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This paper deals with the lateral vibration of a finite double-Rayleigh beam system having arbitrary classical end conditions and
traversed by a concentrated moving mass. The system is made up of two identical parallel uniform Rayleigh beams which are
continuously joined together by a viscoelastic Winkler type layer. Of particular interest, however, is the effect of the mass of the
moving load on the dynamic response of the system. To this end, a solution technique based on the generalized finite integral
transform, modified Struble’s method, and differential transform method (DTM) is developed. Numerical examples are given for
the purpose of demonstrating the simplicity and efficiency of the technique. The dynamic responses of the system are presented
graphically and found to be in good agreement with those previously obtained in the literature for the case of a moving force. The
conditions under which the system reaches a state of resonance and the corresponding critical speeds were established. The effects
of variations of the ratio (𝛾1) of the mass of the moving load to the mass of the beam on the dynamic response are presented. The
effects of other parameters on the dynamic response of the system are also examined.

1. Introduction

The problem of determining the dynamic response of elastic
structures traversed by moving loads is of significant tech-
nological importance and various researchers (Engineers,
Physicists, and Applied Mathematicians) continue to pay
considerable attention to studying the various corresponding
mathematical models [1–14]. Most of these studies have been
carried out for simpler structures such as beams, plates,
frames, and shells since such elastic structures form the
fundamental components of various modern complex struc-
tures and the mathematical analysis involved is relatively less
complicated. For instance, the trolleys of overhead travelling
cranes which move on their girders, as well as bridges on
which trains or vehicles move, may be modeled as moving
loads on beam [5]. The theory of vibration of single-beam or
single-plate system subjected to moving loads with different
boundary conditions has been extensively developed with

hundreds of articles on it [1–14]. Frýba [2], in particular,
gave a comprehensive survey of some of the techniques for
solving various versions of this problem. Some engineering
applications of the theory of vibration of a single-beam or
single-plate system carrying a moving load include the study
of the dynamic behaviour of guided circular saws usually
used in the wood products industry, modern high-speed
precision machinery processes, design of railway bridges,
and the machining processes [14]. However, there exist many
problems of notable practical significance in many branches
of modern industrial, mechanical, aerospace, and civil engi-
neering for which the theory of vibration of single-beam
system under a moving load may not hold and hence one has
to resort to the vibration theory of double-beam, triple-beam,
or multibeam systems traversed by a moving load. Examples
of such problems include the vibration of composite mate-
rials which is usually modeled using double-beam system.
Elastically connected concentric beams are also being used
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as continuous system models for carbon nanotubes and a
linear model for interatomic Van der Waals forces is usually
provided for by the elastic layers connecting the two beams.
As a third example, it is remarked that the coupled behaviour
of paper translating with the paper cloth (wire screen) during
paper making process is usually studied by modeling the
system as two axially translating tensioned beams inter-
connected by an elastic foundation. Some other significant
applications of double-beam system are in (i) passive vibra-
tion control, (ii) weight reduction, and (iii) strength and
stiffness increase [15, 16]. It is, nevertheless, observed from
literature that, unlike the single-beam system, relatively few
works have been carried out for the non-single-beam system
carrying moving loads. This is perhaps due to the difficulties
encountered in solving the governing coupled partial differ-
ential equations. Dublin and Friedrich [17] studied forced
vibration of two elastic Euler beams interconnected by
spring-damper system. The free vibration and the impact
problem of a double-beam system which is made up of iden-
tical beams elastically connected were studied theoretically
and experimentally by Seelig and Hoppmann [18] and Seelig
and Hoppmann II [19], respectively. Kessel [20] studied the
excitation of resonance in an elastically connected double
beam system by a cyclic moving load while Kessel and
Raske [21] carried out the analysis of the dynamic behavior
of the system comprising two parallel simply supported
beams which were elastically connected and traversed by
a cyclic moving load. There exists other interesting studies
which have been conducted on double elastic beams [22–
24]. To the authors knowledge, most of these previous
works involving double beams under moving loads are
acted upon by only moving forces. In other words, the
effect of the inertia of the moving load has not been taken
into account. Yet problems involving this effect, though
relativelymore difficult, aremore appropriate representations
of the realistic problems usually encountered in practice.
As a matter of fact the moving force problem is a special
case of the moving mass problem and the difficulty in
the latter is due to the singularity appearing in the iner-
tia terms. The solution techniques in most of the above
existing works have also been suitable only for simply
supported end conditions. However, in recent years many
authors paid attention to earthquake resistance systems
as well as economic construction. This calls for lighter
weight structures. Hence, it becomes necessary to inves-
tigate the influence of relatively large masses traversing
such structure. The dynamic response of such structures
to moving loads whose inertia effect is not negligible
should therefore be thoroughly analysed for a rational safe
design.

In the present paper, attention is focused on the effect of
themass of amoving load of constantmagnitude and velocity
on the dynamic response of a finite prismatic double-beam
system interconnected by a core. Of particular interest is the
influence of the mass of the moving load on the dynamic
response of two finite prismatic parallel upper and lower
Rayleigh beams connected by a viscoelastic core and having
various classical end conditions.This has not been accounted
for in previous studies [25]. It is also assumed that the effect of

noise is negligible. Hence the influence of either Gaussian or
non-Gaussian noise as well as the output constraints [26, 27]
is not taken into account. To achieve the desired objective,
a general versatile solution technique is developed. This
technique is based, in the first instance, on reducing the two
governing fourth-order coupled partial differential equations
to a set of two second-order ordinary differential equations
using generalized finite integral transform. The latter is then
simplified usingmodified Struble’smethod [1] and solving the
resulting set of two coupled ordinary differential equations
using a semianalytical method known as differential trans-
formmethod (DTM).The solution technique is an extended,
modified version of the approach developed by the first
author (and Oni) in [1] for the dynamic response of (i) a
finite Rayleigh beam and (ii) a non-Mindlin rectangular plate
under an arbitrary number of concentrated moving masses.
The present technique holds for all types of classical end
conditions for double-Rayleigh beams acting upon by either
moving forces or masses. Its two-dimensional version for
double-plate moving load problem can be easily developed.
Semianalytical solutions are obtained. The influence of vari-
ous parameters (especially those of the inertia of the moving
load) involved in the problem are presented graphically
and discussed qualitatively and quantitatively. The resonance
conditions for both the moving force and moving mass
problems are also established. Furthermore, the analysis
presented is well illustrated using some of the classical end
conditions.

The remaining part of this paper is organized as fol-
lows: In Section 2, the problem is defined, stating the
pertinent governing differential equations as well as the
corresponding initial and boundary conditions. The method
of analysis is discussed in Section 3 along with the solu-
tions of the moving force and moving mass double-beam
problems. Illustrative examples are given in Section 4,
followed by the discussion on resonance conditions for
the moving force and moving mass double-beam systems
in Section 5. Section 6 deals with the numerical analysis
of the problem. Finally, concluding remarks are given in
Section 7.

2. Mathematical Model

Consider a double-Rayleigh beam system consisting of
two finite, prismatic, undamped, parallel upper and lower
Rayleigh beams joined together by a viscoelastic layer (core)
which is modeled as a set of parallel springs and dash-
pots as shown in Figure 1. For the sake of brevity and
simplicity, the effect of noise on the system is assumed
negligible. Thus, the influence of non-Gaussian noises and
output constraints [26, 27], in particular, on the system
is not considered. The upper beam is subjected to a
load 𝑃1(𝑥, 𝑡) having mass 𝑀𝐿 and moving with a constant
velocity V. For simplicity, it is assumed that the two beams are
identical having the same length 𝐿, flexural rigidity 𝐸𝐼, and
mass per unit length 𝜇. For convenience the system is, hereby,
referred to as system 𝐼. The dynamic responses𝑊1(𝑥, 𝑡) and𝑊2(𝑥, 𝑡) of the upper and lower Rayleigh beams, respectively,
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Figure 1: Double-Rayleigh beam system subjected to a moving load 𝑃(𝑥, 𝑡).

satisfy the following pair of fourth-order, coupled partial
differential equations [22, 25].

𝐸𝐼𝑊𝑖V1 (𝑥, 𝑡) + 𝜇𝑊̈1 (𝑥, 𝑡) − 𝑇ra1𝜇𝑅𝐼𝑊̈󸀠󸀠1 (𝑥, 𝑡)
+ 𝑇ra2 [𝑘1 (𝑊1 (𝑥, 𝑡) − 𝑊2 (𝑥, 𝑡))
+ 𝜀0 (𝑊̇1 (𝑥, 𝑡) − 𝑊̇2 (𝑥, 𝑡))] = 𝑃1 (𝑥, 𝑡) ,

(1)

𝐸𝐼𝑊𝑖V2 (𝑥, 𝑡) + 𝜇𝑊̈2 (𝑥, 𝑡) − 𝑇ra1𝜇𝑅𝐼𝑊̈󸀠󸀠2 (𝑥, 𝑡)
+ 𝑇ra2 [𝑘1 (𝑊2 (𝑥, 𝑡) − 𝑊1 (𝑥, 𝑡))
+ 𝜀0 (𝑊̇2 (𝑥, 𝑡) − 𝑊̇1 (𝑥, 𝑡))] = 0,

(2)

where 𝑅𝐼 is the measure of rotatory inertia correction factor,𝐸 is the Young’s modulus, 𝐼 is the second moment of area, 𝑘1
is the spring constant, 𝜀0 is the damping coefficient, 𝑡 (0 ≤ 𝑡 ≤𝐿/V) is the time, 𝑥 is the spatial coordinate, the prime denotes
differentiationwith respect to𝑥 and a dot is the differentiation
with respect to time 𝑡, and 𝑇ra1 and 𝑇ra2 are tracing constants,
each of which takes on the value unity or zero depending on
whether in the subsequent analysis the effects of (i) rotatory
inertia and (ii) the joining layer are taken, respectively, into
account or not. Furthermore, the concentrated moving load,𝑃1(𝑥, 𝑡), is defined as [1]

𝑃1 (𝑥, 𝑡) = [𝑀𝐿𝑔 − 𝑇ra3 (𝑀𝐿𝑊̈1 (𝑥, 𝑡) − 2𝑀𝐿V𝑊̇󸀠1 (𝑥, 𝑡)
− 𝑀𝐿V2𝑊󸀠󸀠1 (𝑥, 𝑡))] [𝛿 (𝑥 − V𝑡)] .

(3)

In (3) 𝑔 is the acceleration due to gravity, the term
V2𝑊󸀠󸀠1 (𝑥, 𝑡) represents the centrifugal acceleration, the term2V𝑊̇󸀠1(𝑥, 𝑡) denotes the Coriolis acceleration, the term𝑊̈1(𝑥, 𝑡) represents the local acceleration, and 𝛿(⋅) is theDirac
delta function defined as

𝛿 (𝑥) = {{{
∞, 𝑥 = 0
0, 𝑥 ̸= 0 (4)

and 𝑇ra3 is the third tracing constant whose value is unity
if the effect of inertia of the load is taken into account;

otherwise, it is zero. Note that the Dirac delta function is an
even function; therefore, it is expressed as a Fourier cosine
series and we have [1, 3]

𝛿 (𝑥 − V𝑡) = 1𝐿 + 2𝐿
∞∑
𝑛=1

cos 𝑛𝜋V𝑡𝐿 cos 𝑛𝜋𝑥𝐿 . (5)

For the system under consideration, the boundary con-
ditions are any of the classical boundary conditions (i.e., any
of the simply supported, free, clamped, and sliding boundary
conditions) or their combinations. Hence, the conditions can
be written as [1]

𝐵1 [𝑊1 (𝑥, 𝑡)]󵄨󵄨󵄨󵄨𝑒 = 0 = 𝐵2 [𝑊2 (𝑥, 𝑡)]󵄨󵄨󵄨󵄨𝑒 , (6)

where the subscript 𝑒 indicates that the elements of the
vector of linear spatial differential operators 𝐵1 and 𝐵2 are
to be specified at the boundaries of the two beams. Also,
without any loss of generality, it is assumed that the boundary
conditions on the same side of the system are the same though
they can be any of the classical conditions.

Finally, the initial conditions are

𝑊1 (𝑥, 𝑡)󵄨󵄨󵄨󵄨𝑡=0 = 0 = 𝑊̇1 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0 ;
𝑊2 (𝑥, 𝑡)󵄨󵄨󵄨󵄨𝑡=0 = 0 = 𝑊̇2 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0 .

(7)

3. Method of Solution

To solve the above initial-boundary-value problem made up
of (1)–(3) and (5)–(7), the method of solution already alluded
to is presented in this section. The method consists of the
following three main steps. (i) Reduce the set of two fourth-
order coupled partial differential equations (1) and (2) to a
set of two coupled ordinary differential equations of order
two using the generalized finite integral transform. (ii) Use
the modified asymptotic method of Struble [1] to simplify the
resulting set of two coupled transformed ordinary differential
equations. (iii) Solve the final set of two simplified coupled
transformed ordinary differential equations using a semi-
analytical method known as differential transform method
(DTM).
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3.1. The Transformed Second-Order Coupled Ordinary Differ-
ential Equations. To obtain the solution for the transverse
dynamic responses𝑊1(𝑥, 𝑡) and𝑊2(𝑥, 𝑡) of the two Rayleigh
beams interconnected by a viscoelastic layer, the fourth-
order coupled partial differential equations (1) and (2) are,
in the first instance, transformed into a set of two second-
order coupled ordinary differential equations. To this end, the
generalized finite integral transforms which are defined as

𝑊1 (𝑞, 𝑡) = ∫𝐿
0
𝑊1 (𝑥, 𝑡) 𝑈𝑞 (𝑥) 𝑑𝑥, (8)

𝑊2 (𝑞, 𝑡) = ∫𝐿
0
𝑊2 (𝑥, 𝑡) 𝑈𝑞 (𝑥) 𝑑𝑥 (9)

are introduced.
The corresponding inverse formulae are

𝑊1 (𝑥, 𝑡) = ∞∑
𝑞=1

𝜇𝑈𝑐𝑞𝑊1 (𝑞, 𝑡) 𝑈𝑞 (𝑥) , (10)

𝑊2 (𝑥, 𝑡) = ∞∑
𝑞=1

𝜇𝑈𝑐𝑞𝑊2 (𝑞, 𝑡) 𝑈𝑞 (𝑥) . (11)

In (8) and (9), 𝑈𝑞(𝑥), (𝑞 = 1, 2, . . . ,∞) are eigenfunctions of
a single-Euler beam system which usually have the form

𝑈𝑞 (𝑥) = sin
𝜆𝑞𝐿 𝑥 + 𝐴𝑞 cos

𝜆𝑞𝐿 𝑥 + 𝐵𝑞 sinh
𝜆𝑞𝐿 𝑥

+ 𝐶𝑞 cosh 𝜆𝑞𝐿 𝑥.
(12)

The constants𝐴𝑞,𝐵𝑞,𝐶𝑞, and𝜆𝑞 are usually determined using
any of the classical boundary conditions. Also, the constant𝑈𝑐𝑞 is defined as

𝑈𝑐𝑞 = ∫𝐿
0
𝜇𝑈2𝑞 (𝑥) 𝑑𝑥 (13)

and 𝑈𝑞(𝑥) are such that

𝐸𝐼𝑈𝑖V𝑞 (𝑥) = 𝜇𝜔2𝑞𝑈𝑞 (𝑥) (14)

while 𝜔𝑞 is the natural circular frequency, defined as

𝜔2𝑞 = 𝜆
4
𝑞𝐿4 𝐸𝐼𝜇 . (15)

