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This paper aims to study extensively some results concerning continuous dependence for implicit Kirk-Mann and implicit Kirk-
Ishikawa iterations. In order to equipoise the formation of these algorithms, we introduce a general hyperbolic space which is no
doubt a free associate of some known hyperbolic spaces. The present results are extension of other results and they can be used in
many applications.

1. Introduction

In [1], Kohlenbach definedhyperbolic space in his paper titled
“Some Logical Metatheorems with Applications in Func-
tional Analysis, Transactions of the American Mathematical
Society, Vol. 357, 89–128.” He combined a metric space (𝑋, 𝑑)
and a convexity mapping𝑊: 𝑋2 × [0, 1] → 𝑋 which satisfy

(W1) 𝑑(𝑧,𝑊(𝑥, 𝑦, 𝜆)) ≤ (1 − 𝜆)𝑑(𝑧, 𝑥) + 𝜆𝑑(𝑧, 𝑦),
(W2) 𝑑(𝑊(𝑥, 𝑦, 𝜆1),𝑊(𝑥, 𝑦, 𝜆2)) = |𝜆1 − 𝜆2|𝑑(𝑥, 𝑦),
(W3) 𝑊(𝑥, 𝑦, 𝜆) = 𝑊(𝑥, 𝑦, 1 − 𝜆),
(W4) 𝑑(𝑊(𝑥, 𝑧, 𝜆),𝑊(𝑦, 𝑤, 𝜆)) ≤ (1 −𝜆)𝑑(𝑥, 𝑦) + 𝜆𝑑(𝑧, 𝑤),

for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋 and 𝜆, 𝜆1, 𝜆2 ∈ [0, 1].
Due to the rich geometric properties of this space, a large

amount of results have been published on hyperbolic spaces
such as [2–4]. It is observed that conditions (W1)–(W4) can
only be fulfilled for two or three distinct points. So, to balance
up the proportions of the space against the iterative processes
in question, we introduce a general notion of the hyperbolic
space. Firstly, we define the following.

Definition 1. Let (𝑋, 𝑑) be ametric space. Amapping𝑊: 𝑋𝑘×[0, 1]𝑘 → 𝑋 is called a generalized convex structure on 𝑋 if
for each 𝑥𝑖 ∈ 𝑋 and 𝜆𝑖 ∈ [0, 1]
𝑑 (𝑞,𝑊 (𝑥1, 𝑥2, . . . , 𝑥𝑘; 𝜆1, 𝜆2, . . . , 𝜆𝑘)) ≤ 𝑘∑

𝑖=1

𝜆𝑖𝑑 (𝑞, 𝑥𝑖) (1)

holds for 𝑞 ∈ 𝑋 and ∑𝑘𝑖=1 𝜆𝑖 = 1. The metric space (𝑋, 𝑑)
together with a generalized convex structure 𝑊 is called a
generalized convex metric space.

By letting 𝑘 = 3 and 𝑘 = 2, we retrieve the convex metric
space in [5, 6], respectively.

We now give the following definition.

Definition 2. Let (𝑋, 𝑑) be a metric space and 𝑊 : 𝑋𝑘 ×[0, 1]𝑘 → 𝑋. A general hyperbolic space is a metric space(𝑋, 𝑑) associated with the mapping 𝑊 and it satisfies the
following:

(GW1) 𝑑(𝑦,𝑊(𝑥1, 𝑥2, . . . , 𝑥𝑘; 𝜆1, 𝜆2, . . . , 𝜆𝑘)) ≤ ∑𝑘𝑖=1 𝜆𝑖𝑑(𝑦,𝑥𝑖),
(GW2) 𝑑(𝑊(𝑥1, 𝑥2, . . . , 𝑥𝑘; [0, 1]𝑘𝜆),𝑊(𝑥1, 𝑥2, . . . , 𝑥𝑘; [0, 1]𝑘𝜇))=∑𝑘−1𝑖=1 |𝜆𝑖 − 𝜇𝑖|𝑑(𝑥𝑖, 𝑥𝑖+1),
(GW3) 𝑊(𝑥1, 𝑥2, . . . , 𝑥𝑘; 𝜆1, 𝜆2, . . . , 𝜆𝑘) = 𝑊(𝑥𝑘, . . . , 𝑥2, 𝑥1;1 − 𝜆1, 1 − 𝜆2, . . . , 1 − 𝜆𝑘),
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(GW4) 𝑑(𝑊(𝑥1, 𝑥2, . . . , 𝑥𝑘; 𝜆1, 𝜆2, . . . , 𝜆𝑘), 𝑊(𝑦1, 𝑦2, . . . , 𝑦𝑘;𝜆1, 𝜆2, . . . , 𝜆𝑘)) ≤ ∑𝑘𝑖=1 𝜆𝑖𝑑(𝑥𝑖, 𝑦𝑖),
where [0, 1]𝑘𝜆 = 𝜆1, 𝜆2, . . . , 𝜆𝑘, for each 𝜆𝑖 ∈ [0, 1] and𝑥𝑖, 𝑦𝑖, 𝑦 ∈ 𝑋, 𝑖 = 1(1)𝑘.

