑧0, 𝑅/L (𝑧0))}

≥ 1
sup {𝑙𝑗 (𝑧0) /𝑙𝑗 (𝑧) : 𝑧0𝑗 − 𝑧𝑗 ≤ 𝑟𝑗𝜆2,𝑗 (𝑅) /𝑙𝑗 (𝑧) , 𝑗 ∈ {1, . . . , 𝑛}}

≥ 1𝜆2,𝑗 (𝑅Λ 2 (𝑅)) .

(9)

Thus, 𝜆1,𝑗(𝑅) ≥ 1/𝜆2,𝑗(𝑅Λ 2(𝑅)).
Remark 6. By Lemma 5 the left inequality in (5) is excessive
because the condition 𝜆2,𝑗(𝑅) < +∞ implies 𝜆1,𝑗(𝑅) > 0.
But in our considerations we will use so Λ 1(𝑅) as Λ 2(𝑅). It is
convenient.

4. Estimate Maximum Modulus on
a Skeleton in Polydisc

Let 𝑍𝐹 be a zero set of entire function 𝐹.We denote

𝐺𝑅 (𝐹) = ⋃
𝑧0∈𝑍𝐹

{𝑧 ∈ C
𝑛 : 𝑧𝑗 − 𝑧0𝑗  < 𝑟𝑗𝑙𝑗 (𝑧0) ∀𝑗

∈ {1, 2, . . . , 𝑛}} = ⋃
𝑧0∈𝑍𝐹

D
𝑛 (𝑧0, 𝑅

L (𝑧0)) .
(10)

Theorem7. Let L ∈ 𝑄𝑛, 𝐹 be an entire inC𝑛 function. If ∃𝑅 >
0 ∃𝑝2 ≥ 1 ∃Θ ∈ R𝑛+, 0 < Θ < 𝑅, ∃𝑅 > 0, (𝑅 = 0 for𝑍𝐹 = 0)
such that ∀𝑧0 ∈ C𝑛 ∃𝑅0 = 𝑅0(𝑧0) ∈ R𝑛+, Θ ≤ 𝑅0 ≤ 𝑅, for
which

meas{T𝑛 (𝑧0, 𝑅0
L (𝑧0)) ∩ 𝐺𝑅 (𝐹)}

< (2𝜋3 )𝑛 𝑛∏
𝑗=1

𝜃𝑗𝜆2,𝑗 (2 (𝑅 + 1)) 𝑙𝑗 (𝑧0) ,
(11)

max{|𝐹 (𝑧)| : 𝑧 ∈ T
𝑛 (𝑧0, 𝑅0

L (𝑧0))}
≤ 𝑝2min{|𝐹 (𝑧)| : 𝑧 ∈ T

𝑛 (𝑧0, 𝑅0
L (𝑧0)) \ 𝐺𝑅 (𝐹)}

(12)

then the function 𝐹 has bounded L-index in joint variables
(meas is the Lebesgue measure on the skeleton in the polydisc).

Proof. ByTheorem 4, we will show that ∃𝑝1 > 0 ∀𝑧0 ∈ C𝑛

max{|𝐹 (𝑧)| : 𝑧 ∈ T
𝑛 (𝑧0, 𝑅 + 1

L (𝑧0))}
≤ 𝑝1max{|𝐹 (𝑧)| : 𝑧 ∈ T

𝑛 (𝑧0, 𝑅
L (𝑧0))} .

(13)
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Denote 𝑙∗𝑗 = max{𝑙𝑗(𝑧) : 𝑧 ∈ D𝑛[𝑧0, 2(𝑅 + 1)/L(𝑧0)]}, 𝜌𝑗,0 =𝑟𝑗/𝑙𝑗(𝑧0), 𝜌𝑗,𝑘 = 𝜌𝑗,0 + (𝑘 ⋅ 𝜃𝑗)/𝑙∗𝑗 , 𝑘 ∈ N, 𝑗 ∈ {1, . . . , 𝑛}. The
following estimate holds

𝜃𝑗𝑙∗𝑗 < 𝑟𝑗𝑙∗𝑗 ≤ 𝑟𝑗𝑙𝑗 (𝑧0) < 2𝑟𝑗 + 2𝑙𝑗 (𝑧0) − 𝑟𝑗 + 1𝑙𝑗 (𝑧0) . (14)

Hence, there exists 𝑆∗ = (𝑠∗1 , . . . , 𝑠∗𝑛 ) ∈ N independent of 𝑧0
such that

𝜌𝑗,𝑚𝑗−1 < 𝑟𝑗 + 1𝑙𝑗 (𝑧0) < 𝜌𝑗,𝑚𝑗 ≤ 2𝑟𝑗 + 2𝑙𝑗 (𝑧0) (15)

for some𝑚𝑗 = 𝑚𝑗(𝑧0) ≤ 𝑠∗𝑗 because L ∈ 𝑄𝑛. Indeed,
((2𝑟𝑗 + 2) /𝑙𝑗 (𝑧0) − 𝜌𝑗,0)𝜃𝑗/𝑙∗𝑗 = (2𝑟𝑗 + 2 − 𝑟𝑗) 𝑙∗𝑗𝜃𝑗𝑙𝑗 (𝑧0)
= 𝑟𝑗 + 2𝜃𝑗 max{ 𝑙𝑗 (𝑧)𝑙𝑗 (𝑧0) : 𝑧 ∈ D

𝑛 [𝑧0, 2 (𝑅 + 1)
L (𝑧0) ]}

≤ 𝑟𝑗 + 2𝜃𝑗 𝜆2,𝑗 (2 (𝑅 + 1)) .
(16)

Thus, 𝑠∗𝑗 = [((𝑟𝑗+2)/𝜃𝑗)𝜆2,𝑗(2(𝑅+1))], where [𝑥] is the integer
part of 𝑥 ∈ R.

