Supplementary Information

for

Microwave-assisted synthesis and characterization of [Rh₂(OAc)₄(L)₂] paddlewheel complexes: a joint experimental and computational study

Oscar F. Gonzalez-Belman,^a Yazmín Varela,^a Marcos Flores-Alamo,^b Kazimierz Wrobel,^a Silvia Gutierrez-Granados,^a Juan M. Peralta-Hernández,^a J. Oscar C. Jiménez-Halla,^{a*} and Oracio Serrano^{a*}

- a) Departamento de Química, Sede Pueblito de Rocha, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, México, 36040
- b) Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México, México D.F. 04510

Content

1.	1D and 2D NMR spectra for compounds 1-4	2
2.	IR spectra for compounds 1-4	18
3.	UV/Visible spectra for compounds 1-4	20
4.	Mass spectrum for compound 1	22
5.	X-Ray Diffraction Tables for compounds 1 , 2 and 4	24
6.	Computational Methodology	48
7.	Optimized Cartesian Coordinates	50
8.	References	70

1D and 2D NMR spectra

Figure S.I.8. ¹H NMR (in CDCl₃) of compound **1**.

Figure S.I.9. $^{13}\text{C}\{^{1}\text{H}\}$ NMR (in CDCl₃) of compound 1.

Figure S.I.15. HMBC NMR (in $CDCI_3$) of compound 1.

Figure S.I.16. COSY NMR (in CDCl₃) of compound 1.

Figure S.I.17. NOESY NMR (in CDCl₃) of compound 1.

80

70 60 50 40 30

Ó

20 10

110 100 90 f1 (ppm)

170 160

190 180

140 130

150

120

125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1(ppm)

Figure S.I.3. DEPT NMR (in CDCl₃) of compound 2.

Figure S.I.4. HSQC NMR (in $CDCI_3$) of compound 2.

Figure S.I.5. HMBC NMR (in CDCl₃) of compound **2**.

Figure S.I.7. NOESY NMR (in $CDCl_3$) of compound 2.

Figure S.I.18. ¹H NMR (in NCCD₃) of compound 3.

Figure S.I.19. $^{13}C{^{1}H}$ NMR (in NCCD₃) of compound 3.

.

Figure S.I.21. HSQC NMR (in NCCD₃) of compound 3.

Figure S.I.23. COSY NMR (in NCCD₃) of compound 3.

Figure S.I.24. NOESY NMR (in NCCD₃) of compound 3.

Figure S.I.25. ¹H NMR (in NCCD₃) of compound 4.

Figure S.I.26. $^{13}C{^{1}H}$ NMR (in NCCD₃) of compound 4.

Figure S.I.27. DEPT (in NCCD₃) of compound 4.

Figure S.I.28. HSQC (in NCCD₃) of compound 4.

Figure S.I.29. HMBC (in NCCD₃) of compound 4.

Figure S.I.30. COSY (in NCCD₃) of compound 4.

Figure S.I.31. NOESY (in NCCD₃) of compound 4.

IR spectra

Figure S.I.33. IR spectra (in KBr) of compound 2.

Figure S.I.34. IR spectra (in KBr) of compound 3.

Figure S.I.35. IR spectra (in KBr) of compound 4.

UV/Visible spectra

Figure S.I.36. UV-Vis spectra of a solution of compound 1 in CH₃CN (1 x 10^{-3} M).

Figure S.I.37. UV-Vis spectra of a solution of compound 2 in CH_3CN (1 x 10⁻³ M).

Figure S.I.38. UV-Vis spectra of a solution of compound 3 in CH₃CN (1×10^{-3} M).

Figure S.I.39. UV-Vis spectra of a solution of compound 4 in CH_3CN (1 x 10⁻³ M).

Mass spectrum for complex 1.

X-Ray Diffraction Tables

Table S.I.1. Crystal data and structure refinement for compound 1.					
Identification code	shelx				
Empirical formula	C32 H50 N2 O8 Rh2				
Formula weight	796.56				
Temperature	130(2) K				
Wavelength	0.71073 Å	0.71073 Å			
Crystal system	Triclinic				
Space group	P -1				
Unit cell dimensions	a = 8.2014(5) Å	α= 75.975(5)°.			
	b = 9.2294(6) Å	β= 75.919(5)°.			
	c = 11.9557(7) Å	γ= 82.881(5)°.			
Volume	849.58(9) ų				
Z	1				
Density (calculated)	1.557 Mg/m ³				
Absorption coefficient	1.021 mm ⁻¹				
F(000)	410				
Theta range for data collection	3.447 to 29.348°.				
Index ranges	-10<=h<=11, -12<=k<=11, -12<	=l<=15			
Reflections collected	6458				
Independent reflections	3940 [R(int) = 0.0311]				
Completeness to theta = 25.242°	99.7 %				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	3940 / 2 / 211				
Goodness-of-fit on F ²	1.026				
Final R indices [I>2sigma(I)]	R1 = 0.0386, wR2 = 0.0541				
R indices (all data)	R1 = 0.0553, wR2 = 0.0647				
Extinction coefficient	n/a				
Largest diff. peak and hole	0.563 and -0.740 e.Å ⁻³				

	х	У	Z	U(eq)
C(1)	1764(3)	7282(4)	8133(3)	11(1)
C(2)	2974(4)	7929(4)	8460(3)	12(1)
C(3)	4389(4)	7018(4)	8721(3)	17(1)
C(4)	4606(4)	5540(4)	8631(3)	17(1)
C(5)	3417(4)	4951(4)	8269(3)	15(1)
C(6)	1974(4)	5802(4)	7997(3)	12(1)
C(7)	2819(4)	9555(4)	8556(3)	17(1)
C(8)	4408(4)	10354(4)	7887(3)	23(1)
C(9)	2390(5)	9678(5)	9854(3)	34(1)
C(10)	685(4)	5092(4)	7615(3)	15(1)
C(11)	-504(4)	4229(5)	8702(3)	26(1)
C(12)	1507(4)	4062(4)	6770(3)	24(1)
C(13)	-2695(4)	8558(4)	5332(3)	11(1)
C(14)	-4270(3)	7780(4)	5521(3)	16(1)
C(15)	-1846(3)	12130(4)	5910(3)	13(1)
C(16)	-2882(4)	13379(4)	6414(3)	17(1)
O(1)	-1922(2)	8269(3)	6173(2)	13(1)
O(2)	-2265(2)	9487(3)	4345(2)	12(1)
O(3)	-1271(2)	11049(3)	6626(2)	12(1)
O(4)	1615(2)	7742(3)	5196(2)	14(1)
Rh(1)	177(1)	9361(1)	5963(1)	10(1)
N(1)	273(3)	8156(3)	7882(2)	8(1)

Table S.I.2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for compound **1**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(2)	1.394(4)
C(1)-C(6)	1.399(5)
C(1)-N(1)	1.433(4)
C(2)-C(3)	1.399(4)
C(2)-C(7)	1.520(5)
C(3)-C(4)	1.381(5)
C(3)-H(3)	0.9500
C(4)-C(5)	1.373(5)
C(4)-H(4)	0.9500
C(5)-C(6)	1.398(4)
C(5)-H(5)	0.9500
C(6)-C(10)	1.518(5)
C(7)-C(8)	1.526(5)
C(7)-C(9)	1.535(5)
C(7)-H(7)	1.0000
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
С(9)-Н(9А)	0.9800
С(9)-Н(9В)	0.9800
С(9)-Н(9С)	0.9800
C(10)-C(11)	1.532(5)
C(10)-C(12)	1.534(4)
C(10)-H(10)	1.0000
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-O(1)	1.274(4)
C(13)-O(2)	1.279(4)
C(13)-C(14)	1.498(4)
C(14)-H(14A)	0.9800

Table S.I.3. Bond lengths [Å] and angles [°] for compound **1**.

C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(15)-O(4)#1	1.268(4)
C(15)-O(3)	1.271(4)
C(15)-C(16)	1.503(4)
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
O(1)-Rh(1)	2.034(2)
O(2)-Rh(1)#1	2.038(2)
O(3)-Rh(1)	2.037(2)
O(4)-C(15)#1	1.268(4)
O(4)-Rh(1)	2.041(2)
Rh(1)-O(2)#1	2.038(2)
Rh(1)-N(1)	2.309(3)
Rh(1)-Rh(1)#1	2.3886(5)
N(1)-H(1D)	0.911(17)
N(1)-H(1E)	0.903(17)
C(2)-C(1)-C(6)	122.2(3)
C(2)-C(1)-N(1)	119.9(3)
C(6)-C(1)-N(1)	117.9(3)
C(1)-C(2)-C(3)	117.6(3)
C(1)-C(2)-C(7)	123.4(3)
C(3)-C(2)-C(7)	119.0(3)
C(4)-C(3)-C(2)	121.4(3)
C(4)-C(3)-H(3)	119.3
C(2)-C(3)-H(3)	119.3
C(5)-C(4)-C(3)	119.4(3)
C(5)-C(4)-H(4)	120.3
C(3)-C(4)-H(4)	120.3
C(4)-C(5)-C(6)	121.9(3)
C(4)-C(5)-H(5)	119.0
C(6)-C(5)-H(5)	119.0
C(5)-C(6)-C(1)	117.3(3)
C(5)-C(6)-C(10)	119.8(3)

C(1)-C(6)-C(10)	122.8(3)
C(2)-C(7)-C(8)	112.0(3)
C(2)-C(7)-C(9)	111.0(3)
C(8)-C(7)-C(9)	110.4(3)
C(2)-C(7)-H(7)	107.8
C(8)-C(7)-H(7)	107.8
С(9)-С(7)-Н(7)	107.8
C(7)-C(8)-H(8A)	109.5
C(7)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(7)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(7)-C(9)-H(9A)	109.5
С(7)-С(9)-Н(9В)	109.5
H(9A)-C(9)-H(9B)	109.5
С(7)-С(9)-Н(9С)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(6)-C(10)-C(11)	110.1(3)
C(6)-C(10)-C(12)	112.5(2)
C(11)-C(10)-C(12)	110.3(3)
C(6)-C(10)-H(10)	107.9
C(11)-C(10)-H(10)	107.9
C(12)-C(10)-H(10)	107.9
C(10)-C(11)-H(11A)	109.5
C(10)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(10)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(10)-C(12)-H(12A)	109.5
C(10)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(10)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5

H(12B)-C(12)-H(12C)	109.5
O(1)-C(13)-O(2)	125.5(3)
O(1)-C(13)-C(14)	117.6(3)
O(2)-C(13)-C(14)	116.8(3)
C(13)-C(14)-H(14A)	109.5
C(13)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(13)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
O(4)#1-C(15)-O(3)	125.9(3)
O(4)#1-C(15)-C(16)	116.7(3)
O(3)-C(15)-C(16)	117.3(3)
C(15)-C(16)-H(16A)	109.5
C(15)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(15)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(13)-O(1)-Rh(1)	118.5(2)
C(13)-O(2)-Rh(1)#1	119.30(19)
C(15)-O(3)-Rh(1)	118.2(2)
C(15)#1-O(4)-Rh(1)	119.4(2)
O(1)-Rh(1)-O(3)	90.19(8)
O(1)-Rh(1)-O(2)#1	176.65(9)
O(3)-Rh(1)-O(2)#1	89.88(8)
O(1)-Rh(1)-O(4)	89.94(9)
O(3)-Rh(1)-O(4)	176.42(9)
O(2)#1-Rh(1)-O(4)	89.79(8)
O(1)-Rh(1)-N(1)	87.52(9)
O(3)-Rh(1)-N(1)	87.88(9)
O(2)#1-Rh(1)-N(1)	95.83(9)
O(4)-Rh(1)-N(1)	95.71(9)
O(1)-Rh(1)-Rh(1)#1	88.83(6)
O(3)-Rh(1)-Rh(1)#1	88.86(6)
O(2)#1-Rh(1)-Rh(1)#1	87.82(6)

O(4)-Rh(1)-Rh(1)#1	87.57(6)
N(1)-Rh(1)-Rh(1)#1	175.09(6)
C(1)-N(1)-Rh(1)	120.20(18)
C(1)-N(1)-H(1D)	113.6(18)
Rh(1)-N(1)-H(1D)	101(2)
C(1)-N(1)-H(1E)	113(2)
Rh(1)-N(1)-H(1E)	100(2)
H(1D)-N(1)-H(1E)	107(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+2,-z+1