Taking the generalized finite integral transform of (1)–(3)
using (5), (7), (8), (9), (10), and (11), one obtains

𝑊̈1 (𝑞, 𝑡) + 𝜔2𝑞𝑊1 (𝑞, 𝑡) − 𝑇ra1𝑅𝐼ℎ∗1 (𝑡) + 𝑇ra3𝐿
∞∑
𝑞=1

𝑀𝐿𝜇𝑈𝑐𝑞
⋅ [ℎ∗3 (𝑡, V) + 2Vℎ∗4 (𝑡, V) + V2ℎ∗5 (𝑡, V)]
+ 𝑇ra2 [𝑘1𝜇 𝑊1 (𝑞, 𝑡) + 𝜀0𝜇 𝑊̇1 (𝑞, 𝑡) − 𝑘1𝜇 𝑊2 (𝑞, 𝑡)
− 𝜀0𝜇 𝑊̇2 (𝑞, 𝑡)] = 𝑀𝐿𝜇 𝑔𝑈𝑞 (V𝑡) ,

𝑊̈2 (𝑞, 𝑡) + 𝜔2𝑞𝑊2 (𝑞, 𝑡) − 𝑇ra1𝑅𝐼ℎ∗2 (𝑡)
+ 𝑇ra2 [𝑘1𝜇 𝑊2 (𝑞, 𝑡) + 𝜀0𝜇 𝑊̇2 (𝑞, 𝑡) − 𝑘1𝜇 𝑊1 (𝑞, 𝑡)
− 𝜀0𝜇 𝑊̇1 (𝑞, 𝑡)] = 0,

(16)

where

ℎ∗1 (𝑡) = ∞∑
𝑟=1

𝜇𝑈𝑐𝑞 𝜃2 (𝑞, 𝑟) 𝑊̈1 (𝑟, 𝑡) , (17)

ℎ∗2 (𝑡) = ∞∑
𝑟=1

𝜇𝑈𝑐𝑟 𝜃2 (𝑞, 𝑟) 𝑊̈2 (𝑟, 𝑡) , (18)

ℎ∗3 (𝑡; V)
= 𝑊̈1 (𝑟, 𝑡) [𝜃1 (𝑞, 𝑟) + 2∞∑

𝑛=1

cos 𝑛𝜋V𝑡𝐿 𝜃1𝑐 (𝑞; 𝑟)] , (19)

ℎ∗4 (𝑡; V)
= 𝑊̈1 (𝑟, 𝑡) [𝜃3 (𝑞, 𝑟) + 2∞∑

𝑛=1

cos 𝑛𝜋V𝑡𝐿 𝜃3𝑐 (𝑞; 𝑟)] , (20)

ℎ∗5 (𝑡; V)
= 𝑊̈1 (𝑟, 𝑡) [𝜃2 (𝑞, 𝑟) + 2∞∑

𝑛=1

cos 𝑛𝜋V𝑡𝐿 𝜃2𝑐 (𝑞; 𝑟)] , (21)

𝜃1 (𝑞, 𝑟) = ∫𝐿
0
𝑈𝑟 (𝑥)𝑈𝑞 (𝑥) 𝑑𝑥;

𝜃2 (𝑞, 𝑟) = ∫𝐿
0
𝑈𝑟 (𝑥)𝑈󸀠󸀠𝑞 (𝑥) 𝑑𝑥,

(22)
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𝜃3 (𝑞, 𝑟) = ∫𝐿
0
𝑈󸀠𝑟 (𝑥)𝑈𝑞 (𝑥) 𝑑𝑥,

𝜃1𝑐 (𝑞, 𝑟) = ∫𝐿
0
cos𝑛𝜋𝑥𝐿 𝑈𝑟 (𝑥)𝑈𝑞 (𝑥) 𝑑𝑥,

(23)

𝜃2𝑐 (𝑞, 𝑟) = ∫𝐿
0
cos𝑛𝜋𝑥𝐿 𝑈󸀠󸀠𝑟 (𝑥)𝑈𝑞 (𝑥) 𝑑𝑥,

𝜃3𝑐 (𝑞, 𝑟) = ∫𝐿
0
cos𝑛𝜋𝑥𝐿 𝑈󸀠𝑟 (𝑥)𝑈𝑞 (𝑥) 𝑑𝑥,

(24)

𝑈𝑐𝑟 = ∫𝐿
0
𝑈2𝑟 (𝑥) 𝑑𝑥. (25)

Equations (16)–(25) are the coupled transformed second-
order ordinary differential equations governing the lateral
behaviour of a double-Rayleigh beam system interconnected
by a viscoelastic layer and traversed by a moving mass.

3.2. Simplification of the Coupled Second-Order Differential
Equations. In general, it is difficult to get an exact analytical
solution to a set of two coupled second-order ordinary dif-
ferential equations unless certain simplifications are carried
out and/or some assumptions are made. Furthermore, it
is remarked at this juncture that the difficulty with (16),
in particular, is not only that they are highly coupled but
that the coefficients of the terms representing the inertia
of the moving load are also functions of the independent
variable 𝑡. Hence, it is expedient that this set of coupled,
transformed second-order ordinary differential equations are
simplified using certain assumptions. Specifically, themethod
of simplifying these equations involves following these three
substeps: (a) Decouple the set of the ordinary differential
equations. (b) Obtainmodified frequency (I) due to the effect
of rotatory inertia. (c) Obtain yet anothermodified frequency
(II) due to the effect of the mass of the moving load.

3.3. Partially Decoupled Transformed Ordinary Differential
Equations. In this subsection, we seek to simplify the coupled
transformed second-order ordinary differential equations
(16). To this end, a system consisting of two unconnected
Rayleigh beams is, in the time being, considered. It is also
assumed that one of the beams (hereby referred to as first
beam) is acted upon by a moving mass while the second
vibrates freely. This system is a simplified version of system
I and is, for convenience, hereby termed system II. For this
type of system, (16) are reduced to

𝑊̈1 (𝑞, 𝑡) + 𝜔2𝑞𝑊1 (𝑞, 𝑡) − 𝑇ra1𝑅𝐼ℎ∗1 (𝑡)
+ 𝑇ra3𝐿

∞∑
𝑞=1

𝑀𝐿𝑈𝑐𝑞 [ℎ∗3 (𝑡, V) + 2Vℎ∗4 (𝑡, V) + V2ℎ∗5 (𝑡, V)]
= 𝑀𝐿𝜇 𝑔𝑈𝑞 (V𝑡) ,

(26)

𝑊̈2 (𝑞, 𝑡) + 𝜔2𝑞𝑊2 (𝑞, 𝑡) − 𝑇ra1𝑅𝐼ℎ∗2 (𝑡) = 0. (27)

Note that (26) and (27) can also be directly obtained from (16)
by setting 𝑇ra2 to zero and are still coupled.

3.4. Method of Obtaining the Modified Frequency (I). Equa-
tions (26) and (27) are still difficult to solve. Hence, they have
to be further simplified. To achieve this, the first Rayleigh
beam of system II is hereby assumed, for the time being, to
be acted upon by a moving force as opposed to a moving
mass. In other words, the moving force problem of system
II is considered. This amounts to setting 𝑇ra3 to zero in (26)
so that (26) and (27) become

𝑊̈1 (𝑞, 𝑡) + 𝜔2𝑞𝑊1 (𝑞, 𝑡) − 𝑇ra1𝑅𝐼ℎ∗1 (𝑡)
= 𝑀𝐿𝜇 𝑔𝑈𝑞 (V𝑡) ,

(28)

𝑊̈2 (𝑞, 𝑡) + 𝜔2𝑞𝑊2 (𝑞, 𝑡) − 𝑇ra1𝑅𝐼ℎ∗2 (𝑡) = 0, (29)

respectively.
Furthermore, it is still difficult to obtain an exact analyt-

ical solution to (28) and (29). Hence, one resorts to using an
approximate analytical technique [1] which is a modification
of the asymptotic method due to Struble [1, 3]. This analytic
technique involves obtaining a modified frequency (I) of the
system due to the presence of the effect of rotatory inertia
so that each of the differential operators in (28) and (29) is
replaced by an equivalent operator defined by the modified
frequency. Hence, following [1], one first denotes the ratio of
the rotatory inertia correction factor, 𝑅𝐼, of any of the two
beams to its length by 𝛾0 and define a small parameter 𝛼 such
that

𝛼 = 𝛾01 + 𝛾0 < 1. (30)

It follows, therefore, that

𝛾0 = 𝛼 + 0 (𝛼2) . (31)

Considering the homogenous part of (28), for instance, one
obtains

𝑊̈1 (𝑞, 𝑡) + 𝜔2𝑞 (1 + 𝛼𝜃∗ (𝑞, 𝑞))𝑊1 (𝑞, 𝑡)
− 𝑇ra1 ∞∑

𝑟=1, 𝑟 ̸=𝑞

𝛼𝜃∗ (𝑞, 𝑟) 𝑊̈1 (𝑟, 𝑡) = 0, (32)

where

𝜃∗ (𝑞, 𝑞) = 𝜇𝐿𝑈𝑐𝑞 𝜃2 (𝑞, 𝑞) . (33)

According to Struble’s technique [1, 3], the general solution of
(28) is of the form

𝑊1 (𝑞, 𝑡) = 𝑍 (𝑞, 𝑡) cos [𝜔𝑞𝑡 − 𝑄 (𝑞, 𝑡)]
+ 𝑁1∑
𝑖=1

𝛼𝑖𝑊𝑖 (𝑞, 𝑡) + 𝑂 (𝛼𝑁1+1) , (34)
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where 𝑍(𝑞, 𝑡) and 𝑄(𝑞, 𝑡) are slowly time varying functions
such that

𝑍̇ (𝑞, 𝑡) ≈ 0 (𝛼) ;
𝑍̇ (𝑞, 𝑡) ≈ 0 (𝛼2) ,
𝑄̇ (𝑞, 𝑡) ≈ 0 (𝛼) ;
𝑄̇ (𝑞, 𝑡) ≈ 0 (𝛼2)

(35)

while 𝑁1 is a finite natural number and “≈” denotes “is of
order.”

For𝑁1 = 1 and without loss of generality, we have

𝑊1 (𝑞, 𝑡) = 𝑍 (𝑞, 𝑡) cos [𝜔𝑞𝑡 − 𝑄 (𝑞, 𝑡)] + 𝛼𝑊1 (𝑞, 𝑡)
+ 𝑂 (𝛼2) (36)

and hence

𝑊̈1 (𝑞, 𝑡) = [𝑍̈ (𝑞, 𝑡) − 𝜔2𝑞𝑍 (𝑞, 𝑡)
+ 2𝜔𝑞𝑍 (𝑞, 𝑡) 𝑄̇ (𝑞, 𝑡) − 𝑍 (𝑞, 𝑡) 𝑄̇2 (𝑞, 𝑡)] cos [𝜔𝑞𝑡
− 𝑄 (𝑞, 𝑡)] − [2𝜔𝑞𝑍̇ (𝑞, 𝑡) − 2𝑍̇ (𝑞, 𝑡) 𝑄̇ (𝑞, 𝑡)
− 𝑍 (𝑞, 𝑡) 𝑄̈ (𝑞, 𝑡)] sin [𝜔𝑞𝑡 − 𝑄 (𝑞, 𝑡)] + 𝛼𝑊̈1 (𝑞, 𝑡)
+ 𝑂 (𝛼2) .

(37)

Substituting (36) and (37) into (32) and simplifying the
resulting equation, taking into account (30), (31), and (35),
we have

2𝜔𝑞𝑍 (𝑞, 𝑡) 𝑄̇ (𝑞, 𝑡) cos [𝜔𝑞𝑡 − 𝑄 (𝑞, 𝑡)] − 2𝜔𝑞𝑍̇ (𝑞, 𝑡)
⋅ sin [𝜔𝑞𝑡 − 𝑄 (𝑞, 𝑡)] − 2𝛼V𝜔𝑞𝑍 (𝑞, 𝑡) 𝜃2 (𝑗, 𝑞)
⋅ sin [𝜔𝑞𝑡 − 𝑄 (𝑞, 𝑡)] − 4𝛼V𝜔𝑞𝑍 (𝑞, 𝑡) 𝜃2 (𝑗, 𝑞)
⋅ ∞∑
𝑛=1

cos 𝑛𝜋V𝑡𝐿 sin [𝜔𝑞𝑡 − 𝑄 (𝑞, 𝑡)] − 𝛼𝜔2𝑞𝑍 (𝑞, 𝑡)
⋅ 𝜃1 (𝑗, 𝑞) cos [𝜔𝑞𝑡 − 𝑄 (𝑞, 𝑡)] − 2𝛼𝜔2𝑞𝑍 (𝑞, 𝑡)
⋅ 𝜃1 (𝑗, 𝑞) ∞∑

𝑛=1

cos 𝑛𝜋V𝑡𝐿 cos [𝜔𝑞𝑡 − 𝑄 (𝑞, 𝑡)]
+ 𝛼V2𝑍 (𝑞, 𝑡) 𝜃3 (𝑗, 𝑞) cos [𝜔𝑞𝑡 − 𝑄 (𝑞, 𝑡)]
+ 2𝛼V2𝜃3 (𝑗, 𝑞) 𝑍 (𝑞, 𝑡) ∞∑

𝑛=1

cos 𝑛𝜋V𝑡𝐿
⋅ cos [𝜔𝑞𝑡 − 𝑄 (𝑞, 𝑡)] = 0.

(38)

Neglecting terms which do not contribute to the variational
equations, (38) becomes

𝜔2𝑞𝑇ra1𝛼𝜃∗ (𝑞, 𝑞) 𝑍 (𝑞, 𝑡) cos [𝜔𝑞𝑡 − 𝑄 (𝑞, 𝑡)]
+ 2𝜔𝑞𝑍 (𝑞, 𝑡) 𝑄̇ (𝑞, 𝑡) cos [𝜔𝑞𝑡 − 𝑄 (𝑞, 𝑡)]
− 2𝜔𝑍̇ (𝑞, 𝑡) sin [𝜔𝑞𝑡 − 𝑄 (𝑞, 𝑡)] = 0.