Let𝑀0 = (𝑚1, . . . , 𝑚𝑛) and 𝜏∗∗𝐾 be such a point inC𝑛 that

𝐹 (𝜏∗∗𝐾 ) = max {|𝐹 (𝑧)| : 𝑧 ∈ T
𝑛 (𝑧0,R𝐾)} , (17)

where𝐾 = (𝑘1, . . . , 𝑘𝑛),R𝐾 = (𝜌1,𝑘1 , . . . , 𝜌𝑛,𝑘𝑛) and 𝜏∗𝑗,𝐾 be the
intersection point inCof the segment [𝑧0𝑗 , 𝜏∗∗𝑗,𝐾]with |𝑧𝑗−𝑧0𝑗 | =𝜌𝑗,𝑘𝑗−1. We construct a sequence of polydisc D𝑛(𝑧0,R𝐾) with𝐾 ≤ 𝑀0, R0 = 𝑅/L(𝑧0) = (𝜌1,0, . . . , 𝜌𝑛,0) and Θ/L(𝑧0) =(𝜃1/𝑙∗1 , . . . , 𝜃𝑛/𝑙∗𝑛 ) (see Figures 1 and 2).

Denote 𝛼(𝑗)𝐾 = (𝜏∗∗1,𝐾, . . . , 𝜏∗∗𝑗−1,𝐾, 𝜏∗𝑗,𝐾, 𝜏∗∗𝑗+1,𝐾, . . . , 𝜏∗∗𝑛,𝐾).
Hence, for every 𝑟𝑗 > 𝜃𝑗 and 𝐾 ≤ 𝑆∗ : |𝜏∗𝑗,𝐾 − 𝜏∗∗𝑗,𝐾| = 𝜃𝑗/𝑙∗𝑗 ≤𝑟𝑗/𝑙𝑗(𝛼(𝑗)𝐾 ). Thus, for some 𝑅0 = 𝑅0(𝛼(𝑗)𝐾 ) ∈ R𝑛+, Θ ≤ 𝑅0 ≤ 𝑅,
we deduce

𝐹 (𝜏∗∗𝐾 ) ≤ max
{{{|𝐹 (𝑧)| : 𝑧 ∈ T

𝑛(𝛼(𝑗)𝐾 , 𝑅0
L (𝛼(𝑗)𝐾 ))

}}}
≤ 𝑝2min

{{{|𝐹 (𝑧)| : 𝑧
∈ T
𝑛(𝛼(𝑗)𝐾 , 𝑅0

L (𝛼(𝑗)𝐾 )) \ 𝐺𝑅 (𝐹)}}} ≤ 𝑝2

z0

...

ℛM0

Θ/L∗ℛ

ℛ

ℛM0−

R + 

L(z0)

Figure 1

z0

∗∗K


(j)
K

ℛK

ℛK−

Figure 2

⋅min
{{{|𝐹 (𝑧)| : 𝑧

∈ T
𝑛(𝛼(𝑗)𝐾 , 𝑅0

L (𝛼(𝑗)𝐾 )) \ 𝐺𝑅 (𝐹) , 𝑧
∈ D
𝑛 [𝑧0,R𝐾−1𝑗]}}} ≤ 𝑝2max {|𝐹 (𝑧)| : 𝑧

∈ T
𝑛 (𝑧0,R𝐾−1𝑗)} .

(18)

To deduce (18), we implicitly used that

(T
𝑛(𝛼(𝑗)𝐾 , 𝑅0

L (𝛼(𝑗)𝐾 )) \ 𝐺𝑅 (𝐹)) ∩ D
𝑛 [𝑧0,R𝐾−1𝑗]

̸= 0.
(19)

Condition (11) provides (19). Indeed, we will find a lower
estimate of measure of the set T𝑛(𝛼(𝑗)𝐾 , 𝑅0/L(𝛼(𝑗)𝐾 )) ∩
D𝑛[𝑧0,R𝐾−1𝑗] and will show that the measure is not lesser
than a left part of inequality (11).



Journal of Complex Analysis 5

∗∗m,K

r 
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Figure 3: With 𝑟 = 𝑟0𝑚/𝑙𝑚(𝛼(𝑗)𝐾 ).
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Figure 4: With 𝑟 = 𝑟0𝑗 /𝑙𝑗(𝛼(𝑗)𝐾 ).

The set T𝑛(𝛼(𝑗)𝐾 , 𝑅0/L(𝛼(𝑗)𝐾 ))∩D𝑛[𝑧0,R𝐾−1𝑗] is a Cartesian
product of the following arcs on circles: for every 𝑚 ∈{1, . . . , 𝑛}, 𝑚 ̸= 𝑗 (see Figure 3)

{{{𝑧𝑚 ∈ C : 𝑧𝑚 − 𝜏∗∗𝑚,𝐾 = 𝑟0𝑚𝑙𝑚 (𝛼(𝑗)𝐾 )
}}}∩ {𝑧𝑚 ∈ C : 𝑧𝑚 − 𝑧0𝑚 ≤ 𝜌𝑚,𝑘𝑚}

(20)

and for𝑚 = 𝑗 (see Figure 4)
{{{𝑧𝑗 ∈ C : 𝑧𝑗 − 𝜏∗𝑗,𝐾 = 𝑟0𝑗𝑙𝑗 (𝛼(𝑗)𝐾 )

}}}∩ {𝑧𝑗 ∈ C : 𝑧𝑗 − 𝑧0𝑗  ≤ 𝜌𝑗,𝑘𝑗−1} .
(21)

It is easy to prove that the length of arc equals

2𝑟0𝑚𝑙𝑚 (𝛼(𝑗)𝐾 ) ⋅ arccos 𝑟0𝑚2𝑙𝑚 (𝛼(𝑗)𝐾 ) 𝜌𝑚,𝑘𝑚 for 𝑚 ̸= 𝑗, (22)

