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Previously we focused on fundamental transverse mode selection (TMS#0) of broad area semiconductor lasers (BALs) with two-arm
folded integrated resonators for Fourier-optical spatial frequency filtering. The resonator had a round-trip length of 4f, where f is
the focal length of the Fourier-transform element (FTE), that is, a cylindrical mirror in-between the orthogonal resonator branches.
This 4f set-up can be called “retracted once” due to the reflective filter after 2f; that is, the 2f path was used forwards and backwards.
Now the branches are retracted once more resulting in a compact 1f long linear resonator (called “retracted twice”) with a round-
trip length of 2f. One facet accommodates the filter, while the other houses the FTE, now incorporating a film-waveguide lens. The
BAL facet with the filter represents both the Fourier-transform plane (after 2f, i.e., one round-trip) as well as the image plane (after
4f, two round-trips). Thus filtering is performed even after 4f, not just after 2f. Experimental results reveal good fundamental TMS
for pump currents up to 20% above threshold and a one-dimensional beam quality parameter M-, = 1.47. The BALs are made from

AlGalnAsSb, but the concept can equally well be employed for BALs of any material system.

1. Introduction

Broad area (semiconductor diode) lasers (BALs) allow for
the generation and extraction of higher light output pow-
ers as compared to conventional narrow stripe lasers. The
higher power for larger pump currents is distributed over a
larger cross-section thus avoiding catastrophic optical mirror
damage (COMD). Typical BALs exhibit emitter widths of
50-200 ym. The drawback is represented by the build-up
and oscillation of larger transverse modes (in cases without
further provisions) limiting the portion of the higher light
power easily focused into a small volume or onto a small area.

Therefore, techniques have to be employed, which are
suitable for support of the fundamental transverse mode
(mode #0) by suppression of higher order modes upon laser
oscillation build-up. In most cases either the BAL facets or the
lateral (effective) refractive index or pump current distribu-
tions are modified [1-8] (if so including transverse Bragg

gratings [7, 8]) or an external cavity is used [7-14] to
achieve the desired transverse mode selection (TMS) (and if
applicable also to stabilize a longitudinal mode [7, 8]). In all
these cases eventually spatial frequency filtering is performed.
(Feedback from external cavities might also destabilize the
BAL emission [15-19], e.g., leading to self-pulsation.) Also
approaches with tapered lasers or laser-tapered amplifier
arrangements or a current injection region narrower than the
active region are known [20-23].

Low spatial frequencies stand for low transverse mode
numbers and vice versa. Thus, in order to achieve fundamen-
tal mode TMS a low-pass filter has to be applied.

2. Concepts

Formerly we have integrated a Fourier-optical 4f set-up into
the semiconductor resonator with two orthogonal branches
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FIGURE 1: Former concept (4f set-up “retracted once”): sketch of a BAL laser with integrated 4f set-up in the configuration with two orthogonal
branches. The spatial filter to support the fundamental mode is made up of a nontilted and several tilted/oblique flanks/segments, the latter
intended to refract and reflect unwanted rays out of the resonator and to reflect the supported rays back into the resonator. Fresnel reflectivity
of =31% at the semiconductor-air interface is used. In the bottom part of the figure there is an SEM (scanning electron microscope) image of

the facet with filter of an actual TMS#0-BAL sample.

[24, 25], as sketched in Figure 1. The resonator length has
been 2f and the round-trip path length has come up to
2f plus 2f after Fresnel-reflection at the spatial frequency
filter. This 4f set-up might be called “retracted once” due to
the reflective arrangement. The dry-etched bend in-between
branches has been cylindrical and has officiated as reflective
Fourier-transform element. One of the resonator facets has
been used as the output plane of the laser; the other facet
has housed the spatial frequency filter, realized by flanks for
redirection of certain groups of light rays.

In detail: rays with low propagation angles with respect to
the optical axis account for low spatial frequencies and thus
for the fundamental transverse mode (#0). They are Fresnel-
reflected back into the resonator at the semiconductor-air
interface of the central (nontilted) filter segment with a
reflectivity of about 31%. Rays with larger propagation angles,
which correlate with larger spatial frequencies and higher
transverse modes, are refracted and reflected out of the
resonator by tilted/oblique dry-etched flanks/segments of the
spatial filter.

The principle has worked well. But the two-branch res-
onator has shown some disadvantages like a strong astigma-
tism due to the 45° tilt of the Fourier-transform mirror and an
overall resonator length of =5 mm or more, too long for best-
possible laser efficiency [26]. This statement touches a prin-
ciple problem of the integration of a 4f set-up: The desired
minimum mode width of several 10 ym, about equal to the
central filter segment width of 2w, necessitates a mirror focal
length
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of several millimeters, considering the properties of the
1D spatial Fourier-transform, vacuum wavelength A, and

@

(effective) refractive index n.q [9], but for best differential
quantum efficiency # a semiconductor laser resonator should
rather be short [26].

