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This paper considers the optimal stopping problem for continuous-timeMarkov processes.We describe themethodology and solve
the optimal stopping problem for a broad class of reward functions. Moreover, we illustrate the outcomes by some typical Markov
processes including diffusion and Lévy processes with jumps. For each of the processes, the explicit formula for value function and
optimal stopping time is derived. Furthermore, we relate the derived optimal rules to some other optimal problems.

1. Introduction

Let (Ω,F, 𝑃) be a complete probability space; the problem
studied in this paper is to find the optimum

V (𝑥) = sup
𝜏

E𝑥 [e−𝑟(𝜏−𝑡)𝑓 (𝑋𝜏) | F𝑡] , (1)

where 𝑟 > 0 is the discount rate and 𝜏 ≥ 𝑡 is a stopping
time. The process 𝑋𝑡 is a continuous-time Markov process
with starting state 𝑋𝑡 = 𝑥. When 𝑋𝑡 denotes the stock
price and 𝑓(⋅) is the payoff function, V(𝑥) is the pricing
expression for American option (e.g., see Wong [1]). When𝑓(⋅) is an investor’s utility function about the stock price 𝑋𝑡,
the optimum solution indicates the best time to buy or sell the
stock (e.g., see McDonald and Siegel [2]).

Because of the Markov property, the value function V(𝑥)
can be written as

V (𝑥) = sup
𝜏

E𝑥 [e−𝑟(𝜏−𝑡)𝑓 (𝑋𝜏) | 𝑋𝑡 = 𝑥]
≜ sup
𝜏

E𝑥 [e−𝑟(𝜏−𝑡)𝑓 (𝑋𝜏)] , (2)

where E𝑥(⋅) denotes the conditional expectation E𝑥(⋅ | 𝑋𝑡 =𝑥). The function 𝑓(⋅) is called the reward function. The
possibility that 𝜏 = ∞ is allowed, andmaking the convention
that

e−𝑟𝜏𝑓 (𝑋𝜏) = 0 if 𝜏 = ∞, (3)

it means that if an option is never exercised, then its reward
payment is valueless for the investor.

In the paper, we are interested in determining both an
optimal stopping time 𝜏∗ and value function V(𝑥) for a large
class of reward functions. We show the conditions for reward
functions and deduce the explicit optimal rules for general
continuous-time Markov processes including diffusion and
Lévy processes with jumps.

The study of optimal stopping time for stochastic pro-
cesses, especially geometric Brownian motion, has a long
history in finance literature. Under the assumption that𝑋𝑡 is
geometric Brownianmotion, the seminal paper byMcDonald
and Siegel [2] puts forward the problem with the reward
function 𝑓(𝑥) = 1 − 𝑥 as a model to illustrate the financial
decision making. Hu and Øksendal [3] solved the problem
in multidimensional cases, when 𝑓(𝑥) = ∑𝑛𝑖=1 𝑥𝑖 − ∑𝑚𝑖=𝑛+1 𝑥𝑖,
but they restricted the stopping time 𝜏 in a bounded interval.
Recently, Nishide and Rogers [4] extended the problem by
relaxing the restriction on the stopping time. For the other
forms of value functions, Pedersen and Peskir [5] solved the
problem by taking some special diffusion processes.

The purpose of our work is threefold. Firstly, we intend
to make clear the assumptions on reward function 𝑓(𝑥), in
such a way that the explicit value can be generalized to a
larger class of issues. For this purpose, throughout this article
we assume that the function 𝑓(𝑥) is nonincreasing, concave
and twice continuous differentiable.These properties are very
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powerful in the following proof, as we will see. Secondly,
we pay attention to general Markov processes including
diffusion and Lévy processes with jumps.With the help of the
infinitesimal generator, we obtain an explicit formula for the
value function and the stopping time.Thirdly, we find that the
optimal problem (2) is equivalent to other optimal problems
like

𝑤 (𝑥) = sup
𝜏

E𝑥 [∫𝜏
𝑡
e−𝑟(𝑠−𝑡)𝑓 (𝑋𝑠) d𝑠] , (4)

𝑤 (𝑥) = inf
𝜏
E𝑥 [∫𝜏
𝑡
e−𝑟(𝑠−𝑡)𝑓 (𝑋𝑠) d𝑠] . (5)

This work is inspired by Pedersen and Peskir [5], who verified
the equivalence of problems (2) and (4) for 𝑓(𝑥) = 𝑥, where𝑋𝑡 is an Ornstein-Uhlenbeck process. Note that we do not
consider the case 𝑓(𝑥) = 𝑥, so our approach to deal with the
optimal problem is different from that of Pedersen and Peskir.
Moreover, our work naturally explore the explicit solutions
of the new optimal problem (4) for a larger class of reward
functions and underlying processes𝑋𝑡.

The paper is organized as follows. In Section 2, the
explicit value function and optimal stopping time are derived
for a general Markov process along with the condition for
the reward functions. Section 3 discusses some applications
to diffusion, which include Brownian motion with drift,
geometric Brownian motion, and the Ornstein-Uhlenbeck
process. Section 4 displays some concrete examples of Lévy
processes with jumps. In Section 5, we will link the outcomes
with other optimal problems such that explicit solutions
for the new problems can also be feasible to a general
Markov process with a large class of reward functions. Finally,
concluding remarks are given in Section 6.

2. Optimal Rule for Continuous-Time
Markov Processes

For a Markov process 𝑋𝑡, the infinitesimal generator of 𝑋𝑡 is
defined as

G𝑔 (𝑥) = lim
𝑡↘0

E𝑥𝑔 (𝑋𝑡) − 𝑔 (𝑥)𝑡 , (6)

where 𝑔(𝑥) is twice continuous differentiable. In the diffusion
case, namely,

d𝑋𝑡 = 𝑎 (𝑋𝑡) d𝑡 + 𝜎 (𝑋𝑡) d𝑊𝑡, (7)

where𝑊𝑡 is a standard Brownianmotion, 𝑎(𝑥) > 0, 𝜎(𝑥) ̸= 0,
the infinitesimal generator is equivalent to

G𝑔 (𝑥) = 𝑎 (𝑥) d𝑔
d𝑥 + 𝜎2 (𝑥)2 d2𝑔

d𝑥2 . (8)

In the case of Lévy process with jumps, driven by the equation

d𝑋𝑡 = 𝑎 (𝑋𝑡−) d𝑡 + 𝜎 (𝑋𝑡−) d𝑊𝑡 + 𝑐 (𝑋𝑡−) d𝑁𝑡, (9)

where 𝑁𝑡 is a homogeneous Poisson process, 𝑎(𝑥) > 0,𝜎(𝑥) ̸= 0, 𝑐(𝑥) > 0, the infinitesimal generator is

G𝑔 (𝑥) = 𝑎 (𝑥) d𝑔
d𝑥 + 𝜎2 (𝑥)2 d2𝑔

d𝑥2
+ ∫ (𝑔 (𝑥 + 𝑐 (𝑦)) − 𝑔 (𝑥))Π (d𝑦) , (10)

where Π(⋅) is the Lévy measure (for jump diffusion and its
generators, e.g., we can refer to Gihman and Skorohod [6]).

