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A general iterative process is proposed, from which a class of parallel Newton-type iterative methods can be derived. A unified
convergence theorem for the general iterative process is established. The convergence of these Newton-type iterative methods is
obtained from the unified convergence theorem. The results of efficiency analyses and numerical example are satisfactory.

1. Introduction

Attempts to improve Newtonmethod are the subject of many
papers [1–10].

Consider the following polynomial of degree 𝑛:
𝑓 (𝑥) = 𝑛∏

𝑖=1

(𝑥 − 𝑟𝑖) , (1)

with simple zeros 𝑟1, 𝑟2, . . . , 𝑟𝑛.
In paper [1], a parallel iterativemethod for simultaneously

finding all zeros of 𝑓(𝑥) was suggested; that is,
𝑥(𝑘+1)𝑖 = 𝑥(𝑘)𝑖 + 𝛼(𝑘)𝑖1 + 𝛼(𝑘)𝑖 ∑𝑛𝑗=1

𝑗 ̸=𝑖

(1/ (𝑥(𝑘)𝑖 − 𝑥(𝑘)𝑗 )) , (2)

𝛼(𝑘)𝑖 = − 𝑓 (𝑥(𝑘)𝑖 )𝑓󸀠 (𝑥(𝑘)𝑖 ) , (3)

where 𝑖 = 1, 2, . . . , 𝑛; 𝑘 = 0, 1, 2, . . ..𝑥(0)𝑖 (𝑖 = 1, 2, . . . , 𝑛) are distinct initial approximations for
zeros 𝑟𝑖 (𝑖 = 1, 2, . . . , 𝑛) of polynomial 𝑓(𝑥).

For appropriate starting values 𝑥(0)𝑖 , method (2) is of
convergence order three.

Suppose that 𝜑(𝑥) is some iteration function and 𝑥(𝑘+1)𝑗 =𝜑(𝑥(𝑘)𝑗 ) converges to zeros 𝑟𝑗 (𝑗 = 1, 2, . . . , 𝑛) of 𝑓(𝑥) with
convergence order𝑚.

From (2), we obtain the following parallel iterative pro-
cess:

𝑥(𝑘+1)𝑖 = 𝑥(𝑘)𝑖 + 𝛼(𝑘)𝑖1 + 𝛼(𝑘)𝑖 ∑𝑛𝑗=1
𝑗 ̸=𝑖

(1/ (𝑥(𝑘)𝑖 − 𝑢(𝑘)𝑗 )) , (4)

𝑢(𝑘)𝑗 = 𝜑 (𝑥(𝑘)𝑗 ) , (5)

where 𝑖, 𝑗 = 1, 2, . . . , 𝑛; 𝑘 = 0, 1, 2, . . .. 𝛼(𝑘)𝑖 is defined by (3).
We call 𝜑(𝑥) correction iterative function.

In particular, if 𝑢(𝑘)𝑗 = 𝜑(𝑥(𝑘)𝑗 ) = 𝑥(𝑘)𝑗 , then (4) is process
(2) derived in paper [1]. If Newton iterative function is chosen
as 𝜑, that is, 𝑢(𝑘)𝑗 = 𝜑(𝑥(𝑘)𝑗 ) = 𝑥(𝑘)𝑗 + 𝛼(𝑘)𝑗 and 𝛼(𝑘)𝑗 are
defined by (3), then (4) is the method discussed in paper [3].
Because (2) is a modification of Newton method and (4) is
an improvement to (2), so we call (4) modified Newton-type
iteration method.

In this paper, a unified convergence theorem for the
general modified process (4) is established in Section 2
(Theorem 2).

Moreover, in Section 3, three special iterative methods
are derived from process (4) according to the choices of 𝜑.
These special methods are all modifications to process (2);
their convergence and convergence order are obtained via the
unified general convergenceTheorem 2.
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All these special modified methods are convergent with
higher order and are more efficient than both Newton
method and process (2).

In Section 4, the method is extended to find the multiple
zeros of polynomial.

Finally, in Section 5, we give several numerical examples
and the computation results are satisfactory.

2. General Convergence Theorem

In this section, we discuss the convergence of the general
modified process (4).

Let 𝑘 = 0, 1, 2, . . ., be the indices of iterations and𝑑 = min
1≤𝑖<𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨𝑟𝑖 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 , (6)

ℎ(𝑘)𝑖 = 𝑥(𝑘)𝑖 − 𝑟𝑖, (7)

ℎ(𝑘) = max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨󵄨ℎ(𝑘)𝑖 󵄨󵄨󵄨󵄨󵄨 . (8)

By some simple calculation, process (4) can also be expressed
as follows:

ℎ(𝑘+1)𝑖 = 𝐴(𝑘)𝑖1 + 𝐴(𝑘)𝑖 ℎ(𝑘)𝑖 , (9)

where ℎ(𝑘)𝑖 are defined by (7) and

𝐴(𝑘)𝑖 = 𝑛∑
𝑗=1
𝑗 ̸=𝑖

(𝑥(𝑘)𝑖 − 𝑟𝑖) (𝑟𝑗 − 𝑢(𝑘)𝑗 )(𝑥(𝑘)𝑖 − 𝑟𝑗) (𝑥(𝑘)𝑖 − 𝑢(𝑘)𝑗 ) . (10)