It is easily seen that Definition 2 is hyperbolic space when𝑘 = 2.
We note here that every general hyperbolic space is a

generalized convex metric space, but the converse in some
cases is not necessarily true.

For example, let 𝑋𝑘 = R𝑘 be endowed with the metric𝑑(𝑥, 𝑦) = ∑𝑘𝑖 (|𝑥𝑖 − 𝑦𝑖|/(1 + |𝑥𝑖 − 𝑦𝑖|)) and 𝑊(𝑥1, 𝑥2,. . . , 𝑥𝑘; 𝜆1, 𝜆2, . . . , 𝜆𝑘) = ∑𝜆𝑖𝑥𝑖, for 𝑥, 𝑦 ∈ R𝑘; then, metric 𝑑
onR𝑘 associated with𝑊 is a generalized convexmetric space
but it does not satisfy all the conditions (GW1)–(GW4).

Two hybrid Kirk-type schemes, namely, Kirk-Mann and
Kirk-Ishikawa iterations, were first introduced in normed
linear space as appeared in [7]. Remarkable results have been
investigated to date for more cases of Kirk-type schemes; see
[8–11]. Recently in [12], the implicit Kirk-type schemes were
introduced in Banach space for a contractive-type operator
and it was also remarkable.

However, there are few or no emphases on the data
dependence of the Kirk-type schemes. Hence, this paper aims
to study closely the continuous contingency of two Kirk-type
schemes in [12], namely, implicit Kirk-Mann and implicit
Kirk-Ishikawa iterations in a general hyperbolic space. To do
this, a certain approximate operator (say 𝑆) of 𝑇 is used to
access the same source as 𝑇 in such a way that 𝑑(𝑇𝑥, 𝑆𝑥) ≤ 𝜂
for all 𝑥 ∈ 𝑋 and 𝜂 > 0.

We shall employ the class of quasi-contractive operator:

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑎𝑑 (𝑥, 𝑦) + 𝜖𝑑 (𝑥, 𝑇𝑥)
for 𝑥, 𝑦 ∈ 𝑋, 𝜖 ≥ 0, 𝑎 ∈ (0, 1) (2)

in [13] to prove the following lemma.

Lemma 3. Let (𝑋, 𝑑) be a metric space and let 𝑇 : 𝑋 → 𝑋 be
a map satisfying (2). Then, for all 𝑘 ∈ N and 𝜖 ≥ 0

𝑑 (𝑇𝑘𝑥, 𝑇𝑘𝑦) ≤ 𝑘∑
𝑖=1

(𝑘𝑖) 𝑎𝑘−𝑖𝜖𝑖𝑑 (𝑥, 𝑇𝑖𝑥) + 𝑎𝑘𝑑 (𝑥, 𝑦) , (3)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑎 ∈ (0, 1).
Proof. Let 𝑇 be an operator satisfying (2); we claim that 𝑇𝑘𝑥
also satisfies (2).