First, wemake the assumption about the reward function.

Assumption 1. The reward function 𝑓(𝑥) is nonincreasing,
concave, and twice continuous differentiable; that is,
d𝑓(𝑥)/d𝑥 ≤ 0, d2𝑓(𝑥)/d𝑥2 ≤ 0, and 𝑓(𝑥) is 𝐶2.

Under Assumption 1, we present the explicit solutions for
general continuous-time Markov processes.

Theorem 2. For aMarkov process with infinitesimal generator
G, let 𝑔(𝑥) be the solution of

G𝑔 (𝑥) = 𝑟𝑔 (𝑥) , (11)

satisfying

lim
𝑥→∞

𝑔 (𝑥) = 0,
d𝑔 (𝑥)
d𝑥 ≤ 0,

d2𝑔 (𝑥)
d𝑥2 ≥ 0.

(12)

Given the reward function 𝑓(𝑥) in Assumption 1, if there exists
a point 𝑥∗ such that

d𝑓 (𝑥)
d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥∗ = 𝑓 (𝑥∗)𝑔 (𝑥∗) d𝑔 (𝑥)
d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥∗ , 𝑓 (𝑥∗) > 0, (13)

then the optimal problem

V (𝑥) = sup
𝜏

E𝑥 [e−𝑟(𝜏−𝑡)𝑓 (𝑋𝜏)] (14)

has an explicit expression for the value function

V (𝑥) = {{{{{{{
𝑓 (𝑥) , 𝑥 ≤ 𝑥∗,
𝑓 (𝑥∗)𝑔 (𝑥∗) 𝑔 (𝑥) , 𝑥 ≥ 𝑥∗. (15)

The optimal stopping time is

𝜏∗ = inf {𝑠 ≥ 𝑡 : 𝑋𝑠 ≤ 𝑥∗} . (16)

Proof. Define a function

ℎ (𝑥) = 𝑓 (𝑥∗)𝑔 (𝑥∗) 𝑔 (𝑥) − 𝑓 (𝑥) , (17)
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and then we get

ℎ (𝑥) = 0,
dℎ (𝑥)
d𝑥 = 𝑓 (𝑥∗)𝑔 (𝑥∗) d𝑔 (𝑥)d𝑥 − d𝑓 (𝑥)

d𝑥 = 0
iff 𝑥 = 𝑥∗,

(18)

d2ℎ (𝑥)
d𝑥2 = 𝑓 (𝑥∗)𝑔 (𝑥∗) d

2𝑔 (𝑥)
d𝑥2 − d2𝑓 (𝑥)

d𝑥2 ≥ 0. (19)

Hence, ℎ(𝑥) attains the minimum at 𝑥 = 𝑥∗, (𝑓(𝑥∗)/𝑔(𝑥∗))𝑔(𝑥) ≥ 𝑓(𝑥). So we have the inequality
E𝑥e−𝑟(𝜏−𝑡)𝑓 (𝑋𝜏) ≤ E𝑥e−𝑟(𝜏−𝑡)V (𝑋𝜏) . (20)

The value function V(𝑥) is 𝐶1, V󸀠󸀠(𝑥) exists, and is
continuous except at 𝑥∗. By Itô’s formula,

e−𝑟𝑢V (𝑋𝑢) = e−𝑟𝑡V (𝑋𝑡) + local martingale

+ ∫𝑢
𝑡
e−𝑟𝑠 (G − 𝑟) V (𝑋𝑠) d𝑠, (21)

for any time 𝑢 > 𝑡, where G is the infinitesimal generator of
the process𝑋𝑡.

Because the value function V(𝑥) is bounded, the local
martingale term on the right-hand side of (21) is also
bounded (all the other terms in (21) are clearly bounded),
implying that it is in fact a martingale with zero expectation.
Hence, by the optimal sampling theorem, we have, for any
stopping time 𝜏,
E𝑥e−𝑟(𝜏−𝑡)V (𝑋𝜏) = V (𝑋0)

+ E𝑥 ∫𝜏
𝑡
e−𝑟(𝑠−𝑡) (G − 𝑟) V (𝑋𝑠) d𝑠. (22)

(a) When 𝑥 ≤ 𝑥∗, V(𝑥) = 𝑓(𝑥), we claim that

(G − 𝑟) V (𝑥) = (G − 𝑟) 𝑓 (𝑥) ≤ 0. (23)

For diffusion,

(G − 𝑟) 𝑓 (𝑥) = 𝑎 (𝑥) d𝑓
d𝑥 + 𝜎2 (𝑥)2 d2𝑓

d𝑥2 − 𝑟𝑓 (𝑥) , (24)

𝑎(𝑥) > 0, d𝑓(𝑥)/d𝑥 ≤ 0, d2𝑓(𝑥)/d𝑥2 ≤ 0, 𝑓(𝑥) ≥ 𝑓(𝑥∗) > 0,
and the inequality in (23) holds naturally. For Lévy processes
with jumps,

(G − 𝑟) 𝑓 (𝑥) = 𝑎 (𝑥) d𝑓
d𝑥 + 𝜎2 (𝑥)2 d2𝑓

d𝑥2
+ ∫ (𝑓 (𝑥 + 𝑐 (𝑦)) − 𝑓 (𝑥))Π (d𝑦)
− 𝑟𝑓 (𝑥) .

(25)

As 𝑐(𝑦) > 0 and 𝑓(𝑥) is decreasing on states, then ∫(𝑓(𝑥 +𝑐(𝑦)) − 𝑓(𝑥))Π(d𝑦) < 0.