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	8(2)	15(2)	7(2)	0(1)	-2(1)	2(1)
C(2)	13(2)	13(2)	8(2)	0(2)	-2(1)	0(1)
C(3)	14(2)	23(2)	14(2)	-3(2)	-7(1)	-1(2)
C(4)	14(2)	16(2)	18(2)	0(2)	-5(1)	4(2)
C(5)	14(2)	12(2)	19(2)	-6(2)	-2(1)	2(1)
C(6)	12(2)	13(2)	9(2)	-1(2)	0(1)	-1(1)
C(7)	18(2)	16(2)	19(2)	-7(2)	-7(1)	1(2)
C(8)	26(2)	14(2)	29(2)	-6(2)	-6(2)	-6(2)
C(9)	45(2)	24(3)	31(2)	-16(2)	6(2)	-8(2)
C(10)	17(2)	11(2)	16(2)	-1(2)	-6(1)	0(1)
C(11)	22(2)	35(3)	21(2)	-1(2)	-6(2)	-12(2)
C(12)	22(2)	30(3)	25(2)	-14(2)	-9(2)	-1(2)
C(13)	9(2)	10(2)	15(2)	-8(2)	1(1)	2(1)
C(14)	13(2)	17(2)	18(2)	-6(2)	-3(1)	-3(1)
C(15)	4(2)	14(2)	21(2)	-5(2)	-1(1)	-1(1)
C(16)	16(2)	17(2)	19(2)	-9(2)	-4(1)	1(2)
O(1)	11(1)	15(1)	12(1)	-1(1)	-3(1)	-2(1)
O(2)	10(1)	14(1)	15(1)	-4(1)	-4(1)	-3(1)
O(3)	12(1)	13(1)	13(1)	-3(1)	-3(1)	2(1)
O(4)	15(1)	16(2)	10(1)	-2(1)	-3(1)	1(1)
Rh(1)	9(1)	11(1)	10(1)	-2(1)	-3(1)	0(1)
N(1)	11(1)	6(2)	7(1)	-2(1)	-2(1)	-1(1)

Table S.I.4. Anisotropic displacement parameters ($Å^2x \ 10^3$) for compound **1**. The anisotropicdisplacement factor exponent takes the form: $-2\mathbb{D}^2$ [$h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}$]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(14)-H(14A)O(2)#2	0.98	2.58	3.558(4)	172.4
C(14)-H(14A)O(2)#2	0.98	2.58	3.558(4)	172.4

Table S.I.5. Hydrogen bonds for compound 1 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+2,-z+1 #2 -x-1,-y+2,-z+1

Table S.I.6. Crystal data and structure refinement for the structure refinement for structure refinement for the structur	or compound 2 .		
Identification code	shelx		
Empirical formula	C26 H38 N2 O8 Rh2		
Formula weight	712.40		
Temperature	130(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 8.0671(11) Å	α= 69.118(9)°.	
	b = 8.3981(6) Å	β= 70.302(11)°.	
	c = 11.6427(14) Å	γ= 89.701(8)°.	
Volume	687.89(15) Å ³		
Z	1		
Density (calculated)	1.720 Mg/m ³		
Absorption coefficient	1.250 mm ⁻¹		
F(000)	362		
Crystal size	ize ? x ? x ? mm ³		
Theta range for data collection	3.493 to 29.429°.		
Index ranges	-10<=h<=11, -11<=k<=10, -16<	= <=11	
Reflections collected	5600		
Independent reflections	3196 [R(int) = 0.0287]		
Completeness to theta = 25.242°	99.8 %		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3196 / 2 / 183		
Goodness-of-fit on F ²	1.054		
Final R indices [I>2sigma(I)]	R1 = 0.0300, wR2 = 0.0586		
R indices (all data) R1 = 0.0378, wR2 = 0.0655			
Extinction coefficient n/a			
Largest diff. peak and hole	0.788 and -0.783 e.Å ⁻³		

 Table S.I.6.
 Crystal data and structure refinement for compound 2.

	х	У	Z	U(eq)
C(1)	388(4)	-845(3)	3798(3)	15(1)
C(2)	448(4)	-2390(4)	4778(3)	17(1)
C(3)	-1145(4)	-3406(4)	5661(3)	18(1)
C(4)	-2779(4)	-2921(4)	5613(3)	18(1)
C(5)	-2774(4)	-1408(4)	4597(3)	19(1)
C(6)	-1219(4)	-352(4)	3680(3)	17(1)
C(7)	2197(4)	-2929(4)	4859(3)	21(1)
C(8)	-4486(4)	-4011(4)	6620(3)	27(1)
C(9)	-1273(4)	1251(4)	2567(3)	24(1)
C(10)	2933(4)	1693(3)	-1198(3)	15(1)
C(11)	1757(4)	2707(4)	-1867(3)	22(1)
C(12)	6622(4)	2893(3)	-315(3)	17(1)
C(13)	7574(4)	4547(4)	-479(3)	25(1)
O(1)	2419(3)	1271(2)	44(2)	18(1)
O(2)	5277(3)	2211(2)	724(2)	18(1)
O(3)	4351(3)	1335(2)	-1896(2)	17(1)
O(4)	7240(3)	2324(2)	-1226(2)	17(1)
Rh(1)	3959(1)	-46(1)	1029(1)	14(1)
N(1)	2033(3)	219(3)	2923(2)	14(1)

Table S.I.7. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for compound **2**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(6)	1.395(4)
C(1)-C(2)	1.403(4)
C(1)-N(1)	1.431(4)
C(2)-C(3)	1.390(4)
C(2)-C(7)	1.502(4)
C(3)-C(4)	1.391(4)
C(3)-H(3)	0.9500
C(4)-C(5)	1.393(4)
C(4)-C(8)	1.506(4)
C(5)-C(6)	1.390(4)
C(5)-H(5)	0.9500
C(6)-C(9)	1.513(4)
C(7)-H(7A)	0.9800
С(7)-Н(7В)	0.9800
C(7)-H(7C)	0.9800
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800
C(10)-O(3)	1.266(3)
C(10)-O(1)	1.272(3)
C(10)-C(11)	1.500(4)
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
C(12)-O(2)	1.263(3)
C(12)-O(4)	1.267(3)
C(12)-C(13)	1.509(4)
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
O(1)-Rh(1)	2.031(2)

Table S.I.8. Bond lengths [Å] and angles [°] for compound **2**.

O(2)-Rh(1)	2.0333(18)
O(3)-Rh(1)#1	2.0450(19)
O(4)-Rh(1)#1	2.0506(18)
Rh(1)-O(3)#1	2.0450(19)
Rh(1)-O(4)#1	2.0506(18)
Rh(1)-N(1)	2.316(2)
Rh(1)-Rh(1)#1	2.3925(6)
N(1)-H(1E)	0.902(17)
N(1)-H(1D)	0.908(17)
C(6)-C(1)-C(2)	121.3(3)
C(6)-C(1)-N(1)	120.9(3)
C(2)-C(1)-N(1)	117.8(3)
C(3)-C(2)-C(1)	118.4(3)
C(3)-C(2)-C(7)	121.1(3)
C(1)-C(2)-C(7)	120.5(3)
C(2)-C(3)-C(4)	122.0(3)
C(2)-C(3)-H(3)	119.0
C(4)-C(3)-H(3)	119.0
C(3)-C(4)-C(5)	117.6(3)
C(3)-C(4)-C(8)	120.8(3)
C(5)-C(4)-C(8)	121.5(3)
C(6)-C(5)-C(4)	122.6(3)
C(6)-C(5)-H(5)	118.7
C(4)-C(5)-H(5)	118.7
C(5)-C(6)-C(1)	118.0(3)
C(5)-C(6)-C(9)	120.8(3)
C(1)-C(6)-C(9)	121.2(3)
C(2)-C(7)-H(7A)	109.5
C(2)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(2)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(4)-C(8)-H(8A)	109.5
С(4)-С(8)-Н(8В)	109.5

H(8A)-C(8)-H(8B)	109.5
C(4)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
С(6)-С(9)-Н(9А)	109.5
C(6)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(6)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
O(3)-C(10)-O(1)	125.1(3)
O(3)-C(10)-C(11)	118.4(3)
O(1)-C(10)-C(11)	116.5(3)
C(10)-C(11)-H(11A)	109.5
C(10)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(10)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
O(2)-C(12)-O(4)	126.2(3)
O(2)-C(12)-C(13)	116.5(3)
O(4)-C(12)-C(13)	117.3(3)
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(10)-O(1)-Rh(1)	119.29(18)
C(12)-O(2)-Rh(1)	118.62(17)
C(10)-O(3)-Rh(1)#1	119.51(19)
C(12)-O(4)-Rh(1)#1	118.91(18)
O(1)-Rh(1)-O(2)	90.01(8)
O(1)-Rh(1)-O(3)#1	176.00(7)
O(2)-Rh(1)-O(3)#1	89.13(8)
O(1)-Rh(1)-O(4)#1	90.25(8)

O(2)-Rh(1)-O(4)#1	176.19(7)
O(3)#1-Rh(1)-O(4)#1	90.34(8)
O(1)-Rh(1)-N(1)	88.87(8)
O(2)-Rh(1)-N(1)	85.02(8)
O(3)#1-Rh(1)-N(1)	94.94(8)
O(4)#1-Rh(1)-N(1)	98.79(8)
O(1)-Rh(1)-Rh(1)#1	88.41(6)
O(2)-Rh(1)-Rh(1)#1	88.70(6)
O(3)#1-Rh(1)-Rh(1)#1	87.66(6)
O(4)#1-Rh(1)-Rh(1)#1	87.51(6)
N(1)-Rh(1)-Rh(1)#1	173.16(6)
C(1)-N(1)-Rh(1)	126.56(17)
C(1)-N(1)-H(1E)	109.9(19)
Rh(1)-N(1)-H(1E)	103.2(18)
C(1)-N(1)-H(1D)	110.8(18)
Rh(1)-N(1)-H(1D)	98.3(18)
H(1E)-N(1)-H(1D)	106(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	14(2)	15(1)	12(1)	-7(1)	0(1)	-1(1)
C(2)	18(2)	17(2)	18(2)	-10(1)	-4(1)	3(1)
C(3)	24(2)	12(1)	18(2)	-5(1)	-6(1)	2(1)
C(4)	19(2)	16(2)	19(2)	-9(1)	-4(1)	0(1)
C(5)	18(2)	18(2)	24(2)	-11(1)	-10(1)	6(1)
C(6)	19(2)	17(2)	16(2)	-10(1)	-4(1)	2(1)
C(7)	18(2)	21(2)	22(2)	-7(1)	-7(1)	4(1)
C(8)	17(2)	22(2)	30(2)	-2(2)	-1(2)	-3(1)
C(9)	21(2)	23(2)	22(2)	-6(1)	-4(2)	6(1)
C(10)	15(2)	14(1)	18(2)	-6(1)	-7(1)	2(1)
C(11)	17(2)	27(2)	23(2)	-11(1)	-7(1)	8(1)
C(12)	14(2)	12(1)	25(2)	-6(1)	-8(1)	4(1)
C(13)	20(2)	20(2)	28(2)	-8(2)	-3(2)	-2(1)
O(1)	15(1)	21(1)	18(1)	-7(1)	-5(1)	7(1)
O(2)	18(1)	14(1)	19(1)	-7(1)	-3(1)	-1(1)
O(3)	13(1)	18(1)	17(1)	-5(1)	-5(1)	4(1)
O(4)	16(1)	13(1)	20(1)	-6(1)	-4(1)	0(1)
Rh(1)	12(1)	12(1)	14(1)	-4(1)	-3(1)	1(1)
N(1)	14(1)	15(1)	15(1)	-8(1)	-6(1)	3(1)

Table S.I.9. Anisotropic displacement parameters ($Å^2x \ 10^3$) for compound **2**. The anisotropicdisplacement factor exponent takes the form: $-2\mathbb{P}^2[\ h^2a^{*2}U^{11} + ... + 2\ h\ k\ a^*\ b^*\ U^{12}]$

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(11)-H(11C)O(4)#2	0.98	2.62	3.457(4)	143.6
C(13)-H(13B)O(2)#3	0.98	2.58	3.550(4)	171.1
C(11)-H(11C)O(4)#2	0.98	2.62	3.457(4)	143.6
C(13)-H(13B)O(2)#3	0.98	2.58	3.550(4)	171.1

Table S.I.10. Hydrogen bonds for compound 2 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z #2 x-1,y,z #3 -x+1,-y+1,-z

Identification code	shelx	
Empirical formula	C26 H24 O12 Rh2	
Formula weight	734.27	
Temperature	130(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 11.616(2) Å	α= 90°.
	b = 13.6577(17) Å	β= 106.927(18)°.
	c = 8.5475(15) Å	γ= 90°.
Volume	1297.3(4) Å ³	
Z	2	
Density (calculated)	1.880 Mg/m ³	
Absorption coefficient	1.339 mm ⁻¹	
F(000)	732	
Theta range for data collection	3.502 to 29.515°.	
Index ranges	-15<=h<=14, -17<=k<=10, -8<=	l<=10
Reflections collected	6445	
Independent reflections	3033 [R(int) = 0.0262]	
Completeness to theta = 25.242°	99.8 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3033/0/183	
Goodness-of-fit on F ²	1.082	
Final R indices [I>2sigma(I)]	R1 = 0.0315, wR2 = 0.0609	
R indices (all data)	R1 = 0.0435, wR2 = 0.0674	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.620 and -1.292 e.Å ⁻³	