Then,

𝑑 (𝑇𝑘𝑥, 𝑇𝑘𝑦) ≤ 𝜖𝑑 (𝑥, 𝑇𝑘𝑥) + 𝑎𝑑 (𝑇𝑘−1𝑥, 𝑇𝑘−1𝑦)
≤ 𝜖𝑑 (𝑥, 𝑇𝑘𝑥) + 𝑎𝜖𝑑 (𝑥, 𝑇𝑘−1𝑥)

+ 𝑎2𝑑 (𝑇𝑘−2𝑥, 𝑇𝑘−2𝑦) ≤ ⋅ ⋅ ⋅

≤ 𝑘∑
𝑖=1

(𝑘𝑖) 𝑎𝑘−𝑖𝜖𝑖𝑑 (𝑥, 𝑇𝑖𝑥) + 𝑎𝑘𝑑 (𝑥, 𝑦)
(4)

for each 𝑎𝑘 ∈ (0, 1) and 𝜖𝑖 ≥ 0.Thus, 𝑇𝑘𝑥 satisfies (3).
The converse of Lemma 3 is not true for 𝑘 > 1. Hence,

condition (3) is more general than (2).

Lemma 4 (see [14]). Let {𝑎𝑛}∞𝑛=0 be a nonnegative sequence for
which there exists 𝑛0 ∈ N such that, for all 𝑛 ≥ 𝑛0, one has the
following inequality:

𝑎𝑛+1 ≤ (1 − 𝑟𝑛) 𝑎𝑛 + 𝑟𝑛𝑡𝑛, (5)

where 𝑟𝑛 ∈ (0, 1), for all 𝑛 ∈ N, ∑∞𝑛=1 𝑟𝑛 = ∞, and 𝑡𝑛 ≥ 0 for𝑛 ∈ N. Then,

0 ≤ lim
𝑛→∞

sup 𝑎𝑛 ≤ lim
𝑛→∞

sup 𝑡𝑛. (6)

2. Main Results

We present the results for implicit Kirk-Mann and implicit
Kirk-Ishikawa iterations using condition (3) and noting that
both iterations converge strongly to a fixed point 𝑝 ∈ 𝐹𝑇 as
proved in [12].

Theorem 5. Let 𝐾 be a closed subset of a general hyperbolic
space (𝑋, 𝑑,𝑊) and let 𝑇, 𝑆 : 𝐾 → 𝐾 be maps satisfying (3),
where 𝑆 is an approximate operator of 𝑇. Let {𝑥𝑛}, {𝑢𝑛} ⊂ 𝐾
be two iterative sequences associated with 𝑇, respectively, to 𝑆
given as follows: for 𝑥0, 𝑢0 ∈ 𝑋
𝑥𝑛 = 𝑊(𝑥𝑛−1, 𝑇𝑥𝑛, 𝑇2𝑥𝑛, . . . , 𝑇𝑘𝑥𝑛; 𝛼𝑛,0, 𝛼𝑛,1, 𝛼𝑛,2, . . . ,

𝛼𝑛,𝑘) ;
𝑘∑
𝑖=0

𝛼𝑛,𝑖 = 1,
𝑛 ≥ 1,

(7)

𝑢𝑛 = 𝑊(𝑢𝑛−1, 𝑆𝑢𝑛, 𝑆2𝑢𝑛, . . . , 𝑆𝑘𝑢𝑛; 𝛼𝑛,0, 𝛼𝑛,1, 𝛼𝑛,2, . . . , 𝛼𝑛,𝑘) ;
𝑘∑
𝑖=0

𝛼𝑛,𝑖 = 1,
𝑛 ≥ 1,

(8)

where 𝛼𝑛,𝑖, 𝛽𝑛,𝑖 are sequences in [0, 1], for 𝑖 = 0, 1, 2, . . . , 𝑘, 𝑘 ∈
N with ∑(1 − 𝛼𝑛,0) = ∞.

If 𝑝 ∈ 𝐹𝑇, 𝑞 ∈ 𝐹𝑆 and 𝜂 > 0, then
𝑑 (𝑝, 𝑞) ≤ 𝜂

(1 − 𝑎)2 . (9)
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Proof. Let 𝑥0, 𝑢0 ∈ 𝑋, 𝑝 ∈ 𝐹𝑇, and 𝑞 ∈ 𝐹𝑆. By using
(GW1)–(GW4), (7), (8), and (3), we get