(b) When 𝑥 ≥ 𝑥∗, V(𝑥) = (𝑓(𝑥∗)/𝑔(𝑥∗))𝑔(𝑥), the
function 𝑔(𝑥) is the solution of

G𝑔 (𝑥) = 𝑟𝑔 (𝑥) , (26)

so (G − 𝑟)V(𝑥) = 0.
Therefore, from (a) and (b), we have (G− 𝑟)V(𝑥) ≤ 0, and

the equality holds for 𝑥 ≥ 𝑥∗. It turns to be
E𝑥e−𝑟(𝜏−𝑡)𝑓 (𝑋𝜏) ≤ E𝑥e−𝑟(𝜏−𝑡)V (𝑋𝜏)

= V (𝑋0)
+ E𝑥 ∫𝜏

𝑡
e−𝑟(𝑠−𝑡) (G − 𝑟) V (𝑋𝑠) d𝑠

≤ V (𝑥) .
(27)

From which we can see that V(𝑥) is an upper bound for the
value starting from𝑋0 = 𝑥. This bound is achieved when 𝜏 =𝜏∗. When the starting state 𝑥 is smaller than 𝑥∗, the optimal
stopping time is 𝜏∗ = 𝑡. That is, sup𝜏E

𝑥e−𝑟(𝜏−𝑡)𝑓(𝑋𝜏) =
E𝑥𝑓(𝑋𝑡) = V(𝑥) as it reaches its upper bound. If the starting
state is greater than the point 𝑥∗, it must wait until 𝜏∗, which
is the first hitting time to the point 𝑥∗. At the stopping time𝜏∗, 𝑓(𝑋𝜏∗) = V(𝑋𝜏∗), and ∫𝜏∗𝑡 e−𝑟(𝑠−𝑡)(G − 𝑟)V(𝑋𝑠)d𝑠 = 0, so
E𝑥e−𝑟(𝜏

∗−𝑡)𝑓(𝑋𝜏∗) = V(𝑥), reaching its upper bound.
Remark 3. Actually, for all diffusion,Theorem 2 holds for the
drift term satisfying 𝑎(𝑥) < 0, 𝑎󸀠(𝑥) < 𝑟. We calculate that

(𝑎 (𝑥) d𝑓 (𝑥)
d𝑥 − 𝑟𝑓 (𝑥))󸀠

= 𝑎󸀠 (𝑥) 𝑓󸀠 (𝑥) + 𝑎 (𝑥) 𝑓󸀠󸀠 (𝑥) − 𝑟𝑓󸀠 (𝑥) ≥ 0,
(28)

so for 𝑥 ≤ 𝑥∗,
𝑎 (𝑥) 𝑓󸀠 (𝑥) − 𝑟𝑓 (𝑥) ≤ 𝑎 (𝑥∗) 𝑓󸀠 (𝑥∗) − 𝑟𝑓 (𝑥∗)

= 𝑓 (𝑥∗)𝑔 (𝑥∗) (𝑎 (𝑥∗) 𝑔󸀠 (𝑥∗) − 𝑟𝑔 (𝑥∗)) .
(29)

As 𝑔(𝑥∗) satisfies 𝑎(𝑥∗)𝑔󸀠(𝑥∗)+ (𝜎2(𝑥∗)/2)𝑔󸀠󸀠(𝑥∗)−𝑟𝑔(𝑥∗) =0, we can arrive at

(G − 𝑟) 𝑓 (𝑥) = 𝑎 (𝑥) 𝑓󸀠 (𝑥) + 𝜎2 (𝑥)2 𝑓󸀠󸀠 (𝑥) − 𝑟𝑓 (𝑥)
≤ −𝜎2 (𝑥∗)2 𝑓 (𝑥∗)𝑔 (𝑥∗) 𝑔󸀠󸀠 (𝑥∗)
+ 𝜎2 (𝑥)2 𝑓󸀠󸀠 (𝑥) ≤ 0.

(30)

The rest of the proof is the same as that in Theorem 2.

However, the condition for Lévy process will be more
complicated. In order to have a uniform style, we restrict
to the case 𝑎(𝑥) > 0. Moreover, we can see from (19) that
if the point 𝑥∗ exists, then it is unique. Next we present
results on some classical Markov processes as applications of
Theorem 2.
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3. Diffusion

3.1. Brownian Motion with Drift. For Brownian motion with
drift 𝜇 > 0, and variance 𝜎2 (𝜎 ̸= 0), namely, the process is
driven by the SDE

d𝑋𝑡 = 𝜎d𝑊𝑡 + 𝜇d𝑡,
𝑋0 = 𝑥 > 0, (31)

by usingTheorem 2, we get the following proposition.

Proposition 4. Let 𝑓(𝑥) be the function in Assumption 1; if
there exists a point 𝑥∗ such that

d𝑓 (𝑥)
d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥∗ = −(√𝜇2𝜎4 + 2𝑟𝜎2 + 𝜇𝜎2)𝑓(𝑥∗) ,
𝑓 (𝑥∗) > 0,

(32)

then the value function V(𝑥) has the form
V (𝑥)

= {{{{{{{{{

𝑓 (𝑥) , 𝑥 ≤ 𝑥∗,
𝑓 (𝑥∗) exp[[(√

𝜇2𝜎4 + 2𝑟𝜎2 + 𝜇𝜎2)(𝑥∗ − 𝑥)]] , 𝑥 ≥ 𝑥∗.
(33)

The optimal stopping time is

𝜏∗ = inf {𝑠 ≥ 𝑡 : 𝑋𝑠 ≤ 𝑥∗} . (34)

Proof. The infinitesimal generator for Brownian motion with
drift is G = 𝜇(d/d𝑥) + (𝜎2/2)(d2/d𝑥2). It is well known that
the ordinary differential equation (ODE) of G𝑔(𝑥) = 𝑟𝑔(𝑥)
has two linearly independent solutions

𝜙 (𝑥) = exp[[𝑥(
√𝜇2𝜎4 + 2𝑟𝜎2 − 𝜇𝜎2)]] ,

𝜑 (𝑥) = exp[[−𝑥(
√𝜇2𝜎4 + 2𝑟𝜎2 + 𝜇𝜎2)]] .

(35)

So 𝑔(𝑥) = 𝑐1𝜙(𝑥) + 𝑐2𝜑(𝑥) (𝑐1 and 𝑐2 are constants).
Considering the boundary condition lim𝑥→∞𝑔(𝑥) = 0 and𝑔󸀠(𝑥) ≤ 0, 𝑔󸀠󸀠(𝑥) ≥ 0, then 𝑐1 must be equal to zero, 𝑔(𝑥) =𝑐2𝜑(𝑥), and 𝑐2 > 0. Equation (13) in Theorem 2 tells us that
the point 𝑥∗ is determined by

𝑓󸀠 (𝑥∗) = 𝑓 (𝑥∗)𝑔 (𝑥∗) 𝑔󸀠 (𝑥∗)
= −(√𝜇2𝜎4 + 2𝑟𝜎2 + 𝜇𝜎2)𝑓(𝑥∗) ,

(36)

since 𝑔󸀠(𝑥)/𝑔(𝑥) = −√𝜇2/𝜎4 + 2𝑟/𝜎2 − 𝜇/𝜎2. Thus, the
expression for the value function V(𝑥) is easily obtained by
(15).