2𝑟0𝑗𝑙𝑗 (𝛼(𝑗)𝐾 ) ⋅ arccos
𝑟0𝑗2𝑙𝑗 (𝛼(𝑗)𝐾 ) 𝜌𝑗,𝑘𝑗−1 for 𝑚 = 𝑗. (23)

But for 𝑚 ̸= 𝑗 𝑟0𝑚/𝑙𝑚(𝛼(𝑗)𝐾 ) ≤ 𝜌𝑚,𝑘𝑚 and 𝑟0𝑗 /𝑙𝑗(𝛼(𝑗)𝐾 ) ≤𝜌𝑗,𝑘𝑗−1 the argument in arccosine from (23) and (22) does not

exceed 1/2. This means that the length of arc is not lesser
than

2𝑟0𝑚𝑙𝑚 (𝛼(𝑗)𝐾 )arccos12 ≥ 2𝜃𝑚𝜋3𝑙𝑚 (𝑧0) 𝜆2,𝑚 (2 (𝑅 + 1))
for every 𝑚 ∈ {1, 2, . . . , 𝑛} , (24)

because L ∈ 𝑄𝑛. Accordingly, the measure of the set

T
𝑛(𝛼(𝑗)𝐾 , 𝑅0

L (𝛼(𝑗)𝐾 )) ∩ D
𝑛 [𝑧0,R𝐾−1𝑗] (25)

on the skeleton of polydisc is always not lesser than∏𝑛𝑚=1(2𝜃𝑚𝜋/3𝑙𝑚(𝑧0)𝜆2,𝑚(2(𝑅 + 1))). Assuming a strict
inequality in (11), we deduce that (19) is valid.

Applying (18)𝑚𝑗th times in every variable 𝑧𝑗, we obtain
max{|𝐹 (𝑧)| : 𝑧 ∈ T

𝑛 (𝑧0, 𝑅 + 1
L (𝑧0))}

≤ max {|𝐹 (𝑧)| : 𝑧 ∈ T
𝑛 (𝑧0,R𝑀0)} ≤ 𝑝2⋅max {|𝐹 (𝑧)| : 𝑧 ∈ T
𝑛 (𝑧0,R𝑀0−1𝑛)} ≤ 𝑝𝑚𝑛2⋅max {|𝐹 (𝑧)| : 𝑧 ∈ T
𝑛 (𝑧0,R𝑀0−𝑚𝑛1𝑛)} ≤ ⋅ ⋅ ⋅≤ 𝑝𝑚𝑛+12⋅max {|𝐹 (𝑧)| : 𝑧 ∈ T
𝑛 (𝑧0,R𝑀0−𝑚𝑛1𝑛−1𝑛−1)}≤ 𝑝𝑚𝑛+𝑚𝑛−12⋅max {|𝐹 (𝑧)| : 𝑧 ∈ T
𝑛 (𝑧0,R𝑀0−𝑚𝑛1𝑛−𝑚𝑛−11𝑛−1)}≤ ⋅ ⋅ ⋅ ≤ 𝑝‖𝑀0‖2 max {|𝐹 (𝑧)| : 𝑧 ∈ T

𝑛 (𝑧0,R0)}
≤ 𝑝‖𝑆∗‖2 max{|𝐹 (𝑧)| : 𝑧 ∈ T

𝑛 (𝑧0, 𝑅
L (𝑧0))} .

(26)

By Theorem 2 the function 𝐹 has bounded L-index in joint
variables.

Let us denote 𝑐(𝑧, 𝑟) = {𝑧 ∈ C : |𝑧 − 𝑧| = 𝑟/𝑙(𝑧)}. For𝑛 = 1Theorem 7 implies the following corollary.

Corollary 8. Let 𝑙 ∈ 𝑄, 𝑓 be an entire function. If ∃𝑟 >0, ∃𝑟 ≥ 0, ∃𝑝2 ≥ 1 ∃𝜃 ∈ (0, 𝑟), such that ∀𝑧0 ∈
C ∃𝑟0 = 𝑟0(𝑧0) ∈ [𝜃; 𝑟], and meas{𝑐(𝑧0, 𝑟0) ∩ 𝐺𝑅(𝐹)} <2𝜋𝜃/3𝑙(𝑧0)𝜆2(2𝑟 + 2) and

max {𝑓 (𝑧) : 𝑧 ∈ 𝑐 (𝑧0, 𝑟0)}≤ 𝑝2min {𝑓 (𝑧) : 𝑧 ∈ 𝑐 (𝑧0, 𝑟0) \ 𝐺𝑟 (𝑓)} (27)

then the function 𝑓 has bounded 𝑙-index (heremeasmeans the
Lebesgue measure on the circle).
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In a some sense, this corollary is new even for an entire
function of one variable because the circle 𝑐(𝑧0, 𝑟0) can
contain zeros of the function𝑓.Meanwhile, in corresponding
theorem from [26, 27] the circle 𝑐(𝑧0, 𝑟0) is chosen such that𝑓(𝑧) ̸= 0 for all 𝑧 ∈ 𝑐(𝑧0, 𝑟0).
5. Behavior of Partial Logarithmic Derivatives

DenoteJ = {(𝑗1, . . . , 𝑗𝑛) : 𝑗𝑖 ∈ {0, 1}, 𝑖 ∈ {1, . . . , 𝑛}} \ 0.
Theorem 9. Let L ∈ 𝑄𝑛. If an entire function 𝐹 satisfies the
following conditions