Thus, currently, that is, for this contribution, we have
retracted the branches (once more) so that they spatially coin-
cide, giving a compact linear 2f geometry (1f plus the path
after reflection, the resonator thus called “retracted twice”),
as sketched in Figure 2.

One resonator facet contains the low-pass spatial fre-
quency filter to support low spatial frequencies and hence the
fundamental transverse mode (#0). The other resonator end
accommodates the Fourier-transform element.

The BAL facet with the filter represents both the Fourier-
transform plane (after 2f, ie., after one round-trip, one
Fourier-transformation) as well as the image plane (after 4f,
two round-trips, both Fourier-transformations).

The laser is an edge-emitting pn diode with intrinsic ac-
tive region. The p- and the n-doped regions above and below
the active region also serve as the upper and the lower film-
waveguide cladding, respectively. The layer sequence is made
from the AlGalnAsSb material system on GaAs substrate
and incorporates eight active layers of Stransky-Krastanov-
grown GaAsSb quantum dots [27] embedded in GaAs layers.
Therefore, the laser emission wavelength is around 933 nm.
But the TMS-BAL concept reported here can equally well be
utilized for BALs of any material system and emission wave-
length.

Ridge lasers are realized, as sketched in more detail in
Figure 3. The laser ridge is 100 ym wide, =2 ym high, and
=~2.8 mm long. The central nonoblique segment of the spatial
frequency filter is 2w, = 30 yum wide. As this segment is
considerably narrower than the ridge (some) low-pass spatial
filtering is performed even after 4f, not just after 2f, which
is an advantage of this approach for TMS: due to the 30 um
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FIGURE 2: Current concept: sketches and SEM micrographs (top-views) of a TMS#0-BAL with compact linear f long laser resonator (4f set-up
“retrac ted twice”) and spatial filter to support the fundamental transverse mode (#0). The central filter segment has a width of 2w, = 30 ym.
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FIGURE 3: Current concept again: another sketch (now with oblique
view) of a TMS#0-BAL with compact linear f long laser resonator
(4f retracted twice) and spatial filter to support the fundamental
transverse mode (#0). The dimensions are given and the waveguide
lens (“wg. lens”) is depicted.

narrow central segment intensity maxima of potentially oscil-
lating higher order transverse modes are stripped, inevitably
resulting in suppression of these modes.

The reflective Fourier-transform element is made up of
a cleaved plane semiconductor facet in combination with a
collecting film-waveguide lens. The latter is realized by dry-
etching into the upper cladding of the layer sequence stopping
50nm below the upper cladding (i.e., within the active
region); see also Section 3. This way the effective refractive
index n.¢ of any laser mode is reduced. (Due to the reduction
of the refractive index in the region of the waveguide lens,
its top-viewed shape has to resemble that of a diverging lens
known from free-space optics in order to achieve a collective
function.) Half of the lens function is achieved before reflec-
tion of the wave at the plane facet and the other half after
this reflection on the wave’s way back. The focal length f of
the complete (biconcave) film-waveguide lens (with its two
plane-concave halves) is supposed to be equal to the resonator
length L (L = f).

The radius of curvature R of the waveguide lens is 46 ym,
giving a diameter 2R of 92 ym, that is, nearly equal to the
ridge width (see Figures 3 and 2 again).

3. Technological Work

The monocrystalline layer sequences are epitaxially grown
with our molecular beam epitaxy (MBE) system R450 by
DCA Instruments Oy, Turku, Finland. The central nontilted
segment of the spatial frequency filter and the facet on the
Fourier element side of the resonator are cleaved. The other
(i.e., tilted) flanks are implemented with standard photoli-
thography, using a shared dry-etch step. For the dry-etch pro-
cesses (reactive ion etching (RIE)) a MicroSys 350 machine by
Roth & Rau, Wuestenbrand, Germany, is used.

A second dry-etch step has to be employed for etching
into the cladding in the area of the film-waveguide lens. The
replacement of the original cylindrical mirror (the curved
semiconductor facet) by the combination of the cleaved plane
facet with the dry-etched film-waveguide lens is done for
technological reasons: for the hypothetic case with a curved
(nonoblique) mirror the curvature would have to be so small
(the radius of curvature R so large) that the distance along the
optical axis between the mirror edges and the center of the
mirror would be around 225 nm only, which is not suitable
for standard photolithography.