As the simplest example, we take the reward function𝑓(𝑥) = 1 − 𝑥 and we take the parameters 𝜇 = 1, 𝜎 = √2,
and 𝑟 = 1. Then, the problem V(𝑥) = sup𝜏 E

𝑥[e−(𝜏−𝑡)(1 − 𝑋𝜏)]
has the solution

V (𝑥) =
{{{{{{{{{
1 − 𝑥, 𝑥 ≤ 32 − √52 ,
(√52 − 12) exp[−(√52 + 12)𝑥 + √52 − 12] , 𝑥 ≥ 32 − √52 . (37)

The optimal stopping time is

𝜏∗ = inf {𝑠 ≥ 𝑡 : 𝑋𝑠 ≤ 32 − √52 } . (38)

We draw the value function and the point 𝑥∗ in Figure 1.

3.2. Geometric BrownianMotion. As for geometric Brownian
motion, that is, the process𝑋𝑡 is driven by

d𝑋𝑡 = 𝑋𝑡 (𝜎d𝑊𝑡 + 𝜇d𝑡) , 𝑋0 = 𝑥 > 0, (39)

we derive the following proposition.

Proposition 5. Let 𝑓(𝑥) be the function in Assumption 1; if
there exists a point 𝑥∗ such that

d𝑓 (𝑥)
d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥∗ = 𝛽𝑓 (𝑥
∗)𝑥∗ , 𝑓 (𝑥∗) > 0, (40)

where𝛽 = 1/2−𝜇/𝜎2−√(1/2 − 𝜇/𝜎2)2 + 2𝑟/𝜎2, then the value
function V(𝑥) has the form

V (𝑥) = {{{{{
𝑓 (𝑥) , 𝑥 ≤ 𝑥∗,
𝑓 (𝑥∗) ( 𝑥𝑥∗ )

𝛽 , 𝑥 ≥ 𝑥∗. (41)

The optimal stopping time is

𝜏∗ = inf {𝑠 ≥ 𝑡 : 𝑋𝑠 ≤ 𝑥∗} . (42)
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Figure 1: Plot of the value function and the point 𝑥∗ (𝑥∗ ≃ 0.3820)
for Brownian motion with parameters 𝜇 = 1, 𝜎 = √2, and 𝑟 = 1.

Proof. The infinitesimal generator for geometric Brownian
motion is G = 𝜇𝑥(d/d𝑥) + (𝜎2𝑥2/2)(d2/d𝑥2). The asso-
ciated ODE of G𝑔(𝑥) = 𝑟𝑔(𝑥) has two linearly inde-
pendent solutions 𝜙(𝑥)𝛽󸀠 and 𝜑(𝑥)𝛽, where 𝛽󸀠 = 1/2 −𝜇/𝜎2 + √(1/2 − 𝜇/𝜎2)2 + 2𝑟/𝜎2 and 𝛽 = 1/2 − 𝜇/𝜎2 −
√(1/2 − 𝜇/𝜎2)2 + 2𝑟/𝜎2. By using the boundary conditions of
Theorem 2, we find that 𝑔(𝑥) = 𝑐𝜑(𝑥)𝛽, where 𝑐 is a constant
bigger than zero.Then, by substituting 𝑔(𝑥) inTheorem 2, we
deduce the value function and the point 𝑥∗.
Remark 6. If the volatility 𝜎 is equal to zero, then the drift 𝜇
should be smaller than zero. Or the problem cannot be solved
by Theorem 2. We take the reward function 𝑓(𝑥) = 1 − 𝑥 as
an illustration. For 𝜎 = 0 and 𝜇 < 0, from Theorem 2, the
solution for the optimal value function is

V (𝑥) = {{{{{{{
1 − 𝑥, 𝑥 ≤ 𝑟𝑟 − 𝜇 ,−𝜇𝑟 − 𝜇 (𝑟𝑥 − 𝜇𝑥𝑟 )𝑟/𝜇 , 𝑥 ≥ 𝑟𝑟 − 𝜇 .

(43)

The optimal stopping time is

𝜏∗ = inf {𝑡 : 𝑋𝑡 ≤ 𝑟𝑟 − 𝜇} . (44)

If 𝜎 = 0 and 𝜇 > 0, d𝑋𝑠 = 𝜇𝑋𝑠d𝑠, that is, 𝑋𝑠 = 𝑥𝑒𝜇(𝑠−𝑡), for
any time 𝑠 ≥ 𝑡. By direct computation, we find that

V (𝑥) = sup
𝜏

E𝑥 [e−𝑟(𝜏−𝑡) (1 − 𝑥𝑒𝜇(𝜏−𝑡))]
= {{{

0, 𝑥 ≥ 1,
1 − 𝑥, 𝑥 ≤ 1,

(45)

with the optimal stopping time

𝜏∗ = inf {𝑡 : 𝑋𝑡 ≤ 1} . (46)

When the starting state is smaller than 1, it should take action
at once. When the starting state is greater than 1, it will never
invest, because the process is increasing, and it never reaches
its optimal invest time. But, in this case, the point 𝑥∗ = 1
is not determined by (13). Because the left side is −1 and the
right side is 0 if we replace 𝑓(𝑥) = 1 − 𝑥 and 𝑥∗ = 1 in (13).

Taking parameters 𝜇 = 1, 𝜎 = √2, and 𝑟 = 1, the value
function for the reward function 𝑓(𝑥) = 1 − 𝑥 is

V (𝑥) = {{{{{
1 − 𝑥, 𝑥 ≤ 12 ,14𝑥 , 𝑥 ≥ 12 .

(47)

The optimal stopping time is

𝜏∗ = inf {𝑡 : 𝑋𝑡 ≤ 12} . (48)

This problem’s solution is the key to finding the optimum

V (𝑥) = sup
𝜏

E𝑥 [e−𝑟𝜏 (𝑋1𝜏 − 𝑋2𝜏)] , (49)

which has many applications in finance, and it has been
considered for geometric Brownian motion from different
points of view in a variety of articles. Let us just mention [1–
4, 7–9].