Assume that the correction iteration function 𝜑 in (5) is
locally convergent with convergence order 𝑚 (𝑚 ≥ 1) for
each root 𝑟𝑗 of 𝑓(𝑥); that is, 𝑥(𝑘+1)𝑗 = 𝜑(𝑥(𝑘)𝑗 ) converges to
root 𝑟𝑗with convergence order𝑚 for sufficiently good starting
values 𝑥(0)𝑗 (𝑗 = 1, 2, . . . , 𝑛). Then we have the following
Lemma 1.

Lemma 1. Let 𝑢(𝑘)𝑗 be defined by (5); then there exist constants𝑐 and 𝛿 (independent of 𝑗 and 𝑘) such that󵄨󵄨󵄨󵄨󵄨𝑢(𝑘)𝑗 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐 󵄨󵄨󵄨󵄨󵄨𝑥(𝑘)𝑗 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨𝑚 𝑖𝑓 󵄨󵄨󵄨󵄨󵄨𝑥(0)𝑗 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝛿, (11)

where 𝑗 = 1, 2, . . . , 𝑛; 𝑘 = 0, 1, 2, . . ..
In fact, because 𝑥(𝑘+1)𝑗 = 𝜑(𝑥(𝑘)𝑗 ) converges to root 𝑟𝑗

with convergence order𝑚 for sufficiently good starting values𝑥(0)𝑗 (𝑗 = 1, 2, . . . , 𝑛), for every 𝑗, there exist 𝑐𝑗, 𝛿𝑗, such that󵄨󵄨󵄨󵄨󵄨𝑢(𝑘)𝑗 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐𝑗 󵄨󵄨󵄨󵄨󵄨𝑥(𝑘)𝑗 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨𝑚 if 󵄨󵄨󵄨󵄨󵄨𝑥(0)𝑗 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝛿𝑗. (12)

Let 𝛿 = min {𝛿1, 𝛿2, . . . , 𝛿𝑛} ,𝑐 = max {𝑐1, 𝑐2, . . . , 𝑐𝑛} , (13)

and then Lemma 1 holds.
In the following Theorem 2 and its proof, the constants 𝑐

and 𝛿 are defined in Lemma 1 and 𝑛 is the degree of 𝑓(𝑥).

Theorem 2. Suppose that initial approximations 𝑥(0)𝑗 (𝑗 =1, 2, . . . , 𝑛) satisfy |𝑥(0)𝑗 − 𝑟𝑗| < min{𝛿, 𝑐−1/(𝑚−1), 2𝑑/(3 +√8𝑛 − 7)}. Then the iterative process (4) converges to the zeros𝑟𝑖 (𝑖 = 1, 2, . . . , 𝑛) of 𝑓(𝑥), and the convergence order is𝑚+ 2.
Proof. Suppose that 𝑥(0)𝑗 (𝑗 = 1, 2, . . . , 𝑛) satisfy the condition
inTheorem 2.

Then there exists a positive constant 𝑠 > max{𝑑/𝛿,𝑐1/(𝑚−1)𝑑, (3 + √8𝑛 − 7)/2} such that󵄨󵄨󵄨󵄨󵄨𝑥(0)𝑗 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑𝑠 (𝑗 = 1, 2, . . . , 𝑛) . (14)

Hence from Lemma 1 we know that, for 𝑘 = 0 and 𝑖 ̸= 𝑗,󵄨󵄨󵄨󵄨󵄨𝑟𝑗 − 𝑢(0)𝑗 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐 󵄨󵄨󵄨󵄨󵄨𝑥(0)𝑗 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨𝑚 ≤ 𝑑𝑠 ,󵄨󵄨󵄨󵄨󵄨𝑥(0)𝑖 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 ≥ 󵄨󵄨󵄨󵄨󵄨𝑟𝑖 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨𝑥(0)𝑖 − 𝑟𝑖󵄨󵄨󵄨󵄨󵄨 ≥ (𝑠 − 1) 𝑑𝑠 ,󵄨󵄨󵄨󵄨󵄨𝑢(0)𝑗 − 𝑥(0)𝑖 󵄨󵄨󵄨󵄨󵄨 ≥ 󵄨󵄨󵄨󵄨󵄨𝑟𝑖 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨𝑢(0)𝑗 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨𝑥(0)𝑖 − 𝑟𝑖󵄨󵄨󵄨󵄨󵄨
≥ (𝑠 − 2) 𝑑𝑠 .