(1) for every 𝑅 > 0 there exists 𝑝1 = 𝑝1(𝑅) > 0 such that
for all 𝑧 ∈ C𝑛 \ 𝐺𝑅(𝐹) and for all 𝐽 ∈ J(ln𝐹 (𝑧))(𝐽) ≤ 𝑝1L𝐽 (𝑧) , (28)

where ln𝐹(𝑧) is the principal value of logarithm.
(2) for every 𝑅 > 0 and 𝑅 ≥ 0 exists 𝑝2 =𝑝2(𝑅, 𝑅) ≥ 1 that for all 𝑧0 ∈ C𝑛 such that𝑇𝑛(𝑧0, 𝑅/L(𝑧0)) \ 𝐺𝑅(𝐹) = ⋃𝑖 𝐶𝑖 ̸= 0, where

the sets 𝐶𝑖 are connected disjoint sets, and either
(a) max𝑖min𝑧∈𝐶𝑖 |𝐹(𝑧)| ≤ 𝑝2min𝑖min𝑧∈𝐶𝑖 |𝐹(𝑧)|, or
(b) max𝑖max𝑧∈𝐶𝑖 |𝐹(𝑧)| ≤ 𝑝2min𝑖max𝑧∈𝐶𝑖 |𝐹(𝑧)|, or
(c) |𝐹(𝑧∗)| = max𝑖max𝑧∈𝐶𝑖 |𝐹(𝑧)|, |𝐹(𝑧∗∗)| =
min𝑖min𝑧∈𝐶𝑖 |𝐹(𝑧)|, and 𝑧∗, 𝑧∗∗ belong to the same set𝐶𝑖0

(3) for every 𝑅 > 0 there exists 𝑛∗(𝑅) > 0 such that for all𝑧 ∈ C𝑛

meas{𝑍𝐹 ∩ D
𝑛 [𝑧, 𝑅

L (𝑧)]} ≤ 𝑛∗ (𝑅) . (29)

then 𝐹 has bounded L-index in joint variables (here meas is(2𝑛 − 2)-dimensional of the Lebesgue measure).

Proof. Let 𝑧0 ∈ C𝑛 be arbitrarily chosen point. In view of
Theorem 7 we need to prove that

meas{T𝑛 (𝑧0, 𝑅0
L (𝑧0)) ∩ 𝐺𝑅 (𝐹)}

< (2𝜋3 )𝑛 𝑛∏
𝑗=1

𝜃𝑗𝜆2,𝑗 (2 (𝑅 + 1)) 𝑙𝑗 (𝑧0)
for some 𝑅0 = 𝑅0 (𝑧0) .

(30)

Let 𝑅 > 0 be arbitrary radius. We choose Θ, 𝑅 ∈ R𝑛+ such
that 𝜃𝑗 < 2𝑟𝑗/(2 + 3𝜆2,𝑗(2(𝑅 + 1))),
𝑟𝑗 < min

{{{{{𝜃𝑗,
√ 2𝜆21,𝑗 (𝑅 + 𝑅Λ 2 (𝑅) /Λ 1 (𝑅)) 𝜃𝑗 (𝑟𝑗 − 𝜃𝑗)3 (𝑛∗ (𝑅 + 𝑅Λ 2 (𝑅) /Λ 1 (𝑅)))1/𝑛 𝜆2,𝑗 (2 (𝑅 + 1))

}}}}} ,
𝑗 ∈ {1, . . . , 𝑛} .

(31)

Let 𝑑𝑆 = 𝑑𝑠1 ⋅ . . . ⋅𝑑𝑠𝑛, 𝑆 = (𝑠1, . . . , 𝑠𝑛),𝜔𝑧 be a volumemeasure
in R2𝑛. Clearly, (see [28, p. 75-76])

∫
D𝑛(𝑧0 ,𝑅)

𝑢 (𝑧) 𝑑𝜔𝑧 = ∫𝑟1
0
⋅ ⋅ ⋅ ∫𝑟𝑛
0
𝑠1 ⋅ ⋅ ⋅ 𝑠𝑛

⋅ (∫2𝜋
0
⋅ ⋅ ⋅ ∫2𝜋
0
𝑢 (𝑧0 + 𝑆𝑒𝑖Θ) 𝑑𝜃1 ⋅ ⋅ ⋅ 𝑑𝜃𝑛)𝑑𝑠1 ⋅ ⋅ ⋅ 𝑑𝑠𝑛

= ∫𝑅
0
(∫2𝜋
0
⋅ ⋅ ⋅ ∫2𝜋
0
𝑢 (𝑧0 + 𝑆𝑒𝑖Θ) 𝑑 (𝑠1𝜃1) ⋅ ⋅ ⋅ 𝑑 (𝑠𝑛𝜃𝑛)) 𝑑𝑆,

(32)

where 𝑢 is plurisubharmonic function. Hence,

∫𝑅/L(𝑧0)
0

meas {T𝑛 (𝑧0, 𝑆) ∩ 𝐺𝑅 (𝐹)} 𝑑𝑆
= meas{D𝑛 [𝑧0, 𝑅

L (𝑧0)] ∩ 𝐺𝑅 (𝐹)} .
(33)

Obviously, there can exist points 𝑧 ∈ 𝑍𝐹 \ D𝑛[𝑧0, 𝑅/L(𝑧0)]
such that

D
𝑛 [𝑧0, 𝑅

L (𝑧0)] ∩ D
𝑛 [𝑧, 𝑅

L (𝑧)] ̸= 0. (34)

Let 𝑧𝑗 be the intersection point of the segment [𝑧0𝑗 , 𝑧𝑗] and
the circle |𝑧𝑗 −𝑧0𝑗 | = 𝑟𝑗/𝑙𝑗(𝑧0), 𝑗 ∈ {1, . . . , 𝑛}. Then |𝑧𝑗 −𝑧𝑗| ≤𝑟𝑗/𝑙𝑗(𝑧) and 𝑧 ∈ T𝑛(𝑧0, 𝑅/L(𝑧0)). Using L ∈ 𝑄𝑛, we estimate
maximum distance between 𝑧0𝑗 and 𝑧𝑗 :