 Table S.I.11. Crystal data and structure refinement for compound 4.

	x	У	Z	U(eq)
C(1)	110(3)	6559(2)	2268(4)	14(1)
C(2)	-972(3)	6279(3)	2518(4)	20(1)
C(3)	-1640(3)	6990(3)	3018(4)	22(1)
C(4)	-1257(3)	7955(3)	3250(4)	21(1)
C(5)	-184(3)	8221(3)	2971(4)	18(1)
C(6)	525(3)	7516(2)	2494(4)	15(1)
C(7)	1667(3)	7723(3)	2224(4)	19(1)
C(8)	2281(3)	7014(3)	1718(4)	18(1)
C(9)	1821(2)	6032(2)	1441(4)	14(1)
C(10)	6184(3)	4834(2)	3089(4)	14(1)
C(11)	6883(3)	4700(3)	4860(4)	19(1)
C(12)	4542(3)	3123(2)	-77(4)	12(1)
C(13)	4297(3)	2045(2)	-132(4)	21(1)
O(1)	755(2)	5835(2)	1762(3)	15(1)
O(2)	2288(2)	5334(2)	960(3)	17(1)
O(3)	5072(2)	5025(2)	2752(2)	14(1)
O(4)	3806(2)	3686(2)	310(3)	14(1)
O(5)	3219(2)	5252(2)	-2062(2)	14(1)
O(6)	4507(2)	6602(2)	411(3)	15(1)
Rh(1)	4099(1)	5150(1)	364(1)	10(1)

Table S.I.12. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for compound **4**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-O(1)	1.384(4)
C(1)-C(6)	1.387(4)
C(1)-C(2)	1.389(4)
C(2)-C(3)	1.386(5)
С(2)-Н(2)	0.9500
C(3)-C(4)	1.388(5)
С(3)-Н(3)	0.9500
C(4)-C(5)	1.384(4)
С(4)-Н(4)	0.9500
C(5)-C(6)	1.403(4)
С(5)-Н(5)	0.9500
C(6)-C(7)	1.439(4)
C(7)-C(8)	1.347(5)
С(7)-Н(7)	0.9500
C(8)-C(9)	1.439(5)
C(8)-H(8)	0.9500
C(9)-O(2)	1.225(4)
C(9)-O(1)	1.371(3)
C(10)-O(3)	1.266(4)
C(10)-O(5)#1	1.272(4)
C(10)-C(11)	1.506(4)
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
C(12)-O(4)	1.264(4)
C(12)-O(6)#1	1.275(4)
C(12)-C(13)	1.499(4)
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
O(2)-Rh(1)	2.318(2)
O(3)-Rh(1)	2.032(2)
O(4)-Rh(1)	2.027(2)
O(5)-C(10)#1	1.272(4)

 $\label{eq:compound} \textbf{Table S.I.13}. \hspace{0.1in} \text{Bond lengths [Å] and angles [°] for compound $\textbf{4}$.}$

O(5)-Rh(1)	2.032(2)
O(6)-C(12)#1	1.275(4)
O(6)-Rh(1)	2.037(2)
Rh(1)-Rh(1)#1	2.3863(6)
O(1)-C(1)-C(6)	121.2(3)
O(1)-C(1)-C(2)	116.6(3)
C(6)-C(1)-C(2)	122.2(3)
C(3)-C(2)-C(1)	117.9(3)
С(3)-С(2)-Н(2)	121.1
C(1)-C(2)-H(2)	121.1
C(2)-C(3)-C(4)	121.7(3)
С(2)-С(3)-Н(3)	119.2
С(4)-С(3)-Н(3)	119.2
C(5)-C(4)-C(3)	119.4(3)
С(5)-С(4)-Н(4)	120.3
С(3)-С(4)-Н(4)	120.3
C(4)-C(5)-C(6)	120.3(3)
C(4)-C(5)-H(5)	119.8
C(6)-C(5)-H(5)	119.8
C(1)-C(6)-C(5)	118.5(3)
C(1)-C(6)-C(7)	117.5(3)
C(5)-C(6)-C(7)	124.0(3)
C(8)-C(7)-C(6)	120.7(3)
С(8)-С(7)-Н(7)	119.7
С(6)-С(7)-Н(7)	119.7
C(7)-C(8)-C(9)	121.1(3)
C(7)-C(8)-H(8)	119.4
С(9)-С(8)-Н(8)	119.4
O(2)-C(9)-O(1)	115.4(3)
O(2)-C(9)-C(8)	127.0(3)
O(1)-C(9)-C(8)	117.6(3)
O(3)-C(10)-O(5)#1	126.0(3)
O(3)-C(10)-C(11)	118.0(3)
O(5)#1-C(10)-C(11)	116.1(3)
C(10)-C(11)-H(11A)	109.5

C(10)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(10)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
O(4)-C(12)-O(6)#1	125.2(3)
O(4)-C(12)-C(13)	118.0(3)
O(6)#1-C(12)-C(13)	116.8(3)
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(9)-O(1)-C(1)	121.7(3)
C(9)-O(2)-Rh(1)	132.6(2)
C(10)-O(3)-Rh(1)	118.56(19)
C(12)-O(4)-Rh(1)	118.92(19)
C(10)#1-O(5)-Rh(1)	118.95(19)
C(12)#1-O(6)-Rh(1)	119.59(19)
O(4)-Rh(1)-O(3)	88.87(9)
O(4)-Rh(1)-O(5)	90.74(9)
O(3)-Rh(1)-O(5)	176.45(8)
O(4)-Rh(1)-O(6)	176.17(8)
O(3)-Rh(1)-O(6)	90.22(9)
O(5)-Rh(1)-O(6)	89.94(9)
O(4)-Rh(1)-O(2)	87.39(8)
O(3)-Rh(1)-O(2)	93.65(8)
O(5)-Rh(1)-O(2)	89.86(8)
O(6)-Rh(1)-O(2)	96.37(8)
O(4)-Rh(1)-Rh(1)#1	88.79(6)
O(3)-Rh(1)-Rh(1)#1	88.50(6)
O(5)-Rh(1)-Rh(1)#1	87.97(6)
O(6)-Rh(1)-Rh(1)#1	87.47(6)
O(2)-Rh(1)-Rh(1)#1	175.58(6)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	13(2)	14(2)	14(2)	-2(1)	5(1)	1(1)
C(2)	18(2)	19(2)	25(2)	-2(2)	10(1)	-2(1)
C(3)	14(2)	30(2)	24(2)	-3(2)	9(1)	-1(1)
C(4)	20(2)	22(2)	23(2)	-8(2)	9(1)	5(1)
C(5)	20(2)	14(2)	19(2)	-5(1)	4(1)	2(1)
C(6)	15(2)	13(2)	16(2)	-3(1)	4(1)	-1(1)
C(7)	21(2)	13(2)	24(2)	-1(1)	8(1)	-3(1)
C(8)	14(2)	18(2)	23(2)	2(2)	7(1)	-5(1)
C(9)	11(1)	19(2)	12(2)	4(1)	3(1)	1(1)
C(10)	20(2)	9(2)	16(2)	0(1)	6(1)	1(1)
C(11)	23(2)	17(2)	16(2)	2(1)	4(1)	4(1)
C(12)	16(2)	11(2)	11(2)	2(1)	4(1)	0(1)
C(13)	22(2)	11(2)	32(2)	0(2)	15(1)	0(1)
O(1)	15(1)	13(1)	20(1)	-2(1)	10(1)	1(1)
O(2)	13(1)	17(1)	22(1)	-2(1)	9(1)	1(1)
O(3)	13(1)	16(1)	14(1)	1(1)	6(1)	2(1)
O(4)	17(1)	8(1)	20(1)	0(1)	10(1)	1(1)
O(5)	12(1)	16(1)	12(1)	1(1)	3(1)	2(1)
O(6)	14(1)	8(1)	26(1)	1(1)	10(1)	-1(1)
Rh(1)	10(1)	8(1)	13(1)	1(1)	6(1)	1(1)

Table S.I.14. Anisotropic displacement parameters ($Å^2x \ 10^3$) for compound **4**. The anisotropicdisplacement factor exponent takes the form: $-2\mathbb{P}^2[\ h^2a^{*2}U^{11} + ... + 2\ h\ k\ a^*\ b^*\ U^{12}]$

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
С(2)-Н(2)О(5)#2	0.95	2.53	3.277(4)	135.5
C(8)-H(8)O(6)	0.95	2.33	3.151(4)	144.5
C(11)-H(11A)O(3)#3	0.98	2.52	3.489(4)	168.6
C(13)-H(13A)O(3)#4	0.98	2.61	3.379(4)	135.5

Table S.I.15. Hydrogen bonds for compound 4 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1-x+1,-y+1,-z #2-x,-y+1,-z #3-x+1,-y+1,-z+1

#4 -x+1,y-1/2,-z+1/2

Computational Methodology

Our theoretical calculations were done using Gaussian09 series of programs.[1] We have optimized the geometries at gas-phase with no constraints nor model systems but the real ligands for each complex at the DFT level of theory with the Berny algorithm. We have chosen the pure local functional of Truhlar and Zhao M06-L [2] in conjunction with a mix of triple- ζ quality basis sets: the LANL08 relativistic pseudopotential [3] for Rh atoms and 6-311G for all of the rest of atoms. We also calculated the harmonic frequencies after each geometry optimization in order to check all of them were positive (ensuring us that we found local minima on the potential energy surface) and for obtaining thermal and entropic corrections to the electronic energy at 298K.

For the report of bond energies, we also have calculated the Basis Set Superposition Error (BSSE) by using the counterpoise correction (CP) proposed, first by Boys and Bernardi,[4] already implemented in Gaussian. In this regard, considering a supermolecule AB, made up of two interacting systems A and B, we can write the dissociation energy as

$$E_{dis}(AB) = E_{AB}^{AB}(AB) - E_{A}^{A}(A) - E_{B}^{B}(B)$$
(1)

where $E_Y^Z(X)$ represents the energy of the system X at the geometry Y with the basis set Z. When a complete basis set is used, Ec. (1) is exact itself. However, for the basis sets we have chosen, our bonding energies contain a BSSE that is defined as

$$\delta_{AB}^{BSSE} = E_{AB}^{A}(A) - E_{AB}^{AB}(A) + E_{AB}^{B}(B) - E_{AB}^{AB}(B)$$
(2)

which depends on the basis set and the geometry of AB. So, we have reported BSSEcorrected bonding energies with the CP procedure by using the following equation:

$$E_{dis}^{CP}(AB) = E_{dis}(AB) + \delta_{AB}^{BSSE}$$
(3)

On the other hand, the dissociation energy can be decomposed into two terms: the bonding energy, E_{bond} , and deformation energy, E_{def} . The second one can be understood as the energy necessary to deform A and B from their geometries when isolated to the geometry they adopt within the supermolecule AB. Thus, we can write:

$$E_{dis}(AB) = E_{bond} + E_{def} \text{ [or } E_{dis}^{CP}(AB) = E_{bond}^{CP} + E_{def} \text{]}$$
(4)

where

$$E_{bond} = E_{AB}^{AB}(AB) - E_{AB}^{A}(A) - E_{AB}^{A}(B)$$

and

$$E_{def} = E_{AB}^{A}(A) - E_{A}^{A}(A) - E_{AB}^{B}(B) - E_{B}^{B}(B)$$

Therefore, our reported dissociation and bonding energies are BSSE-corrected by using Eqs. (3) and (4).

Table S.I.16. Interaction energies (in kcal·mol⁻¹) for the complexes $[Rh_2(OAc)_4(L)]$, L = IDip, **5'**; L = SIDip, **6'**, and $[Rh_2(OAc)_4(L)_2]$, L = IDip, **5**; L = SIDip, **6**, calculated at the M06-L/(6-311G,LANL08) level.^a (IDip = 1,3-bis[diisopropylphenyl]imidazol-2-ylidene and SIDip = 1,3bis[diisopropylphenyl]-4,5-dihydroimidazol-2-ylidene)

Complex	∆H⁰ _R	$\Delta G^0{}_R$	E _{Dissoc}	EBond	E _{Def}
5'	-51.35	-30.86	-45.53	-55.73	10.20
5	-35.92	-18.82	-23.36	-30.13	6.77
6'	-53.64	-31.54	-48.00	-56.22	8.22
6	-36.24	-19.81	-22.22	-30.58	8.36

^a These energies are BSSE corrected by means of the counterpoise method.