(15)

By (10), it follows that

󵄨󵄨󵄨󵄨󵄨𝐴(0)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑛∑
𝑗=1
𝑗 ̸=𝑖

𝑐 󵄨󵄨󵄨󵄨󵄨ℎ(0)𝑖 󵄨󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨󵄨ℎ(0)𝑗 󵄨󵄨󵄨󵄨󵄨𝑚 𝑠2(𝑠 − 1) (𝑠 − 2) 𝑑2 ≤ 𝑛 − 1(𝑠 − 1) (𝑠 − 2) < 12 . (16)

Let

𝜆 = 𝑛 − 1(𝑠 − 1) (𝑠 − 2) ,
𝜇 = 𝜆1 − 𝜆 .

(17)

It is evident that 𝜇 < 1.
Thus, from (9), we obtain that, for all 𝑖,

󵄨󵄨󵄨󵄨󵄨ℎ(1)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝐴(0)𝑖 󵄨󵄨󵄨󵄨󵄨1 − 󵄨󵄨󵄨󵄨󵄨𝐴(0)𝑖 󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨ℎ(0)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 𝜇 󵄨󵄨󵄨󵄨󵄨ℎ(0)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑𝑠 . (18)

Generally, if |𝑥(𝑘)𝑗 − 𝑟𝑗| ≤ 𝑑/𝑠 (𝑗 = 1, 2, . . . , 𝑛), then we can
obtain analogously that

󵄨󵄨󵄨󵄨󵄨𝐴(𝑘)𝑖 󵄨󵄨󵄨󵄨󵄨 = 𝑛∑
𝑗=1
𝑗 ̸=𝑖

𝑐𝑠2 󵄨󵄨󵄨󵄨󵄨ℎ(𝑘)𝑖 󵄨󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨󵄨ℎ(𝑘)𝑗 󵄨󵄨󵄨󵄨󵄨𝑚(𝑠 − 1) (𝑠 − 2) 𝑑2 ≤ 𝜆 < 12 , (19)

󵄨󵄨󵄨󵄨󵄨ℎ(𝑘+1)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 𝜇 󵄨󵄨󵄨󵄨󵄨ℎ(𝑘)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑𝑠 . (20)

By mathematical induction, we know that (19) and (20) are
valid for 𝑖 = 1, 2, . . . , 𝑛; 𝑘 = 0, 1, 2, . . ..
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From (20), we have󵄨󵄨󵄨󵄨󵄨ℎ(𝑘)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 𝜇𝑘 󵄨󵄨󵄨󵄨󵄨ℎ(0)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ (𝑑𝑠 ) 𝜇𝑘,
for 𝑖 = 1, 2, . . . , 𝑛; 𝑘 = 0, 1, 2, . . . . (21)

It is evident that ℎ(𝑘)𝑖 → 0 (𝑘 → ∞). That is, 𝑥(𝑘)𝑖 → 𝑟𝑖 (𝑘 →∞) for 𝑖 = 1, 2, . . . , 𝑛.
Making use of (8) and (19), we have󵄨󵄨󵄨󵄨󵄨𝐴(𝑘)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐 (𝑛 − 1) 𝑠2(𝑠 − 1) (𝑠 − 2) 𝑑2 󵄨󵄨󵄨󵄨󵄨ℎ(𝑘)󵄨󵄨󵄨󵄨󵄨𝑚+1 ≤ 𝜆𝑐𝑠2𝑑2 󵄨󵄨󵄨󵄨󵄨ℎ(𝑘)󵄨󵄨󵄨󵄨󵄨𝑚+1 . (22)

Further, by (9) and |𝐴(𝑘)𝑖 | < 1/2, we have󵄨󵄨󵄨󵄨󵄨ℎ(𝑘+1)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 2𝜆𝑐𝑠2𝑑2 󵄨󵄨󵄨󵄨󵄨ℎ(𝑘)󵄨󵄨󵄨󵄨󵄨𝑚+2 . (23)

Hence, the convergence order of method (4) with (5) is 𝑚 +2.
3. Some Special Modified Newton Methods
Derived from Formula (4)

For the correction function 𝜑 in (5), we will make several
kinds of choice and derive some special modified Newton
methods from (4). Furthermore, by the convergence Theo-
rem 2, we give the convergence and efficiency of these special
modified methods.

Definition 3. For an iterationmethod, we define the efficiency

𝑒 = log 𝑘𝑤 , (24)

where 𝑘 is the convergence order; 𝑤 is the amount of
computation required in every step of iteration.

Since 𝑓(𝑥), 𝑓󸀠(𝑥), 𝑓󸀠󸀠(𝑥) are all polynomials, compu-
tational efficiency requires that the evaluation of these
functions be done by Horner’s method [8]. Then only 𝑛
multiplications and 𝑛 additionswill be required to evaluate an
arbitrary polynomial of degree 𝑛. Since𝑓(𝑥) defined by (1) is a
polynomial of degree 𝑛, we take 𝑛multiplications or divisions
as a unit of the amount of computation and take no count of
additions in the following. As a consequence, the evaluation
of𝑓(𝑥(𝑘)𝑖 ), 𝑓󸀠(𝑥(𝑘)𝑖 ), 𝑓󸀠󸀠(𝑥(𝑘)𝑖 ) and∑𝑛𝑗=1

𝑗 ̸=𝑖

(1/(𝑥(𝑘)𝑖 −𝑥(𝑘)𝑗 )) require
approximately one unit, respectively. Now the convergence
and efficiency analyses of these special modifiedmethods can
be given as follows.