The desired etch-depth for the waveguide lens has to be
hit with an accuracy of better than 25nm. Otherwise the
focal length of the waveguide lens would differ from the
resonator length by more than 30% [28], resulting in nonexact
1D spatial Fourier-transformation and nonoptimal spatial
filtering.

In order to have an in situ (real-time) etch-depth control
with this demanding accuracy we have successfully employed
an adequate measurement techniques, by transferring the
concept of reflectance anisotropy spectroscopy (RAS), which
is well-known from epitaxy for growth control by now
[29-35], to reactive ion etching (RIE) of monocrystalline
semiconductor layer sequences [36-39]. We have used argon
as the plasma gas and 2 volume-% of chlorine as the reactive
gas. This way the RIE-RAS signals and signal transients have
been meaningful and we have achieved an accuracy in in situ
etch-depth control of 16 nm. (In cases with low etch rates
(below =75 nm/min) we have even resolved monolayer etch
ablation [39].) The details of the RIE-RAS principle and of its
experimental results during film-waveguide etching are given
elsewhere [28, 38].
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FIGURE 4: Experimental results, that is, near- (a) and far-field (b) intensity distributions, for a BAL without spatial filter or waveguide lens
for com parison. The laser has exactly the same layer sequence as that with the results in Figure 5, since both lasers have been made from the
same wafer. The measurements are performed at 91K device temperature in continuous wave operation. As expected there is no evidence of

fundamental transverse mode selection (TMS#0).
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FIGURE 5: Experimental results for a TMS#0-BAL with spatial filter to support the fundamental transverse mode (#0) and with film-waveguide
lens. The intensity profiles are taken on the filter side of the resonator. The laser has exactly the same layer sequence as that from Figure 4, since
both lasers have been made from the same wafer. Again (a) gives the near-field, (b) the far-field intensity distribution. The measurements are
performed at 91K device temperature in continuous wave operation. Obviously the fundamental transverse mode is strongly supported. But
filamentation is not suppressed. Gaussian fits are introduced into the diagrams as red lines.

4. Experimental TMS Results and Discussion

The devices show clear laser characteristics. The best speci-
men emits an optical power of about 10 mW/facet continuous
wave at room temperature and at a pump current of 20%
above the laser threshold current I,; . This very sample shows
a good differential quantum efficiency of 7 = 2.5%.

The TMS measurements were performed at a device
temperature of 91 K. To illustrate the TMS results the emission

of two BAL devices made from the same wafer (identical
layer sequences) will be compared. In Figure 4 the near- and
far-field intensity distributions are reproduced for the case
neither with a spatial frequency filter nor with a waveguide
lens. It is obvious from the results depicted in Figure 4 that
there is no transverse mode selection at all, as expected.

On the contrary, in Figure 5 the corresponding near- and
far-field intensity distributions are given for a TMS#0-BAL,
that is, a laser with spatial frequency filter for mode #0 and
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film-waveguide lens. The intensity profiles are taken on the
filter side of the resonator. The fundamental transverse mode
(#0 with one intensity maximum) is strongly supported.

But dips and bumps in the envelope of the near-field
intensity distribution are discernible as compared to the
Gaussian fit (red line). In principle they might either be
related to the additional (weak) oscillation of an undesired
higher transverse mode (i.e., #4 with five intensity maxima
here) or the occurrence of filamentation [40-45]. But the fil-
ter plane also serves as the image plane of the 4f set-up, where,
due to the 30 um narrow central segment, intensity maxima
of potentially oscillating higher order transverse modes are
stripped, inevitably resulting in suppression of these modes.
Thus the deviations from the desired smooth envelope are
likely to be attributable to filamentation.

The intensity distributions allow for calculation of a 1D
beam quality parameter, that is,

M2 = m‘j{’& =147 @)

0
with a full far-field angle of 20,1, = 4.1°. These (best) results
are taken at 10% above laser threshold, but similar values are
achieved for pump currents of up to 20% above threshold. At
pump currents more than 25% above threshold TMS is not
observed.

5. Conclusions

A concept for fundamental spatial transverse mode selec-
tion (TMS#0) of edge-emitting broad area (semiconductor
diode) lasers (BAL) is presented, which employs a twice-
retracted 4f set-up with an actual length of 1f integrated
into the laser resonator. One resonator facet incorporates the
spatial frequency filter; the other one houses a plane facet
in combination with a film-waveguide lens as the Fourier-
transform element. Experimental results show good funda-
mental transverse mode selection for pump currents of up
to 20% above threshold, but filamentation is not suppressed.
The best one-dimensional beam quality parameter measured
is M}y, = 1.47.
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