𝑑 (𝑥𝑛, 𝑢𝑛) = 𝑑 (𝑊(𝑥𝑛−1, 𝑇𝑥𝑛, 𝑇2𝑥𝑛, . . . , 𝑇𝑘𝑥𝑛; 𝛼𝑛,0, 𝛼𝑛,1,
𝛼𝑛,2, . . . , 𝛼𝑛,𝑘) ,𝑊 (𝑢𝑛−1, 𝑆𝑢𝑛, 𝑆2𝑢𝑛, . . . , 𝑆𝑘𝑢𝑛; 𝛼𝑛,0, 𝛼𝑛,1,
𝛼𝑛,2, . . . , 𝛼𝑛,𝑘)) ≤ 𝛼𝑛,0𝑑 (𝑥𝑛−1, 𝑢𝑛−1)
+ 𝑘∑
𝑖=1

𝛼𝑛,𝑖 (𝑑 (𝑇𝑖𝑥𝑛, 𝑆𝑖𝑥𝑛) + 𝑑 (𝑆𝑖𝑥𝑛, 𝑆𝑖𝑢𝑛))

≤ 𝛼𝑛,0𝑑 (𝑥𝑛−1, 𝑢𝑛−1) + 𝑘∑
𝑖=1

𝛼𝑛,𝑖 [𝜂

+ 𝑘∑
𝑖=1

(𝑘𝑖) 𝑎𝑘−𝑖𝜖𝑖𝑑 (𝑥𝑛, 𝑆𝑖𝑥𝑛) + 𝑎𝑘𝑑 (𝑥𝑛, 𝑢𝑛)]

(10)

which implies

𝑑 (𝑥𝑛, 𝑢𝑛)
≤ 𝛼𝑛,01 − ∑𝑘𝑖=1 𝛼𝑛,𝑖𝑎𝑖 𝑑 (𝑥𝑛−1, 𝑢𝑛−1)

+ ∑𝑘𝑖=1 𝛼𝑛,𝑖1 − ∑𝑘𝑖=1 𝛼𝑛,𝑖𝑎𝑖 (𝜂 +
𝑘∑
𝑖=1

(𝑘𝑖) 𝑎𝑘−𝑖𝜖𝑖𝑑 (𝑥𝑛, 𝑆𝑖𝑥𝑛))
(11)

This further implies

𝑑 (𝑥𝑛, 𝑢𝑛) ≤ 𝛼𝑛,01 − (1 − 𝛼𝑛,0) 𝑎𝑑 (𝑥𝑛−1, 𝑢𝑛−1)

+ 1 − 𝛼𝑛,01 − (1 − 𝛼𝑛,0) 𝑎 (𝜂

+ 𝑘∑
𝑖=1

(𝑘𝑖) 𝑎𝑘−𝑖𝜖𝑖𝑑 (𝑥𝑛, 𝑆𝑖𝑥𝑛)) .
(12)

Let 𝑄𝑛 = 𝛼𝑛,0/(1 − (1 − 𝛼𝑛,0)𝑎); then
1 − 𝑄𝑛 = 1 − (𝛼𝑛,0 + (1 − 𝛼𝑛,0) 𝑎)1 − (1 − 𝛼𝑛,0) 𝑎

≥ 1 − (𝛼𝑛,0 + (1 − 𝛼𝑛,0) 𝑎) .
(13)

Hence, we have

𝑄𝑛 ≤ 𝛼𝑛,0 + (1 − 𝛼𝑛,0) 𝑎 = 1 − (1 − 𝑎) (1 − 𝛼𝑛,0) . (14)

Using (14) and the fact that 1 − 𝑎 ≤ 1 − (1 − 𝛼𝑛,0)𝑎 then (12)
becomes

𝑑 (𝑥𝑛, 𝑢𝑛) ≤ [1 − (1 − 𝑎) (1 − 𝛼𝑛,0)] 𝑑 (𝑥𝑛−1, 𝑢𝑛−1)
+(1 − 𝑎) (1 − 𝛼𝑛,0)(1 − 𝑎)2 (𝜂 + 𝑘∑

𝑖=1

(𝑘𝑖) 𝑎𝑘−𝑖𝜖𝑖𝑑 (𝑥𝑛, 𝑆𝑖𝑥𝑛)) . (15)

By letting 𝑎𝑛 = 𝑑(𝑥𝑛, 𝑢𝑛), 𝑟𝑛 = (1 − 𝑎)(1 − 𝛼𝑛,0), and 𝑡𝑛 =(1/(1 − 𝑎)2) (𝜂 + ∑𝑘𝑖=1 ( 𝑘𝑖 ) 𝑎𝑘−𝑖𝜖𝑖𝑑(𝑥𝑛, 𝑆𝑖𝑥𝑛)) in (15).