(i) Newton iterative function is chosen as 𝜑; that is,𝑢(𝑘)𝑗 = 𝜑 (𝑥(𝑘)𝑗 ) = 𝑥(𝑘)𝑗 + 𝛼(𝑘)𝑗 . (25)

We obtain the iterative method (4) with (25) which has been
considered in [3].

Because Newton iterative function is second-order con-
vergent (𝑚 = 2), the convergence and convergence order
of method (4) with (25) can be concluded from Theorem 2
directly.

Corollary 4. Suppose that initial approximations 𝑥(0)𝑗 (𝑗 =1, 2, . . . , 𝑛) satisfy |𝑥(0)𝑗 − 𝑟𝑗| < min{𝛿, 𝑐−1, 2𝑑/(3 +√8𝑛 − 7)}.
Then the iterative process (4) with (25) converges to the zeros𝑟𝑖 (𝑖 = 1, 2, . . . , 𝑛) of 𝑓(𝑥), and the convergence order is 4; the
efficiency 𝑒1 = log 4/3.

(ii) Let 𝜑 be the Halley iterative function; that is,𝑢(𝑘)𝑗 = 𝜑 (𝑥(𝑘)𝑗 )
= 𝑥(𝑘)𝑗 + 𝛼(𝑘)𝑗1 + (1/2) (𝑓󸀠󸀠 (𝑥(𝑘)𝑗 ) /𝑓󸀠 (𝑥(𝑘)𝑗 )) 𝛼(𝑘)𝑗 . (26)

Halley iterative function is of convergence order 3; therefore
we have the following conclusion fromTheorem 2.

Corollary 5. Suppose that initial approximations 𝑥(0)𝑗 (𝑗 =1, 2, . . . , 𝑛) satisfy |𝑥(0)𝑗 −𝑟𝑗| < min{𝛿, 𝑐−1/2, 2𝑑/(3+√8𝑛 − 7)}.
Then the iterative process (4) with (26) converges to the zeros𝑟𝑖 (𝑖 = 1, 2, . . . , 𝑛) of 𝑓(𝑥), and the convergence order is 5; the
efficiency 𝑒2 = log 5/4.

(iii) Let

𝑢(𝑘)𝑗 = 𝑥(𝑘)𝑗 + 𝛼(𝑘)𝑗1 + 𝛼(𝑘)𝑗 ∑𝑛𝑙=1
𝑙 ̸=𝑗

(1/ (𝑥(𝑘)𝑗 − V(𝑘)
𝑙
)) , (27)

where V(𝑘)
𝑙

= 𝑥(𝑘)
𝑙

+ 𝛼(𝑘)
𝑙
.

From Corollary 4, we know (27) is 4th-order convergent,
so we obtain the following conclusion fromTheorem 2.

Corollary 6. Suppose that initial approximations 𝑥(0)𝑗 (𝑗 =1, 2, . . . , 𝑛) satisfy |𝑥(0)𝑗 −𝑟𝑗| < min{𝛿, 𝑐−1/3, 2𝑑/(3+√8𝑛 − 7)}.
Then the iterative process (4) with (27) converges to the zeros𝑟𝑖 (𝑖 = 1, 2, . . . , 𝑛) of 𝑓(𝑥), and the convergence order is 6; the
efficiency 𝑒3 = log 6/4.

In particular, if we let 𝜑(𝑥(𝑘)𝑗 ) = 𝑥(𝑘)𝑗 , then (4) is the
modifiedNewtonmethod (2) (see [1]).The convergence of (2)
was not proven in [1], but now its convergence follows directly
fromTheorem 2, and the convergence order is 3; therefore the
efficiency 𝑒4 = log 3/3.

By theway, according to our definition, the computational
efficiency of Newton iterative method is log 2/2.

For simultaneously finding polynomial zeros, it is evident
that these modified Newton-type methods discussed in
Corollaries 4–6 are convergent with higher order and are
more efficient than both Newton method and process (2).

4. Extending the Iterative Method (4) to
Find Multiple Zeros

In complex number field polynomial 𝑓(𝑥) of degree 𝑛 can be
factored as𝑓 (𝑥) = (𝑥 − 𝑟1)𝜇1 (𝑥 − 𝑟2)𝜇2 ⋅ ⋅ ⋅ (𝑥 − 𝑟𝑚)𝜇𝑚 ; (28)𝑟1, 𝑟2, . . . , 𝑟𝑚 are multiple zeros of polynomial 𝑓(𝑥).
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Here 𝑟𝑖 ̸= 𝑟𝑗 (𝑖 ̸= 𝑗) and ∑𝑚𝑖=1 𝜇𝑖 = 𝑛.
By logarithmic derivation, we know that𝑓󸀠 (𝑥)𝑓 (𝑥) = 𝑚∑

𝑗=1

𝜇𝑗𝑥 − 𝑟𝑗 ,
𝑟𝑖 = 𝑥 − [𝜇𝑖 (𝑓 (𝑥) /𝑓󸀠 (𝑥))]

[1 − (𝑓 (𝑥) /𝑓󸀠 (𝑥))∑𝑚𝑗=1
𝑗 ̸=𝑖

(𝜇𝑗/ (𝑥 − 𝑟𝑗))] ,
𝑖 = 1, 2, . . . , 𝑚.