Tabla S.I.17. Cartesian coordinates (x y z) of all of the studied compounds calculated at the M06-L/(6-311G,LANL208) level.

Binuclear Rhodium Acetate Complex			Coumarin				
E (scf) = -1133.07366	5441 a.u.		E (sc	f) = -496.938125	5287 a.u.	
All of	the frequencie	s are positive		All oj	f the frequencies	s are positive	
Rh	0.000000	0.000000	1.205690	С	-1.983472	1.978854	0.000000
Rh	0.000000	0.000000	-1.205690	С	-0.596235	1.893259	0.000000
0	-2.081981	-0.004191	1.146415	С	0.000000	0.634555	0.000000
0	-2.081286	-0.003800	-1.149584	С	-0.768058	-0.546354	0.000000
С	-2.683210	0.000000	-0.002152	С	-2.170610	-0.429539	0.000000
С	-4.173256	0.030446	0.002479	С	-2.774101	0.818999	0.000000
Н	-4.520378	1.022791	0.296121	Н	-2.456564	2.952898	0.000000
Н	-4.562176	-0.198417	-0.985635	Н	0.034130	2.771247	0.000000
Н	-4.562078	-0.676725	0.733181	С	-0.068226	-1.799159	0.000000
0	-0.003800	2.081286	1.149584	Н	-2.770436	-1.332569	0.000000
0	-0.004191	2.081981	-1.146415	Н	-3.853021	0.900492	0.000000
0	2.081981	0.004191	1.146415	С	1.286735	-1.848081	0.000000
0	2.081286	0.003800	-1.149584	С	2.102358	-0.657395	0.000000
0	0.004191	-2.081981	-1.146415	Н	-0.649068	-2.715385	0.000000
0	0.003800	-2.081286	1.149584	Н	1.829672	-2.781870	0.000000
С	0.000000	-2.683210	0.002152	0	1.384237	0.584570	0.000000
С	2.683210	0.000000	-0.002152	0	3.327631	-0.592777	0.000000
С	0.000000	2.683210	0.002152				
С	0.030446	4.173256	-0.002479				
Н	-0.198417	4.562176	0.985635				
Н	1.022791	4.520378	-0.296121				
Н	-0.676725	4.562078	-0.733181				
С	4.173256	-0.030446	0.002479				
Н	4.520378	-1.022791	0.296121				
Н	4.562176	0.198417	-0.985635				
Н	4.562078	0.676725	0.733181				
С	-0.030446	-4.173256	-0.002479				
Н	-1.022791	-4.520378	-0.296121				
Н	0.676725	-4.562078	-0.733181				
Н	0.198417	-4.562176	0.985635				
Dip-a	niline			NH ₂ -	coumarin		
E (scf) = -523.399850	5281 a.u.		E (sc	f) = -552.285319	9187 a. u.	
All of	All of the frequencies are positive		All of the frequencies are positive				
С	1.197093	1.628589	0.106695	С	2.103676	-1.266245	-0.000051
С	-0.000083	2.332710	-0.000020	С	0.767724	-1.635473	-0.000062
С	-1.197191	1.628604	-0.106737	С	-0.215674	-0.650373	-0.000019

С	-1.226398	0.232569	-0.107901	С	0.128725	0.713422	0.000030
С	-0.000030	-0.470998	0.000053	С	1.486687	1.072160	0.000026
С	1.226396	0.232606	0.107893	С	2.488750	0.096027	-0.000006
Н	2.128342	2.175190	0.194666	Н	2.870943	-2.032254	-0.000065
Н	-0.000025	3.415628	-0.000037	Н	0.471304	-2.675185	-0.000096
Н	-2.128506	2.175083	-0.194778	С	-0.945210	1.667151	0.000068
Ν	0.000086	-1.859650	0.000257	Н	1.752575	2.123996	0.000057
Н	-0.851826	-2.380217	-0.061384	С	-2.240774	1.265960	0.000061
Н	0.852223	-2.379973	0.060793	С	-2.621385	-0.126484	0.000019
С	-2.532399	-0.539883	-0.184419	Н	-0.699399	2.723903	0.000096
Н	-2.373966	-1.403144	-0.848943	Н	-3.060037	1.970118	0.000085
С	-3.688887	0.258945	-0.786848	0	-1.544976	-1.060012	-0.000026
Н	-3.421008	0.687537	-1.754465	0	-3.764551	-0.581587	-0.000034
Н	-4.560182	-0.384142	-0.928793	Ν	3.824571	0.438690	0.000041
Н	-3.994828	1.076497	-0.129194	Н	4.114658	1.397048	-0.000005
С	-2.931407	-1.073748	1.204169	Н	4.539052	-0.262524	-0.000263
Н	-3.818380	-1.709918	1.143906				
Н	-2.127953	-1.647795	1.670257				
Н	-3.161146	-0.237613	1.869488				
С	2.532431	-0.539823	0.184493				
Н	2.374127	-1.402892	0.849269				
С	3.688920	0.259226	0.786559				
Н	3.421293	0.687668	1.754310				
Н	4.560486	-0.383582	0.928117				
Н	3.994318	1.076927	0.128833				
С	2.931391	-1.074023	-1.204040				
Н	3.818385	-1.710156	-1.143676				
Н	2.127955	-1.648185	-1.670022				
Н	3.161077	-0.238018	-1.869526				
Mes-	·NH ₂			Rh_c	oumarin (1)		
E (sci	f) = -405.488723	3497 a.u.		E (scf	⁻) = -1630.04264	4650 a.u.	
All of	f the frequencie.	s are positive		All of	the frequencie.	s are positive	
С	-0.377878	1.223225	-0.000134	Rh	2.780874	0.462439	0.377248
С	1.016118	1.193330	-0.001552	Rh	0.554656	-0.316110	-0.226956
~	1 740005	0.005075	0 001 701	~	1 001 220	1 0 10 1 6 2	2 24 6 2 2 7

C	1.016118	1.193330	-0.001552	Rh	0.554656	-0.316110	-0.226956
C	1.740065	-0.005075	-0.001791	0	1.981236	1.049462	2.216327
C	1.011403	-1.197599	-0.001716	0	-0.122482	0.320811	1.648788
C	-0.384859	-1.222224	-0.000159	С	0.732594	0.844870	2.474417
C	-1.087076	0.001102	0.000878	С	0.236462	1.210486	3.833726
Н	1.552321	2.138921	-0.002738	Н	0.340324	0.352933	4.502090
Н	1.544631	-2.144606	-0.003037	Н	-0.817041	1.478264	3.798281
N	-2.473962	0.005389	0.001878	Н	0.824084	2.027593	4.244965
Н	-2.990000	0.862735	0.002142	0	3.171384	-1.421368	1.160118
Н	-2.994550	-0.849261	0.002247	0	1.074999	-2.165940	0.577549
С	-1.132184	2.520107	-0.000605	0	3.451708	-0.172191	-1.488276

Н	-1.778579	2.619325	-0.880987	0	1.346008	-0.891168	-2.070255
Н	-1.777157	2.620775	0.880649	0	0.162721	1.604117	-0.985899
Н	-0.452138	3.371850	-0.001827	0	2.282719	2.309876	-0.452727
С	-1.142975	-2.516773	-0.000533	С	1.104794	2.498760	-0.945078
Н	-1.788090	-2.616000	0.880858	С	2.603321	-0.696409	-2.315164
Н	-1.789789	-2.614557	-0.880841	С	2.256334	-2.335037	1.082628
Н	-0.465275	-3.370435	-0.001843	С	2.591994	-3.697931	1.587933
С	3.243054	-0.003936	0.002341	Н	3.438157	-3.653496	2.268257
Н	3.648893	0.455524	0.908972	Н	2.857101	-4.343374	0.748061
Н	3.640022	-1.019101	-0.052749	Н	1.729707	-4.142434	2.080837
Н	3.653429	0.554161	-0.844363	С	3.103243	-1.082859	-3.667041
				Н	2.967840	-0.249662	-4.360083
				Н	2.539341	-1.929568	-4.051161
				Н	4.163980	-1.317848	-3.626929
				С	0.793206	3.854693	-1.487067
				Н	0.627978	4.552974	-0.664073
				Н	-0.099151	3.824647	-2.106143
				Н	1.636786	4.230631	-2.063346
				С	-7.350147	-1.115965	-0.266709
				С	-6.070883	-1.616160	-0.483002
				С	-4.986421	-0.759404	-0.329658
				С	-5.144744	0.590427	0.037135
				С	-6.452189	1.068298	0.248520
				С	-7.542921	0.225827	0.098309
				Н	-8.204344	-1.770880	-0.381893
				Н	-5.893601	-2.644407	-0.765333
				С	-3.962171	1.391149	0.169092
				Н	-6.589463	2.106023	0.530695
				Н	-8.544421	0.600925	0.263021
				С	-2.728887	0.867690	-0.052103
				С	-2.562444	-0.506112	-0.430656
				Н	-4.070408	2.433369	0.448793
				Н	-1.820386	1.444886	0.025525
				0	-3.720350	-1.289570	-0.555381
				0	-1.491965	-1.098942	-0.673542
Rh_co	oumarin (2)			Rh_d	ip_aniline (1)		
E (scf) = -2127.00113	3733 a.u.		E (scf) = -1656.52003	3078 a.u.	
All of	the frequencie	s are positive		All of	the frequencie.	s are positive	
Rh	-1.130028	0.408940	-0.224528	Rh	2.521376	-0.082501	0.770873
Rh	1.131642	-0.410260	0.226441	Rh	0.379999	0.064656	-0.403466
0	-0.338292	1.372456	-1.906558	0	2.533307	-2.123409	0.288112
0	1.789708	0.603961	-1.478966	0	0.577708	-1.954107	-0.909651
С	0.919579	1.259944	-2.184413	С	1.592989	-2.619367	-0.444028
С	1.405838	1.925246	-3.424743	С	1.689288	-4.063614	-0.812089

Н	1.109383	1.298768	-4.318062	Н	2.493878	-4.190010	-1.596853
Н	2.517946	2.020558	-3.402488	н	0.711638	-4.420039	-1.219271
Н	0.918038	2.922466	-3.538110	н	1.995329	-4.661806	0.087771
0	-1.470528	-1.322796	-1.344883	0	3.426455	0.350878	-1.063150
0	0.658850	-2.086297	-0.939709	0	1.410880	0.570139	-2.151406
0	-1.788147	-0.618397	1.467873	0	2.356118	1.948991	1.181369
0	0.339959	-1.347790	1.921478	0	0.308331	2.087619	0.146887
0	1.472223	1.334466	1.333697	0	-0.547981	-0.448151	1.390083
0	-0.670189	2.071989	0.954709	0	1.453619	-0.505504	2.520895
С	0.511720	2.193867	1.466932	С	0.167670	-0.620828	2.459129
С	-0.917964	-1.261268	2.186327	С	1.303627	2.594012	0.810713
С	-0.510116	-2.195189	-1.465012	С	2.710368	0.603239	-2.108159
С	-0.802885	-3.434707	-2.245869	С	3.425427	0.989058	-3.361092
Н	-1.573993	-3.244630	-2.988612	Н	4.411453	0.531540	-3.388978
Н	-1.162456	-4.216990	-1.573487	Н	3.559267	2.072674	-3.388179
Н	0.102257	-3.801926	-2.723847	Н	2.848544	0.700812	-4.236578
С	-1.417082	-1.913671	3.439528	С	1.196697	4.033537	1.198239
Н	-1.635024	-1.113662	4.204109	Н	0.589383	4.130413	2.100923
Н	-0.646359	-2.608463	3.835614	Н	0.706452	4.607662	0.410860
Н	-2.374864	-2.446365	3.224693	Н	2.181476	4.444040	1.405414
С	0.804502	3.433449	2.247681	С	-0.563478	-1.005871	3.702537
Н	1.163612	4.215833	1.575169	Н	-0.327806	-2.043815	3.964988
Н	1.575938	3.243547	2.990127	Н	-1.636371	-0.913106	3.552192
Н	-0.100544	3.800446	2.726011	Н	-0.245730	-0.387380	4.537431
С	9.106120	-0.946547	-0.069261	С	-4.287333	-1.191004	0.633742
С	7.852182	-1.522165	0.104148	С	-4.841753	-0.003079	1.084579
С	6.735580	-0.693099	0.142690	С	-4.319345	1.213746	0.645327
С	6.838919	0.704907	0.007482	С	-3.240177	1.257897	-0.240583
С	8.121193	1.259038	-0.167087	С	-2.702770	0.034210	-0.691836
С	9.242801	0.443971	-0.202610	С	-3.208408	-1.203864	-0.255435
Н	9.983184	-1.580129	-0.101793	Н	-4.695872	-2.135826	0.970076
Н	7.717583	-2.589651	0.208491	Н	-5.678560	-0.015450	1.772588
С	5.628883	1.474420	0.067849	Н	-4.750523	2.142921	1.002786
Н	8.215855	2.334344	-0.267330	Ν	-1.551684	0.065906	-1.552927
Н	10.224265	0.878971	-0.344300	Н	-1.497306	0.885326	-2.147694
С	4.421489	0.876948	0.236223	Н	-1.436390	-0.772032	-2.114927
С	4.305244	-0.549388	0.366914	С	-2.703548	2.593397	-0.725728
Н	5.696845	2.553076	-0.021631	Н	-1.665659	2.467473	-1.041735
Н	3.492926	1.425219	0.294013	С	-2.654407	3.649779	0.380948
0	5.498432	-1.301152	0.314586	Н	-2.107274	3.272498	1.246198
0	3.263952	-1.209760	0.522344	Н	-2.145270	4.547153	0.021471
С	-9.104572	0.944917	0.069693	Н	-3.653324	3.949747	0.707900
С	-7.850627	1.520569	-0.103547	С	-3.526874	3.097580	-1.924625
С	-6.733985	0.691545	-0.141791	Н	-3.127442	4.038891	-2.310171