(39)

Setting the coefficients of cos[𝜔𝑞𝑡 − 𝑄(𝑞, 𝑡)] and sin[𝜔𝑞𝑡 −𝑄(𝑞, 𝑡)] in (39) to zero, we have

2𝜔𝑞𝑄̇ (𝑞, 𝑡) + 𝜔2𝑞𝑇ra1𝛼𝜃∗ (𝑞, 𝑞) = 0, (40)

2𝜔𝑞𝑍̇ (𝑞, 𝑡) = 0 (41)

whose solutions are

𝑍 (𝑞, 𝑡) = 𝑘0, (42)

𝑄 (𝑞, 𝑡) = −𝜔𝑞2 (𝛼𝑇ra1𝜃∗ (𝑞, 𝑞) 𝑡) + 𝑘𝑞, (43)

respectively, while 𝑘0, 𝑘𝑞 are constants.
Hence, the desired modified frequency (I) due to the

presence of rotatory inertia is

𝛿𝑞 = 𝜔𝑞2 [2 + 𝑇ra1𝛼𝜃∗ (𝑞, 𝑞)] (44)

and the differential operator which acts on 𝑊1(𝑞, 𝑡) and𝑊1(𝑟, 𝑡) in (28) is, as earlier alluded to, replaced by the
equivalent free system operator defined by the modified
frequency, 𝛿𝑞. In other words, (28) which describes the
transverse displacement of the first Rayleigh beam traversed
by a moving force is reduced to

𝑊̈1 (𝑞, 𝑡) + 𝛿2𝑞𝑊1 (𝑞, 𝑡) = 𝑃𝑂𝑅𝑈𝑞 (V𝑡) , (45)

where

𝑃𝑂𝑅 = 𝑀𝐿𝑔𝜇 (1 + 𝛼𝜃∗ (𝑞, 𝑞)) . (46)

Using arguments similar to those presented thus far in this
subsection, (29) is also reduced to

𝑊̈2 (𝑞, 𝑡) + 𝛿2𝑞𝑊2 (𝑞, 𝑡) = 0. (47)

The implication of (45) and (47) is that when the effect of the
inertia terms (i.e., the terms involving the tracing constants𝑇ra3) for system II is not neglected, (26) and (27) simplify to

𝑊̈1 (𝑞, 𝑡) + 𝛿2𝑞𝑊1 (𝑞, 𝑡) + 𝑇ra3𝑀𝐿𝜇𝐿
∞∑
𝑞=1

1𝑈𝑐𝑞
⋅ [ℎ∗2 (𝑡, V) + 2Vℎ∗3 (𝑡, V) + V2ℎ∗4 (𝑡, V)]
= 𝑃𝑂𝑅𝑈𝑞 (V𝑡) ,

(48)

𝑊̈2 (𝑞, 𝑡) + 𝛿2𝑞𝑊2 (𝑞, 𝑡) = 0, (49)

respectively. In other words, the set of second-order ordinary
differential equations for system II when the first Rayleigh
beam is acted upon by a moving mass is now reduced to (48)
and (49).
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3.5. Method of Obtaining the Modified Frequency (II). The
problem of system II is now reduced to that of seeking the
solutions to (48) and (49). It is however remarked at this
juncture that while (49) can be easily solved, there is no exact
analytical solution of (48). Hence, one again resorts to the
approximate analytical method discussed in Section 3.4. The
argument is that the problem under consideration involves
the effect of both rotatory inertia and the inertia of the
moving load. Hence, it is not sufficient to obtain themodified
frequency (I) due to the effect of rotatory inertia only [2].
As a matter of fact, having obtained the modified frequency
(I), 𝛿𝑞, we now proceed to obtain another frequency (a
modified 𝛿𝑞), sayΩ𝑞, which is due not only to the presence of
rotatory inertia but also to that of themovingmass. Following
arguments similar to that of Section 3.4, an equivalent free
system operator defined in terms of the new frequency, Ω𝑞,
for𝑊1(𝑞, 𝑡) then replaces the terms on the left hand side of
(48). To this end, we introduce a small parameter 𝛾 such that

𝛾 = 𝛾11 + 𝛾1 < 1, (50)

where

𝛾1 = 𝑀𝐿𝜇𝐿 (51)

is the mass ratio.
It also follows that

𝛾1 = 𝛾 + 0 (𝛾2) . (52)

To obtain the desiredmodified frequency (II) due to the effect
of the inertia of the moving load and that of the rotatory
inertia, the homogeneous part of (48) is then considered.
The first approximation to the assumed solution of the said
homogeneous equation, according to Struble’s technique, is

𝑊1 (𝑞, 𝑡) = 𝑍 (𝑞, 𝑡) cos [𝛿𝑞𝑡 − 𝑄 (𝑞, 𝑡)] + 𝛾𝑊1 (𝑞, 𝑡)
+ 𝑂 (𝛾2) . (53)

Again substituting (53) and its first- and second-order time
derivatives into the homogeneous part of (48) taking into
account (52), we have

− 2𝛿𝑞𝑍̇ (𝑞, 𝑡) sin [𝛿𝑞𝑡 − 𝑄 (𝑞, 𝑡)] + 2𝑍 (𝑞, 𝑡) 𝑄̇ (𝑞, 𝑡)
⋅ 𝛿𝑞cos [𝛿𝑞𝑡 − 𝑄 (𝑞, 𝑡)] + 𝛾𝑊̈1 (𝑞, 𝑡)
+ 𝛾𝛿2𝑞𝑊1 (𝑞, 𝑡) + 𝛾∞∑

𝑟=1

𝜇𝑈𝑐𝑟
⋅ [−𝛿2𝑟 (𝜃1 (𝑟, 𝑡) + 2∞∑

𝑛=1

cos 𝑛𝜋V𝑡𝐿 ) 𝜃1𝑐 (𝑞, 𝑟) 𝑍 (𝑟, 𝑡)
⋅ cos [𝛿𝑟𝑡 − 𝑄 (𝑟, 𝑡)]
− 2𝛿𝑟V(𝜃3 (𝑞, 𝑟) + 2∞∑

𝑛=1

cos 𝑛𝜋V𝑡𝐿 𝜃3𝑐 (𝑞, 𝑟))𝑍 (𝑟, 𝑡)

⋅ sin [𝛿𝑟𝑡 − 𝑄 (𝑟, 𝑡)]
+ V2 (𝜃2 (𝑞, 𝑟) + 2∞∑

𝑛=1

cos 𝑛𝜋V𝑡𝐿 𝜃2𝑐 (𝑞, 𝑟))𝑍 (𝑟, 𝑡)
⋅ cos [𝛿𝑟𝑡 − 𝑄 (𝑟, 𝑡)]] = 0,

(54)

where the terms in 𝛾2 and higher power of 𝛾 have been
neglected. The corresponding variational equations are

−2𝛿𝑞𝑍̇ (𝑞, 𝑡) − 2𝛾V𝜇𝛿𝑞𝑈𝑐𝑟 𝜃3 (𝑞, 𝑞) 𝑍 (𝑞, 𝑡) = 0,
2𝑍𝑄̇ (𝑞, 𝑡) 𝛿𝑞 − 𝛾𝛿

2
𝑞𝑈𝑐𝑟 𝜇(𝜃1 (𝑞, 𝑞) − V2

𝜃2 (𝑞, 𝑞)𝛿2𝑞 ) = 0.
(55)

Solving (55), we have

𝑍 (𝑞, 𝑡) = 𝐴0𝑒−𝑟0𝑡,
𝑄 (𝑞, 𝑡) = 𝜇𝛾𝛿𝑞2𝑈𝑐𝑟 (𝜃1 (𝑞, 𝑞) − V2

𝜃2 (𝑞, 𝑞)𝛿2𝑞 ) 𝑡 + 𝜙𝑞, (56)

where 𝑟0 = 𝜇𝛾V𝜃3(𝑞, 𝑞)/𝑈𝑐𝑟, 𝐴0 and 𝜙𝑞 are constants, and
hence

Ω𝑞 = 𝛿𝑞 [1 − 𝜇𝛾2𝑈𝑐𝑟 (𝜃1 (𝑞, 𝑞) −
V2𝜃2 (𝑞, 𝑞)𝛿2𝑞 )] . (57)

Equation (57) is the desired modified frequency (II) cor-
responding to the frequency of the free system involving
rotatory inertia and moving mass effect.

Hence, according to Struble’s technique, (48) reduces to

𝑊̈1 (𝑞, 𝑡) + Ω2𝑞𝑊1 (𝑞, 𝑡) = 𝑃𝑇𝑅𝑈𝑞 (V𝑡) , (58)

where

𝑃𝑇𝑅 = 𝛾𝑔𝐿 (59)

and the set of second-order transformed ordinary differential
equations for system II are now made up of (45) and (58)
whose closed form solutions can be obtained without much
difficulty.

3.6. Solution of the Two Viscoelastically Connected Rayleigh
Beams. Recall that system II is a simplified version of the
original system I and it is obtained by assuming that the two
Rayleigh beams are not joined by a layer (i.e., 𝑇ra2 = 0). Now,
if the viscoelastic layer is retained, then 𝑇ra2 is not equal to
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zero. In this case and in view of (45) and (58), the two second-
order transformed coupled ordinary differential equations for
the double-Rayleigh beam system I are finally simplified to

𝑊̈1 (𝑞, 𝑡) + Ω2𝑞𝑊1 (𝑞, 𝑡) + 𝑇ra2 [𝑘1𝜇 𝑊1 (𝑞, 𝑡)
+ 𝜀0𝜇 𝑊̇1 (𝑞, 𝑡) − 𝑘1𝜇 𝑊2 (𝑞, 𝑡) − 𝜀0𝜇 𝑊̇2 (𝑞, 𝑡)]
= 𝑃𝑂𝑅𝑈𝑞 (V𝑡) ,

𝑊̈2 (𝑞, 𝑡) + 𝛿2𝑞𝑊2 (𝑞, 𝑡) + 𝑇ra2 [𝑘1𝜇 𝑊1 (𝑞, 𝑡)
+ 𝜀0𝜇 𝑊̇1 (𝑞, 𝑡) − 𝑘1𝜇 𝑊2 (𝑞, 𝑡) − 𝜀0𝜇 𝑊̇2 (𝑞, 𝑡)] = 0

(60)

in terms of the twomodified frequencies (𝛿𝑞 andΩ𝑞), respec-
tively. In other words, problem of assessing the dynamic
behaviour of a double-Rayleigh beam system I traversed by
a moving mass under arbitrary end supports reduces to that
of solving (60) subjected to the corresponding transformed
initial conditions. To solve the coupled differential equations
(60) a semianalyticalmethod known as differential transform
method (DTM) is used. To this end, we first state briefly
the basic theory of the method as follows. The differential
transform of the 𝑚th derivative of a function 𝑤(𝑡) is given
as [28, 29]

𝑊(𝑚) = 1𝑚! [𝑑
𝑚𝑤 (𝑡)𝑑𝑡𝑚 ]

𝑡=𝑡0

. (61)

The corresponding inverse transformation is defined as

𝑤 (𝑡) = ∞∑
𝑚=0

(𝑡 − 𝑡0)𝑚𝑊(𝑚) . (62)

Hence, (61) and (62) yield

𝑤 (𝑡) = ∞∑
𝑚=0

(𝑡 − 𝑡0)𝑚𝑚! [𝑑𝑚𝑤 (𝑡)𝑑𝑡𝑚 ]
𝑡=𝑡0

. (63)

It is well known that, in application, the series in (62) is finite
and usually written as

𝑤 (𝑡) = 𝑃∑
𝑚=0

(𝑡 − 𝑡0)𝑚𝑊(𝑚) (64)

such that the series ∑∞𝑚=𝑃+1(𝑡 − 𝑡0)𝑚𝑊(𝑚) is considered
unimportantly small.

Furthermore, it can be readily shown [28, 29] that the
relationships in Table 1 between the original function 𝑤(𝑡)
and the transformed function𝑊(𝑚), for 𝑡0 = 0, hold.

Table 1: Basic theorems of DTM for equations of motion.

Original function T-function𝑤 (𝑡) = 𝑢 (𝑡) ± V (𝑡) 𝑊 (𝑘) = 𝑈 (𝑘) ± 𝑉 (𝑘)𝑤(𝑡) = 𝑐𝑢 (𝑡) 𝑊 (𝑘) = 𝑐𝑈 (𝑘)
𝑤(𝑡) = 𝑑𝑢(𝑡)𝑑𝑡 𝑊(𝑘) = (𝑘 + 1)𝑈(𝑘 + 1)
𝑤(𝑡) = 𝑑𝑛𝑢(𝑡)𝑑𝑡𝑛

𝑊(𝑘) =(𝑘 + 1) (𝑘 + 2) ⋅ ⋅ ⋅ (𝑘 + 𝑛 −1)(𝑘 + 𝑛)𝑈(𝑘 + 𝑛)
𝑤(𝑡) = 𝑢(𝑡)V(𝑡) 𝑊(𝑘) = 𝑘∑

𝑛=0

𝑈(𝑛)𝑉(𝑘 − 𝑛)
𝑤(𝑡) = 𝑢(𝑡)V(𝑡)𝑦(𝑡) 𝑊(𝑘) =

𝑘∑
𝑛=0

𝑘−𝑛∑
𝑟=0

𝑈(𝑛)𝑉(𝑟)𝑌(𝑘 − 𝑛 − 𝑟)
𝑤(𝑡) =
𝑢(𝑡) ∫𝐿

0

V(𝑥)𝑑𝑡
𝑊(𝑘) =

𝑘∑
𝑛=1

𝑈(𝑘 − 𝑛)𝑉(𝑛 − 1)𝑛 𝑘 ≥ 1

𝑤 (𝑡) = 𝑡𝑚
𝑊(𝑘) = 𝛿(𝑘 − 𝑚) ={{{{{

1, 𝑘 = 𝑚
0, 𝑘 ̸= 𝑚

𝑤 (𝑡) = sin 𝑎𝑡 𝑊(𝑘) = 1𝑘!𝑎𝑘 sin(𝑘𝜋2 )
𝑤 (𝑡) = cos 𝑎𝑡 𝑊(𝑘) = 1𝑘!𝑎𝑘 cos(𝑘𝜋2 )
𝑤(𝑡) = sinh 𝑎𝑡 𝑊 (𝑘) = 12𝑘! [(𝑎)𝑘 − (−𝑎)𝑘]
𝑤(𝑡) = cosh 𝑎𝑡 𝑊(𝑘) = 12𝑘! [(𝑎)𝑘 + (−𝑎)𝑘]

Next, the application of the differential transformon (60),
using Table 1, yields the following recurrence relations for𝑚 ≥ 0
𝑊1 (𝑚 + 2)
= 1(𝑚 + 1) (𝑚 + 2) [𝑃𝑂𝑅 [ 1𝑚! (

𝜆𝑞V𝐿 )
𝑚

sin(𝑚𝜋2 )
+ 𝐴𝑞𝑚! (

𝜆𝑞V𝐿 )
𝑚

cos(𝑚𝜋2 )
+ 𝐵𝑞2𝑚! [(

𝜆𝑞V𝐿 )
𝑚 − (−𝜆𝑞V𝐿 )

𝑚]
+ 𝐶𝑞2𝑚! [(

𝜆𝑞V𝐿 )
𝑚 + (−𝜆𝑞V𝐿 )

𝑚]] − Ω2𝑞𝑊1 (𝑚)
− 𝑇ra2 𝑘1𝜇 𝑊1 (𝑚) − 𝑇ra2 𝜀0𝜇 (𝑚 + 1)𝑊1 (𝑚 + 1)
+ 𝑇ra2 𝑘1𝜇 𝑊2 (𝑚) + 𝑇ra2 𝜀0𝜇 (𝑚 + 1)𝑊2 (𝑚 + 1)] ,

(65)
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𝑊2 (𝑚 + 2) = 1(𝑚 + 1) (𝑚 + 2) [−𝛿2𝑞𝑊2 (𝑚) − 𝑇ra2
⋅ 𝑘1𝜇 𝑊2 (𝑚) − 𝑇ra2 𝜀0𝜇 (𝑚 + 1)𝑊2 (𝑚 + 1) + 𝑇ra2
⋅ 𝑘1𝜇 𝑊1 (𝑚) + 𝑇ra2 𝜀0𝜇 (𝑚 + 1)𝑊1 (𝑚 + 1)] .