3.3. Ornstein-Uhlenbeck Process. In this subsection we con-
sider the optimal stopping problem when 𝑋 is an Ornstein-
Uhlenbeck process,

d𝑋𝑡 = 𝜎d𝑊𝑡 − 𝜇𝑋𝑡d𝑡, 𝑋0 = 𝑥. (50)

Proposition 7. Let 𝑓(𝑥) be as in Assumption 1; if there exists
a point 𝑥∗ such that

d𝑓 (𝑥)
d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥∗ = −𝑓 (𝑥∗)
𝐺𝑟/𝜇+1 (𝑥∗)𝐺𝑟/𝜇 (𝑥∗) , 𝑓 (𝑥∗) > 0, (51)

then the value function V(𝑥) has the form
V (𝑥) = {{{{{{{

𝑓 (𝑥) , 𝑥 ≤ 𝑥∗,
𝑓 (𝑥∗) 𝐺𝑟/𝜇 (𝑥)𝐺𝑟/𝜇 (𝑥∗) , 𝑥 ≥ 𝑥∗, (52)

where

𝐺𝑟/𝜇 (𝑥) = ∫∞
0
𝑠𝑟/𝜇−1 exp(−𝑥𝑠 − 𝜎2𝑠24𝜇 ) d𝑠. (53)

The optimal stopping time is

𝜏∗ = inf {𝑠 ≥ 𝑡 : 𝑋𝑠 ≤ 𝑥∗} . (54)

Proof. For the Ornstein-Uhlenbeck process, the infinitesimal
generator is G = −𝜇𝑥(d/d𝑥) + (𝜎2/2)(d2/d𝑥2). The ODE of
G𝑔(𝑥) = 𝑟𝑔(𝑥) has two linearly independent solutions

𝐹𝑟/𝜇 (𝑥) = ∫∞
0
𝑠𝑟/𝜇−1 exp(𝑥𝑠 − 𝜎2𝑠24𝜇 ) d𝑠,

𝐺𝑟/𝜇 (𝑥) = ∫∞
0
𝑠𝑟/𝜇−1exp(−𝑥𝑠 − 𝜎2𝑠24𝜇 ) d𝑠.

(55)
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The solution satisfying the boundary conditions inTheorem2
is 𝑔(𝑥) = 𝑐𝐺𝑟/𝜇(𝑥), where 𝑐 is a constant bigger than zero.
Thanks to the relations

𝐺𝑟/𝜇 (𝑥) = 𝜇𝑥𝑟 𝐺𝑟/𝜇+1 (𝑥) + 𝜎22𝑟𝐺𝑟/𝜇+2 (𝑥) ,
d𝐺𝑟/𝜇 (𝑥)

d𝑥 = −𝐺𝑟/𝜇+1 (𝑥) ,
d2𝐺𝑟/𝜇 (𝑥)

d𝑥 = 𝐺𝑟/𝜇+2 (𝑥) ,
(56)

we obtain the value function and the point 𝑥∗.
Regarding the reward function𝑓(𝑥) = 1−𝑥, if there exists

a point 𝑥∗ such that 𝑓(𝑥∗) = 1 − 𝑥∗ > 0 and 𝐺𝑟/𝜇+1(𝑥∗)(1 −𝑥∗) = 𝐺𝑟/𝜇(𝑥∗), the problem V(𝑥) has the form
V (𝑥) = {{{{{{{

1 − 𝑥, 𝑥 ≤ 𝑥∗,
(1 − 𝑥∗) 𝐺𝑟/𝜇 (𝑥)𝐺𝑟/𝜇 (𝑥∗) , 𝑥 ≥ 𝑥∗. (57)

The optimal stopping time is

𝜏∗ = inf {𝑠 ≥ 𝑡 : 𝑋𝑠 ≤ 𝑥∗} . (58)

When parameters are chosen as 𝜇 = 1, 𝜎 = √2, and 𝑟 = 1,
the point 𝑥∗ is the solution of

𝐺2 (𝑥) (1 − 𝑥) = 𝐺1 (𝑥) . (59)

Thanks to

𝐺1 (𝑥) = ∫∞
0

exp(−𝑥𝑠 − 𝑠22 ) d𝑠
= exp(𝑥22 )∫

∞

𝑥
exp(−𝑠22 ) d𝑠,

𝐺2 (𝑥) = 1 − 𝑥𝐺1 (𝑥) ,
(60)

𝐺1(𝑥) and 𝐺2(𝑥) can be reduced to expressions of
gammainc(𝑥2/2, 1/2) in Matlab. By numerical calculation,
we get the point 𝑥∗ ≃ −0.1628 and we show the value
function in Figure 2.

4. Lévy Processes with Jumps

4.1. The Jump Diffusion. Jump diffusion processes are pro-
cesses of the form

d𝑋𝑡 = 𝜎d𝑊𝑡 + 𝜇d𝑡 + d(𝑁𝑡∑
𝑖=1

𝑌𝑖) , 𝑋0 = 𝑥. (61)

They are studied in Kou and Wang [10], as regards first
passage times. Here, 𝑁𝑡 is a homogeneous Poisson process
with intensity rate 𝜆 > 0, drift 𝜇 > 0, and volatility𝜎 > 0, and the jump sizes {𝑌1, 𝑌2, . . .} are independent
and identically distributed random variables.We also assume
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Figure 2: The value function and the point 𝑥∗ ≃ −0.1628 for the
Ornstein-Uhlenbeck process with parameters 𝜇 = 1, 𝜎 = √2, and𝑟 = 1, with regard to the reward function 𝑓(𝑥) = 1 − 𝑥.

that the standard Brownian motion 𝑊𝑡 is independent of{𝑌1, 𝑌2, . . .}. The common density of 𝑌 is given by

𝑝𝑌 (𝑦) = 𝜂e−𝜂𝑦, (62)

where 𝜂 > 0.
Proposition 8. Regarding the reward function 𝑓(𝑥) in
Assumption 1, if there exists a point 𝑥∗ such that

d𝑓 (𝑥)
d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥∗ = 𝛽𝑓 (𝑥∗) , 𝑓 (𝑥∗) > 0, (63)

where 𝛽 < 0 is the negative root of
𝜎22 𝑦2 + 𝜇𝑦 + 𝜆 𝑦𝜂 − 𝑦 − 𝑟 = 0, (64)

then the value function V(𝑥) has the form
V (𝑥) = {{{

𝑓 (𝑥) , 𝑥 ≤ 𝑥∗,
𝑓 (𝑥∗) exp (𝛽𝑥 − 𝛽𝑥∗) , 𝑥 ≥ 𝑥∗. (65)

The optimal stopping time is

𝜏∗ = inf {𝑠 ≥ 𝑡 : 𝑋𝑠 ≤ 𝑥∗} . (66)

Proof. In this case

(G − 𝑟) V (𝑥) = 𝜇dV (𝑥)
d𝑥 + 𝜎22 d2V (𝑥)

d𝑥2
+ 𝜆∫∞
0
[V (𝑥 + 𝑦) − V (𝑥)] 𝜂e−𝜂𝑦d𝑦

− 𝑟V (𝑥) .
(67)
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(a) When 𝑥 ≤ 𝑥∗, V(𝑥 + 𝑦) − V(𝑥) ≤ 0 for every 𝑦 >0, d𝑓(𝑥)/d𝑥 ≤ 0, d2𝑓(𝑥)/d𝑥2 ≤ 0, for 𝜇 > 0, and(G − 𝑟)V(𝑋𝑠) ≤ 0.
(b) When 𝑥 ≥ 𝑥∗, (G − 𝑟)V(𝑥) = ((1/2)𝜎2𝛽2 + 𝜇𝛽 +𝜆(𝛽/(𝜂 − 𝛽)) − 𝑟)𝑓(𝑥∗) exp(𝛽𝑥 − 𝛽𝑥∗) = 0. Since(G − 𝑟)V(𝑥) ≤ 0 for all 𝑥, the rest of the proof is the

same as inTheorem 2.