(29)

So we get the iterative method for simultaneously finding all
zeros of 𝑓(𝑥).
𝑥(𝑘+1)𝑖 = 𝑥(𝑘)𝑖

− [𝜇𝑖 (𝑓 (𝑥(𝑘)𝑖 ) /𝑓󸀠 (𝑥(𝑘)𝑖 ))]
[1 − (𝑓 (𝑥(𝑘)𝑖 ) /𝑓󸀠 (𝑥(𝑘)𝑖 ))∑𝑚𝑗=1

𝑗 ̸=𝑖

(𝜇𝑗/ (𝑥(𝑘)𝑖 − 𝑥(𝑘)𝑗 ))] , (30)

where 𝑖 = 1, 2, . . . , 𝑚; 𝑘 = 0, 1, 2, . . .. 𝑥(0)𝑖 (𝑖 = 1, 2, . . . , 𝑚)
were distinct initial approximations for zeros 𝑟𝑖 (𝑖 =1, 2, . . . , 𝑚) of 𝑓(𝑥).

When 𝜇𝑖 = 1 for all 𝑖 = 1, 2, . . . , 𝑚, the iterative method
(30) shall be the iterative method (2) in Section 1.

Using the same technique as in formula (4), we obtain𝑥(𝑘+1)𝑖 = 𝑥(𝑘)𝑖
− [𝜇𝑖 (𝑓 (𝑥(𝑘)𝑖 ) /𝑓󸀠 (𝑥(𝑘)𝑖 ))]
[1 − (𝑓 (𝑥(𝑘)𝑖 ) /𝑓󸀠 (𝑥(𝑘)𝑖 ))∑𝑚𝑗=1

𝑗 ̸=𝑖

(𝜇𝑗/ (𝑥(𝑘)𝑖 − 𝑢(𝑘)𝑗 ))] . (31)

Here, 𝑢(𝑘)𝑗 = 𝜑𝑗 (𝑥(𝑘)1 , 𝑥(𝑘)2 , . . . , 𝑥(𝑘)𝑚 ) . (32)

For appropriate starting values 𝑥(0)𝑖 , we suppose that 𝑥(𝑘+1)𝑗 =𝜑𝑗(𝑥(𝑘)1 , 𝑥(𝑘)2 , . . . , 𝑥(𝑘)𝑚 ) converges to zeros 𝑟𝑗 (𝑗 = 1, 2, . . . , 𝑚)
of 𝑓(𝑥) with convergence order 𝑝.

By some simple calculation, formula (31) can be expressed
as follows:

ℎ(𝑘+1)𝑖 = 𝐵(𝑘)𝑖1 + 𝐵(𝑘)𝑖 ℎ(𝑘)𝑖 , (33)

whereℎ(𝑘)𝑖 = 𝑥(𝑘)𝑖 − 𝑟𝑖, 𝑖 = 1, 2, . . . , 𝑚, 𝑘 = 0, 1, 2, . . . ,
𝐵(𝑘)𝑖 = 1𝜇𝑖 𝑚∑𝑗=1

𝑗 ̸=𝑖

𝜇𝑗 (𝑥(𝑘)𝑖 − 𝑟𝑖) (𝑟𝑗 − 𝑢(𝑘)𝑗 )(𝑥(𝑘)𝑖 − 𝑟𝑗) (𝑥(𝑘)𝑖 − 𝑢(𝑘)𝑗 ) ,
𝑑 = min
1≤𝑖<𝑗≤𝑚

{󵄨󵄨󵄨󵄨󵄨𝑟𝑖 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨} ,𝜇 = min
1≤𝑖≤𝑚

{𝜇𝑖} .
(34)

Lemma 7. Let 𝑢(𝑘)𝑗 be defined by (32); then there exist
constants 𝑐 and 𝛿 (independent of 𝑗 and 𝑘), such that󵄨󵄨󵄨󵄨󵄨𝑢(𝑘)𝑗 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐 󵄨󵄨󵄨󵄨󵄨𝑥(𝑘)𝑗 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨𝑝 𝑖𝑓 󵄨󵄨󵄨󵄨󵄨𝑥(0)𝑗 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝛿. (35)

The proof is similar to Lemma 1.
In the following Theorem 8 and its proof, the constants 𝑐

and 𝛿 are defined in Lemma 7 and 𝑛 is the degree of 𝑓(𝑥).
Take the constant 𝜃 > max{4, 𝑛/𝜇, 𝑑/𝛿} and 𝜃𝑝−1 ≥𝑐𝑑𝑝−1; we have the followingTheorem 8.