(66)

Note that, in obtaining (65), (12) had been used. Equations
(60) are also to be solved subject to the following transformed
initial conditions:

𝑊1 (0) = 0 = 𝑊1 (1) ,
𝑊2 (0) = 0 = 𝑊2 (1) . (67)

Substituting (67) for 𝑚 = 0, 1, 2, 3, . . . into recurrence
relations (65), (66), using “MAPLE 18,” we have
𝑊1 (2) = 𝑃𝑂𝑅2! (𝐴𝑞 + 𝐶𝑞) , (68)

𝑊2 (2) = 0, (69)

𝑊1 (3) = 𝑃𝑂𝑅3! [𝜎𝑞 (1 + 𝐵𝑞) − 𝑇ra2 𝜀0𝜇 (𝐴𝑞 + 𝐶𝑞)] , (70)

𝜎𝑞 = 𝜆𝑞V𝐿 , (70b)

𝑊2 (3) = 𝑃𝑂𝑅3! 𝑇ra2 𝜀0𝜇 (𝐴𝑞 + 𝐶𝑞) (71)

𝑊1 (4) = 𝑃𝑂𝑅4! [(𝜎2𝑞 − Ω2𝑞) 𝐶𝑞 − (𝜎2𝑞 + Ω2𝑞)𝐴𝑞
− 𝑇ra2 𝑘1𝜇 (𝐴𝑞 + 𝐶𝑞) − 𝑇ra2 𝜀0𝜇 𝜎𝑞 (1 + 𝐵𝑞)
+ 2𝑇2ra2𝜀20𝜇2 (𝐴𝑞 + 𝐶𝑞)] ,

(72)

𝑊2 (4) = 𝑃𝑂𝑅4! [−2𝑇2ra2 𝜀
2
0𝜇2 (𝐴𝑞 + 𝐶𝑞)

+ 𝑇ra2 𝑘1𝜇 (𝐴𝑞 + 𝐶𝑞) + 𝑇ra2 𝜀0𝜇 𝜎𝑞 (1 + 𝐵𝑞)] ,
(73)

𝑊1 (5) = 𝑃𝑂𝑅5! [𝜎3𝑞 (𝐵𝑞 − 1) + Ω2𝑞𝑇ra2 𝜀0𝜇 (𝐴𝑞 + 𝐶𝑞)
− Ω2𝑞𝜎𝑞 (1 + 𝐵𝑞) − 𝑇ra2𝑘1𝜇 𝜎𝑞 (1 + 𝐵𝑞)
+ 4𝑇2ra2𝑘1𝜀0𝜇2 (𝐴𝑞 + 𝐶𝑞) − 𝑇ra2𝜀0𝜇 𝐶𝑞 (𝜎2𝑞 − Ω2𝑞)
+ 𝑇ra2𝜀0𝜇 𝐴𝑞 (𝜎2𝑞 + Ω2𝑞) + 2𝑇2ra2𝜀20𝜇2 𝜎𝑞 (1 + 𝐵𝑞)
− 4𝑇3ra2𝜀30𝜇3 (𝐴𝑞 + 𝐶𝑞)] ,

(74)

𝑊2 (5) = 𝑃𝑂𝑅5! [−𝛿2𝑞𝑇ra2 𝜀0𝜇 (𝐴𝑞 + 𝐶𝑞)
− 4𝑇2ra2 𝑘1𝜀0𝜇2 (𝐴𝑞 + 𝐶𝑞) + 4𝑇

3
ra2𝜀30𝜇3 (𝐴𝑞 + 𝐶𝑞)

− 2𝑇2ra2𝜀20𝜇2 𝜎𝑞 (1 + 𝐵𝑞) +
𝑇ra2𝑘1𝜎𝑞𝜇 (1 + 𝐵𝑞)

+ 𝑇ra2𝜀0𝜇 𝐶𝑞 (𝜎2𝑞 − Ω2𝑞) − 𝑇ra2𝜀0𝜇 𝐴𝑞 (𝜎2𝑞 + Ω2𝑞)] .

(75)

Using the inverse differential transform of (64) in conjunc-
tion with (67), for 𝑡0 = 0, we obtain

𝑊1𝑚𝑚 (𝑥, 𝑡) = ∞∑
𝑞=1

𝑃𝑅𝑇𝜇𝑈𝑐𝑞 (𝜎2𝑞 − Ω2𝑞)
⋅ {{{[

12! (𝐴𝑞 + 𝐶𝑞) (𝜎2𝑞 − Ω2𝑞)] 𝑡2

+ (𝜎2𝑞 − Ω2𝑞)
2

3! [𝜎𝑞 (1 + 𝐵𝑞) − 𝑇ra2𝜀0𝜇 (𝐴𝑞 + 𝐶𝑞)]
⋅ 𝑡3 + (𝜎2𝑞 − Ω2𝑞)

2

4! [
[𝐶𝑞 −

(𝜎2𝑞 + Ω2𝑞)(𝜎2𝑞 − Ω2𝑞)𝐴𝑞
− 𝑇ra2𝑘1𝜇

(𝐴𝑞 + 𝐶𝑞)(𝜎2𝑞 − Ω2𝑞) −
𝑇ra2𝜀0𝜎𝑞𝜇

(1 + 𝐵𝑞)(𝜎2𝑞 − Ω2𝑞)
+ 2𝑇2ra2𝜀20𝜇2

(𝐴𝑞 + 𝐶𝑞)(𝜎2𝑞 − Ω2𝑞) ]] 𝑡
4

+ (𝜎2𝑞 − Ω2𝑞)
2

5! [
[−
𝜎3𝑞 (𝐵𝑞 − 1)(𝜎2𝑞 − Ω2𝑞)

+ Ω2𝑞𝑇ra2𝜀0 (𝐴𝑞 + 𝐶𝑞)𝜇 (𝜎2𝑞 − Ω2𝑞) − Ω2𝑞𝜎𝑞 (1 + 𝐵𝑞)(𝜎2𝑞 − Ω2𝑞)
− 𝑇ra2𝑘1𝜎𝑞 (1 + 𝐵𝑞)𝜇 (𝜎2𝑞 − Ω2𝑞) + 4𝑇2ra2𝑘1𝜀0 (𝐴𝑞 + 𝐶𝑞)𝜇2 (𝜎2𝑞 − Ω2𝑞)
− 𝑇ra2𝜀0𝐶𝑞𝜇 + 𝑇ra2𝜀0𝐴𝑞 (𝜎2𝑞 + Ω2𝑞)𝜇 (𝜎2𝑞 − Ω2𝑞)
+ 2𝑇2ra2𝜀20𝜎𝑞 (1 + 𝐵𝑞)𝜇2 (𝜎2𝑞 − Ω2𝑞) − 4𝑇3ra2𝜀30 (𝐴𝑞 + 𝐶𝑞)𝜇3 (𝜎2𝑞 − Ω2𝑞) ]

] 𝑡
5

+ ⋅ ⋅ ⋅}}}[sin
𝜆𝑞𝐿 𝑥 + 𝐴𝑞 cos

𝜆𝑞𝐿 𝑥 + 𝐵𝑞 sinh
𝜆𝑞𝐿 𝑥

+ 𝐶𝑞 cosh 𝜆𝑞𝐿 𝑥] ,
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𝑊2𝑚𝑚 (𝑥, 𝑡) = ∞∑
𝑞=1

𝑃𝑅𝑇𝜇𝑈𝑐𝑞 (𝜎2𝑞 − 𝛿2𝑞)
⋅ {{{
13! [𝑇ra2𝜀0𝜇 (𝐴𝑞 + 𝐶𝑞) (𝜎2𝑞 − 𝛿2𝑞)] 𝑡3

+ (𝜎2𝑞 − 𝛿2𝑞)4! [𝑇ra2𝑘1𝜇 (𝐴𝑞 + 𝐶𝑞)
+ 𝑇ra2𝜀0𝜎𝑞𝜇 (1 + 𝐵𝑞) − 2𝑇2ra2𝜀20𝜇2 (𝐴𝑞 + 𝐶𝑞)] 𝑡4

+ (𝜎2𝑞 − 𝛿2𝑞)
2

5! [𝑇ra2𝜀0𝐶𝑞𝜇 (𝜎2𝑞 − 𝛿2𝑞)
− 𝑇ra2𝜀0𝐴𝑞𝜇 (𝜎2𝑞 + 𝛿2𝑞) + 𝑇ra2𝑘1𝜎𝑞𝜇 (1 + 𝐵𝑞)
− 𝑇ra2𝜀0Ω2𝑞𝜇 (𝐴𝑞 + 𝐶𝑞) − 4𝑇2ra2𝑘1𝜀0𝜇2 (𝐴𝑞 + 𝐶𝑞)
− 2𝑇2ra2𝜀20𝜎𝑞𝜇2 (1 + 𝐵𝑞) + 4𝑇3ra2𝜀30𝜇3 (𝐴𝑞 + 𝐶𝑞)] 𝑡5

+ ⋅ ⋅ ⋅}}}[sin
𝜆𝑞𝐿 𝑥 + 𝐴𝑞 cos

𝜆𝑞𝐿 𝑥 + 𝐵𝑞 sinh
𝜆𝑞𝐿 𝑥

+ 𝐶𝑞 cosh 𝜆𝑞𝐿 𝑥] .
(76)

Equations (76) represent the transverse displacements of
the double-Rayleigh beams interconnected by a viscoelastic
layer, traversed by a moving mass and having arbitrary end
supports.

For the purpose of comparison the moving force prob-
lem associated with system I is considered. It is therefore
remarked at this juncture that in view of (45), (46), and (47)
and retaining the viscoelastic core, the two reduced trans-
formed coupled second-order ordinary differential equations
for the corresponding moving force problem of system I
having arbitrary boundary conditions are

𝑊̈1 (𝑞, 𝑡) + 𝛿2𝑞𝑊1 (𝑞, 𝑡) + 𝑇ra2 [𝑘1𝜇 𝑊1 (𝑞, 𝑡)
+ 𝜀0𝜇 𝑊̇1 (𝑞, 𝑡) − 𝑘1𝜇 𝑊2 (𝑞, 𝑡) − 𝜀0𝜇 𝑊̇2 (𝑞, 𝑡)]
= 𝑃𝑅𝑇𝑈𝑞 (V𝑡) ,

𝑊̈2 (𝑞, 𝑡) + 𝛿2𝑞𝑊2 (𝑞, 𝑡) + 𝑇ra2 [𝑘1𝜇 𝑊2 (𝑞, 𝑡)
+ 𝜀0𝜇 𝑊̇2 (𝑞, 𝑡) − 𝑘1𝜇 𝑊1 (𝑞, 𝑡) − 𝜀0𝜇 𝑊̇1 (𝑞, 𝑡)] = 0.

(77)

Solving (77), subject to the corresponding transformed
initial conditions, using the differential transform method,
one obtains, after inversion, the following:

𝑊1𝑚𝑓 (𝑥, 𝑡) = ∞∑
𝑞=1

𝜇𝑃𝑅𝑇𝑈𝑐𝑞 (𝜎2𝑞 − 𝛿2𝑞) [[
12! (𝐴𝑞 + 𝐶𝑞) (𝜎2𝑞

− 𝛿2𝑞) 𝑡2 + (𝜎
2
𝑞 − 𝛿2𝑞)3! [𝜎𝑞 (1 + 𝐵𝑞)

− 𝑇ra2𝜀0𝜇 (𝐴𝑞 + 𝐶𝑞)] 𝑡3 + (𝜎
2
𝑞 − 𝛿2𝑞)24! [

[𝐶𝑞

− (𝜎2𝑞 + 𝛿2𝑞)(𝜎2𝑞 − 𝛿2𝑞)𝐴𝑞 −
𝑇ra2𝑘1𝜇

(𝐴𝑞 + 𝐶𝑞)(𝜎2𝑞 − 𝛿2𝑞)
− 𝑇ra2𝜀0𝜎𝑞𝜇

(1 + 𝐵𝑞)(𝜎2𝑞 − 𝛿2𝑞) + 2
𝑇2ra2𝜀20𝜇2

(𝐴𝑞 + 𝐶𝑞)(𝜎2𝑞 − 𝛿2𝑞) ]] 𝑡
4

+ (𝜎2𝑞 − 𝛿2𝑞)
2

5! [
[
𝜎3𝑞 (𝐵𝑞 − 1)(𝜎2𝑞 − 𝛿2𝑞) + 𝛿

2
𝑞

𝑇ra2𝜀0𝜇
(𝐴𝑞 + 𝐶𝑞)(𝜎2𝑞 − 𝛿2𝑞)

− 𝛿2𝑞 𝜎𝑞 (1 + 𝐵𝑞)(𝜎2𝑞 − 𝛿2𝑞) −
𝑇ra2𝑘1𝜎𝑞 (1 + 𝐵𝑞)𝜇 (𝜎2𝑞 − 𝛿2𝑞)

+ 4𝑇2ra2𝑘1𝜀0 (𝐴𝑞 + 𝐶𝑞)𝜇2 (𝜎2𝑞 − 𝛿2𝑞) ]
] + ⋅ ⋅ ⋅

]
][sin

𝜆𝑞𝐿 𝑥 + 𝐴𝑞
⋅ cos 𝜆𝑞𝐿 𝑥 + 𝐵𝑞 sinh

𝜆𝑞𝐿 𝑥 + 𝐶𝑞 cosh
𝜆𝑞𝐿 𝑥] ,

(78)

𝑊2𝑚𝑓 (𝑥, 𝑡) = ∞∑
𝑞=1

𝜇𝑃𝑅𝑇𝑈𝑐𝑞 (𝜎2𝑞 − 𝛿2𝑞)
⋅ [[
13! [𝑇ra2𝜀0𝜇 (𝐴𝑞 + 𝐶𝑞) (𝜎2𝑞 − 𝛿2𝑞)] 𝑡3

+ (𝜎2𝑞 − 𝛿2𝑞)4! [𝑇ra2𝑘1𝜇 (𝐴𝑞 + 𝐶𝑞)
+ 𝑇ra2𝜀0𝜎𝑞𝜇 (1 + 𝐵𝑞) − 2𝑇2ra2𝜀20𝜇2 (𝐴𝑞 + 𝐶𝑞)] 𝑡4

+ (𝜎2𝑞 − 𝛿2𝑞)5! [𝑇ra2𝜀0𝐶𝑞𝜇 (𝜎2𝑞 − 𝛿2𝑞)
− 𝑇ra2𝜀0𝜇 𝐴𝑞 (𝜎2𝑞 + 𝛿2𝑞) + 𝑇ra2𝑘1𝜇 𝐶𝑞 (1 + 𝐵𝑞)
− 𝑇ra2𝜀0𝛿2𝑞𝜇 (𝐴𝑞 + 𝐶𝑞) − 4𝑇2ra2𝑘1𝜀0𝜇2 (𝐴𝑞 + 𝐶𝑞)
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− 2𝑇2ra2𝜀20𝜇2 𝜎𝑞 (1 + 𝐵𝑞) + 4𝑇
3
ra2𝜀30𝜇3 (𝐴𝑞 + 𝐶𝑞)] 𝑡5

+ ⋅ ⋅ ⋅]][sin
𝜆𝑞𝐿 𝑥 + 𝐴𝑞 cos

𝜆𝑞𝐿 𝑥 + 𝐵𝑞 sinh
𝜆𝑞𝐿 𝑥

+ 𝐶𝑞 cosh 𝜆𝑞𝐿 𝑥] .
(79)

Equations (78) and (79) denote the lateral deflections of
the upper and lower Rayleigh beams, respectively, due to
concentrated moving force having constant velocity and
traversing a viscoelastically connected double-Rayleigh beam
system with general end supports.