С	-6.837285	-0.706460	-0.019310	Н	-3.534683	2.373156	-2.744051
С	-8.119570	-1.260627	0.155077	Н	-4.566790	3.266708	-1.631454
С	-9.241219	-0.445593	0.203164	С	-2.635088	-2.542107	-0.701579
Н	-9.981670	1.578463	0.102002	Н	-1.737461	-2.381833	-1.300381
Н	-7.716049	2.588050	-0.207975	С	-3.651117	-3.301938	-1.567290
С	-5.627202	-1.475922	-0.079334	Н	-3.953340	-2.719465	-2.440972
Н	-8.214205	-2.335927	0.255423	Н	-3.231675	-4.248020	-1.918245
Н	-10.222689	-0.880629	0.331854	Н	-4.556523	-3.529188	-1.001147
С	-4.419800	-0.878413	-0.247512	С	-2.183629	-3.391539	0.490316
С	-4.303592	0.547921	-0.365464	Н	-1.736720	-4.322702	0.146250
Н	-5.695131	-2.554571	0.010249	Н	-1.444136	-2.852079	1.085141
Н	-3.491200	-1.426649	-0.305027	Н	-3.024972	-3.647696	1.142216
0	-5.496825	1.299632	-0.313516				
0	-3.262293	1.208321	-0.520769				
Rh_d	lip_aniline (2)			Rh_N	H ₂ _coumarin (1)	
E (scf	⁻) = -2179.9598	5822 a.u.		E (scf) = -1685.40176	5289 a.u.	
All of	the frequencie	s are positive		All of	the frequencie.	s are positive	
Rh	1.130986	0.008045	-0.448696	Rh	-2.414046	0.250921	1.189509
Rh	-1.134752	-0.080556	0.494004	Rh	-0.815286	-0.108957	-0.614317
0	1.375807	1.808142	0.613354	0	-1.991156	2.290041	1.031692
0	-0.728966	1.690567	1.529495	0	-0.434098	1.949215	-0.626387
С	0.424554	2.260145	1.362782	С	-1.098740	2.706242	0.197951
С	0.679879	3.531405	2.106409	С	-0.778403	4.164544	0.196365
Н	1.390455	3.351254	2.915520	Н	0.117550	4.343426	0.794803
Н	-0.242858	3.919340	2.529734	Н	-0.575778	4.512690	-0.814608
Н	1.127807	4.271909	1.444886	Н	-1.596482	4.731271	0.633052
0	1.755653	-1.075594	1.236553	0	-0.846886	0.030787	2.549229
0	-0.370847	-1.175092	2.107596	0	0.650384	-0.371684	0.852444
0	0.740455	-1.778438	-1.460746	0	-2.710712	-1.820842	1.195460
0	-1.385442	-1.867120	-0.591319	0	-1.241013	-2.148717	-0.543140
0	-1.750937	1.031985	-1.174414	0	-2.357481	0.173880	-1.995551
0	0.364309	1.084832	-2.074240	0	-3.874679	0.458784	-0.291988
С	-0.902544	1.362618	-2.092285	С	-3.555578	0.402520	-1.540771
С	-0.424006	-2.332672	-1.319011	С	-2.099562	-2.569551	0.341089
С	0.901145	-1.424555	2.142753	С	0.334781	-0.249345	2.106085
С	1.417730	-2.201116	3.310936	С	1.421076	-0.480117	3.103129
Н	2.452685	-1.933654	3.513804	Н	1.248093	0.111518	3.998973
Н	1.383385	-3.270226	3.088705	Н	1.433010	-1.532340	3.395435
Н	0.801688	-2.022831	4.189247	Н	2.391336	-0.243077	2.671061
С	-0.681540	-3.597093	-2.073346	С	-2.416470	-4.028246	0.337712
Н	-1.309064	-3.387313	-2.942056	Н	-3.171040	-4.237352	-0.423735
Н	-1.221144	-4.307692	-1.449122	Н	-1.531377	-4.611699	0.093027
Н	0.252040	-4.034028	-2.418182	Н	-2.815017	-4.332203	1.301881
С	-1.418329	2.151212	-3.252681	С	-4.631631	0.647095	-2.546323

Н	-1.319919	3.219612	-3.046387	Н	-4.633794	1.701387	-2.831412
Н	-2.471902	1.935298	-3.417646	Н	-4.456442	0.060934	-3.445785
н	-0.841902	1.931715	-4.148590	Н	-5.605054	0.411321	-2.123851
С	5.657986	-1.215769	1.043515	С	2.410275	-1.800882	-1.473685
С	6.199070	-0.013712	1.494505	С	3.640500	-1.930389	-0.847867
С	5.752380	1.190920	0.956393	С	4.376573	-0.785768	-0.554899
С	4.776309	1.219546	-0.044005	С	3.900275	0.497655	-0.885128
С	4.264852	-0.010338	-0.504390	С	2.655876	0.608351	-1.525846
С	4.678978	-1.240235	0.047377	С	1.918803	-0.530902	-1.818015
Н	5.991816	-2.148684	1.481195	Н	1.802652	-2.677132	-1.667949
Н	6.956031	-0.015202	2.269930	Н	4.037587	-2.896333	-0.569223
Н	6.161291	2.123672	1.324920	С	4.711472	1.623982	-0.519605
Ν	3.221661	-0.008240	-1.479273	Н	2.247419	1.589811	-1.740048
Н	3.193086	0.803480	-2.082765	С	5.896650	1.458634	0.118513
Н	3.140700	-0.858294	-2.024187	С	6.415916	0.156316	0.461534
С	4.283284	2.525133	-0.645939	Н	4.353256	2.619278	-0.760407
Н	3.211643	2.413544	-0.848908	Н	6.516689	2.295505	0.404629
С	4.409439	3.714818	0.305945	0	5.594059	-0.954460	0.087657
Н	3.960052	3.490220	1.274619	0	7.473439	-0.095995	1.032666
Н	3.902046	4.587530	-0.112144	Ν	0.596713	-0.407330	-2.334416
Н	5.453254	3.995412	0.471959	Н	0.432268	0.422358	-2.895097
С	5.014277	2.822381	-1.967286	Н	0.242358	-1.235346	-2.801541
Н	4.617808	3.723504	-2.441871				
Н	4.930094	2.000157	-2.683626				
Н	6.080690	2.978076	-1.782679				
С	4.060517	-2.538218	-0.442126				
Н	2.998374	-2.345692	-0.632731				
С	4.718070	-3.001193	-1.755037				
Н	4.706840	-2.225007	-2.525701				
Н	4.209568	-3.880733	-2.158383				
Н	5.765258	-3.264455	-1.582098				
С	4.110565	-3.661936	0.592716				
Н	3.530496	-4.520047	0.244817				
Н	3.693767	-3.331050	1.544745				
Н	5.131716	-4.011638	0.768844				
С	-5.573119	1.418034	-1.021507				
С	-6.156121	0.274401	-1.562783				
С	-5.773751	-0.981436	-1.098214				
С	-4.823166	-1.120394	-0.082143				
С	-4.272431	0.051367	0.473340				
С	-4.618044	1.332076	-0.005826				
Н	-5.854865	2.391994	-1.403515				
Н	-6.894708	0.361363	-2.350853				
Н	-6.213126	-1.869337	-1.536737				

Ν	-3.258814	-0.062150	1.474542
н	-3.284679	-0.914191	2.019755
Н	-3.164474	0.743826	2.080814
С	-4.405867	-2.486922	0.435616
Н	-3.345320	-2.433444	0.706389
С	-4.510664	-3.586486	-0.621821
Н	-3.987800	-3.297819	-1.535237
Н	-4.063239	-4.511423	-0.250162
Н	-5.549896	-3.809443	-0.878040
С	-5.222100	-2.864284	1.684190
Н	-4.883478	-3.814931	2.103650
Н	-5.151905	-2.105448	2.468700
Н	-6.280662	-2.964379	1.428910
С	-3.952027	2.565677	0.576760
Н	-2.907986	2.308284	0.784633
С	-4.625353	2.985933	1.895787
Н	-4.673863	2.167640	2.620032
Н	-4.087745	3.814979	2.363047
Н	-5.653387	3.309678	1.710614
С	-3.910832	3.748627	-0.390108
Н	-3.292511	4.549445	0.023242
Н	-3.486676	3.451827	-1.350350
Н	-4.905041	4.167056	-0.569819

Rh_NH₂_coumarin (2)

E (scf) = -2237.71848391 a.u. All of the frequencies are positive Rh_Mes_NH₂ (1)

E (scf) = -1538.60639799 a.u. One negative frequency at -7.56 cm⁻¹

Rh	-0.858124	-0.217541	0.852838	Rh	0.254809	0.045227	-0.395331
Rh	0.858137	0.512993	-0.726887	Rh	2.356870	-0.073517	0.848574
0	-0.431961	-2.194163	0.316676	0	-0.135002	1.847545	0.601049
0	1.172980	-1.514397	-1.185043	0	1.847941	1.732163	1.754911
С	0.474336	-2.422399	-0.582360	С	0.731569	2.300916	1.459790
С	0.706573	-3.845871	-0.973154	С	0.417245	3.606511	2.110074
Н	-0.035607	-4.149758	-1.714607	Н	-0.684705	3.669167	2.329233
Н	1.693403	-3.965561	-1.412696	Н	1.017910	3.711183	3.046893
Н	0.597292	-4.500667	-0.111089	Н	0.686005	4.456250	1.409795
0	-2.218245	-0.081354	-0.739573	0	-0.634067	-1.011034	1.176655
0	-0.600755	0.606982	-2.220689	0	1.336962	-1.092131	2.359692
0	-1.183312	1.807480	1.302344	0	0.744883	-1.746447	-1.333989
0	0.440866	2.487628	-0.178617	0	2.702790	-1.886955	-0.142709
0	2.222465	0.366343	0.859963	0	3.224426	0.961682	-0.755093
0	0.602899	-0.309101	2.344962	0	1.239075	1.105034	-1.908078
С	1.826963	-0.014645	2.031027	С	2.512736	1.326097	-1.768020
С	-0.474488	2.715672	0.711501	С	1.861857	-2.333162	-1.006194
С	-1.822935	0.300844	-1.910068	С	0.078195	-1.338489	2.211904