Thus, by Lemma 4, inequality (15) becomes

lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑢𝑛)
≤ 1
(1 − 𝑎)2 (𝜂 +

𝑘∑
𝑖=1

(𝑘𝑖) 𝑎𝑘−𝑖𝜖𝑖 lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑆𝑖𝑥𝑛)) . (16)

for

0 ≤ 𝑑 (𝑥𝑛, 𝑆𝑖𝑥𝑛) ≤ 𝑑 (𝑥𝑛, 𝑝) + (𝑆𝑖𝑝, 𝑆𝑖𝑥𝑛)
≤ (1 + 𝑎𝑖) 𝑑 (𝑥𝑛, 𝑝) → 0, as 𝑛 → ∞ (17)

Therefore,

𝑑 (𝑝, 𝑞) ≤ 𝜂
(1 − 𝑎)2 . (18)

Theorem 6. Let 𝐾 ⊂ (𝑋, 𝑑,𝑊) and 𝑇, 𝑆 : 𝐾 → 𝐾 be two
maps satisfying (3), where 𝑆 is an approximate operator of 𝑇.
Let {𝑥𝑛}, {𝑢𝑛} be two implicit Kirk-Ishikawa iterative sequences
associated with𝑇, respectively, to 𝑆 given as follows: for 𝑥0, 𝑢0 ∈𝑋
𝑥𝑛 = 𝑊(𝑦𝑛−1, 𝑇𝑥𝑛, 𝑇2𝑥𝑛, . . . , 𝑇𝑘𝑥𝑛; 𝛼𝑛,0, 𝛼𝑛,1, 𝛼𝑛,2, . . . ,

𝛼𝑛,𝑘) ;
𝑘∑
𝑖=0

𝛼𝑛,𝑖 = 1,
𝑦𝑛−1 = 𝑊(𝑥𝑛−1, 𝑇𝑦𝑛−1, 𝑇2𝑦𝑛−1, . . . , 𝑇𝑠𝑦𝑛−1; 𝛽𝑛,0, 𝛽𝑛,1,

𝛽𝑛,2, . . . , 𝛽𝑛,𝑠) ;
𝑠∑
𝑖=0

𝛽𝑛,𝑖 = 1,
𝑛 ≥ 1,

(19)

𝑢𝑛 = 𝑊(V𝑛−1, 𝑆𝑢𝑛, 𝑆2𝑢𝑛, . . . , 𝑆𝑘𝑢𝑛; 𝛼𝑛,0, 𝛼𝑛,1, 𝛼𝑛,2, . . . ,
𝛼𝑛,𝑘) ;
𝑘∑
𝑖=0

𝛼𝑛,𝑖 = 1,
V𝑛−1 = 𝑊(𝑢𝑛−1, 𝑆V𝑛−1, 𝑆2V𝑛−1, . . . , 𝑆𝑠V𝑛−1; 𝛽𝑛,0, 𝛽𝑛,1, 𝛽𝑛,2,

. . . , 𝛽𝑛,𝑠) ;
𝑠∑
𝑖=0

𝛽𝑛,𝑖 = 1,
𝑛 ≥ 1,

(20)
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where 𝛼𝑛,𝑖𝑘 , 𝛽𝑛,𝑖𝑠 are sequences in [0, 1], for 𝑖𝑘 = 0(1)𝑘; 𝑖𝑠 =0(1)𝑠; 𝑘 and 𝑠 are fixed integers such that 𝑘 ≥ 𝑠 with ∑(1 −𝛼𝑛,0) = ∞. Assume that 𝑝 ∈ 𝐹𝑇, 𝑞 ∈ 𝐹𝑆, and 𝜂 > 0; then

𝑑 (𝑝, 𝑞) ≤ 2𝜂
(1 − 𝑎)2 . (21)

Proof. Let 𝑥0, 𝑢0 ∈ 𝑋. By taking𝑥𝑛 of (19) and 𝑢𝑛 of (20) using
conditions (GW1)–(GW4) and (3), we obtain

𝑑 (𝑥𝑛, 𝑢𝑛) ≤ 𝛼𝑛,01 − ∑𝑘𝑖𝑘=1 𝛼𝑛,𝑖𝑘𝑎𝑖𝑘 𝑑 (𝑦𝑛−1, V𝑛−1)

+ ∑𝑘𝑖𝑘=1 𝛼𝑛,𝑖𝑘1 − ∑𝑘𝑖𝑘=1 𝛼𝑛,𝑖𝑘𝑎𝑖𝑘 (𝜂

+ 𝑘∑
𝑖𝑘=1

(𝑘
𝑖𝑘)𝑎𝑘−𝑖𝑘𝜖𝑖𝑘𝑑 (𝑥𝑛, 𝑆𝑖𝑘𝑥𝑛)) .