4. Some Case Studies

Hitherto, the discussion has been for general boundary
conditions. In this section, two case studies involving (i)
simply supported end conditions and (ii) clamped-clamped
end conditions are considered in order to illustrate the theory
developed thus far.

4.1. Simply Supported Double-Rayleigh Beam System. The
system considered here comprises two finite Rayleigh beams
which are simply supported and are interconnected by a
viscoelastic layer. The boundary conditions for such simply
supported double-Rayleigh beam system are [3, 22, 24]

𝑊1 (0; 𝑡) = 𝑊2 (0; 𝑡) = 0;
𝑊1 (𝐿; 𝑡) = 𝑊2 (𝐿; 𝑡) = 0,
𝑊󸀠󸀠1 (0; 𝑡) = 𝑊󸀠󸀠2 (0; 𝑡) = 0;
𝑊󸀠󸀠1 (𝐿; 𝑡) = 𝑊󸀠󸀠2 (𝐿; 𝑡) = 0.

(80)

Hence, for the eigenfunction, 𝑈𝑞(𝑥), we have
𝑈𝑞 (0) = 0 = 𝑈𝑞 (𝐿) ,
𝑈󸀠󸀠𝑞 (0) = 0 = 𝑈󸀠󸀠𝑞 (𝐿) (81)

as well as 𝑈𝑟 (0) = 0 = 𝑈𝑟 (𝐿) ,
𝑈󸀠󸀠𝑟 (0) = 0 = 𝑈󸀠󸀠𝑟 (𝐿) . (82)

It follows, therefore, that in view of (12), (80), and (81) we have
𝐴𝑞 = 𝐵𝑞 = 𝐶𝑞 = 0 = 𝐴𝑟 = 𝐵𝑟 = 𝐶𝑟,

sin 𝜆𝑞 = 0 = sin 𝜆𝑟, (83)

so that 𝜆𝑞 = 𝑞𝜋;
𝜆𝑟 = 𝑟𝜋;

(𝑞, 𝑟 = 1, 2, . . .) .
(84)

Equation (15) implies

𝜔2𝑞 = 𝑞4𝜋4𝐿4 𝐸𝐼𝜇 ,
𝜔2𝑟 = 𝑟4𝜋4𝐿4 𝐸𝐼𝜇

(85)

and the corresponding eigenfunction reduces to

𝑈𝑞 (𝑥) = sin
𝜆𝑞𝑥𝐿 . (86)

The associated initial conditions are as given in (7). Hence the
generalized finite transforms, (8) and (9) and their inverses,
(10) and (11) as well as (13) reduce to

𝑊1 (𝑞, 𝑡) = ∫𝐿
0
𝑊1 (𝑥, 𝑡) sin𝜆𝑞𝑥𝐿 𝑑𝑥, (87)

𝑊2 (𝑞, 𝑡) = ∫𝐿
0
𝑊2 (𝑥, 𝑡) sin𝜆𝑞𝑥𝐿 𝑑𝑥, (88)

𝑊1 (𝑥, 𝑡) = ∞∑
𝑞=1

𝜇𝑈𝑐𝑞𝑠𝑊1 (𝑞, 𝑡) sin
𝜆𝑞𝑥𝐿 , (89)

𝑊2 (𝑥, 𝑡) = ∞∑
𝑞=1

𝜇𝑈𝑐𝑞𝑠𝑊2 (𝑞, 𝑡) sin
𝜆𝑞𝑥𝐿 , (90)

𝑈𝑐𝑞𝑠 = ∫𝐿
0
sin2

𝜆𝑞𝑥𝐿 𝑑𝑥, (91)

respectively.
Substituting (86) into (22)–(25) and the resulting expres-

sions into (17)–(21) while the results of the latter are in turn
substituted into the transformed equations (16), one obtains

(1 + 𝑇ra1𝑅𝐼 𝑞2𝜋2𝐿2 )𝑊̈1 (𝑞, 𝑡) + 𝜔2𝑞𝑊1 (𝑞, 𝑡)

+ 𝑇ra3𝜀2 [[Γ0 (𝑞; V)

+ ∞∑
𝑞=0

[
[Γ1 (𝑞, V) − 16

∞∑
𝑗=𝑖

Γ2 (𝑞, V) − Γ3 (𝑞, V)]]
]
]

+ 𝑇𝑟𝑎2 [𝑘1𝜇 𝑊1 (𝑞, 𝑡) + 𝜀0𝜇 𝑊̇1 (𝑞, 𝑡) − 𝑘1𝜇 𝑊2 (𝑞, 𝑡)
− 𝜀0𝜇 𝑊̇2 (𝑞, 𝑡)] = 𝑀𝐿𝑔𝜇 sin

𝑞𝜋V𝑡𝐿 ,
(1 + 𝑇ra1𝑅𝐼 𝑞2𝜋2𝐿2 )𝑊̈2 (𝑞, 𝑡) + 𝜔2𝑞𝑊2 (𝑞, 𝑡)
+ 𝑇ra2 [𝑘1𝜇 𝑊2 (𝑞, 𝑡) + 𝜀0𝜇 𝑊̇2 (𝑞, 𝑡) − 𝑘1𝜇 𝑊1 (𝑞, 𝑡)
− 𝜀0𝜇 𝑊̇1 (𝑞, 𝑡)] = 0,

(92)
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where

Γ0 (𝑞, V) = 𝑊̈1 (𝑞, 𝑡) − (V2𝑞2𝜋2𝐿2 )𝑊1 (𝑞, 𝑡) ,
Γ1 (𝑞, V) = 2 sin(𝑞𝜋V𝑡𝐿 ) sin(𝑟𝜋V𝑡𝐿 ) 𝑊̈1 (𝑞, 𝑡)
− 8V𝑟𝑞𝜋2𝑟2𝜋2 − 𝑞2V2 𝑊̇1 (𝑟, 𝑡) ,

Γ2 (𝑞, V) = V𝑟𝑞𝜋4 (𝑗2 + 𝑟2 − 𝑞2) cos 𝑗𝜋V𝑡
((𝑗 + 𝑟)2 𝜋2 − 𝑞2𝜋2) ((𝑗 − 𝑟)2 𝜋2 − 𝑞2𝜋2)

⋅ 𝑊̇1 (𝑟, 𝑡) ,
Γ3 (𝑞, V) = (2V2𝑟2𝜋2𝐿2 ) sin(𝑞𝜋V𝑡𝐿 ) sin(𝑟𝜋V𝑡𝐿 )
⋅ 𝑊1 (𝑟, 𝑡) ,

𝜀2 = 𝑀𝐿𝜇𝐿 = 𝛾1.

(93)

Equations (92) and (93) constitute the coupled trans-
formed second-order ordinary differential equations describ-
ing the transverse response of a simply supported double-
Rayleigh beam system interconnected by a viscoelastic layer
and traversed by a moving mass. Note that (92) can also be
obtained by applying (87)–(91) on (1)–(3) using the initial
conditions (7). Following the discussion in Section 3.3 and
in particular for simply supported system II, (92) and (101)
reduce to

(1 + 𝑇ra1𝑅𝐼 𝑞2𝜋2𝐿2 )𝑊̈1 (𝑞, 𝑡) + 𝜔2𝑞𝑊1 (𝑞, 𝑡)

+ 𝑇ra3𝜀2 [[Γ0 (𝑞; V)

+ ∞∑
𝑞=0

[
[Γ1 (𝑞, V) − 16

∞∑
𝑗=𝑖

Γ2 (𝑞, V) − Γ3 (𝑞, V)]]
]
]

= 𝑀𝐿𝑔𝜇 sin
𝑞𝜋V𝑡𝐿 ,

(94)

(1 + 𝑇ra1𝑅𝐼 𝑞2𝜋2𝐿2 )𝑊̈2 (𝑞, 𝑡) + 𝜔2𝑞𝑊2 (𝑞, 𝑡) = 0, (95)

respectively.
Also, by following arguments similar to those of Sec-

tion 3.4, it is firstly assumed that the simply supported system
II is traversed by a moving force. Thus, (94) and (95) reduce
to

𝑊̈1 (𝑞, 𝑡) + 𝜔2𝑞𝑠𝑠𝑊1 (𝑞, 𝑡) = 𝐿∗sin(𝑞𝜋V𝑡𝐿 ) , (96)

𝑊̈2 (𝑞, 𝑡) + 𝜔2𝑞𝑠𝑠𝑊2 (𝑞, 𝑡) = 0, (97)

respectively, where

𝜔2𝑞𝑠𝑠 = 𝜔2𝑞(1 + 𝑇ra1𝑅𝐼 (𝑞2𝜋2/𝐿2)) ;
𝐿∗ = (𝑀𝐿𝑔/𝜇)(1 + 𝑇ra1𝑅𝐼 (𝑞2𝜋2/𝐿2)) .

(98)

Note that solutions to (96) and (97) can easily be obtained and
are well known [1]. As a matter of fact, there is no need, for
the simply supported system II traversed by amoving force, to
obtain the modified frequency (I) due to the effect of rotatory
inertia.

Next, we consider the case in which the simply supported
system II is traversed by a moving mass as opposed to a
moving force. In other words, we seek to simplify the entire
(94) and (95) when 𝑇ra3 ̸= 0. To this end, we again use
modified Struble’s method and following arguments similar
to those in Section 3.5, we obtain

𝛾𝑞𝑠𝑠 = 𝜔𝑞𝑠𝑠2 [
[1 +

11 + 𝑇ra1𝑅𝐼 ((𝑞2𝜋2) /𝐿2)
− 2𝛾 (𝜔2𝑞𝑠𝑠 + (V2𝑞2𝜋2) /𝐿2)𝜔2𝑞𝑠𝑠 (1 + 𝑇ra1𝑅𝐼 ((𝑞2𝜋2) /𝐿2))]]

(99)

which is the modified frequency II corresponding to the
presence of the moving mass and hence (94) and (95) reduce
to

𝑊̈1 (𝑞, 𝑡) + 𝛾2𝑞𝑠𝑠𝑊1 (𝑞, 𝑡)
= 𝛾𝑔𝐿1 + 𝑇ra1𝑅𝐼 (𝑞2𝜋2/𝐿2) sin(

𝑞𝜋V𝑡𝐿 ) ,
𝑊̈2 (𝑞, 𝑡) + 𝜔2𝑞𝑠𝑠𝑊2 (𝑞, 𝑡) = 0.

(100)

Hence, the two second-order transformed coupled ordinary
differential equations for a simply supported viscoelastically
interconnected double-Rayleigh beam system I are

𝑊̈1 (𝑞, 𝑡) + 𝛾2𝑞𝑠𝑠𝑊1 (𝑞, 𝑡) + 𝑇ra2 [𝑘1𝜇 𝑊1 (𝑞, 𝑡)
+ 𝜀0𝜇 𝑊̇1 (𝑞, 𝑡) − 𝑘1𝜇 𝑊2 (𝑞, 𝑡) − 𝜀0𝜇 𝑊̇2 (𝑞, 𝑡)]
= 𝛾𝑔𝐿1 + 𝑇ra1𝑅𝐼 (𝑞2𝜋2/𝐿2) sin(

𝑞𝜋V𝑡𝐿 ) ,
𝑊̈2 (𝑞, 𝑡) + 𝜔2𝑞𝑠𝑠𝑊2 (𝑞, 𝑡) + 𝑇ra2 [𝑘1𝜇 𝑊2 (𝑞, 𝑡)
+ 𝜀0𝜇 𝑊̇2 (𝑞, 𝑡) − 𝑘1𝜇 𝑊1 (𝑞, 𝑡) − 𝜀0𝜇 𝑊̇1 (𝑞, 𝑡)] = 0.

(101)
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Solving (101) using differential transform method, we
obtain

𝑊1𝑠𝑠𝑚 (𝑥, 𝑡) = ∞∑
𝑞=1

( 𝜂𝑔𝑙1 + 𝑇ra1𝑅𝐼 (𝑞2𝜋2/𝑙2))

⋅ 𝜇𝜎𝑞𝑠𝑠(𝜎2𝑞𝑠𝑠 − 𝛾2𝑞𝑠𝑠𝑚)𝑈𝑞𝑠𝑠 [[
(𝜎2𝑞𝑠𝑠 − 𝛾2𝑞𝑠𝑠𝑚)3! 𝑡3

− (𝜎2𝑞𝑠𝑠 − 𝛾2𝑞𝑠𝑠𝑚) 𝑇ra2𝜀04!𝜇 𝑡4 − (𝜎2𝑞𝑠𝑠 − 𝛾2𝑞𝑠𝑠𝑚)5! (𝛾2𝑞𝑠𝑠𝑚
+ 𝑇ra2𝑘1𝜇 − 2𝑇ra2𝜀20𝜇2 + 𝜎2𝑞𝑠𝑠) 𝑡5

+ (𝜎2𝑞𝑠𝑠 − 𝛾2𝑞𝑠𝑠𝑚)6! (2𝛾2𝑞𝑠𝑠𝑚𝑇ra2𝜀0𝜇 + 4𝑇2ra2𝑘1𝜀0𝜇2
− 4𝑇3ra2𝜀30𝜇3 − 𝜎2𝑞𝑠𝑠) 𝑡6 + ⋅ ⋅ ⋅]] sin

𝑞𝜋𝑥𝐿 ,

(102)

𝑊2𝑠𝑠𝑚 (𝑥, 𝑡) = ∞∑
𝑞=1

( 𝜎𝑞𝑠𝑠𝜇𝑔𝑙𝜂1 + 𝑇ra1𝑅𝐼 (𝑞2𝜋2/𝑙2))

⋅ 1(𝜎2𝑞𝑠𝑠 − 𝜔2𝑞𝑠𝑠𝑚)𝑈𝑞𝑠𝑠 [[
(𝜎2𝑞𝑠𝑠 − 𝜔2𝑞𝑠𝑠𝑚)4! 𝑇ra2𝜀0𝜇 𝑡4

+ (𝜎2𝑞𝑠𝑠 − 𝜔2𝑞𝑠𝑠𝑚)5! (𝑇ra2𝑘1𝜇 − 2𝑇2ra2𝜀20𝜇2 ) 𝑡5

+ (𝜎2𝑞𝑠𝑠 − 𝜔2𝑞𝑠𝑠𝑚)6! [−(𝜔2𝑞𝑠𝑠𝑚𝑇ra2𝜀0𝜇 − 3𝑇2ra2𝑘1𝜀0𝜇2
+ 2𝑇3ra2𝜀30𝜇3 − 𝛾2𝑞𝑠𝑠𝑚𝑇ra2𝜀0𝜇 − 𝑇ra2𝑘1𝜇 + 2𝑇2ra2𝜀20𝜇2
− 𝜎2𝑞)] 𝑡6 + ⋅ ⋅ ⋅]] sin

𝑞𝜋𝑥𝐿 .

(103)

Equations (102) and (103) represent the lateral deflections of
the simply supported double-Rayleigh beam traversed by a
moving mass for both the upper,𝑊1𝑠𝑠𝑚(𝑥, 𝑡), and the lower,𝑊2𝑠𝑠𝑚(𝑥, 𝑡), viscoelastically interconnected Rayleigh beams,
respectively.