С	-2.866322	0.416329	-2.972921	С	-0.628235	-2.034543	3.328162
н	-3.534128	-0.443984	-2.942421	н	-1.472515	-2.604716	2.941997
н	-3.477907	1.303045	-2.793021	н	0.058506	-2.683025	3.867055
н	-2.409826	0.501808	-3.955190	н	-1.015352	-1.300568	4.033051
С	-0.705482	4.138370	1.105433	С	2.194811	-3.602256	-1.718086
н	0.044579	4.443583	1.838291	н	2.659592	-3.373599	-2.684508
Н	-0.606177	4.793722	0.242459	Н	2.902326	-4.190293	-1.138481
Н	-1.687754	4.255977	1.555195	Н	1.292975	-4.178032	-1.916126
С	2.872546	-0.143481	3.089973	С	3.210966	2.055500	-2.865999
Н	3.471775	-1.038182	2.908148	Н	3.783532	2.931651	-2.436721
Н	3.551647	0.707553	3.055455	Н	3.966619	1.373507	-3.346929
Н	2.418681	-0.222273	4.074035	Н	2.476390	2.405725	-3.623913
С	-4.003680	-2.153311	0.910309	С	-3.457563	1.253036	-0.879097
С	-5.133001	-2.162366	0.106501	С	-4.700555	1.220636	-0.244827
С	-5.943133	-1.031314	0.059459	С	-5.303818	0.014167	0.146183
С	-5.639282	0.117097	0.814200	С	-4.619566	-1.178831	-0.105289
С	-4.492451	0.107009	1.624597	С	-3.375113	-1.194691	-0.739107
С	-3.679331	-1.017805	1.675204	С	-2.813269	0.030201	-1.131668
Н	-3.336929	-3.007403	0.923191	Н	-5.207257	2.155967	-0.042532
Н	-5.395733	-3.023206	-0.492332	Н	-5.061621	-2.121511	0.203112
С	-6.524769	1.240242	0.701727	Ν	-1.523019	0.033494	-1.749381
Н	-4.217978	1.000987	2.174256	Н	-1.344153	0.846183	-2.338791
С	-7.616938	1.197467	-0.102096	Н	-1.306295	-0.817156	-2.255950
С	-7.952998	0.035600	-0.889372	С	-2.806984	2.548330	-1.263829
Н	-6.303525	2.132736	1.277427	Н	-1.834755	2.663547	-0.775191
Н	-8.294134	2.033825	-0.196186	Н	-2.643765	2.621744	-2.346065
0	-7.059823	-1.073736	-0.764989	Н	-3.429306	3.397010	-0.980642
0	-8.911472	-0.097905	-1.647362	С	-2.639356	-2.478997	-0.986458
Ν	-2.453737	-0.980547	2.384973	Н	-2.488469	-2.678547	-2.054539
Н	-2.400474	-0.308539	3.139893	Н	-1.650883	-2.458099	-0.520944
Н	-2.073259	-1.879657	2.653502	Н	-3.185469	-3.326613	-0.578847
С	4.276569	2.074696	-0.816377	С	-6.654142	0.010139	0.804141
С	5.443718	1.837901	-0.106567	Н	-7.452553	0.214313	0.083779
С	6.055376	0.591334	-0.201580	Н	-6.872394	-0.955232	1.263234
С	5.511778	-0.429952	-1.003656	Н	-6.727518	0.773499	1.582161
С	4.331660	-0.170344	-1.718439				
С	3.716330	1.071948	-1.628281				
Н	3.765858	3.025995	-0.720443				
Н	5.886631	2.594830	0.525813				
С	6.196966	-1.690448	-1.031032				
Н	3.874455	-0.961992	-2.301306				
С	7.330817	-1.890117	-0.314151				

0.511547

-1.640786

С

Н

7.915509

5.786383

-0.860816

-2.488480

Н	7.858231	-2.832860	-0.323475				
0	7.219390	0.387300	0.528614				
0	8.934612	-0.944818	1.193520				
Ν	2.459038	1.287532	-2.244861				
Н	2.189994	2.255908	-2.367186				
Н	2.269668	0.736428	-3.072482				
Rh_N	/les_NH₂ (2)			carb	ene1		
E (scf) = -1944.13382	2732 a.u.		E (sc	f) = -1161.04750)425 a.u.	
All of	the frequencie	s are positive		All oj	f the frequencies	s are positive	
-	0 574474	1 005745	0.000000	~			0.00.0000
RN Dh	-0.574171	1.085715	-0.006900	C	0.000000	0.000000	0.264262
RN	0.574171	-1.085/15	-0.006900	C	0.274672	-0.709165	-2.022793
0	0.784366	1.657010	-1.504953	C	-0.274672	0.709165	-2.022/93
0	1.868708	-0.368995	-1.486608	н	1.315647	-0.764515	-2.364032
C	1.69/341	0.841180	-1.919766	н	-0.312804	-1.409538	-2.618624
C	2.619235	1.338488	-2.985885	н	0.312804	1.409538	-2.618624
H	3.095327	2.264647	-2.663514	Н	-1.315647	0.764515	-2.364032
H	3.3//8/3	0.595940	-3.216119	N	-0.207823	1.059864	-0.5/0039
Н	2.053251	1.568566	-3.889889	N	0.207823	-1.059864	-0.5/0039
0	0.791435	1.665845	1.4///58	C	-0.585989	2.372769	-0.145650
0	1.858035	-0.369554	1.483595	C	-1.909536	2.61/365	0.259884
0	-1.858035	0.369554	1.483595	С	0.386672	3.392931	-0.1/4/1/
0	-0.791435	-1.665845	1.477758	С	-2.250652	3.924481	0.633273
0	-0.784366	-1.657010	-1.504953	С	0.000000	4.683546	0.197911
0	-1.868708	0.368995	-1.486608	С	-1.310357	4.948444	0.593924
С	-1.697341	-0.841180	-1.919766	Н	-3.262616	4.137229	0.959643
С	-1.698609	-0.849101	1.900154	Н	0.727335	5.486138	0.186813
С	1.698609	0.849101	1.900154	Н	-1.593818	5.954270	0.881310
С	2.652002	1.349929	2.936353	С	0.585989	-2.372769	-0.145650
Н	2.307249	2.296661	3.343427	С	1.909536	-2.617365	0.259884
Н	2.765483	0.617165	3.734273	С	-0.386672	-3.392931	-0.174717
Н	3.637238	1.498488	2.490664	С	2.250652	-3.924481	0.633273
С	-2.652002	-1.349929	2.936353	С	0.000000	-4.683546	0.197911
Н	-3.637238	-1.498488	2.490664	С	1.310357	-4.948444	0.593924
Н	-2.307249	-2.296661	3.343427	Н	3.262616	-4.137229	0.959643
Н	-2.765483	-0.617165	3.734273	Н	-0.727335	-5.486138	0.186813
С	-2.619235	-1.338488	-2.985885	Н	1.593818	-5.954270	0.881310
Н	-2.053251	-1.568566	-3.889889	С	1.829949	3.055904	-0.506859
Н	-3.095327	-2.264647	-2.663514	Н	1.825408	2.255015	-1.255477
Н	-3.377873	-0.595940	-3.216119	С	-2.928273	1.497364	0.368203
С	0.696554	-4.776202	1.240015	Н	-2.535382	0.627355	-0.168298
С	-0.114959	-5.913756	1.220176	С	2.928273	-1.497364	0.368203
С	-0.535876	-6.505225	0.025596	Н	2.535382	-0.627355	-0.168298
С	-0.119228	-5.923546	-1.178528	С	-1.829949	-3.055904	-0.506859
С	0.690356	-4.787909	-1.210919	Н	-1.825408	-2.255015	-1.255477

С	1.098394	-4.226226	0.012307	С	2.618971	4.231334	-1.084530
Н	-0.429938	-6.344395	2.166421	Н	2.111703	4.679816	-1.941762
Н	-0.437534	-6.361351	-2.120677	Н	2.775179	5.016217	-0.340047
Ν	1.868708	-3.029866	0.003920	Н	3.606814	3.899343	-1.411037
Н	2.418794	-2.864939	0.839333	С	2.522935	2.492478	0.745304
Н	2.420911	-2.877957	-0.832525	Н	2.576023	3.255732	1.526821
С	1.122873	-4.134175	2.527485	Н	1.972781	1.637679	1.144617
Н	2.210331	-4.170840	2.668751	Н	3.542861	2.171564	0.514279
Н	0.822251	-3.083113	2.561419	С	-4.279031	1.862196	-0.255030
Н	0.674122	-4.639030	3.383309	Н	-4.771562	2.671631	0.289709
С	1.110998	-4.154425	-2.504463	Н	-4.169828	2.179936	-1.294730
Н	0.800735	-3.106396	-2.547165	Н	-4.951878	1.001294	-0.232449
Н	2.198655	-4.182992	-2.645854	С	-3.087450	1.085699	1.839649
Н	0.665985	-4.670822	-3.355239	Н	-2.130061	0.758530	2.249575
С	-1.414429	-7.724751	0.026560	Н	-3.449046	1.926312	2.439222
Н	-2.376154	-7.530904	-0.457446	Н	-3.803498	0.266241	1.940531
н	-0.953092	-8.557869	-0.511277	С	-2.618971	-4.231334	-1.084530
Н	-1.622364	-8.064663	1.042341	Н	-2.111703	-4.679816	-1.941762
С	-0.690356	4.787909	-1.210919	Н	-2.775179	-5.016217	-0.340047
С	0.119228	5.923546	-1.178528	Н	-3.606814	-3.899343	-1.411037
С	0.535876	6.505225	0.025596	С	-2.522935	-2.492478	0.745304
С	0.114959	5.913756	1.220176	Н	-2.576023	-3.255732	1.526821
С	-0.696554	4.776202	1.240015	Н	-1.972781	-1.637679	1.144617
С	-1.098394	4.226226	0.012307	Н	-3.542861	-2.171564	0.514279
Н	0.437534	6.361351	-2.120677	С	4.279031	-1.862196	-0.255030
Н	0.429938	6.344395	2.166421	Н	4.771562	-2.671631	0.289709
Ν	-1.868708	3.029866	0.003920	Н	4.169828	-2.179936	-1.294730
Н	-2.420911	2.877957	-0.832525	Н	4.951878	-1.001294	-0.232449
Н	-2.418794	2.864939	0.839333	С	3.087450	-1.085699	1.839649
С	-1.110998	4.154425	-2.504463	Н	2.130061	-0.758530	2.249575
Н	-0.800735	3.106396	-2.547165	Н	3.449046	-1.926312	2.439222
Н	-2.198655	4.182992	-2.645854	Н	3.803498	-0.266241	1.940531
Н	-0.665985	4.670822	-3.355239				
С	-1.122873	4.134175	2.527485				
Н	-2.210331	4.170840	2.668751				
Н	-0.822251	3.083113	2.561419				
Н	-0.674122	4.639030	3.383309				
С	1.414429	7.724751	0.026560				
Н	0.953092	8.557869	-0.511277				
Н	1.622364	8.064663	1.042341				
н	2.376154	7.530904	-0.457446				

Rh_carbene1 (1)

E (scf) = -2294.20602459 a.u.

All of the frequencies are positive

Rh_carbene1 (2)

E (scf) = -3455.31475607 a.u. All of the frequencies are positive

Rh	-0.260696	3.165847	-0.096913	Rh	1.261988	-0.051030	-0.066674
Rh	-0.081266	0.680402	0.051967	Rh	-1.273244	0.022753	0.039162
0	-0.247189	3.208957	1.994650	0	1.241123	-0.078836	2.045583
0	-0.053812	0.919403	2.143020	0	-1.056125	-0.002067	2.137893
С	-0.153160	2.110154	2.659396	С	0.116087	-0.054078	2.682373
С	-0.186450	2.201995	4.151446	С	0.174906	-0.080464	4.178346
Н	-1.219730	2.138877	4.500170	Н	-0.206624	0.858366	4.583113
Н	0.370705	1.383778	4.601815	Н	-0.454364	-0.881918	4.567571
Н	0.216549	3.158136	4.476842	Н	1.199276	-0.221743	4.513423
0	-2.330137	2.980488	-0.068098	0	1.202830	2.053293	-0.080862
0	-2.194003	0.693350	0.120466	0	-1.089216	2.109709	0.077110
0	-0.273190	2.940101	-2.174897	0	1.042574	-0.055921	-2.164375
0	-0.155889	0.643331	-2.054580	0	-1.253625	0.064235	-2.071681
0	1.992122	0.960171	0.007744	0	-1.214594	-2.082906	0.020153
0	1.827122	3.251782	-0.101922	0	1.080753	-2.138771	-0.084609
С	2.498915	2.153073	-0.041495	С	-0.082023	-2.703034	-0.039973
С	-0.240918	1.767172	-2.705858	С	-0.128730	0.014377	-2.708317
С	-2.854779	1.806465	0.050737	С	0.072715	2.674533	0.010851
С	-4.343244	1.710499	0.148963	С	0.111926	4.168538	0.044158
Н	-4.805702	2.621642	-0.294722	Н	1.141167	4.516904	0.033345
Н	-4.703759	0.776234	-0.354121	Н	-0.428709	4.579035	-0.811121
Н	-4.643204	1.647651	1.235498	Н	-0.396095	4.535455	0.938004
С	-0.305711	1.681297	-4.197185	С	-0.186972	0.030489	-4.204301
Н	0.483002	2.289366	-4.640879	Н	0.161465	-0.924638	-4.601191
Н	-0.204087	0.650434	-4.525791	Н	-1.205742	0.203484	-4.541288
Н	-1.258167	2.080230	-4.549618	Н	0.470269	0.806206	-4.598918
С	3.989437	2.239586	-0.027355	С	-0.117966	-4.196693	-0.034199
Н	4.380354	1.790119	0.887296	Н	-0.050922	-4.560565	0.995254
Н	4.405053	1.665240	-0.857077	Н	-1.057457	-4.551637	-0.453470
Н	4.314376	3.275414	-0.094483	Н	0.734643	-4.595571	-0.580695
С	0.113957	-1.424929	-0.020399	С	-3.495236	0.110421	-0.052510
С	1.032756	-3.586847	-0.407408	С	-5.753416	-0.530761	-0.516802
С	-0.480203	-3.673646	-0.537609	С	-5.656081	0.986540	-0.603213
Н	1.567343	-3.919636	-1.296879	Н	-6.116039	-0.996027	-1.435770
Н	1.425716	-4.139189	0.447774	Н	-6.385325	-0.876750	0.307925
Н	-0.808319	-3.885979	-1.559000	Н	-5.835513	1.366960	-1.612826
Н	-0.938184	-4.406611	0.123159	Н	-6.333525	1.509203	0.075451
Ν	-0.915173	-2.301164	-0.151813	Ν	-4.242124	1.241055	-0.204771
Ν	1.262866	-2.130865	-0.203201	Ν	-4.343065	-0.932825	-0.262866
С	-2.317873	-2.095265	0.061849	С	-3.841346	2.599159	0.012982
С	-2.793682	-1.956685	1.379260	С	-3.608720	3.045848	1.329437
С	-3.176916	-2.104880	-1.046854	С	-3.725120	3.456286	-1.091431
С	-4.177451	-1.916615	1.571888	С	-3.358866	4.407576	1.520885
С	-4.556808	-2.075181	-0.804370	С	-3.480013	4.814701	-0.851864