Remark 9. We assume that 𝜇 > 0 as Kou and Wang [10] do,
and we do not know whether the results hold for 𝜇 ≤ 0.

Let𝐻(𝑦) be defined as𝐻(𝑦) = (1/2)𝜎2𝑦2 +𝜇𝑦+𝜆(𝑦/(𝜂−𝑦)), and it has three roots, 𝑦1 = 0, 𝑦2 = 𝜂/2 − 𝜇/𝜎2 +√(𝜂/2 + 𝜇/𝜎2)2 + 2𝜆/𝜎2 > 0, and 𝑦3 = 𝜂/2 − 𝜇/𝜎2 −
√(𝜂/2 + 𝜇/𝜎2)2 + 2𝜆/𝜎2 < 0.

Next, we prove that the equation 𝐻(𝑦) = 𝑟 for all 𝑟 > 0
has exactly a negative root 𝛽.

𝐻󸀠 (𝑦) = 𝜎2𝑦 + 𝜇 + 𝜆𝜂(𝜂 − 𝑦)2 ,
𝐻󸀠󸀠 (𝑦) = 𝜎2 + 2𝜆𝜂(𝜂 − 𝑦)3 ,

(68)

so 𝐻(𝑦) is increased and convex on the interval (0, 𝜂) with𝐻(0) = 0 and 𝐻(𝜂−) = ∞, and there is exactly one root for𝐻(𝑦) = 𝑟. Furthermore, since 𝐻(𝜂+) = −∞, 𝐻(∞) = ∞,
there is at least one root on (𝜂,∞). Similarly, there is at least
one root on (−∞, 0), as 𝐻(−∞) = ∞ and 𝐻(0) = 0. But
the equation𝐻(𝑦) = 𝑟 is actually a polynomial equation with
degree three; therefore, it can have at most three real roots.
It follows that, on each interval, (−∞, 0) and (𝜂,∞), there is
exactly one root.

As an example, we take the reward function 𝑓(𝑥) = 1 −𝑥 again. From Proposition 8, 𝑥∗ = 1 + 1/𝛽, where 𝛽 is the
negative root of

12𝜎2𝑦2 + 𝜇𝑦 + 𝜆𝑦𝜂 − 𝑦 − 𝑟 = 0, (69)

and the value function V(𝑥) has the form
V (𝑥) = {{{

1 − 𝑥, 𝑥 ≤ 𝑥∗,
(1 − 𝑥∗) exp (𝛽𝑥 − 𝛽𝑥∗) , 𝑥 ≥ 𝑥∗. (70)

The optimal stopping time is

𝜏∗ = inf {𝑠 ≥ 𝑡 : 𝑋𝑠 ≤ 𝑥∗} . (71)

If the parameters are 𝜇 = 1, 𝜎 = √2, 𝑟 = 1, 𝜆 = 1, and 𝜂 =1.5, we show the value function and the point 𝑥∗ in Figure 3.
Numerical calculation gets the negative solution for 𝛽 to be𝛽 ≃ −1.8421, and the point 𝑥∗ ≃ 0.4571. Compared with
the case of Brownian motion with drift, the decision point 𝑥∗
results larger after adding the jump process. Intuitively, as risk
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Figure 3:The value function and the point 𝑥∗ (𝑥∗ ≃ 0.4571) for the
jump diffusion model with parameters 𝜇 = 1, 𝜎 = √2, 𝑟 = 1, 𝜆 = 1,
and 𝜂 = 1.5.
in the system is increasing, the investors are intent to wait and
observe for a longer time, so that the optimal stopping occurs
later and the decision point gets greater.

The more general problem, when the common density of𝑌 is given by

𝑝𝑌 (𝑦) = 𝑚∑
𝑖=1

𝑝𝑖𝜂𝑖e−𝜂𝑖𝑦, (72)

where 0 < 𝜂1 < 𝜂2 < ⋅ ⋅ ⋅ < 𝜂𝑚 < ∞, and ∑𝑚𝑖=1 𝑝𝑖 = 1, has the
following result.

Proposition 10. Let 𝑓(𝑥) be as in Assumption 1; if there exists
a point 𝑥∗ such that

d𝑓 (𝑥)
d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥∗ = 𝛽𝑓 (𝑥∗) , 𝑓 (𝑥∗) > 0, (73)

where 𝛽 < 0 is the negative root of
𝜎22 𝑦2 + 𝜇𝑦 + 𝜆

𝑚∑
𝑖=1

𝑝𝑖 𝑦𝜂𝑖 − 𝑦 − 𝑟 = 0, (74)

then the value function V(𝑥) has the form
V (𝑥) = {{{

𝑓 (𝑥) , 𝑥 ≤ 𝑥∗,
𝑓 (𝑥∗) exp (𝛽𝑥 − 𝛽𝑥∗) , 𝑥 ≥ 𝑥∗. (75)

The optimal stopping time is

𝜏∗ = inf {𝑠 ≥ 𝑡 : 𝑋𝑠 ≤ 𝑥∗} . (76)

Remark 11. The equation (𝜎2/2)𝑦2 + 𝜇𝑦 + 𝜆∑𝑚𝑖=1 𝑝𝑖(𝑦/(𝜂𝑖 −𝑦)) − 𝑟 = 0 has (𝑚 + 2) roots, which are all real and distinct.
Indeed, it has𝑚+1 positive roots,𝛽1, . . . , 𝛽𝑚+1, and a negative
root 𝛽, as follows:

−∞ < 𝛽 < 0 < 𝛽1 < ⋅ ⋅ ⋅ < 𝛽𝑚+1 < ∞. (77)
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Define 𝐿(𝑦) as
𝐿 (𝑦) ≜ 𝜎22 𝑦2 + 𝜇𝑦 + 𝜆

𝑚∑
𝑖=1

𝑝𝑖 𝑦𝜂𝑖 − 𝑦, (78)

and we have 𝐿(0) = 0, 𝐿(𝜂1−) = ∞, 𝐿(𝜂1+) = −∞, 𝐿(𝜂2−) =∞, . . . , 𝐿(𝜂𝑚+) = −∞, 𝐿(∞) = ∞, and 𝐿(𝑦) is contin-
uous and increasing in every interval (0, 𝜂1−), (𝜂1+,𝜂2−), . . . , (𝜂𝑚+,∞). So it has 𝑚 + 1 positive roots, if it also
has a negative root 𝛽 then the negative root is unique as it
has at most𝑚+ 2 real roots. The detailed proof can be found
inTheorem 3.1 of Kou and Cai [11].