𝑙𝑗 (𝑧) ≥ 𝑙𝑗 (𝑧)𝑙𝑗 (𝑧) ⋅ 𝑙𝑗 (𝑧
)𝑙𝑗 (𝑧0) ⋅ 𝑙𝑗 (𝑧0)

≥ 𝜆1,𝑗 (𝑅)𝜆2,𝑗 (𝑅) ⋅ 𝑙𝑗 (𝑧0) ≥ 𝜆1,𝑗 (𝑅)𝜆2,𝑗 (𝑅) 𝑙𝑗 (𝑧0) ,
𝑧0𝑗 − 𝑧𝑗 ≤ 𝑧0 − 𝑧𝑗  + 𝑧𝑗 − 𝑧𝑗 ≤ 𝑟𝑗𝑙𝑗 (𝑧0) + 𝑟𝑗𝑙𝑗 (𝑧𝑗)

≤ 𝑟𝑗𝑙𝑗 (𝑧0) (1 + 𝜆2,𝑗 (𝑅)𝜆1,𝑗 (𝑅)) .

(35)

Denote 𝑅 = 𝑅 + 𝑅Λ 2(𝑅)/Λ 1(𝑅). Let 𝑉2𝑛−2 be a (2𝑛 −2)-dimensional volume, 𝜒𝐹(𝑧) a characteristic function of
zero set of the function 𝐹. Now we replace the measure
in (33) by integrating on zero set in polydisc D𝑛[𝑧0, 𝑅/
L(𝑧0)]:
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∫𝑅/L(𝑧0)
0

meas {T𝑛 (𝑧0, 𝑆) ∩ 𝐺𝑅 (𝐹)} 𝑑𝑆 ≤ ∫
𝑍𝐹∩D

𝑛[𝑧0 ,𝑅/L(𝑧0)]
𝜒𝐹 (𝑧) 𝜋𝑛 𝑛∏

𝑗=1

(𝑟𝑗)2𝑙2𝑗 (𝑧)𝑑𝑉2𝑛−2
≤ 𝜋𝑛 𝑛∏
𝑗=1

(𝑟𝑗)2𝜆21,𝑗 (𝑅) 𝑙2𝑗 (𝑧0) ∫𝑍𝐹∩D𝑛[𝑧0 ,𝑅/L(𝑧0)] 𝜒𝐹 (𝑧) 𝑑𝑉2𝑛−2 ≤ 𝑛∗ (𝑅) 𝜋𝑛
𝑛∏
𝑗=1

(𝑟𝑗)2𝜆21,𝑗 (𝑅) 𝑙2𝑗 (𝑧0)
< 𝑛∗ (𝑅) 𝜋𝑛 𝑛∏

𝑗=1

2𝜆21,𝑗 (𝑅 + 𝑅Λ 2 (𝑅) /Λ 1 (𝑅)) 𝜃𝑗 (𝑟𝑗 − 𝜃𝑗)3 (𝑛∗ (𝑅 + 𝑅Λ 2 (𝑅) /Λ 1 (𝑅)))1/𝑛 𝜆2,𝑗 (2 (𝑅 + 1)) 𝜆21,𝑗 (𝑅) 𝑙2𝑗 (𝑧0)
= (2𝜋3 )𝑛 𝑛∏

𝑗=1

𝜃𝑗 (𝑟𝑗 − 𝜃𝑗)𝜆2,𝑗 (2 (𝑅 + 1)) 𝑙2𝑗 (𝑧0) .

(36)

Besides, we have that

∫Θ/L(𝑧0)
0

meas {T𝑛 (𝑧0, 𝑆) ∩ 𝐺𝑅 (𝐹)} 𝑑𝑆
= meas{D𝑛 [𝑧0, Θ

L (𝑧0)] ∩ 𝐺𝑅 (𝐹)}
≤ 𝜋𝑛 𝑛∏
𝑗=1

𝜃2𝑗𝑙2𝑗 (𝑧0) .
(37)

Hence, the following difference is positive

(2𝜋3 )𝑛 𝑛∏
𝑗=1

𝜃𝑗 (𝑟𝑗 − 𝜃𝑗)𝜆2,𝑗 (2 (𝑅 + 1)) 𝑙2𝑗 (𝑧0)
− ∫Θ/L(𝑧0)
0

meas {T𝑛 (𝑧0, 𝑆) ∩ 𝐺𝑅 (𝐹)} 𝑑𝑆
≥ (2𝜋3 )𝑛 𝑛∏

𝑗=1

𝜃𝑗 (𝑟𝑗 − 𝜃𝑗)𝜆2,𝑗 (2 (𝑅 + 1)) 𝑙2𝑗 (𝑧0)
− 𝜋𝑛 𝑛∏
𝑗=1

𝜃2𝑗𝑙2𝑗 (𝑧0)
= 𝜋𝑛 𝑛∏
𝑗=1

𝜃𝑗𝑙2𝑗 (𝑧0) 2𝑟𝑗 − 𝜃𝑗 (2 + 3𝜆2,𝑗 (2 (𝑅 + 1)))3𝜆2,𝑗 (2 (𝑅 + 1)) > 0

(38)

because 𝜃𝑗 < 2𝑟𝑗/(2 + 3𝜆2,𝑗(2(𝑅 + 1))). From (36) it follows
that

∫𝑅/L(𝑧0)
Θ/L(𝑧0)

meas {T𝑛 (𝑧0, 𝑆) ∩ 𝐺𝑅 (𝐹)} 𝑑𝑆
< (2𝜋3 )𝑛 𝑛∏

𝑗=1

𝜃𝑗 (𝑟𝑗 − 𝜃𝑗)𝜆2,𝑗 (2 (𝑅 + 1)) 𝑙2𝑗 (𝑧0)

− ∫Θ/L(𝑧0)
0

meas {T𝑛 (𝑧0, 𝑆) ∩ 𝐺𝑅 (𝐹)} 𝑑𝑆
≤ (2𝜋3 )𝑛 𝑛∏

𝑗=1

𝜃𝑗 (𝑟𝑗 − 𝜃𝑗)𝜆2,𝑗 (2 (𝑅 + 1)) 𝑙2𝑗 (𝑧0) .
(39)