С	-5.054706	-2.001081	0.490720	С	-3.321941	5.292334	0.443652
н	-4.574246	-1.810258	2.573028	н	-3.179573	4.779563	2.522610
н	-5.245809	-2.088944	-1.646361	н	-3.394624	5.495560	-1.692818
н	-6.125141	-1.986078	0.659741	н	-3.138561	6.347066	0.615888
С	2.632419	-1.718638	-0.076995	С	-4.075829	-2.330638	-0.099208
С	3.375325	-1.483422	-1.246783	С	-3.868209	-3.119620	-1.244093
С	3.214996	-1.655296	1.200141	С	-4.095690	-2.887474	1.192339
С	4.742521	-1.221416	-1.115490	С	-3.733048	-4.501753	-1.077025
С	4.585419	-1.381203	1.283097	С	-3.938293	-4.273419	1.313484
С	5.347656	-1.179358	0.137571	С	-3.775756	-5.078348	0.189992
Н	5.335761	-1.038678	-2.005511	Н	-3.577741	-5.128820	-1.949222
н	5.056117	-1.329217	2.258994	н	-3.948785	-4.723210	2.300869
Н	6.409058	-0.975169	0.221255	Н	-3.668455	-6.151455	0.301933
С	-2.659149	-2.051610	-2.471873	С	-3.758321	2.939467	-2.519199
н	-1.566164	-1.986299	-2.434571	н	-3.895144	1.854007	-2.487162
С	-1.823960	-1.796301	2.538324	С	-3.582282	2.061576	2.485561
Н	-0.974876	-1.222003	2.169990	Н	-3.143589	1.134429	2.108347
С	2.731031	-1.467113	-2.621063	С	-3.735118	-2.511048	-2.627426
Н	1.655811	-1.629632	-2.493911	Н	-3.770043	-1.421997	-2.523443
С	2.413081	-1.850621	2.473016	С	-4.265740	-2.036345	2.437025
н	1.355073	-1.927502	2.205265	н	-4.266477	-0.986756	2.132085
С	-3.061391	-3.291671	-3.276069	С	-4.903961	3.560518	-3.328207
н	-2.720011	-4.218777	-2.800643	н	-5.874721	3.381611	-2.859131
н	-4.148984	-3.359479	-3.372564	н	-4.779363	4.643577	-3.415070
н	-2.641695	-3.256748	-4.284676	н	-4.934605	3.149496	-4.340428
С	-3.146818	-0.774087	-3.164338	С	-2.406739	3.191123	-3.204361
Н	-4.235431	-0.765611	-3.264169	Н	-2.193874	4.261466	-3.280149
Н	-2.848638	0.108450	-2.597427	Н	-1.600171	2.715691	-2.644632
Н	-2.720405	-0.695755	-4.165818	Н	-2.408524	2.780136	-4.217293
С	-1.304128	-3.150248	3.039944	С	-4.997792	1.745038	2.990621
Н	-2.120928	-3.784751	3.385574	Н	-5.503267	2.649873	3.341585
Н	-0.767711	-3.694689	2.251908	Н	-5.613843	1.299877	2.204203
Н	-0.609088	-3.010656	3.873285	Н	-4.959840	1.035469	3.821943
С	-2.408296	-0.981258	3.692326	С	-2.680486	2.509995	3.635468
Н	-2.813115	-0.032988	3.332670	Н	-1.675445	2.745050	3.272321
Н	-3.204914	-1.514535	4.224065	Н	-3.072504	3.386084	4.160862
Н	-1.627096	-0.758766	4.418902	Н	-2.591831	1.700828	4.364641
С	2.822281	-3.141653	3.197241	С	-5.598182	-2.333956	3.139197
Н	2.683306	-4.024195	2.568005	Н	-6.452573	-2.165668	2.478820
Н	3.876727	-3.107521	3.485920	Н	-5.639693	-3.375660	3.470453
Н	2.228675	-3.279615	4.107229	Н	-5.721775	-1.699734	4.020552
С	2.557920	-0.642400	3.407239	С	-3.089245	-2.219665	3.404597
Н	3.576796	-0.561617	3.797262	Н	-3.089513	-3.219894	3.848352
Н	2.307824	0.282110	2.887108	н	-2.141961	-2.059791	2.890571

Н	1.878485	-0.744024	4.261826	Н	-3.154696	-1.491000	4.218510
С	3.294813	-2.575805	-3.520886	С	-4.876587	-2.956697	-3.552143
Н	4.363138	-2.427645	-3.702272	Н	-4.854846	-4.039583	-3.706079
Н	3.175396	-3.565134	-3.072630	Н	-5.856692	-2.706483	-3.138603
Н	2.792684	-2.580667	-4.491485	Н	-4.791080	-2.481361	-4.532515
С	2.903891	-0.094427	-3.284898	С	-2.373082	-2.861738	-3.244021
Н	2.477108	0.69084	-2.660541	Н	-1.564080	-2.547517	-2.584027
Н	3.960204	0.133048	-3.455966	Н	-2.280864	-3.938410	-3.416151
Н	2.399769	-0.072375	-4.254232	Н	-2.247789	-2.358753	-4.206286
				С	3.488977	-0.101603	0.053553
				С	5.735534	0.557421	0.551135
				С	5.653171	-0.960384	0.623491
				Н	6.089133	1.019207	1.475161
				Н	6.366492	0.917527	-0.268792
				Н	5.823164	-1.347779	1.632035
				Н	6.344218	-1.470514	-0.050947
				Ν	4.247261	-1.224851	0.203836
				Ν	4.321897	0.948820	0.292788
				С	3.866260	-2.586159	-0.027577
				С	3.657327	-3.027560	-1.349553
				С	3.752800	-3.453534	1.069792
				С	3.436749	-4.392661	-1.553640
				С	3.537952	-4.814649	0.817763
				С	3.405854	-5.286152	-0.483171
				Н	3.276949	-4.760643	-2.560043
				Н	3.454653	-5.502933	1.652714
				Н	3.247376	-6.343289	-0.665067
				С	4.060880	2.349620	0.138286
				С	3.834905	3.129989	1.285882
				С	4.126455	2.921652	-1.144965
				С	3.727256	4.516144	1.130924
				С	3.999296	4.311545	-1.254817
				С	3.820077	5.107041	-0.126928
				Н	3.556126	5.135886	2.005193
				Н	4.043746	4.771322	-2.236613
				Н	3.736696	6.183197	-0.228783
				С	3.759536	-2.946807	2.501560
				Н	3.880513	-1.859234	2.480134
				С	3.628575	-2.037254	-2.500438
				Н	3.173742	-1.117780	-2.123066
				С	3.659559	2.509485	2.658937
				Н	3.699209	1.421621	2.546030
				С	4.286731	2.079724	-2.396166
				Н	4.323775	1.029168	-2.096791

С	4.903550	-3.556549	3.321515
Н	5.877473	-3.362683	2.865097
Н	4.792252	-4.641504	3.402039
Н	4.916544	-3.149854	4.335882
С	2.403089	-3.223877	3.167366
Н	2.207401	-4.298108	3.234394
Н	1.596473	-2.759695	2.598378
Н	2.384890	-2.818252	4.182327
С	5.044620	-1.701329	-2.990889
Н	5.562931	-2.598518	-3.342852
Н	5.649317	-1.254501	-2.196618
Н	5.006343	-0.987486	-3.818539
С	2.742766	-2.494470	-3.659180
Н	1.744364	-2.760476	-3.300162
Н	3.159478	-3.353838	-4.193201
Н	2.634301	-1.679317	-4.378902
С	5.585078	2.408775	-3.143908
Н	6.465209	2.256299	-2.514117
Н	5.594307	3.450922	-3.475694
Н	5.690443	1.778608	-4.030470
С	3.066637	2.242392	-3.313644
Н	3.046170	3.237066	-3.769996
Н	2.145418	2.095048	-2.750092
Н	3.094165	1.499749	-4.116751
С	4.771526	2.947638	3.622321
Н	4.742108	4.028469	3.788828
Н	5.764107	2.704834	3.235149
Н	4.658257	2.460371	4.593944
С	2.279173	2.855468	3.235978
Н	1.489016	2.530173	2.558823
Н	2.175141	3.933079	3.395408
н	2.132092	2.360426	4.199260

carbene2

E (scf) = -1159.84513690 a.u. All of the frequencies are positive Rh_carbene2 (1)

E (scf) = -2293.00798194 a.u.

All of the frequencies are positive

С	0.000000	0.000000	0.295176	Rh	0.005226	0.676275	0.027497
Ν	0.000000	1.070452	-0.591336	Rh	-0.002058	3.167306	-0.038240
Ν	0.000000	-1.070452	-0.591336	0	0.026230	0.828350	2.129228
С	0.026728	2.446835	-0.178121	0	0.014085	3.130590	2.053132
С	-1.166910	3.191809	-0.236369	С	0.022805	2.007055	2.682912
С	1.241638	2.998866	0.259691	С	-0.003271	2.054494	4.177531
С	-1.113129	4.536683	0.143717	Н	0.525428	1.203095	4.601138
С	1.242374	4.347280	0.640605	Н	0.434209	2.985125	4.530704
С	0.081382	5.110090	0.576370	Н	-1.037205	2.014155	4.527380

Н	-2.012648	5.138255	0.108375	0	2.108122	0.820638	0.020265
Н	2.163358	4.798674	0.990732	0	2.078086	3.120879	-0.044517
Н	0.102992	6.152938	0.870056	0	-0.029895	0.718950	-2.078261
С	-0.026728	-2.446835	-0.178121	0	-0.027592	3.022087	-2.124098
С	1.166910	-3.191809	-0.236369	0	-2.083047	3.106176	-0.027257
С	-1.241638	-2.998866	0.259691	0	-2.094119	0.806572	0.047900
С	1.113129	-4.536683	0.143717	С	-2.682167	1.966563	0.011795
С	-1.242374	-4.347280	0.640605	С	-0.053654	1.866099	-2.692306
С	-0.081382	-5.110090	0.576370	С	2.686038	1.985696	-0.004105
Н	2.012648	-5.138255	0.108375	С	4.180126	1.994087	0.016414
Н	-2.163358	-4.798674	0.990732	н	4.545770	1.497507	0.916904
Н	-0.102992	-6.152938	0.870056	Н	4.572848	1.431789	-0.832406
С	2.500231	2.160214	0.385402	н	4.550233	3.014976	-0.015414
Н	2.365263	1.254145	-0.214705	С	-0.130252	1.829817	-4.185266
С	-2.476870	2.520487	-0.613721	Н	-1.081664	2.250047	-4.515903
Н	-2.261298	1.761545	-1.374054	Н	0.660792	2.442982	-4.617011
С	2.476870	-2.520487	-0.613721	н	-0.046174	0.808632	-4.546897
Н	2.261298	-1.761545	-1.374054	С	-4.176369	1.960235	0.018017
С	-2.500231	-2.160214	0.385402	н	-4.546549	1.490606	0.930936
Н	-2.365263	-1.254145	-0.214705	н	-4.557009	2.975423	-0.050880
С	3.750266	2.879074	-0.130810	Н	-4.554560	1.364350	-0.814156
Н	3.620008	3.229965	-1.156854	С	-0.001097	-1.432136	-0.044500
Н	4.007875	3.742833	0.487559	Ν	-1.084956	-2.282108	-0.135714
Н	4.607510	2.201805	-0.110564	Ν	1.075678	-2.281075	-0.199849
С	2.680480	1.721318	1.847198	С	-2.480066	-1.956904	0.033360
Н	2.786610	2.592585	2.500541	С	-3.295480	-1.899151	-1.102772
Н	1.816839	1.143126	2.180587	С	-2.967214	-1.741504	1.334391
Н	3.574912	1.103507	1.959949	С	-4.668910	-1.702551	-0.906060
С	-3.512820	3.481590	-1.197788	С	-4.343651	-1.546681	1.480004
Н	-3.873279	4.189573	-0.447084	С	-5.191095	-1.547165	0.372710
Н	-3.109711	4.055931	-2.034914	Н	-5.327077	-1.660232	-1.767202
Н	-4.381234	2.925250	-1.556478	Н	-4.755859	-1.382239	2.468114
С	-3.047670	1.786201	0.612313	Н	-6.256915	-1.402901	0.508838
Н	-2.317557	1.091322	1.032132	С	2.473750	-1.950999	-0.078116
Н	-3.318601	2.503217	1.392628	С	3.025577	-1.867354	1.209838
Н	-3.945565	1.222685	0.342926	С	3.228327	-1.755801	-1.241621
С	-3.750266	-2.879074	-0.130810	С	4.404213	-1.654469	1.308526
Н	-3.620008	-3.229965	-1.156854	С	4.606011	-1.554219	-1.093495
Н	-4.007875	-3.742833	0.487559	С	5.192015	-1.517932	0.167770
Н	-4.607510	-2.201805	-0.110564	Н	4.862527	-1.590673	2.288644
С	-2.680480	-1.721318	1.847198	Н	5.217823	-1.410961	-1.977818
Н	-2.786610	-2.592585	2.500541	Н	6.260798	-1.363966	0.264325
Н	-1.816839	-1.143126	2.180587	С	-2.023278	-1.692851	2.522235
Н	-3.574912	-1.103507	1.959949	Н	-1.077795	-1.273126	2.170078