Theorem 8. Suppose that initial approximations 𝑥(0)𝑗 (𝑗 =1, 2, . . . , 𝑚) satisfy |𝑥(0)𝑗 − 𝑟𝑗| ≤ 𝑑/𝜃 (𝑗 = 1, 2, . . . , 𝑚), and𝑥(𝑘+1)𝑗 = 𝜑𝑗(𝑥(𝑘)1 , 𝑥(𝑘)2 , . . . , 𝑥(𝑘)𝑚 ) converges to zeros 𝑟𝑗 with
convergence order 𝑝. Then the iterative process (31) with (32)
converges to zeros 𝑟𝑖 (𝑖 = 1, 2, . . . , 𝑚) with convergence order𝑝 + 2.
Proof. Suppose that 𝑥(0)𝑗 (𝑗 = 1, 2, . . . , 𝑚) satisfy the condi-
tion inTheorem 8. Then󵄨󵄨󵄨󵄨󵄨𝑥(0)𝑖 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 ≥ 𝜃 − 1𝜃 𝑑,

󵄨󵄨󵄨󵄨󵄨𝑢(0)𝑗 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐 󵄨󵄨󵄨󵄨󵄨𝑥(0)𝑗 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨𝑝 ≤ 𝑐(𝑑𝜃)𝑝 ≤ 𝑑𝜃 . (36)

Therefore󵄨󵄨󵄨󵄨󵄨𝑥(0)𝑖 − 𝑢(0)𝑗 󵄨󵄨󵄨󵄨󵄨 ≥ 󵄨󵄨󵄨󵄨󵄨𝑟𝑖 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨𝑢(0)𝑗 − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨𝑥(0)𝑖 − 𝑟𝑖󵄨󵄨󵄨󵄨󵄨
≥ 𝜃 − 2𝜃 𝑑. (37)

Further, 󵄨󵄨󵄨󵄨󵄨𝐵(0)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 1𝜇𝑖 𝑚∑𝑗=1
𝑗 ̸=𝑖

𝑐𝜇𝑗𝜃2 󵄨󵄨󵄨󵄨󵄨ℎ(0)𝑖 󵄨󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨󵄨ℎ(0)𝑗 󵄨󵄨󵄨󵄨󵄨𝑝(𝜃 − 1) (𝜃 − 2) 𝑑2 . (38)

Note that 𝜃 > max{4, 𝑛/𝜇, 𝑑/𝛿} and 𝜃𝑝−1 ≥ 𝑐𝑑𝑝−1; we have󵄨󵄨󵄨󵄨󵄨𝐵(0)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 1𝜃 − 2 < 12 . (39)

Let 𝑞 = 1𝜃 − 3 (< 1) . (40)

Then󵄨󵄨󵄨󵄨󵄨ℎ(1)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝐵(0)𝑖 󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨ℎ(0)𝑖 󵄨󵄨󵄨󵄨󵄨1 − 󵄨󵄨󵄨󵄨󵄨𝐵(0)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑞 󵄨󵄨󵄨󵄨󵄨ℎ(0)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑𝜃 (𝑖 = 1, 2, . . . , 𝑚) . (41)

Generally, we can obtain analogously that

󵄨󵄨󵄨󵄨󵄨𝐵(𝑘)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 1𝜇𝑖 𝑚∑𝑗=1
𝑗 ̸=𝑖

𝑐𝜃2𝜇𝑗 󵄨󵄨󵄨󵄨󵄨ℎ(𝑘)𝑖 󵄨󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨󵄨ℎ(𝑘)𝑗 󵄨󵄨󵄨󵄨󵄨𝑝(𝜃 − 1) (𝜃 − 2) 𝑑2 ≤ 1𝜃 − 2 < 12 , (42)

󵄨󵄨󵄨󵄨󵄨ℎ(𝑘+1)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑞 󵄨󵄨󵄨󵄨󵄨ℎ(𝑘)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑑𝜃 . (43)
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By mathematical induction, we know that (43) is valid for 𝑖 =1, 2, . . . , 𝑚; 𝑘 = 0, 1, 2, . . ..
From (43), we get |ℎ(𝑘)𝑖 | ≤ 𝑞𝑘(𝑑/𝜃) → 0 (when 𝑘 → ∞).
Let ℎ(𝑘) = max1≤𝑗≤𝑚{|ℎ(𝑘)𝑗 |}, and from (42) it is inferred

that

󵄨󵄨󵄨󵄨󵄨𝐵(𝑘)𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐𝜃2𝜇𝑖 (𝜃 − 1) (𝜃 − 2) 𝑑2 ( 𝑚∑𝑗=1
𝑗 ̸=𝑖

𝜇𝑗) ⋅ 󵄨󵄨󵄨󵄨󵄨ℎ(𝑘)󵄨󵄨󵄨󵄨󵄨𝑝+1
≤ 𝑐𝜃22𝑑2 󵄨󵄨󵄨󵄨󵄨ℎ(𝑘)󵄨󵄨󵄨󵄨󵄨𝑝+1 .