By mean value theorem there exists 𝑅0 = 𝑅0(𝑧0) with 𝑟𝑗 ∈[𝜃𝑗, 𝑟𝑗] such that

∫𝑅/L(𝑧0)
Θ/L(𝑧0)

meas {T𝑛 (𝑧0, 𝑆) ∩ 𝐺𝑅 (𝐹)} 𝑑𝑆
= meas{T𝑛 (𝑧0, 𝑅0

L (𝑧0)) ∩ 𝐺𝑅 (𝐹)} 𝑛∏𝑗=1 𝑟𝑗 − 𝜃𝑗𝑙𝑗 (𝑧0) .
(40)

Hence, in view of (39) we obtain a desired inequality

meas{T𝑛 (𝑧0, 𝑅0
L (𝑧0)) ∩ 𝐺𝑅 (𝐹)}

< (2𝜋3 )𝑛 𝑛∏
𝑗=1

𝜃𝑗𝜆2,𝑗 (2 (𝑅 + 1)) 𝑙𝑗 (𝑧0) .
(41)

Clearly, for every point 𝑧0 ∈ C𝑛 wehave T𝑛(𝑧0, 𝑅0/L(𝑧0))\𝑍𝐹 = ⋃𝑖 𝐶𝑖 , where𝐶𝑖 are connected disjoint sets,𝐶𝑖 ⊃ 𝐶𝑖 and𝐶𝑖 is defined in condition (2). Let 𝑧∗ ∈ T𝑛(𝑧0, 𝑅/L(𝑧0)) be
such that |𝐹(𝑧∗) = max{|𝐹(𝑧)| : 𝑧 ∈ T𝑛(𝑧0, 𝑅0/L(𝑧0))}. Then
there exists 𝑖0 such that 𝑧∗ ∈ 𝐶𝑖0 . Let 𝑧∗∗ ∈ 𝐶𝑖0 ⊂ 𝐶𝑖0 be such
that |𝐹(𝑧∗∗)| = min𝑧∈𝐶𝑖0 |𝐹(𝑧)|. We choose 𝐽 = (𝑗1, . . . , 𝑗𝑛) ∈
J, where

𝑗𝑖 = {{{
1, 𝑧∗𝑖 ̸= 𝑧∗∗𝑖 ,0, 𝑧∗𝑖 = 𝑧∗∗𝑖 , 𝑖 ∈ {1, . . . , 𝑛} , (42)
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and deduce

ln
 𝐹 (𝑧
∗)𝐹 (𝑧∗∗)  ≤ ∫

𝑧∗

𝑧∗∗

(ln𝐹 (𝑧))(𝐽) 𝑑𝑧𝐽
≤ ∫𝑧∗
𝑧∗∗

𝑝1L𝐽 (𝑧) 𝑑𝑧𝐽
≤ 𝑝1L𝐽 (𝑧0)Λ𝐽2 (𝑅) ⋅ (𝜋𝑅)𝐽L𝐽 (𝑧0)
≤ 𝜋𝑛𝑝1𝑅𝐽Λ𝐽2 (𝑅) .

(43)

Hence,

max{|𝐹 (𝑧)| : 𝑧 ∈ T
𝑛 (𝑧0, 𝑅0

L (𝑧0))} = 𝐹 (𝑧∗)
≤ exp {𝜋𝑛𝑝1𝑅𝐽Λ𝐽2 (𝑅)} 𝐹 (𝑧∗∗)= exp {𝜋𝑛𝑝1𝑅𝐽Λ𝐽2 (𝑅)}min

𝑧∈𝐶𝑖0

|𝐹 (𝑧)|
≤ exp {𝜋𝑛𝑝1𝑅𝐽Λ𝐽2 (𝑅)} 𝑝2min

𝑖
min
𝑧∈𝐶𝑖

|𝐹 (𝑧)|
= exp {𝜋𝑛𝑝1𝑅𝐽Λ𝐽2 (𝑅)} 𝑝2
⋅min{|𝐹 (𝑧)| : 𝑧 ∈ T

𝑛 (𝑧0, 𝑅0
L (𝑧0)) \ 𝐺𝑅 (𝐹)} .

(44)

By Theorem 7 the function 𝐹 has bounded L-index in joint
variables.

Let us to denote Δ as Laplace operator. We will considerΔ ln |𝐹| as generalized function. Using some known results
from potential theory, we can rewrite Theorem 9 as follows.

Theorem 10. Let L ∈ 𝑄𝑛. If an entire function 𝐹 satisfies the
following conditions

(1) for every 𝑅 > 0 there exists 𝑝1 = 𝑝1(𝑅) > 0 such that
for all 𝑧 ∈ C𝑛 \ 𝐺𝑅(𝐹) and for every 𝑗 ∈ {1, . . . , 𝑛} 𝜕 ln𝐹 (𝑧)𝜕𝑧𝑗

 ≤ 𝑝1𝑙𝑗 (𝑧) , (45)

where ln𝐹(𝑧) is the principal value of logarithm.
(2) for every 𝑅 > 0 and 𝑅 ≥ 0 exists 𝑝2 =𝑝2(𝑅, 𝑅) ≥ 1 that for all 𝑧0 ∈ C𝑛 such that𝑇𝑛(𝑧0, 𝑅/L(𝑧0)) \ 𝐺𝑅(𝐹) = ⋃𝑖 𝐶𝑖 ̸= 0, where

the sets 𝐶𝑖 are connected disjoint sets, and either
(a) max𝑖min𝑧∈𝐶𝑖 |𝐹(𝑧)| ≤ 𝑝2min𝑖min𝑧∈𝐶𝑖 |𝐹(𝑧)|, or
(b) max𝑖max𝑧∈𝐶𝑖 |𝐹(𝑧)| ≤ 𝑝2min𝑖max𝑧∈𝐶𝑖 |𝐹(𝑧)|, or
(c) |𝐹(𝑧∗)| = max𝑖max𝑧∈𝐶𝑖 |𝐹(𝑧)|, |𝐹(𝑧∗∗)| =
min𝑖min𝑧∈𝐶𝑖 |𝐹(𝑧)|, and 𝑧∗, 𝑧∗∗ belong to the same set𝐶𝑖0