С	3.512820	-3.481590	-1.197788	С	-2.732476	-1.958372	-2.511111
Н	3.873279	-4.189573	-0.447084	Н	-1.645087	-2.057889	-2.444661
Н	3.109711	-4.055931	-2.034914	С	2.168187	-1.997344	2.455481
Н	4.381234	-2.925250	-1.556478	Н	1.132206	-1.782054	2.177097
С	3.047670	-1.786201	0.612313	С	2.593569	-1.697549	-2.618293
Н	2.317557	-1.091322	1.032132	Н	1.506663	-1.730113	-2.496777
Н	3.318601	-2.503217	1.392628	С	-1.744850	-3.098925	3.074742
Н	3.945565	-1.222685	0.342926	Н	-1.306309	-3.751353	2.315653
С	0.003016	0.677667	-1.937427	Н	-2.666598	-3.568212	3.431454
С	-0.003016	-0.677667	-1.937427	Н	-1.046227	-3.048016	3.914149
Н	0.011591	1.390215	-2.743375	С	-2.508344	-0.759599	3.631401
Н	-0.011591	-1.390215	-2.743375	Н	-3.397176	-1.143867	4.140190
				Н	-2.739039	0.232066	3.234534
				Н	-1.723598	-0.644163	4.382823
				С	-3.275487	-3.159598	-3.294587
				Н	-4.362620	-3.103285	-3.398714
				Н	-3.040345	-4.104284	-2.798531
				Н	-2.848040	-3.190828	-4.299559
				С	-3.023541	-0.642044	-3.246972
				Н	-2.652225	0.208255	-2.673153
				Н	-4.097329	-0.508461	-3.408369
				Н	-2.535954	-0.633393	-4.225008
				С	3.021872	-2.888749	-3.485303
				Н	2.751705	-3.841558	-3.023859
				Н	4.104920	-2.891977	-3.638829
				Н	2.546921	-2.843835	-4.468271
				С	2.926579	-0.367134	-3.306641
				Н	3.998386	-0.275359	-3.504840
				Н	2.616759	0.471974	-2.682572
				Н	2.406642	-0.292978	-4.264466
				С	2.234627	-3.428638	3.009827
				Н	3.261665	-3.688286	3.282729
				Н	1.889211	-4.159863	2.275091
				Н	1.613158	-3.530384	3.902564
				С	2.548463	-0.976066	3.530785
				Н	2.565175	0.034701	3.118577
				Н	3.527018	-1.187988	3.970691
				Н	1.812995	-1.000313	4.339383
				С	-0.685843	-3.604441	-0.361400
				С	0.666660	-3.603881	-0.400101
				Н	-1.408087	-4.394300	-0.458108
				Н	1.382326	-4.393560	-0.537907

Rh_carbene2 (2) E (scf) = -3452.91283052 a.u.

One negative frequency at -23.06 cm⁻¹

Rh	-1.270615	0.011879	0.006792
Rh	1.267035	-0.036742	-0.038336
0	-1.098428	0.023193	2.107358
0	1.199573	-0.054217	2.072585
С	0.058474	-0.053127	2.680103
С	0.071786	-0.157770	4.174037
Н	-0.443625	-1.067570	4.488217
Н	1.093626	-0.178256	4.543928
Н	-0.460745	0.685090	4.616098
0	-1.190212	-2.093781	0.048149
0	1.108059	-2.129691	-0.003581
0	-1.209734	0.036555	-2.105171
0	1.086727	-0.075248	-2.137758
0	1.190711	2.065574	-0.094396
0	-1.106312	2.103637	-0.022735
С	0.051901	2.676705	-0.076821
С	-0.068201	0.014436	-2.711954
С	-0.050051	-2.703528	0.035062
С	-0.070754	-4.198234	0.041150
н	-1.000029	-4.561786	0.474733
Н	-0.007206	-4.569006	-0.986098
Н	0.793706	-4.584587	0.578932
С	-0.075954	0.101646	-4.206777
Н	0.513548	0.961042	-4.531741
Н	0.385763	-0.788025	-4.637416
Н	-1.093023	0.196707	-4.578085
С	0.071870	4.171153	-0.096382
Н	-0.038853	4.552014	0.923116
Н	1.016686	4.532635	-0.495568
Н	-0.769643	4.551517	-0.673651
С	3.495625	-0.046529	0.082731
Ν	4.319280	-1.151101	0.215822
Ν	4.365578	0.997993	0.347931
С	3.949164	-2.528018	0.018279
С	3.829893	-3.353435	1.144202
С	3.747644	-2.997862	-1.291027
С	3.601426	-4.718779	0.929742
С	3.512984	-4.366457	-1.454929
С	3.464487	-5.224939	-0.358118
Н	3.515547	-5.382490	1.783812
н	3.357660	-4.762789	-2.451028
н	3.292931	-6.284883	-0.508917
С	4.078815	2.405973	0.238268

С	4.314698	3.030891	-0.996598
С	3.624256	3.102056	1.368518
С	4.101409	4.412684	-1.074946
С	3.448225	4.484641	1.247738
С	3.687563	5.135438	0.040243
Н	4.266568	4.923797	-2.016475
Н	3.109186	5.055411	2.104504
Н	3.541854	6.207353	-0.034166
С	3.760563	-2.047244	-2.474510
Н	3.389267	-1.080965	-2.123001
С	3.857579	-2.804232	2.559567
Н	3.966377	-1.716920	2.505507
С	4.717170	2.239125	-2.228410
Н	5.108325	1.270726	-1.900238
С	3.344217	2.390058	2.678265
Н	3.217263	1.326107	2.463132
С	5.187842	-1.846332	-3.007684
Н	5.858174	-1.471860	-2.229890
Н	5.601325	-2.787784	-3.382038
Н	5.194467	-1.124862	-3.829705
С	2.813852	-2.486337	-3.592065
Н	3.162690	-3.389273	-4.102099
Н	1.811963	-2.675265	-3.197138
Н	2.738270	-1.693316	-4.339932
С	5.034205	-3.365974	3.366535
Н	4.965181	-4.453780	3.457141
Н	5.992327	-3.134489	2.895131
Н	5.045818	-2.949008	4.376530
С	2.521272	-3.089571	3.260774
Н	1.691167	-2.680734	2.682962
Н	2.359823	-4.164260	3.386448
Н	2.505756	-2.632920	4.253736
С	4.528434	2.550803	3.643869
Н	5.453996	2.166936	3.208395
Н	4.689331	3.604198	3.893089
Н	4.345386	2.008483	4.575104
С	2.041756	2.863754	3.330242
Н	2.085211	3.916556	3.623078
Н	1.197286	2.728447	2.651629
Н	1.843062	2.284169	4.234647
С	5.817981	2.924704	-3.042983
Н	5.468938	3.859284	-3.489611
Н	6.692008	3.154169	-2.429150
Н	6.140118	2.276378	-3.861629

С	3.475328	1.963136	-3.090021
Н	2.714444	1.422648	-2.526434
Н	3.036790	2.903352	-3.440742
Н	3.737190	1.364340	-3.967997
С	5.631046	-0.799948	0.556531
С	5.660133	0.550823	0.638525
Н	6.394194	-1.544603	0.693747
Н	6.457494	1.238958	0.853965
С	-3.488049	0.061883	-0.096363
Ν	-4.307427	1.171632	-0.213142
Ν	-4.369890	-0.977141	-0.336263
С	-3.926607	2.547426	-0.027909
С	-3.813863	3.364891	-1.160353
С	-3.711313	3.024501	1.276348
С	-3.575561	4.730246	-0.957184
С	-3.467114	4.392995	1.428846
С	-3.423509	5.243943	0.326079
Н	-3.494754	5.388177	-1.816191
Н	-3.302358	4.795605	2.420916
Н	-3.245000	6.303892	0.468404
С	-4.089111	-2.383088	-0.202834
С	-4.257540	-2.969465	1.060669
С	-3.701940	-3.115505	-1.334305
С	-4.066108	-4.352535	1.165186
С	-3.540829	-4.497136	-1.186086
С	-3.728306	-5.112960	0.049283
Н	-4.187075	-4.832426	2.130403
Н	-3.254518	-5.093588	-2.044930
Н	-3.598741	-6.185287	0.144203
С	-3.726954	2.085961	2.469896
Н	-3.390046	1.104437	2.125147
С	-3.862060	2.806218	-2.571489
Н	-3.982777	1.720766	-2.508197
С	-4.583950	-2.147397	2.294135
Н	-4.764726	-1.115213	1.981617
С	-3.459524	-2.446195	-2.673418
Н	-3.385730	-1.368565	-2.503740
С	-5.149616	1.935259	3.031741
Н	-5.844135	1.564145	2.273814
Н	-5.530148	2.895616	3.392974
Н	-5.162628	1.232577	3.869533
С	-2.748033	2.512003	3.565363
Н	-3.057856	3.435520	4.063408
Н	-1.745457	2.658851	3.154691

Н	-2.690072	1.731521	4.327794
С	-5.040848	3.375708	-3.370049
Н	-4.960902	4.462048	-3.468769
Н	-5.996432	3.157737	-2.887222
Н	-5.067353	2.952286	-4.377032
С	-2.530328	3.069946	-3.289169
Н	-1.699517	2.649452	-2.720915
Н	-2.354284	4.141746	-3.420080
Н	-2.533800	2.610587	-4.280980
С	-4.628067	-2.710314	-3.634035
Н	-5.575558	-2.359797	-3.218199
Н	-4.731067	-3.780551	-3.837890
Н	-4.469710	-2.200875	-4.587867
С	-2.130041	-2.888061	-3.294675
Н	-2.127180	-3.954092	-3.539307
Н	-1.304114	-2.686673	-2.610860
Н	-1.945870	-2.339310	-4.221410
С	-5.850940	-2.643956	2.999276
Н	-5.727518	-3.663928	3.373847
Н	-6.711335	-2.639326	2.325559
Н	-6.087757	-2.006203	3.854626
С	-3.379086	-2.128355	3.244785
Н	-2.493821	-1.751200	2.732147
Н	-3.165564	-3.132497	3.624654
Н	-3.574666	-1.477837	4.102734
С	-5.629327	0.826543	-0.519785
С	-5.668686	-0.524599	-0.595410
Н	-6.391006	1.575258	-0.642333
н	-6.474798	-1.208791	-0.790168

References.

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, **2010**.
- [2] Y. Zhao and D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101: 1-18.
- [3] (a) P. J. Hay and W.R. Wadt, J. Chem. Phys. 1985, 82, 299-310; (b) P. J. Hay and W.R. Wadt, J. Chem. Phys. 1985, 82, 284-298; (c) L. E. Roy, P. J. Hay, and R. L. Martin, J. Chem. Theory Comput. 2008, 4, 1029-1031.
- [4] S.F. Boys, F. Bernardi, *Mol. Phys.* **1970**, *10*, 553.