(44)

Because |𝐵(𝑘)𝑖 | < 1/2, |ℎ(𝑘+1)𝑖 | ≤ 2|𝐵(𝑘)𝑖 | ⋅ |ℎ(𝑘)𝑖 | ≤ 𝑐𝜃2/𝑑2 ⋅|ℎ(𝑘)|𝑝+2.
Hence, the convergence order of method (31) is 𝑝+2. The

proof is completed.

Let

𝑢(𝑘)𝑗 = 𝑥(𝑘)𝑗 − 𝜇𝑗𝑓 (𝑥(𝑘)𝑗 )𝑓󸀠 (𝑥(𝑘)𝑗 ) . (45)

Combine (31) and (45); we have the following Corollary 9.

Corollary 9. Suppose that initial approximations 𝑥(0)𝑗 (𝑗 =1, 2, . . . , 𝑚) satisfy |𝑥(0)𝑗 − 𝑟𝑗| < min{1/4, 𝜇/𝑛}𝑑 (𝑗 =1, 2, . . . , 𝑚). Then the iterative process (31) with (45) converges
to the zeros 𝑟𝑖 (𝑖 = 1, 2, . . . , 𝑚) of 𝑓(𝑥), and the convergence
order is 4.

5. Numerical Example

In this section, we will report on three numerical examples.
The computations were performed on Lenovo computer
using MATLAB.

Example 1. As in [5], we consider complex polynomial of
degree 10 (𝑖 = √−1):

𝑓 (𝑥) = 𝑥10 − 20 (1 + 𝑖) 𝑥9 + 400𝑖𝑥8 + 3 × 104𝑥6 − 6× 105 (1 + 𝑖) 𝑥5 + 12 × 106𝑖𝑥4 − 4 × 108𝑥2+ 8 × 109 (1 + 𝑖) 𝑥 − 16 × 1010𝑖. (46)

We want to find the zeros of 𝑓(𝑥) by method (4) with (25).
The zeros of 𝑓(𝑥) are 𝑟1,2 = ±10, 𝑟3,4 = ±10𝑖, 𝑟5,6 = 10 ±10𝑖, 𝑟7,8 = −10 ∓ 10𝑖, 𝑟9 = 20, 𝑟10 = 20𝑖.
In our computation, we take error 𝜀 = 10−12 (in paper [5],

error 𝜀 = 10−6) and choose the starting values just as paper
[5]; that is,

𝑥(0)1,2 = ± (10.1 + 0.1𝑖) ,𝑥(0)3,4 = ± (0.1 + 10.1𝑖) ,𝑥(0)5,6 = 10.1 (1 ± 𝑖) ,

𝑥(0)7,8 = −10.1 (1 ± 𝑖) ,𝑥(0)9 = 19.9 + 0.1𝑖,𝑥(0)10 = 0.1 + 19.9𝑖.
(47)

The numerical results of method (4) with (25) are listed as
follows.

Numerical Results of Example 1𝑥(1)1 = 9.999998471976 + 0.000002471890𝑖,𝑥(1)2 = −10.000000671094 − 0.000002530585𝑖,𝑥(1)3 = 0.000002471890 + 9.999998471976𝑖,𝑥(1)4 = −0.000002530585 − 10.000000671094𝑖,𝑥(1)5 = 9.999999158562 + 9.999999158562𝑖,𝑥(1)6 = 10.000001503999 − 10.000002165629𝑖,𝑥(1)7 = −9.999999683089 − 9.999999683089𝑖,𝑥(1)8 = −10.000002165629 + 10.000001503999𝑖,𝑥(1)9 = 19.999999580699 − 0.000001353811𝑖,𝑥(1)10 = −0.000001353811 + 19.999999580699𝑖,𝑥(2)1 = 10.000000000000 − 0.000000000000𝑖,𝑥(2)2 = −10.000000000000 − 0.000000000000𝑖,𝑥(2)3 = −0.000000000000 + 10.000000000000𝑖,𝑥(2)4 = −0.000000000000 − 10.000000000000𝑖,𝑥(2)5 = 10.000000000000 + 10.000000000000𝑖,𝑥(2)6 = 10.000000000000 − 10.000000000000𝑖,𝑥(2)7 = −10.000000000000 − 10.000000000000𝑖,𝑥(2)8 = −10.000000000000 + 10.000000000000𝑖,𝑥(2)9 = 20.000000000000 − 0.000000000000𝑖,𝑥(2)10 = −0.000000000000 + 20.000000000000𝑖.

(48)

We see from (48) that, for method (4) with (25), after two
iterations the numerical results attain the precision.

Example 2. Given a polynomial𝑓 (𝑥) = 32𝑥3 − 56𝑥2 + 24𝑥 − 3, (49)𝑓(𝑥) = 0 is the so-called 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ equation in theory of
earthquake.
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Table 1: Numerical results of Example 2.