Furthermore, setting 𝑇ra3 to zero in (92), one obtains
the following reduced coupled transformed second-order
ordinary differential equations describing the vibration of
simply supported viscoelastically connected double-Rayleigh
beams under a concentrated moving force:

𝑊̈1𝑠𝑠𝑓 (𝑞, 𝑡) + 𝜔2𝑞𝑠𝑠𝑊1𝑠𝑠𝑓 (𝑞, 𝑡) + 𝑁∗ [𝑘1𝜇 𝑊1𝑠𝑠𝑓 (𝑞, 𝑡)
+ 𝜀0𝜇 𝑊̇1𝑠𝑠𝑓 (𝑞, 𝑡) − 𝑘1𝜇 𝑊2𝑠𝑠𝑓 (𝑞, 𝑡)
− 𝜀0𝜇 𝑊̇2𝑠𝑠𝑓 (𝑞, 𝑡)] = 𝐿∗ sin 𝑞𝜋V𝑡𝐿 ,

𝑊̈2𝑠𝑠𝑓 (𝑞, 𝑡) + 𝜔2𝑞𝑠𝑠𝑊2𝑠𝑠𝑓 (𝑞, 𝑡) + 𝑁∗ [𝑘1𝜇 𝑊2𝑠𝑠𝑓 (𝑞, 𝑡)
+ 𝜀0𝜇 𝑊̇2𝑠𝑠𝑓 (𝑞, 𝑡) − 𝑘1𝜇 𝑊1𝑠𝑠𝑓 (𝑞, 𝑡)
− 𝜀0𝜇 𝑊̇1𝑠𝑠𝑓 (𝑞, 𝑡)] = 0,

(104)

where

𝑁∗ = 𝑇ra21 + 𝑇ra1𝑅𝐼 (𝑞2𝜋2/𝐿2) . (105)

The dynamic response of the simply supported viscoelas-
tically interconnected double-Rayleigh beam system to a
moving force after a number of simplifications is found to be

𝑊1𝑠𝑠𝑓 (𝑥, 𝑡) = ∞∑
𝑞=1

𝐿∗𝜎𝑞𝑠𝑠
𝑈𝑞𝑠𝑠 (𝜎2𝑞𝑠𝑠 − 𝜔2𝑞𝑠𝑠𝑓)

[
[
(𝜎2𝑞 − 𝜔2𝑞𝑠𝑠𝑓)3! 𝑡3

− 𝜀0𝑁∗ (𝜎2𝑞𝑠𝑠 − 𝜔2𝑞𝑠𝑠𝑓)4!𝜇 𝑡4 − (𝜎2𝑞𝑠𝑠 − 𝜔2𝑞𝑠𝑠𝑓)5! [𝜔2𝑞𝑠𝑠𝑓
+ 𝑁∗𝑘1𝜇 − 2𝑁∗2𝜀20𝜇2 + 𝜎2𝑞𝑠𝑠] 𝑡5

⋅ (𝜎2𝑞𝑠𝑠 − 𝜔2𝑞𝑠𝑠𝑓)6! [2𝜔2𝑞𝑠𝑠𝑓𝑁∗𝜀0𝜇 + 4𝑁∗2𝑘1𝜀0𝜇2
− 4𝑁∗3𝜀30𝜇3 − 𝑁∗𝜀0𝜇 𝜎2𝑞] 𝑡6 + ⋅ ⋅ ⋅]] sin

𝑞𝜋𝑥𝐿

(106)

for the upper Rayleigh beam while the lateral deflection for
the lower Rayleigh beam is represented by

𝑊2𝑠𝑠𝑓 (𝑥, 𝑡) = ∞∑
𝑞=1

𝐿∗𝑁∗𝜎𝑞𝑠𝑠
𝑈𝑞𝑠𝑠 (𝜎2𝑞𝑠𝑠 − 𝜔2𝑞𝑠𝑠𝑓)

⋅ [[
𝜀0 (𝜎2𝑞𝑠𝑠 − 𝜔2𝑞𝑠𝑠𝑓)𝜇4! 𝑡4 + (𝜎2𝑞𝑠𝑠 − 𝜔2𝑞𝑠𝑠𝑓)5! [𝑘1𝜇

− 2𝑁∗𝜀20𝜇2 ] 𝑡5 + (𝜎2𝑞𝑠𝑠 − 𝜔2𝑞𝑠𝑠𝑓)6! [−2𝜔2𝑞𝑠𝑠𝑓 𝜀0𝜇
− 4𝑁∗𝑘1𝜀0𝜇2 + 4𝑁∗2𝜀30𝜇3 − 𝜀0𝜎2𝑞𝑠𝑠𝜇 ] 𝑡6 + ⋅ ⋅ ⋅]] sin

𝑞𝜋𝑥𝐿 .

(107)

4.2. Clamped-Clamped Double-Rayleigh Beam System. Next
we consider the second case study involving a clamped-
clamped double-Rayleigh beam system connected by a vis-
coelastic core and traversed by a moving load. For such a
system having this type of vibrating configuration, both its
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deflection and slope vanish at the ends and the corresponding
boundary conditions are

𝑊1 (0; 𝑡) = 𝑊2 (0; 𝑡) = 0;
𝑊1 (𝐿; 𝑡) = 𝑊2 (𝐿; 𝑡) = 0,
𝑊󸀠1 (0; 𝑡) = 𝑊󸀠2 (0; 𝑡) = 0;
𝑊󸀠1 (𝐿; 𝑡) = 𝑊󸀠2 (𝐿; 𝑡) = 0.

(108)

In terms of the eigenfunctions 𝑈𝑞(𝑥), these boundary condi-
tions become

𝑈𝑞 (0) = 0 = 𝑈𝑞 (𝐿) ,
𝑈󸀠𝑞 (0) = 0 = 𝑈󸀠𝑞 (𝐿) . (109)

Similarly, it follows that

𝑈𝑟 (0) = 0 = 𝑈𝑟 (𝐿) ,
𝑈󸀠𝑟 (0) = 0 = 𝑈󸀠𝑟 (𝐿) . (110)

Now applying (109) on (12), it follows that

𝐴𝑞 = −𝐶𝑞 = − sinh 𝜆𝑞 − sin 𝜆𝑞cosh 𝜆𝑞 − cos 𝜆𝑞 = 𝐴𝑟 = −𝐶𝑟,
𝐵𝑞 = −1 = 𝐵𝑟

(111)

and the particular eigenfunction for this vibrating configura-
tion is

𝑈𝑞𝑚𝑐 (𝑥) = cosh
𝜆𝑞𝑥𝐿 − cos 𝜆𝑞𝑥𝐿

− 𝜎𝑞 (sinh 𝜆𝑞𝑥𝐿 − sin 𝜆𝑞𝑥𝐿 ) ,
(112)

where

𝜎𝑞 = cosh 𝜆𝑞 − cos 𝜆𝑞
sinh𝜆𝑞 − sin 𝜆𝑞 =

1𝐶𝑞 . (113)

The corresponding frequency equation is

cosh 𝜆𝑞 = 1
cos 𝜆𝑞 (114)

whose roots are [2]

𝜆1 = 4.73004;
𝜆2 = 7.85320;
𝜆3 = 10.99561;

...
(115)

The corresponding initial conditions remain the same as
those prescribed in (7).

Two limiting cases of the forced vibrating problem are
considered in what follows. These are

(1) the moving mass problem involving the clamped-
clamped double finite Rayleigh beam system which
are viscoelastically connectedwith the effect of inertia
of the moving load being taken into consideration,

(2) the moving force problem consisting of two finite
Rayleigh beams viscoelastically interconnected,
clamped at both ends, and traversed by a moving
load whose inertia is negligible.

In view of (60) and (112), the pair of governing transformed,
coupled, second-order ordinary differential equations for
case 1 above is

𝑊̈1𝑚𝑐 (𝑞, 𝑡) + Ω2𝑞𝑚𝑐𝑊1𝑚𝑐 (𝑞, 𝑡) + 𝑇ra2 [𝑘1𝜇 𝑊1𝑚𝑐 (𝑞, 𝑡)
+ 𝜀0𝜇 𝑊̇1𝑚𝑐 (𝑞, 𝑡) − 𝑘1𝜇 𝑊2𝑚𝑐 (𝑞, 𝑡)
− 𝜀0𝜇 𝑊̇2𝑚𝑐 (𝑞, 𝑡)] = 𝑃𝑅𝑇𝑈𝑞𝑚𝑐 (V𝑡) ,

𝑊̈2𝑚𝑐 (𝑞, 𝑡) + 𝛿2𝑞𝑚𝑐𝑊2𝑚𝑐 (𝑞, 𝑡) + 𝑇ra2 [𝑘1𝜇 𝑊2𝑚𝑐 (𝑞, 𝑡)
+ 𝜀0𝜇 𝑊̇2𝑚𝑐 (𝑞, 𝑡) − 𝑘1𝜇 𝑊1𝑚𝑐 (𝑞, 𝑡)
− 𝜀0𝜇 𝑊̇1𝑚𝑐 (𝑞, 𝑡)] = 0,

(116)

where

Ω𝑞𝑚𝑐
= 𝛿𝑞𝑚𝑐 [1 − 𝜇𝛾2𝑈𝑞𝑚𝑐 (𝜃1𝑚𝑐 (𝑞, 𝑞) −

V2𝜃2𝑚𝑐 (𝑞, 𝑞)𝛿2𝑞𝑚𝑐 )] ,
𝛿𝑞𝑚𝑐 = 𝜔𝑞𝑚𝑐2 [2 + 𝑇ra1𝛼𝜃∗ (𝑞, 𝑞)] ,
𝜃∗ (𝑞, 𝑞) = 𝜇𝐿𝑈𝑞𝑚𝑐 𝜃2𝑚𝑐 (𝑞, 𝑞) ;
𝛼 = 𝑅𝐼𝐿 ;
𝛾 = 𝑀𝐿𝜇𝐿 ,
𝜃𝑞𝑚𝑐 (𝑞, 𝑞) = ∫𝐿

0
𝑈𝑞𝑚𝑐 (𝑥)𝑈𝑞𝑚𝑥 (𝑥) 𝑑𝑥;

𝜃2𝑚𝑐 (𝑞, 𝑞) = ∫𝐿
0
𝑈󸀠󸀠𝑞𝑚𝑐 (𝑥)𝑈𝑞𝑚𝑐 (𝑥) 𝑑𝑥

(117)
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while the corresponding equations for the second case are

𝑊̈1𝑓𝑐 (𝑞, 𝑡) + 𝛿2𝑞𝑓𝑐𝑊1𝑓𝑐 (𝑞, 𝑡) + 𝑇ra2 [𝑘1𝜇 𝑊1𝑓𝑐 (𝑞, 𝑡)
+ 𝜀0𝜇 𝑊̇1𝑓𝑐 (𝑞, 𝑡) − 𝑘1𝜇 𝑊2𝑓𝑐 (𝑞, 𝑡) − 𝜀0𝜇 𝑊̇2𝑓𝑐 (𝑞, 𝑡)]
= 𝑃𝑅𝑇𝑈𝑞𝑚𝑐 (V𝑡) ,

𝑊̈2𝑓𝑐 (𝑞, 𝑡) + 𝛿2𝑞𝑓𝑐𝑊2𝑓𝑐 (𝑞, 𝑡) + 𝑇ra2 [𝑘1𝜇 𝑊2𝑓𝑐 (𝑞, 𝑡)
+ 𝜀0𝜇 𝑊̇2𝑓𝑐 (𝑞, 𝑡) − 𝑘1𝜇 𝑊1𝑓𝑐 (𝑞, 𝑡) − 𝜀0𝜇 𝑊̇1𝑓𝑐 (𝑞, 𝑡)]
= 0,

(118)

where

𝛿𝑞𝑓𝑐 = 𝛿𝑞𝑚𝑐. (119)

Solving the differential equations (116) subject to the cor-
responding transformed initial conditions (67) using DTM
and following arguments similar to those in Section 3.6 for
the moving force and moving mass gives, respectively, after
inversion

𝑊1𝑚𝑐 (𝑥, 𝑡) = ∞∑
𝑞=1

𝑃𝑅𝑇𝜎2𝑞𝑚𝑐𝜇𝑈𝑞𝑚𝑐 (𝛿2𝑞𝑚𝑐 − Ω2𝑞𝑚𝑐) [[
2𝜇 (𝛿2𝑞𝑚𝑐 − Ω2𝑞𝑚𝑐)4!

⋅ 𝑡2 − 2 (𝛿2𝑞𝑚𝑐 − Ω2𝑞𝑚𝑐)(𝜇𝛿𝑞𝑚𝑐𝜎𝑞 + 𝜀0𝑇ra25! ) 𝑡3 − 2 (𝛿2𝑞𝑚𝑐
− Ω2𝑞𝑚𝑐)
⋅ (𝜇Ω2𝑞𝑚𝑐 + 𝑇ra2 (𝑘1 − 𝜀0𝛿𝑞𝑚𝑐𝜎𝑞𝑚𝑐 − 𝜀0/𝜇) + 𝜀20𝑇ra2/𝜇6! )

⋅ 𝑡4 + (𝛿2𝑞𝑚𝑐 − Ω2𝑞𝑚𝑐)7! [−2Ω2𝑞𝑚𝑐 (−𝜇𝛿𝑞𝑚𝑐𝜎𝑞𝑚𝑐 + 𝜀0𝑇ra2)
− 2𝑇ra2 (𝑘1𝛿𝑞𝑚𝑐𝜎𝑞𝑚𝑐 − 𝜀0𝑇ra2) + 𝜀0 (−2Ω2𝑞𝑚𝑐
− 2𝑇ra2 (𝑘1 − 𝜀0𝛿𝑞𝑚𝑐𝜎𝑞𝑚𝑐 − 𝜀0𝜇 − 2𝜀

2
0𝑇2ra2𝜇 ) + 2𝑘1𝜀0𝑇ra2𝜇

+ 𝜀30𝑇2ra2𝜇2 − 2𝑘1𝜀0𝑇ra2𝜇 + 𝜀20𝛿𝑞𝑚𝑐𝑇ra2𝜎𝑞𝑚𝑐 + 𝑇ra2𝜀20𝜎𝑞)] 𝑡5

+ ⋅ ⋅ ⋅]]𝑈𝑞𝑚𝑐 (𝑥) ,

𝑊2𝑚𝑐 (𝑥, 𝑡) = ∞∑
𝑞=1

𝑃𝑅𝑇𝜎2𝑞𝑚𝑐𝜇𝑈𝑞𝑚𝑐 (𝜎2𝑞𝑚𝑐 − 𝛿2𝑞𝑚𝑐) [[
15! (2𝜀0𝑇ra2) 𝑡3

− (𝜎2𝑞𝑚𝑐 − 𝛿2𝑞𝑚𝑐)6! (2𝜀20𝑇2ra2𝜇 − 2𝑘1𝑇ra2 + 𝜀0𝛿𝑞𝑚𝑐𝑇ra2𝜎𝑞𝑚𝑐
− 𝜀0𝑇2ra2𝜇 + 𝜀0𝑇ra2𝜎𝑞𝑚𝑐) 𝑡4 (𝜎

2
𝑞𝑚𝑐 − 𝛿2𝑞𝑚𝑐)7! [2𝜀0𝛿2𝑞𝑚𝑐

+ 𝑇ra2 [2𝑘1𝜀0𝜇 − 2𝜀30𝑇2ra2𝜇2 + 2𝑘1𝜀0𝑇ra2𝜇 − 𝜀20𝛿𝑞𝑚𝑐𝑇ra2𝜎𝑞𝑚𝑐𝜇
− 𝜀20𝜎𝑞𝑚𝑐𝜇 − 𝜀30𝑇2ra2𝜇2 ] − 2𝑘1𝛿𝑞𝑚𝑐𝜎𝑞𝑚𝑐 − 2𝑘1𝜀0𝑇ra2𝜇
− 2Ω2𝑞𝑚𝑐𝜀0 − 𝜀0𝑇ra2 [2𝑘1𝜇 − 2𝜀0𝛿𝑞𝑚𝑐𝜎𝑞𝑚𝑐𝜇 − 2 𝜀0𝜇2
− 2𝜀20𝑇ra2𝜇2 ]] 𝑡5 + ⋅ ⋅ ⋅]]𝑈𝑞𝑚𝑐 (𝑥) .