(3) for every 𝑅 > 0 there exists 𝑛∗(𝑅) > 0 such that for all𝑧 ∈ C𝑛∫
D𝑛[𝑧0 ,𝑅/L(𝑧0)]

Δ ln |𝐹| 𝑑𝑉2𝑛 ≤ 𝑛∗ (𝑅) (46)

then 𝐹 has bounded L-index in joint variables.

Proof. Ronkin [28, p. 230] deduced the following formula for
entire function:

∫
D𝑛[0,𝑅∗]

Δ ln |𝐹| 𝑑𝑉2𝑛 = 2𝜋∫
𝑍𝐹∩D

𝑛[0,𝑅∗]
𝛾𝐹 (𝑧) 𝑑𝑉2𝑛−2, (47)

where 𝛾𝐹(𝑧) is a multiplicity of zero point of the function𝐹 at point 𝑧, 𝑅∗ ∈ R𝑛+ is arbitrary radius. Let 𝜒𝐹(𝑧) be a
characteristic function of zero set of 𝐹. Then 𝜒𝐹(𝑧) ≤ 𝛾𝐹(𝑧).
Hence,

meas{𝑍𝐹 ∩ D
𝑛 [𝑧0, 𝑅

L (𝑧0)]}
= ∫
𝑍𝐹∩D

𝑛[𝑧0 ,𝑅/L(𝑧0)]
𝜒𝐹 (𝑧) 𝑑𝑉2𝑛−2

≤ ∫
𝑍𝐹∩D

𝑛[𝑧0 ,𝑅/L(𝑧0)]
𝛾𝐹 (𝑧) 𝑑𝑉2𝑛−2

= 12𝜋 ∫D𝑛[𝑧0 ,𝑅/L(𝑧0)] Δ ln |𝐹| 𝑑𝑉2𝑛 ≤ 𝑛∗ (𝑅)2𝜋 ;
(48)

that is, inequality (29) holds.
Now we want to prove that (45) implies (28). For every𝐽 ∈ J\⋃𝑛𝑘=1 1𝑘 and 𝑧0 ∈ C𝑛\𝐺𝑅(𝐹), Cauchy’s integral formula

can be written in the following form

(ln𝐹 (𝑧0))(𝐽)
= 𝐽!(2𝜋𝑖)𝑛 ∫T𝑛(𝑧0 ,𝑅/L(𝑧0)) (ln𝐹 (𝑧))(1𝑚)(𝑧 − 𝑧0)𝐽−1𝑚+1 𝑑𝑧,

(49)

where𝑚 is such that 𝑗𝑚 = 1.
If 𝑧0 ∈ C𝑛 \ 𝐺𝑅(𝐹) and 𝑧 ∈ 𝑍𝐹 ⊂ 𝐺𝑅(𝐹), then for every𝑗 ∈ {1, . . . , 𝑛}

𝑧0𝑗 − 𝑧𝑗 ≥ 𝑟𝑗𝑙𝑗 (𝑧) ≥ 𝑟𝑗𝜆1,𝑗 (𝑅)𝑙𝑗 (𝑧0) > 𝑟𝑗𝜆1,𝑗 (𝑅)2𝑙𝑗 (𝑧0) . (50)

Let us consider the set 𝐴 = ⋃𝑧0∈C𝑛\𝐺𝑅(𝐹) T𝑛(𝑧0, 𝑅Λ 1(𝑅)/2L(𝑧0)). We want to find the greatest radius 𝑅∗ ∈ R𝑛+ such
that 𝐺𝑅∗(𝐹) ∩ 𝐴 = 0:

𝑅
L (𝑧) − 𝑅Λ 1 (𝑅)2L (𝑧0) ≥ 𝑅

L (𝑧) − 𝑅Λ 1 (𝑅)2Λ 1 (𝑅) L (𝑧)
= 𝑅2L (𝑧) .

(51)
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Thus, for 𝑅∗ = 𝑅/3 𝐴 ⊂ C𝑛 \ 𝐺𝑅∗(𝐹). Using (45), we obtain
that for every 𝑧0 ∈ C𝑛 \ 𝐺𝑅(𝐹)(ln𝐹 (𝑧0))(𝐽) ≤ 1(2𝜋)𝑛

⋅ ∫
T𝑛(𝑧0 ,𝑅Λ 1(𝑅)/2L(𝑧0))

(ln𝐹 (𝑧))(1𝑚)𝑧 − 𝑧0𝐽−1𝑚+1 |𝑑𝑧| ≤ 1(2𝜋)𝑛
⋅ ∫

T𝑛(𝑧0 ,𝑅Λ 1(𝑅)/2L(𝑧0))
( 2L (𝑧0)𝑅Λ 1 (𝑅))

𝐽−1𝑚+1 𝑝1 (13𝑅)
⋅ 𝑙𝑚 (𝑧) |𝑑𝑧| ≤ 1(2𝜋)𝑛
⋅ ∫

T𝑛(𝑧0 ,𝑅Λ 1(𝑅)/2L(𝑧0))
( 2L (𝑧0)𝑅Λ 1 (𝑅))

𝐽−1𝑚+1 𝑝1 (13𝑅)
⋅ 𝜆2,𝑚 (0.5𝑅Λ 1 (𝑅)) 𝑙𝑚 (𝑧0) |𝑑𝑧|
= 𝑟𝑚𝜆1,𝑚 (𝑅)2 (2𝜋)𝑛 ( 2L (𝑧0)𝑅Λ 1 (𝑅))