(22)

Similarly, 𝑦𝑛−1 of (19) and V𝑛−1 of (20) give

𝑑 (𝑦𝑛−1, V𝑛−1) ≤ 𝛽𝑛,01 − ∑𝑠𝑖𝑠=1 𝛽𝑛,𝑖𝑠𝑎𝑖𝑠 𝑑 (𝑥𝑛−1, 𝑢𝑛−1)

+ ∑𝑠𝑖𝑠=1 𝛽𝑛,𝑖𝑠1 − ∑𝑠𝑖𝑠=1 𝛽𝑛,𝑖𝑠𝑎𝑖𝑠 (𝜂

+ 𝑠∑
𝑖𝑠=1

(𝑠
𝑖𝑠)𝑎𝑠−𝑖𝑠𝜖𝑖𝑠𝑑 (𝑥𝑛, 𝑆𝑖𝑠𝑥𝑛)) .

(23)

By combining (22) and (23), we have

𝑑 (𝑥𝑛, 𝑢𝑛)
≤ 𝛼𝑛,01 − ∑𝑘𝑖𝑘=1 𝛼𝑛,𝑖𝑘𝑎𝑖𝑘

[
[

𝛽𝑛,01 − ∑𝑠𝑖𝑠=1 𝛽𝑛,𝑖𝑠𝑎𝑖𝑠 𝑑 (𝑥𝑛−1,

𝑢𝑛−1) + ∑𝑠𝑖𝑠=1 𝛽𝑛,𝑖𝑠1 − ∑𝑠𝑖𝑠=1 𝛽𝑛,𝑖𝑠𝑎𝑖𝑠
× (𝜂 + 𝑠∑

𝑖𝑠=1

(𝑠
𝑖𝑠)𝑎𝑠−𝑖𝑠𝜖𝑖𝑠𝑑 (𝑥𝑛, 𝑆𝑖𝑠𝑥𝑛))]

+ ∑𝑘𝑖𝑘=1 𝛼𝑛,𝑖𝑘1 − ∑𝑘𝑖𝑘=1 𝛼𝑛,𝑖𝑘𝑎𝑖𝑘 (𝜂

+ 𝑘∑
𝑖𝑘=1

(𝑘
𝑖𝑘)𝑎𝑘−𝑖𝑘𝜖𝑖𝑘𝑑 (𝑥𝑛, 𝑆𝑖𝑘𝑥𝑛)) .

(24)

This is further reduced to

𝑑 (𝑥𝑛, 𝑢𝑛)
≤ 𝛼𝑛,0𝛽𝑛,0[1 − (1 − 𝛼𝑛,0) 𝑎] [1 − (1 − 𝛽𝑛,0) 𝑎]𝑑 (𝑥𝑛−1,

𝑢𝑛−1) + 𝛼𝑛,0 (1 − 𝛽𝑛,0)[1 − (1 − 𝛼𝑛,0) 𝑎] [1 − (1 − 𝛽𝑛,0) 𝑎] × (𝜂

+ 𝑠∑
𝑖𝑠=1

(𝑠
𝑖𝑠)𝑎𝑠−𝑖𝑠𝜖𝑖𝑠𝑑 (𝑥𝑛, 𝑆𝑖𝑠𝑥𝑛))

+ 1 − 𝛼𝑛,01 − (1 − 𝛼𝑛,0) 𝑎 (𝜂 + 𝑘∑
𝑖𝑘=1

(𝑘
𝑖𝑘)

⋅ 𝑎𝑘−𝑖𝑘𝜖𝑖𝑘𝑑 (𝑥𝑛, 𝑆𝑖𝑘𝑥𝑛)) .