4.2.The Exponential Lévy-Type Stochastic Integral. The expo-
nential Lévy-type stochastic integral𝑋𝑡 is given by

d𝑋𝑡𝑋𝑡− = 𝜎d𝑊𝑡 + 𝜇d𝑡 + d(𝑁𝑡∑
𝑖=1

(e𝑌𝑖 − 1)) ,
𝑋0 = 𝑥 > 0.

(79)

Here, 𝑁𝑡 is a Poisson process with intensity rate 𝜆 > 0, and𝜇 and 𝜎 are positive constants. The jump sizes {𝑌1, 𝑌2, . . .}
are independent and identically distributed random variables
and independent of𝑊𝑡. The common density of 𝑌 is given by

𝑝𝑌 (𝑦) = 𝜂e−𝜂𝑦, (80)

where 𝜂 > 1 ensures that𝑋 has a finite expectation.

Proposition 12. Given the reward function 𝑓(𝑥) in Assump-
tion 1, if there exists a point 𝑥∗ such that

d𝑓 (𝑥)
d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥∗ = 𝛽𝑓 (𝑥
∗)𝑥∗ , 𝑓 (𝑥∗) > 0, (81)

where 𝛽 < 0 is the negative root of
𝜎22 𝑦2 (𝑦 − 1) + 𝜇𝑦 + 𝜆 𝑦𝜂 − 𝑦 − 𝑟 = 0, (82)

then the value function V(𝑥) has the form
V (𝑥) = {{{{{

𝑓 (𝑥) , 𝑥 ≤ 𝑥∗,
𝑓 (𝑥∗) ( 𝑥𝑥∗ )

𝛽 , 𝑥 ≥ 𝑥∗. (83)

The optimal stopping time is

𝜏∗ = inf {𝑠 ≥ 𝑡 : 𝑋𝑠 ≤ 𝑥∗} . (84)

Proof. In this case

(G − 𝑟) V (𝑥) = 𝜇𝑥dV (𝑥)
d𝑥 + 𝜎2𝑥22 d2V (𝑥)

d𝑥2
+ 𝜆∫∞
0
[V (𝑥e𝑦) − V (𝑥)] 𝜂e−𝜂𝑦d𝑦

− 𝑟V (𝑥) .
(85)

(a) When 𝑥 ≤ 𝑥∗, because 𝑦 ≥ 0 and e𝑦 ≥ 1, then𝑥e𝑦 ≥ 𝑥 and 𝑓(𝑥e𝑦) ≤ 𝑓(𝑥). Moreover, thanks to𝜇 > 0, d𝑓(𝑥)/d𝑥 ≤ 0, d2𝑓(𝑥)/d𝑥2 ≤ 0, we have(G − 𝑟)V(𝑋𝑠) ≤ 0.
(b) When 𝑥 ≥ 𝑥∗,

(G − 𝑟) V (𝑥)
= [12𝜎2 (𝛽2 − 𝛽) + 𝜇𝛽 + 𝜆 𝛽𝜂 − 𝛽 − 𝑟]𝑓 (𝑥∗) ( 𝑥𝑥∗ )

𝛽

= 0.
(86)

Taking (a) and (b) together, we conclude that (G −𝑟)V(𝑥) ≤ 0 for every 𝑥 > 0. Hence, V(𝑥) is the upper
bound for E𝑥e−𝑟(𝜏−𝑡)𝑓(𝑋𝜏). At the optimal stopping time 𝜏∗,
E𝑥e−𝑟(𝜏

∗−𝑡)𝑓(𝑋𝜏∗) = V(𝑥), attaining the upper bound.
Remark 13. The equation (𝜎2/2)(𝑦 − 1) + 𝜇𝑦 + 𝜆(𝑦/(𝜂 − 𝑦)) −𝑟 = 0 has a unique negative root 𝛽. This can be obtained
proceeding as in Remark 11.

For the reward function 𝑓(𝑥) = 1 − 𝑥, 𝛽 is the negative
root of

𝜎22 𝑦 (𝑦 − 1) + 𝜇𝑦 + 𝜆𝑦𝜂 − 𝑦 − 𝑟 = 0, (87)

we find 𝑥∗ = 𝛽/(𝛽 − 1), and the value function is

V (𝑥) = {{{{{
1 − 𝑥, 𝑥 ≤ 𝑥∗,
(1 − 𝑥∗) ( 𝑥𝑥∗ )

𝛽 , 𝑥 ≥ 𝑥∗. (88)

The optimal stopping time is

𝜏∗ = inf {𝑠 ≥ 𝑡 : 𝑋𝑠 ≤ 𝑥∗} . (89)

For the choice of parameters 𝜇 = 1, 𝜎 = √2, 𝑟 = 1, 𝜆 = 1, and𝜂 = 1.5, we obtain 𝛽 ≃ −1.2020 and the point 𝑥∗ ≃ 0.5459,
and we draw the graph of the value function in Figure 4.
The point 𝑥∗ is bigger than the value concerning geometric
Brownian motion, after adding the jump risk.

5. Connection with the Other
Optimal Problems

As the reward function 𝑓(𝑥) is 𝐶2 in Assumption 1, by Itô’s
formula,

e−𝑟(𝑢−𝑡)𝑓 (𝑋𝑡) = 𝑓 (𝑥)
+ ∫𝑢
𝑡
e−𝑟(𝑠−𝑡) [G𝑓 (𝑋𝑠) − 𝑟𝑓 (𝑋𝑠)] d𝑠

+ local martingale.
(90)
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Figure 4: The value function and the point 𝑥∗ (𝑥∗ ≃ 0.5459) for𝜇 = 1, 𝜎 = √2, 𝑟 = 1, 𝜆 = 1, and 𝜂 = 1.5.