Iterative method Number of iterations Results𝑥(𝑘)1 𝑥(𝑘)2 𝑥(𝑘)3
Method (2)

1 0.200000000000 0.375000000000 1.176470588235
2 0.243808087597 0.323805689748 1.183011463275
3 0.249955665119 0.317035707337 1.183012701892
4 0.249999999979 0.316987298131 1.183012701892
5 0.250000000000 0.316987298108 1.183012701892

Method (4) with (25)

1 0.217105263158 0.345588235294 1.184859154930
2 0.249398039932 0.317688644132 1.183012708464
3 0.249999999474 0.316987298719 1.183012701892
4 0.250000000000 0.316987298108 1.183012701892

Method (4) with (26)
1 0.231729055258 0.346042471043 1.183941605839
2 0.249920728625 0.317052319337 1.183012700566
3 0.250000000000 0.316987298108 1.183012701892

Method (4) with (27)
1 0.234609565063 0.331231334248 1.182746284452
2 0.249997316046 0.316989331975 1.183012701890
3 0.250000000000 0.316987298108 1.183012701892

Newton method 8 0.250000000000 0.316987298108 1.183012701892

The exact roots of the equation or the zeros of 𝑓(𝑥) are𝑥1 = 1/4, 𝑥2 = (3 − √3)/4, 𝑥3 = (3 + √3)/4.
We want to find the zeros of 𝑓(𝑥) by Newton method,

process (2), and the three modified methods discussed in
Corollaries 4–6. We choose starting values 𝑥(0)1 = 0, 𝑥(0)2 =0.5, 𝑥(0)3 = 1, and we take error 𝜀 = 10−12.

The numerical results of process (2), method (4) with
(25), method (4) with (26), and method (4) with (27) are
listed in Table 1, but for Newtonmethodwe only give the final
numerical results.

From Table 1, we see that, for Newton method, after eight
iterations, the iteration approximations attain the precision;
for method (2) with (3), after five iterations, the iteration
approximations attain the precision; for method in Corol-
lary 4, after four step iterations, the iteration approximations
attain the precision; for methods in Corollary 5 and in
Corollary 6, after three iterations, all the iteration approxi-
mations attain the precision. Hence, these modified Newton-
type methods converge faster than both Newton method and
iterative method (2).

Example 3. We consider polynomial 𝑓(𝑥) = 𝑥7 + 𝑥6 + 𝑥5 +17𝑥4 − 𝑥3 + 31𝑥2 − 𝑥 + 15. We want to find the zeros of 𝑓(𝑥)
by iterative process (31) with (45). The exact zeros of 𝑓(𝑥)
are 𝑟1 = −3, 𝑟2,3 = ±𝑖, 𝑟4,5 = 1 ± 2𝑖; the corresponding
multiplicities are 𝜇1 = 1, 𝜇2 = 2, 𝜇3 = 2, 𝜇4 = 1, 𝜇5 = 1.
We choose starting values 𝑥(0)1 = −2.5 + 0.5𝑖, 𝑥(0)2 = 0.5 +1.5𝑖, 𝑥(0)3 = 0.5 − 1.5𝑖, 𝑥(0)4 = 1.5 + 2.5𝑖, and 𝑥(0)5 = 1.5 − 2.5𝑖,
and we take error 𝜀 = 10−14. The numerical results of the first
three iterations by iterative process (31) with (45) are listed as
follows.

Numerical Results of Example 3

𝑥(1)1 = −3.00565194346854 − 0.01318777497764𝑖,𝑥(1)2 = −0.15410479694978 + 0.89034788387744𝑖,

𝑥(1)3 = −0.15107817440832 − 0.88441680259590𝑖,𝑥(1)4 = 0.96243366036343 + 2.03642298912267𝑖,𝑥(1)5 = 0.96330847662789 − 2.03255647412651𝑖,𝑥(2)1 = −2.99999982955636 − 0.00000016455696𝑖,𝑥(2)2 = −0.00000190344179 + 1.00020769732097𝑖,𝑥(2)3 = −0.00003765337762 − 1.00020338825104𝑖,𝑥(2)4 = 1.00004824175549 + 1.99995917074785𝑖,𝑥(2)5 = 1.00004838408085 − 1.99997115571258𝑖,𝑥(3)1 = −3.00000000000000 + 0.00000000000000𝑖,𝑥(3)2 = −0.00000000000002 + 1.00000000000016𝑖,𝑥(3)3 = 0.00000000000002 − 1.00000000000004𝑖,𝑥(3)4 = 1.00000000000000 + 2.00000000000000𝑖,𝑥(3)5 = 1.00000000000000 − 2.00000000000000𝑖.
(50)

From (50) we see that, for iterative method (31) with (45),
after three iterations, all the iteration approximations attain
the precision 10−12.

The numerical results computed by these new parallel
Newton-type iterative methods are satisfactory.
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