(25)

Using the ansatz prescribed in (14), we get

𝑑 (𝑥𝑛, 𝑢𝑛) ≤ [1 − (1 − 𝑎) (1 − 𝛼𝑛,0)] 𝑑 (𝑥𝑛−1, 𝑢𝑛−1)
+ (1 − 𝑎) (1 − 𝛼𝑛,0)(1 − 𝑎)2 × (2𝜂

+ 𝑠∑
𝑖𝑠=1

(𝑠
𝑖𝑠)𝑎𝑠−𝑖𝑠𝜖𝑖𝑠𝑑 (𝑥𝑛, 𝑆𝑖𝑠𝑥𝑛)

+ 𝑘∑
𝑖𝑘=1

(𝑘
𝑖𝑘)𝑎𝑘−𝑖𝑘𝜖𝑖𝑘𝑑 (𝑥𝑛, 𝑆𝑖𝑘𝑥𝑛)) .

(26)

Using the condition of Lemma 4, we conclude that

lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑢𝑛) → 𝑑 (𝑝, 𝑞) ≤ 2𝜂
(1 − 𝑎)2 . (27)

This following example is adopted from [14].

Example 7. Let 𝑇 : R → R be given by

𝑇𝑥 = {{{
0 if 𝑥 ∈ (−∞, 2]
−0.5 if 𝑥 ∈ (2,∞) (28)

with the unique fixed point being 0. Then, 𝑇 is quasi-
contractive operator.

Also, consider the map 𝑆 : R → R,

𝑆𝑥 = {{{
1 if 𝑥 ∈ (−∞, 2]
−1.5 if 𝑥 ∈ (2,∞) (29)

with the unique fixed point 1.
Take 𝜂 to be the distance between the twomaps as follows:

𝑑 (𝑆𝑥, 𝑇𝑥) ≤ 1, ∀𝑥 ∈ R. (30)
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Table 1

Number of iterations Iteration (7) Iteration (19)
5 0.8944272 0.9888544
6 0.9806270 0.9996247
7 0.9952716 0.9999776
8 0.9986151 0.9999981
9 0.9995384 0.9999998
10 0.9998303 1.0000000
11 0.9999326 1.0000000... ... ...
21 0.9999999 1.0000000
22 0.9999999 1.0000000
23 1.0000000 1.0000000

Let 𝑥0 = 𝑢0 = 0 be the initial datum, 𝛼𝑛,0 = 𝛽𝑛,0 = 1 − 2/√𝑛,
and 𝛼𝑛,𝑖 = 𝛽𝑛,𝑖 = 1/√𝑛 for 𝑛 ≥ 5, 𝑖 = 1, 2. Note that 𝛼𝑛,𝑖 =𝛽𝑛,𝑖 = 0 for 𝑛 = 1(1)4.

With the aid of MATLAB program, the computational
results for the iterations (7) and (19) of operator 𝑆 are
presented in Table 1 with stopping criterion 1𝑒 − 8.

In Table 1, both iterations (7) and (19) converge to the
same fixed point 1.This implies that, for each of the iterations,
the distance between the fixed point of 𝑆 and the fixed point
of 𝑇 is 1. In fact, this result can also be verified without
computing the operator 𝑆 by using Theorem 5 or Theorem 6
for any choice of 𝑎 ∈ (0, 1). On the other hand, the result will
also be valid if we choose 𝑇 sufficiently close to 𝑆.
3. Concluding Remarks

These results exhibit sufficient conditions under which
approximate fixed points depend continuously on parame-
ters. In fact, the above two results show that 𝑑(𝑝, 𝑞) → 0 as𝜂 → 0, which is quite remarkable. Also observe there is a tie-
in betweenTheorems 5 and 6 in the following order:

𝑑 (𝑝, 𝑞) ≤ 𝜂
(1 − 𝑎)2 ≤

2𝜂
(1 − 𝑎)2 . (31)

Thus, for any case of 𝑘 = 1, 2, we have
sup{𝑑 (𝑝, 𝑞) : 𝑑 (𝑝, 𝑞) ≤ 𝑘𝜂

(1 − 𝑎)2} , for each 𝑘. (32)

In Example 7 above, 𝜂 = 1 is chosen, but for higher 𝑘, it is
suitable to choose 𝜂 = 1/𝑘.
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