Assume that

G𝑓 (𝑋𝑠) − 𝑟𝑓 (𝑋𝑠) = 𝛾𝑓 (𝑋𝑠) , (91)

where 𝛾 ̸= 0 is a constant. Taking expectation in (90),

E𝑥e−𝑟(𝑢−𝑡)𝑓 (𝑋𝑢) = 𝑓 (𝑥) + E𝑥 ∫𝑢
𝑡
e−𝑟(𝑠−𝑡)𝛾𝑓 (𝑋𝑠) d𝑠

+ E𝑥 (local martingale) . (92)

As assumed in the paper, e−𝑟(𝑢−𝑡)𝑓(𝑋𝑡) is bounded, so
E𝑥(local martingale) = 0. For a stopping time 𝜏,

E𝑥e−𝑟(𝜏−𝑡)𝑓 (𝑋𝜏) = 𝑓 (𝑥) + E𝑥 ∫𝜏
𝑡
e−𝑟(𝑠−𝑡)𝛾𝑓 (𝑋𝑠) d𝑠, (93)

from which we can see that if 𝛾 > 0 the problem
sup𝜏 E

𝑥e−𝑟(𝜏−𝑡)𝑓(𝑋𝜏) is equivalent to
sup
𝜏

E𝑥 ∫𝜏
𝑡
e−𝑟(𝑠−𝑡)𝑓 (𝑋𝑠) d𝑠, (94)

and if 𝛾 < 0 the problem sup𝜏 E
𝑥e−𝑟(𝜏−𝑡)𝑓(𝑋𝜏) is equivalent

to

inf
𝜏
E𝑥 ∫𝜏
𝑡
e−𝑟(𝑠−𝑡)𝑓 (𝑋𝑠) d𝑠. (95)

We conclude the solution for the problems
sup𝜏 E

𝑥 ∫𝜏
𝑡
e−𝑟(𝑠−𝑡)𝑓(𝑋𝑠)d𝑠 and inf𝜏 E

𝑥 ∫𝜏
𝑡
e−𝑟(𝑠−𝑡)𝑓(𝑋𝑠)d𝑠

in the following theorem.

Theorem 14. For a given reward function 𝑓(𝑥) in Assump-
tion 1, ifG𝑓(𝑥) − 𝑟𝑓(𝑥) = 𝛾𝑓(𝑥) and 𝛾 > 0, the solution for

𝑤 (𝑥) = sup
𝜏

E𝑥 ∫𝜏
𝑡
e−𝑟(𝑠−𝑡)𝑓 (𝑋𝑠) d𝑠 (96)

has the form

𝑤 (𝑥) = {{{{{
0, 𝑥 ≤ 𝑥∗,
𝑓 (𝑥∗)𝑔 (𝑥∗) 𝑔 (𝑥)𝛾 − 𝑓 (𝑥)𝛾 , 𝑥 ≥ 𝑥∗. (97)

The optimal stopping time is

𝜏∗ = inf {𝑠 ≥ 𝑡 : 𝑋𝑠 ≤ 𝑥∗} . (98)

If 𝛾 < 0, then the solution for

𝑤 (𝑥) = inf
𝜏
E𝑥 ∫𝜏
𝑡
e−𝑟(𝑠−𝑡)𝑓 (𝑋𝑠) d𝑠 (99)

has the form

𝑤 (𝑥) = {{{{{
0, 𝑥 ≤ 𝑥∗,
𝑓 (𝑥∗)𝑔 (𝑥∗) 𝑔 (𝑥)𝛾 − 𝑓 (𝑥)𝛾 , 𝑥 ≥ 𝑥∗. (100)

The optimal stopping time is

𝜏∗ = inf {𝑠 ≥ 𝑡 : 𝑋𝑠 ≤ 𝑥∗} . (101)

The function 𝑔(𝑥) is given by

G𝑔 (𝑥) = 𝑟𝑔 (𝑥) , (102)

satisfying

lim
𝑥→∞

𝑔 (𝑥) = 0,
d𝑔 (𝑥)
d𝑥 ≤ 0,

d2𝑔 (𝑥)
d𝑥2 ≥ 0,

(103)

and the point 𝑥∗ is determined by

d𝑓 (𝑥)
d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥∗ = 𝑓 (𝑥∗)𝑔 (𝑥∗) d𝑔 (𝑥)
d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥∗ , 𝑓 (𝑥∗) > 0. (104)

Since the expression of E𝑥 ∫𝜏
𝑡
e−𝑟(𝑠−𝑡)𝑓(𝑋𝑠)d𝑠 can be rep-

resented as valuation of equity (see A.3 in Duffie [12]), we
will consider the practical application in the stock market in
a future work.

6. Conclusions

In this paper, we have studied the optimal stopping problems
for a continuous-timeMarkov process, andwehave presented
the explicit value function and optimal rule.

Three main contributions of this paper are as follows.
First, we constructed the value functions and optimal rules
for the problems with a large class of reward functions, which
are different from the previous researches using some specific
functions. With simple conditions for the reward functions,
we gave a rigorous mathematical proof to deduce the optimal
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rule based on variational inequalities. Second, we derived
the solution of the problem for a general Markov process.
Meanwhile, we showed the explicit value functions and
optimal stopping times for some concrete Markov processes
including diffusion and Lévy processes with jumps. Finally,
we linked our results to some optimal problems. Also, we
extended the explicit solution of the new optimal problem to
a broad class of reward functions and to a general continuous-
time Markov process.

Conflicts of Interest

The author declares that there are no conflicts of interest
regarding the publication of this paper.

References

[1] S. T. Wong, “The generalized perpetual American exchange-
option problem,” Advances in Applied Probability, vol. 40, no.
1, pp. 163–182, 2008.

[2] R. McDonald and D. Siegel, “The value of waiting to invest,”
Quarterly Journal of Economics, vol. 101, no. 4, pp. 707–727, 1986.

[3] Y. Hu and B. Øksendal, “Optimal time to invest when the
price processes are geometric Brownian motions,” Finance and
Stochastics, vol. 2, no. 3, pp. 295–310, 1998.

[4] K. Nishide and L. C. Rogers, “Optimal time to exchange two
baskets,” Journal of Applied Probability, vol. 48, no. 1, pp. 21–30,
2011.

[5] J. L. Pedersen and G. Peskir, “Solving non-linear optimal
stopping problems by the method of time-change,” Stochastic
Analysis and Applications, vol. 18, no. 5, pp. 811–835, 2000.

[6] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equa-
tions. The Theory of Stochastic Processes III, Springer-Verlag,
New York, NY, USA, 1979.

[7] S. Christensen and A. Irle, “A harmonic function technique for
the optimal stopping of diffusions,” Stochastics, vol. 83, no. 4-6,
pp. 347–363, 2011.

[8] K. Helmes and R. H. Stockbridge, “Construction of the
value function and optimal rules in optimal stopping of one-
dimensional diffusions,” Advances in Applied Probability, vol.
42, no. 1, pp. 158–182, 2010.

[9] T. E. Olsen and G. Stensland, “On optimal timing of investment
when cost components are additive and follow geometric
diffusions,” Journal of Economic Dynamics and Control, vol. 16,
no. 1, pp. 39–51, 1992.

[10] S. G. Kou andH.Wang, “First passage times of a jump diffusion
process,”Advances in Applied Probability, vol. 35, no. 2, pp. 504–
531, 2003.

[11] N. Cai and S. G. Kou, “Option pricing under a mixed-
exponential jump diffusion model,” Management Science, vol.
57, no. 11, pp. 2067–2081, 2011.

[12] D. Duffie, “Credit risk modeling with affine processes,” Journal
of Banking and Finance, vol. 29, no. 11, pp. 2751–2802, 2005.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