(120)

Equations (120) are the lateral displacements for the clamped-
clampeddouble-Rayleigh beam system traversed by amoving
mass. Solving (118) together with the initial conditions using
DTM, one obtains

𝑊1𝑓𝑐 (𝑥, 𝑡) = ∞∑
𝑞=1

𝑃𝑂𝑅𝜎2𝑞
𝜇𝑈𝑞𝑓𝑐 (𝜎2𝑞𝑓𝑐 − 𝛿2𝑞𝑓𝑐)

[
[
2𝜇 (𝛿2𝑞𝑓𝑐 − Ω2𝑞𝑓𝑐)4!

⋅ 𝑡2 − 2 (𝜎2𝑞𝑓𝑐 − 𝛿2𝑞𝑓𝑐)(𝜇𝛿𝑞𝑓𝑐𝜎𝑞𝑓𝑐 + 𝜀0𝑇ra25! ) 𝑡3
− 2 (𝜎2𝑞𝑓𝑐 − 𝛿2𝑞𝑓𝑐)
⋅ (𝜇𝛿2𝑞𝑓𝑐 + 𝑇ra2 (𝑘1 − 𝜀0𝛿𝑞𝑓𝑐𝜎𝑞𝑓𝑐 − 𝜀0/𝜇) + 𝜀20𝑇ra2/𝜇6! )

⋅ 𝑡4 + (𝜎2𝑞𝑓𝑐 − 𝛿2𝑞𝑓𝑐)7! [−2𝛿2𝑞𝑓𝑐 (−𝜇𝛿𝑞𝑓𝑐𝜎𝑞𝑓𝑐 + 𝜀0𝑇ra2)
− 2𝑇ra2 (𝑘1𝛿𝑞𝑓𝑐𝜎𝑞𝑓𝑐 − 𝜀0𝑇ra2) + 𝜀0 (−2𝛿2𝑞𝑓𝑐
− 2𝑇ra2 (𝑘1 − 𝜀0𝛿𝑞𝑓𝑐𝜎𝑞𝑓𝑐 − 𝜀0𝜇 − 2𝜀

2
0𝑇2ra2𝜇 )

+ 2𝑘1𝜀0𝑇ra2𝜇 + 𝜀30𝑇2ra2𝜇2 − 2𝑘1𝜀0𝑇ra2𝜇 + 𝜀20𝛿𝑞𝑓𝑐𝑇ra2𝜎𝑞𝑓𝑐
+ 𝑇ra2𝜀20𝜎𝑞𝑓𝑐)] 𝑡5 + ⋅ ⋅ ⋅]]𝑈𝑞𝑓𝑐 (𝑥) ,
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𝑊2𝑓𝑐 (𝑥, 𝑡) = ∞∑
𝑞=1

𝑃𝑂𝑅𝜎2𝑞𝑓𝑐
𝜇𝑈𝑞𝑓𝑐 (𝜎2𝑞𝑓𝑐 − 𝜔2𝑞𝑓𝑐)

[
[
15! (2𝜀0𝑇ra2) 𝑡3

− (𝜎2𝑞𝑓𝑐 − 𝜔2𝑞𝑓𝑐)6! (2𝜀20𝑇2ra2𝜇 − 2𝑘1𝑇ra2 + 𝜀0𝛿𝑞𝑓𝑐𝑇ra2𝜎𝑞𝑓𝑐
− 𝜀0𝑇2ra2𝜇 + 𝜀0𝑇ra2𝜎𝑞𝑓𝑐) 𝑡4 (𝜎

2
𝑞𝑓𝑐 − 𝜔2𝑞𝑓𝑐)7! [2𝜀0𝜔2𝑞𝑓𝑐

+ 𝑇ra2 [2𝑘1𝜀0𝜇 − 2𝜀30𝑇2ra2𝜇2 + 2𝑘1𝜀0𝑇ra2𝜇
− 𝜀20𝛿𝑞𝑓𝑐𝑇ra2𝜎𝑞𝑓𝑐𝜇 − 𝜀20𝜎𝑞𝑓𝑐𝜇 − 𝜀30𝑇2ra2𝜇2 ] − 2𝑘1𝛿𝑞𝑓𝑐𝜎𝑞𝑓𝑐
− 2𝑘1𝜀0𝑇ra2𝜇 − 2𝛿2𝑞𝑓𝑐𝜀0 − 𝜀0𝑇ra2 [2𝑘1𝜇 − 2

𝜀0𝛿𝑞𝑓𝑐𝜎𝑞𝑓𝑐𝜇
− 2 𝜀0𝜇2 − 2𝜀

2
0𝑇ra2𝜇2 ]] 𝑡5 + ⋅ ⋅ ⋅]]𝑈𝑞𝑓𝑐 (𝑥) .

(121)

Equations (121) represent the lateral displacements for the
clamped-clamped double-Rayleigh beam system traversed by
a moving force.

5. Resonance Conditions

It should be recalled that, for the system under consideration,
damping effect has been assumed negligible. The dynamic
deflections of the double-Rayleigh beam system may, there-
fore, grow beyond bounds. In other words, the system may
be in a state of resonance. Hence, it becomes necessary to
investigate the conditions under which the system reaches a
state of resonance and the speed of the moving load at which
this phenomenon of resonance takes place. Such a speed is
usually referred to as critical speed while the corresponding
conditions are known as resonance conditions.

Specifically, for the dynamic response of a simply sup-
ported viscoelastically interconnected double-Rayleigh beam
system due to moving mass, (102) and (103) show that the
phenomenon of resonance will be developed in the system
when

𝛾𝑞𝑠𝑠𝑚 = 𝜎𝑞𝑠𝑠, for the upper beam, (122)

𝜎𝑞𝑠𝑠 = 𝜔𝑞𝑠𝑠𝑚, for the lower beam (123)

while when the same system is traversed by a moving force
(106) and (107) yield the corresponding resonance condition

𝜎𝑞𝑠𝑠 = 𝜔𝑞𝑠𝑠𝑓. (124)

It is noted also that 𝜎𝑞𝑠𝑠 = V𝜋𝑞/𝐿, so that in view of (122) and
(123), for example, 𝑉cr = (𝜔𝑞𝑠𝑠𝐿)/𝜋𝑞, where 𝑉cr is the critical
velocity of the simply supported double-Rayleigh beam due

to a moving mass. However, (122) implies that for the upper
simply supported beam acted upon by amovingmasswe have

𝜔𝑞𝑠𝑠 [[1 +
11 + 𝑇ra1𝑅𝐼 (𝑞2𝜋2/𝐿2)

− 2𝛾 (𝜔2𝑞𝑠𝑠 + (V2𝑞2𝜋2/𝐿2))𝜔2𝑞𝑠𝑠 (1 + 𝑇ra1𝑅𝐼 (𝑞2𝜋2/𝐿2))]] = 𝜎𝑞𝑠𝑠;
(125)

that is,

𝜔𝑞𝑠𝑠 (1 + 𝑇ra1𝑅𝐼 (𝑞2𝜋2/𝐿2) − 𝛾)(1 + 𝑇ra1𝑅𝐼 (𝑞2𝜋2/𝐿2) + 𝛾 (V𝑞𝜋/𝜔𝑞𝑠𝑠𝐿)) = 𝜎𝑞𝑠𝑠. (126)

Evidently, from (124) and (125), the critical speed for the
system of double-Rayleigh beam traversed by a moving mass
is smaller than that of the same system under a moving force.
This deduction implies that the response of the moving force
as an approximation for the response of the moving mass can
be not only misleading, but tragic.

An analysis similar to the above in the section for the
particular series solutions of (76), (78), (79), (120), and (121)
can also be carried out.

6. Numerical Experiment and Discussion

In this section, the coupling and individual effects of the
movingmass and other dynamic variables such as viscoelastic
parameter (𝜀0) of the layer, rotatory inertia correction factor(𝑅𝐼), velocity of themoving load (V), and the layer stiffness (𝑘)
on the dynamic response of a double-Rayleigh beam system
traversed by a moving mass are examined and discussed for
some classical boundary conditions.

In particular, the analysis carried out in the previous
sections of this paper are numerically illustrated in this
section. In the first part of this numerical experiment and
for the purpose of numerical validation, the proposed solu-
tion procedure is initially applied to evaluate the dynamic
response of an undamped simply supported double-beam
system. To this end and since references for the analysis
of double-Rayleigh beam system with linear viscoelastic
Winkler type layer under amovingmass are scarce, the results
are compared with those obtained in [25] where the dynamic
response of a simply supported double-Euler-Bernoulli beam
system traversed by a moving force had been studied. Thus,
the effects of rotatory inertia and that of load mass are
neglected in the present analysis (by setting 𝑇ra1 = 0 and𝑇ra3 = 0). Following [25], the nondimensional deflections
under moving force for the upper𝑊1𝑠𝑠𝑓(𝐿/2, 𝑠)/V0 and lower𝑊2𝑠𝑠𝑓(𝐿/2, 𝑠)/V0 Euler-Bernoulli beams are analysed. The
static deflection at mid-span of a simply supported Euler-
Bernoulli beam acted upon by a static force𝑃 at point𝑥 = 𝐿/2
which is denoted by V0 and defined as (see Frýba (1972))

V0 = 2𝑃𝐿3𝜋4𝐸𝐼 (127)
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Figure 2: Continued.
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Figure 2: (a–e) The transverse dimensionless displacement responses for the simply supported upper Rayleigh beam (𝑊1(𝐿/2, 𝑆)) for a
velocity parameter 𝛼1 = 0.1, (a, f) 𝑆1 = 0.1, (b, g) 𝑆1 = 1, (c, h) 𝑆1 = 10, (d, i) 𝑆1 = 100, and (e, j) 𝑆1 = 10000. (f–j) The transverse
dimensionless displacement responses for the simply supported lower Rayleigh beam (𝑊2(𝐿/2, 𝑆)) for a velocity parameter 𝛼1 = 0.1, (a, f)𝑆1 = 0.1, (b, g) 𝑆1 = 1, (c, h) 𝑆1 = 10, (d, i) 𝑆1 = 100, and (e, j) 𝑆1 = 10000.
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Figure 3: (a) The variation of velocity of the load on the transverse deflection of the upper Rayleigh beam due to moving mass and moving
force, respectively. (b) The variation of velocity of the moving load on the transverse deflection of the lower Rayleigh beam due to moving
mass and moving force.

is used in nondimensionalizing the deflections (𝑊𝑖𝑠𝑠𝑓; 𝑖 =1, 2). Also, the nondimensional time 𝑠 is defined as

𝑠 = V𝑡𝐿 (128)

while the nondimensional velocity parameter 𝛼1 and critical
speed 𝛼1cr are defined as

𝛼1 = V𝛼1cr ,

𝛼1cr = 𝜋𝐿 (𝐸𝐼𝜇 )
1/2 ,

(129)

respectively. Also the nondimensional stiffness parameter of
the Winkler type layer is given as

𝑠1 = 𝑘𝐿4𝐸𝐼 . (130)
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Figure 4: (a) The variation of mass ratio of the moving load on the transverse deflection of the upper Rayleigh beam. (b) The variation of
mass ratio of the moving load on the transverse deflection of the lower Rayleigh beam.

The parameters selected for this first part of the analysis
correspond to those used in the work in [25]. The transverse
dimensionless displacements (𝑊𝑖𝑠𝑠𝑓(𝐿/2, 𝑠), 𝑖 = 1, 2) versus
dimensionless time of a simply supported double Euler-
Bernoulli beam system due to a moving force for various
values of the dimensionless stiffness parameter (𝑠1), vis-
coelastic parameter (𝜀0), and a fixed value of the velocity
parameter (𝛼1 = 0.1) are displayed in Figures 2(a)–2(j).
The first five graphs, Figures 2(a)–2(e), are for the upper
beam while the remaining five graphs, Figures 2(f)–2(j),
are for the lower beam. Figures 2(a)–2(e) depict dimen-
sionless displacement response 𝑊1𝑠𝑠𝑓(𝐿/2, 𝑠) profile of the
upper beam for variations in viscoelastic parameter (𝜀0). The
results show that, depending on the nondimensional time(𝑠), an increase in the values of the viscoelastic parameter𝜀0 leads to an increase or a decrease in the nondimensional
displacement response, 𝑊1𝑠𝑠𝑓(𝐿/2, 𝑠), of the upper beam.
Also, it is seen from these figures that the nondimensionless
displacement response of the upper beam, 𝑊1𝑠𝑠𝑓(𝐿/2, 𝑠),
decreases with increase in values of the stiffness param-
eter (𝑠1), while the influence of the viscoelastic parame-
ter (𝜀0) on 𝑊1𝑠𝑠𝑓(𝐿/2, 𝑠) reduces with increasing value of(𝜀0).

Also, values of 𝑠1 smaller than 0.1 or higher than 10000
have irrelevant influence on the dimensionless displacement
response𝑊1𝑠𝑠𝑓(𝐿/2, 𝑠). It is, however, remarked at this junc-
ture that if the viscoelastic parameter (𝜀0) is neglected, then
very small value of the stiffness parameter (𝑠1) amounts to
dealing with weak elastically coupled beam system. Also,
increasing the values (𝑠1) means that the coupling between
the two beams increases while a rigid coupling of the two
beams is obtained for very high values of (𝑠1). It is further
observed that the values of 𝑊1𝑠𝑠𝑓(𝐿/2, 𝑠) involving rigid
coupling (Figure 2(e)) are reduced by 50% when compared
to the corresponding ones involving weak elastic coupling

(Figure 2(a)). On the other hand, Figures 2(f)–2(j) show the
nondimensional displacement responses𝑊2𝑠𝑠𝑓(𝐿/2, 𝑠) for the
lower Euler-Bernoulli beam having the velocity parameter(𝛼1 = 0.1) and various values of the viscoelastic parameter(𝜀0) and stiffness (𝑠1). From these figures, it is found that
an increase in the values of the stiffness parameter (𝑠1)
leads to an increase in the nondimensional displacement
response, 𝑊2𝑠𝑠𝑓(𝐿/2, 𝑠), for the lower beam. It is remarked
at this junction that all the above results for double finite
Euler-Bernoulli beam system undermoving force are in good
agreement with those in [25] where a different approach is
used.