𝐽+1 𝑝1 (13𝑅)
⋅ 𝜆2,𝑚 (0.5𝑅Λ 1 (𝑅)) ∫

T𝑛(𝑧0 ,𝑅Λ 1(𝑅)/2L(𝑧0))
|𝑑𝑧|

= 0.5𝑟𝑚𝜆1,𝑚 (𝑅) 𝑝1 (13𝑅) 𝜆2,𝑚 (0.5𝑅Λ 1 (𝑅))
⋅ ( 2L (𝑧0)𝑅Λ 1 (𝑅))

𝐽 ≤ 𝐶 (𝑅) L𝐽 (𝑧0) ,

(52)

where 𝐶(𝑅) = 0.5𝑝1((1/3)𝑅)max𝐽∈J{𝜆2,𝑚(0.5𝑅Λ 1(𝑅))𝑟𝑚𝜆1,𝑚(𝑅)(2/𝑅Λ 1(𝑅))𝐽}. Thus, we proved that inequality (28) is
valid.

For 𝑛 = 1Theorem 9 implies the following corollary.

Corollary 11. Let 𝑙 ∈ 𝑄, 𝑓 be an entire in C function,𝑛(𝑟, 𝑧0, 𝑓) a number of zeros of the 𝑓 in the disc |𝑧 − 𝑧0| ≤𝑟/𝑙(𝑧0). If the function 𝑓 satisfies the following conditions:

(1) for every 𝑟 > 0 there exists 𝑝1 = 𝑝1(𝑟) > 0 such that for
all 𝑧 ∈ C \ 𝐺𝑟(𝑓)𝑓

 (𝑧)𝑓 (𝑧)  ≤ 𝑝1𝑙 (𝑧) , (53)

(2) for every 𝑟 > 0 and 𝑟 ≥ 0 exists 𝑝2 = 𝑝2(𝑟, 𝑟) ≥1 that for all 𝑧0 ∈ C such that {𝑧 ∈ C :|𝑧 − 𝑧0| = 𝑟/𝑙(𝑧0)} \ 𝐺𝑟(𝑓) = ⋃𝑖 𝐶𝑖 ̸= 0,
where the sets 𝐶𝑖 are connected disjoint sets, and
either (a) max𝑖min𝑧∈𝐶𝑖 |𝑓(𝑧)| ≤ 𝑝2min𝑖min𝑧∈𝐶𝑖 |𝑓(𝑧)|,
or (b) max𝑖max𝑧∈𝐶𝑖 |𝑓(𝑧)| ≤ 𝑝2min𝑖max𝑧∈𝐶𝑖 |𝑓(𝑧)|,
or (c) |𝑓(𝑧∗)| = max𝑖max𝑧∈𝐶𝑖 |𝑓(𝑧)|, |𝑓(𝑧∗∗)| =
min𝑖min𝑧∈𝐶𝑖 |𝑓(𝑧)|, and 𝑧∗, 𝑧∗∗ belong to the same set𝐶𝑖0

(3) for every 𝑟 > 0 there exists 𝑛∗(𝑟) > 0 such that for all𝑧0 ∈ C 𝑛(𝑟, 𝑧0, 𝑓) ≤ 𝑛∗(𝑟),
then 𝑓 has bounded 𝑙-index.

It is known (see [12, 27, 29]) that in one-dimensional
case conditions (1) and (3) of Corollary 11 are necessary
and sufficient for boundedness of 𝑙-index or index. Thus,
condition (2) is excessive in the case. But for C𝑛 (𝑛 ≥ 2),
it is required because D𝑛[𝑧0, 𝑅/L(𝑧0)] \ 𝐺𝑅(𝐹) is a multiply
connected domain, when D𝑛[𝑧0, 𝑅/L(𝑧0)] contains zeros of
the function 𝐹.

We need some notations from [1]. Let b ∈ C𝑛 \ {0} be
a given direction. For a given 𝑧0 ∈ C𝑛 we denote 𝑔𝑧0(𝑡) fl𝐹(𝑧0+𝑡b). If one has 𝑔𝑧0(𝑡) ̸= 0 for all 𝑡 ∈ C, then𝐺b

𝑟 (𝐹, 𝑧0) fl0; if 𝑔𝑧0(𝑡) ≡ 0, then 𝐺b
𝑟 (𝐹, 𝑧0) fl {𝑧0 + 𝑡b : 𝑡 ∈ C}. And

if 𝑔𝑧0(𝑡) ̸≡ 0 and 𝑎0𝑘 are zeros of the function 𝑔𝑧0(𝑡), then𝐺b
𝑟 (𝐹, 𝑧0) fl ⋃𝑘{𝑧0 + 𝑡b : |𝑡 − 𝑎0𝑘 | ≤ 𝑟/𝐿(𝑧0 + 𝑎0𝑘b)}, 𝑟 > 0. Let

𝐺b
𝑟 (𝐹) = ⋃

𝑧0∈C𝑛

𝐺b
𝑟 (𝐹, 𝑧0) . (54)

Remark 12. In [1,Theorem 8], sufficient conditions of bound-
edness of L-index in joint variables were obtained, which are
similar to Theorem 10. Particularly, we assumed the validity
of inequality (45) for all 𝑧 ∈ C𝑛 \ 𝐺1𝑗

𝑟𝑗 (𝐹), 𝑗 ∈ {1, 2, . . . , 𝑛}.
However, 𝐺1𝑗

𝑟𝑗 (𝐹) ⊂ 𝐺𝑅(𝐹), where 𝑅 = (𝑟1, . . . , 𝑟𝑛). Thus,
condition (1) inTheorem 10 is weaker than the corresponding
assumption inTheorem 8 from [1].
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