In the second stage of this numerical experiment, the
behaviour of a uniform double-Rayleigh beam system tra-
versed by a moving mass or force and subjected to any of
the classical end conditions is examined in order to obtain
the effect of the load mass on such behaviour. Two vibrating
configurations, namely, (i) simply supported double-Rayleigh
beam system and (ii) clamped-clamped double-Rayleigh
beam system, were considered. A computer program was
developed on the basis of the abovementioned solution tech-
nique (discussed in Section 3). The computer program has
been run for the following numerical data [24]: 𝐿 = 6m,𝐸𝐼 =16000Nm2, 𝑘 = 10N/m2, 𝑅𝐼 = 1, 4, 6, 8, 𝜇 = 0.075 kg/m−2,
V = 3.3, 6.3, 9.3, 12.3m/s2, 𝜀0 = 0.1, 0.2, 0.3, and 0.35, and𝛾1 = 0.05, 0.15, 0.25, and 0.35. Without loss of generality it is
assumed that the two beams are physically and geometrically
identical.

6.1. Simply Supported Double-Rayleigh Beam System. For the
first vibrating configuration, the transverse deflections𝑊𝑖𝑠𝑠𝑚(𝑥, 𝑡), 𝑖 = 1, 2, versus the load position (𝑥 = V𝑡) at some
prescribed time (𝑡) of both the upper and lower beams of the
simply supported uniform double-Rayleigh beams system
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Figure 5: (a) The variation of stiffness parameter of the layer on the transverse deflection of the upper Rayleigh beam due to moving mass
and moving force, respectively. (b) The variation of stiffness parameter of the layer on the transverse deflection of the lower Rayleigh beam
due to moving mass and moving force.

traversed by a load of mass ratio 𝛾1 moving at a constant
velocity (V) are considered.

In Figures 3(a)–7(a), the effects of variation of some
governing variables parameters on the transverse deflection
of the upper Rayleigh beam due to moving mass and moving
force are presented, while the corresponding effects for the
lower Rayleigh beam are displayed in Figures 3(b)–7(b).
In particular, Figure 3(a)(i) depicts the plot of variation in
the velocity of a moving mass on the transverse deflection,

𝑊1𝑠𝑠𝑚(𝑥, 𝑡), of the simply supported upper Rayleigh beamdue
to the moving mass. It is seen from the plot that increase in
the velocity leads to an increase in the response amplitude of
the upper beam.The same trend is observed in Figure 3(a)(ii)
which represents the behaviour of the upper Rayleigh beam
acted upon by a moving force as opposed to a moving mass.
Furthermore, Figures 3(a)(i) and 3(a)(ii) revealed that the
response amplitude of the simply supported Rayleigh upper
beam subjected to a moving force is greater than that of



22 Chinese Journal of Mathematics

(i) (ii)

W
1s
sm

x

1 2 3 4 5 6

x

1 2 3 4 5 6W
1s
sf
(L
/2
,t
)

−2. × 1010

−1. × 1010

−3. × 1010

−4. × 1010

4. × 1010

3. × 1010

1. × 1010

2. × 1010

0

−4. × 107

−2. × 107

6. × 107

2. × 107

4. × 107

0

𝜀0 = 0.1

𝜀0 = 0.2

𝜀0 = 0.3

𝜀0 = 0.35

𝜀0 = 0.1

𝜀0 = 0.2

𝜀0 = 0.3

𝜀0 = 0.35

(L
/2
,t
)

(a)

W
2

x

1 2 3 4 5 6

−2. × 1010

−1. × 1010

−3. × 1010

3. × 1010

1. × 1010

2. × 1010

0

Moving force 𝜀0 = 0.35

Moving force 𝜀0 = 0.30

Moving force 𝜀0 = 0.20

Moving mass 𝜀0 = 0.20

Moving mass 𝜀0 = 0.30

Moving mass 𝜀0 = 0.35

(L
/2
,t
)

(b)

Figure 6: (a)The variation of viscoelastic parameter of the layer on the transverse deflection of the upper Rayleigh beam due to moving mass
andmoving force, respectively. (b)The variation of viscoelastic parameter of the layer on the transverse deflection of the lower Rayleigh beam
due to moving mass and moving force.

the same beam under a moving mass thereby indicating the
importance of the inclusion of the inertia effect of themoving
load. Figure 4(a) represents the effect of mass ratio 𝛾1 =(𝑀𝐿/𝜇𝐿) on the transverse deflection of the upper simply
supported Rayleigh beam. The plot indicates that increase
in 𝛾1 decreases the response amplitude of the upper beam.
The effect of the stiffness, 𝑘, of the viscoelastic Winkler type
layer on the transverse displacement of the simply supported

upper beam under a moving mass is presented in Figure 5(a).
Increase in the value of the stiffness is found to cause an
increase in the amplitude of the deflection of the upper
beam. The same result is obtained when the same uniform
simply supported upper beam is acted upon by a moving
force as shown in Figure 5(a)(ii). However, Figures 5(a)(i)
and 5(a)(ii) show that the response amplitude of the beam
with a moving mass is smaller than that involving a moving
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Figure 7: (a)The variation of rotatory inertia on the transverse deflection of the upper Rayleigh beam due to moving mass andmoving force,
respectively. (b) The variation of rotatory inertia on the transverse deflection of the lower Rayleigh beam due to moving mass and moving
force.

force. The influence of the viscoelastic parameter (𝜀0) on the
transverse displacement of the simply supported upper beam
is presented in Figure 6(a). Figure 6(a)(i) depicts the graph
of the effect of (𝜀0) on the transverse displacement involving
a moving mass while the one involving a moving force is
shown in Figure 6(a)(ii). It is found from the two figures
that an increase in 𝜀0 leads to an increase in the response
amplitude of the deflection of the upper beam. However

the response amplitude of the deflection due to the moving
mass is observed to be smaller than that due to a moving
force. Figures 7(a)(i) and 7(a)(ii) illustrate the variation due
to rotatory inertia correction factors (𝑅𝐼) on the transverse
deflections of the simply supported upper Rayleigh beam due
to either moving mass in Figure 7(a)(i) or moving force in
Figure 7(a)(ii). An increase in 𝑅𝐼 leads to a decrease in the
amplitude of the transverse deflections of the upper beam
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moving mass andmoving force, respectively. (b)The variation of the velocity of the load on the transverse deflection of the clamped-clamped
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for both moving mass and moving force such that amplitude
of the deflection due to moving force is greater than the
corresponding one under moving mass.

Now the behaviour of the lower Rayleigh beam is dis-
cussed as follows. Figure 3(b) depicts the comparison of
the influence of velocity on the transverse deflections of the
lower beam due to both moving force and moving mass,
respectively. It is observed that the transverse deflection of
the lower beam𝑊2𝑠𝑠𝑓(𝑥, 𝑡) due to moving force increases as

velocity increases. Same trend holds for the moving mass
case. Moreover, the response amplitudes of the transverse
deflection due to the moving force are greater than those due
to the moving mass. Figure 4(b) illustrates the variation in
the mass ratio (𝛾1) on the transverse deflection of the simply
supported lower beam. Clearly, an increase in (𝛾1) leads to a
decrease in the response amplitude of the lower beam. The
effects of the stiffness (𝑘) of the connecting viscoelastic layer
on the transverse deflection of the lower simply supported
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Figure 9: (a)The variation of mass ratio of the load on the transverse deflection of the clamped-clamped upper Rayleigh beam due tomoving
mass. (b) The variation of mass ratio of the load on the transverse deflection of the clamped-clamped lower Rayleigh beam due to moving
mass.

beams for both moving mass and moving force are displayed
in Figure 5(b). It is noticed that increase in (𝑘) decreases the
response amplitude for the moving mass while the reverse
is the case for the moving force. Figure 6(b) shows the
comparison of the effect of the viscoelastic parameter (𝜀0)
on the response deflection of the lower Rayleigh beam for
bothmovingmass andmoving force. It is found that, for both
cases, increasing 𝜀0 yields an increase in the response ampli-
tude of the simply supported lower Rayleigh beam. However,
the response amplitude of the moving force is greater than
that of the moving mass. The comparison of the influence
of rotatory inertia correction factor (𝑅𝐼) on the transverse
deflections of the lower Rayleigh beam for both moving mass
and moving force is presented in Figure 7(b). It is observed
that the response amplitude of deflections of themovingmass
decreases as 𝑅𝐼 increases and the response amplitudes are
greater than the corresponding ones observed for a moving
force.

6.2. Clamped-Clamped Double-Rayleigh Beam System. The
second vibrating configuration, that is, the behaviour of
clamped-clamped double-Rayleigh beam system traversed by
a moving mass, is numerically illustrated as follows: Figures
8(a)–12(a) show the deflections of the clamped-clamped
upper Rayleigh beam when the clamped-clamped double-
Rayleigh beam system is traversed by a moving mass or
a moving force for various values of stiffness parameter(𝑘), viscoelastic parameter 𝜀0, mass ratio 𝛾1, rotatory inertia
correction factor (𝑅𝐼), and velocity (V).

Figures 8(a)(i) and 8(a)(ii) indicate the effect of veloc-
ity (V) of the moving mass on the transverse deflection,𝑊1𝑐𝑐𝑓(𝑥, 𝑡), of the clamped-clamped upper Rayleigh beam.
From the plots, an increase in the velocity (V) is seen to cause

an increase in the response amplitude of the beam. Similarly
an increase in the velocity (V) is shown in Figure 8(a)(ii)
to increase the response amplitude of the same beam when
the effect of the inertia of the moving load is neglected. It
is, however, observable from Figures 8(a)(i) and 8(a)(ii) that
the response amplitude due to the moving force is greater
than that due to the moving mass. In Figure 9(a), the effect
of the mass ratio 𝛾1 on the transverse deflections of the
clamped-clamped upper beam traversed by a moving mass is
illustrated. As seen from the plot, an increase in themass ratio
is observed to lower the response amplitudes of the beam.
Figures 10(a)(i) and 10(a)(ii) depict the effect of stiffness
of the viscoelastic layer (𝑘) on the response amplitude of
the clamped-clamped upper beam due to moving mass and
moving force, respectively. As seen from the plots, an increase
in the stiffness is observed to enhance the response amplitude
of the upper Rayleigh beam due to the moving mass. It
is also noticed that same results are observed when the
effect of the inertia of the moving load is neglected (see
Figure 10(a)(ii)). Figures 11(a)(i) and 11(a)(ii) show the effect
of viscoelastic parameter of the layer (𝜀0), on the response
amplitude of the clamped-clamped upper beam under the
moving mass and moving force, respectively. Moreover, as
shown in both figures, as (𝜀0) increases, it is observed that
the response amplitudes in the two cases increase. In Figures
12(a)(i) and 12(a)(ii) the effects of rotatory correction factor(𝑅𝐼) due to moving mass and moving force, respectively, are
presented. From the plots, an increase in 𝑅𝐼 is observed to
decrease the response amplitudes in each case. It is, however,
important to remark at this juncture that, for Figures 10(a)(i),
10(a)(ii), 11(a)(i), 11(a)(ii), 12(a)(i), and 12(a)(ii), the response
amplitudes of the clamped-clamped upper beam due to
moving force are greater than the corresponding ones due to
moving mass.
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Figure 10: (a)The variation of stiffness of the layer on the transverse deflection of the clamped-clamped upper Rayleigh beam due to moving
mass and moving force, respectively. (b) The variation of stiffness of the layer on the transverse deflection of the clamped-clamped lower
Rayleigh beam due to moving mass and moving force.

Figure 8(b) represents the response of the clamped-
clamped lower Rayleigh beam to variation of the velocity of
the moving load when the load mass is retained or neglected.
The figure shows that increasing the values of the speed
parameter (V) increases the response amplitudes due to both
the moving force and moving mass cases. However, it is
observable that a greater response amplitude is attained for
the same value of V in the case involving moving force when
compared to the corresponding one due to moving mass.

Figure 9(b) presents the response of the clamped-
clamped lower Rayleigh beam due to variation of mass ratio(𝛾1) when load mass effect is considered. The plot indicates
that as (𝛾1) increases, response amplitude of deflections
decreases.

Figure 10(b) shows the response observed on the lower
clamped-clamped Rayleigh beams for the cases when the
load mass is either retained or neglected for variation of
stiffness parameter (𝑘). It is noticeable from the figure that
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Figure 11: (a) The variation of viscoelastic parameter of the layer on the transverse deflection of the clamped-clamped upper Rayleigh beam
due to moving mass and moving force, respectively. (b)The variation of viscoelastic parameter of the layer on the transverse deflection of the
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increasing the stiffness parameter (𝑘) leads to an increase in
the response amplitude for the case when the moving mass is
retained while the same trend is observed for the case when
the moving mass is neglected.

Figure 11(b) presents the effect of moving mass and
moving force on the response of the clamped-clamped lower
Rayleigh beam for various values of viscoelastic parameter(𝜀0). The plot for the moving mass and moving force indi-
cates that increasing (𝜀0) leads to an increase in response

amplitudes of the deflections of the beam. However, these
responses are greater in the case involvingmovingmass when
compared to the corresponding ones not involving moving
mass.

In Figure 12(b), the effects of variation of rotatory inertia
correction factor (𝑅𝐼) on the responses of clamped-clamped
lower Rayleigh beam for both the moving mass and moving
force are presented. It is observable that increasing 𝑅𝐼 in the
cases involving moving mass and moving force leads to a
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Figure 12: (a) The variation of rotatory inertia of the load on the transverse deflection of the clamped-clamped upper Rayleigh beam due
to moving mass and moving force, respectively. (b) The variation of rotatory inertia of the load on the transverse deflection of the clamped-
clamped lower Rayleigh beam due to moving mass and moving force.

decrease in the response amplitude of deflection. However,
the response amplitudes due tomovingmass are smaller than
those due to moving force.

7. Conclusion

In this paper, an investigation of the forced vibration of a
system comprising two finite beams separated by a Winkler
viscoelastic core under a moving load has been carried

out. The investigation has been done within the scope of
Rayleigh beam theory which takes into account the effects
of rotatory inertia. The present analysis was in particular
carried out for both gravity and inertia effects of the moving
load. In order to solve the governing initial-boundary value
problem, a versatile solution technique suitable for any of
the classical boundary conditions was developed. The tech-
nique involved, firstly, reducing the two governing fourth-
order coupled partial differential equations to a set of two
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second-order ordinary differential equations by means of
the generalized finite integral transform, then simplifying
the latter by applying Struble’s asymptotic method, and then
solving the simplified set of two coupled differential equations
with the aid of the differential transform method (DTM).
One of the limitations of the proposed method is that it is
a small parameter method and it is also valid in small region.
However, the convergence domain could be enlarged using
“After-treatment Technique (AT)” [30]. Another limitation is
the iteration of the associated variational equation [31]. It was
found that the results of the present method are in excellent
agreement with those obtained in the literature for the case
involving a concentrated moving force and simply supported
end conditions [25]. It is observed that increasing the rotatory
inertia correction factor, 𝑅𝐼, for the clamped-clamped lower
Rayleigh beam, in the cases involvingmovingmass and force,
leads to a decrease in the response amplitude of deflection.
However the response amplitudes due to moving mass are
smaller than those due to moving force. For the effect of
the mass ratio, 𝛾1, on the lateral deflections of the clamped-
clamped upper beam traversed by a moving mass, it is seen
that an increase in 𝛾1 lowers the response amplitudes of the
beam. It is also noticed that an increase in the stiffness, 𝑘,
of the connecting viscoelastic layer involving the transverse
deflection of the lower simply supported beams leads to a
decrease in the response amplitude for the moving mass
while the reverse is the case for the moving force. Finally,
the influence of ignoring the inertia of the moving mass on
the dynamic behaviour of the finite double-Rayleigh beam
system is presented.
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