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The aim of this paper is to present a new improved semilocal and local convergence analysis for two-step secant method to
approximate a locally unique solution of a nonlinear equation in Banach spaces. This study is important because starting points
play an important role in the convergence of an iterative method. We have used a combination of Lipschitz and center-Lipschitz
conditions on the Fréchet derivative instead of only Lipschitz condition. A comparison is established on different types of center
conditions and the influence of our approach is shown through the numerical examples. In comparison to some earlier study, it gives
an improved domain of convergence along with the precise error bounds. Finally, some numerical examples including nonlinear
elliptic differential equations and integral equations validate the efficacy of our approach.

1. Introduction

Consider the problem to approximate a locally unique solu-
tion 𝑥∗ of 𝐺 (𝑥) = 0, (1)

where 𝐺 : D ⊆ X → Y is a nonlinear operator.
X,Y are Banach spaces andD is an open nonempty convex
subset of X. This is one of the very important problems in
applied mathematics and engineering science. Many real life
problems in diverse areas such as equilibrium theory and
elasticity often reduce to solving these equations depending
on one or more parameters. Mathematical modeling of many
problems uses integral equations, boundary value problems,
differential equations, and so forth, whose solutions are
obtained by solving scalar equations or a system of equations.
Many nonlinear differential equations can be solved by
transforming them to matrix equations which give a system
of nonlinear equations in R𝑛. Many researchers [1–4] have
extensively studied these problems and many methods, both
direct and iterative, are developed for their solutions. Good
convergence properties, efficiency, and numerical stability
are the requirements of all these methods. It is a common

problem to choose the good starting points for the iterative
methods which ensure the convergence of the iterative
method.The semilocal convergence [2, 5, 6] uses information
given at the initial point whereas local convergence [7, 8]
uses information around the solution. The quadratically
convergent Newton’s iteration [9, 10] is used to solve (1). It
is defined for 𝑛 ≥ 0 by𝑥𝑛+1 = 𝑥𝑛 − Γ𝑛𝐺 (𝑥𝑛) , (2)

where 𝑥0 ∈ D is the starting point and Γ𝑛 = 𝐺(𝑥𝑛)−1 ∈𝐿(Y,X) (the set of bounded linear operators from Y into
X). Sufficient conditions for the semilocal convergence with
existence ball and error estimates of (2) are given in [11]. The
secant iteration [1, 12, 13] is the simplification of (2) used to
solve (1) and is given for 𝑛 ≥ 0 by𝑥𝑛+1 = 𝑥𝑛 − [𝑥𝑛−1, 𝑥𝑛; 𝐺]−1 𝐺 (𝑥𝑛) , (3)

where 𝑥−1, 𝑥0 ∈ D are two starting points and [𝑥, 𝑦; 𝐺] is the
divided difference of order one for 𝐺 on the points 𝑥, 𝑦 ∈ D
and satisfies the equality [𝑥, 𝑦; 𝐺](𝑥 − 𝑦) = 𝐺(𝑥) − 𝐺(𝑦). In

Hindawi
International Journal of Analysis
Volume 2017, Article ID 7364236, 9 pages
https://doi.org/10.1155/2017/7364236

https://doi.org/10.1155/2017/7364236


2 International Journal of Analysis

case of operators, this equality does not hold uniquely unless
X is one-dimensional. In R𝑛, it is defined by a matrix[𝑥, 𝑦, 𝐺]𝑗,𝑘= 𝐺𝑗 (𝑥1, . . . , 𝑥𝑘, 𝑦𝑘+1, . . . , 𝑦𝑛) − 𝐺𝑗 (𝑥1, . . . , 𝑥𝑘−1, 𝑦𝑘, . . . , 𝑦𝑛)𝑥𝑘 − 𝑦𝑘 ,𝑗, 𝑘 = 1, . . . , 𝑛, (4)

for 𝑥, 𝑦 ∈ R𝑛 and 𝐺 ∈ 𝐿(R𝑛,R𝑛). So, many real life problems
that require the solution of matrix equations can also be
solved by the abovementioned methods.

Recently, an iteration known as theKing-Werner iteration
originally proposed by King [14] is discussed in [15, 16] along
with its local and semilocal convergence using majorizing
sequences under the Lipschitz continuous Fréchet derivative
of 𝐺. It is given for 𝑛 ≥ 1 by𝑥𝑛 = 𝑥𝑛−1 − 𝐺 (𝑥𝑛−1 + 𝑦𝑛−12 )−1 𝐺 (𝑥𝑛−1) ,𝑦𝑛 = 𝑥𝑛 − 𝐺 (𝑥𝑛−1 + 𝑦𝑛−12 )−1 𝐺 (𝑥𝑛) , (5)

where, 𝑥0, 𝑦0 ∈ D are the starting iterates. Its order is equal to1+√2. A two-step secant iteration with order of convergence
same as (5) with its semilocal and local convergence under
combination of Lipschitz and center-Lipschitz continuous
divided differences of order one using majorizing sequences
for solving (1) is described in Banach space setting in [17]. It
is defined for 𝑛 ≥ 0 by𝑥𝑛+1 = 𝑥𝑛 − [𝑥𝑛, 𝑦𝑛; 𝐺]−1 𝐺 (𝑥𝑛) ,𝑦𝑛+1 = 𝑥𝑛+1 − [𝑥𝑛, 𝑦𝑛; 𝐺]−1 𝐺 (𝑥𝑛+1) , (6)

where 𝑥0, 𝑦0 ∈ D are starting iterates.
In this paper, iteration (6) is considered for solving (1)

along with its semilocal and local convergence analysis under
weaker Lipschitz continuity condition on divided differences
of order one on the involved operator 𝐺 in Banach space
setting. The influence on the domain by our approach is
shown by somenumerical examples. It provides the improved
error estimations along with the better information on
the location of solutions. Semilocal convergence of (6) is
studied, which improves the applicability of the method
corresponding to some earlier study [17, 18]. It is shown by
our work that earlier studies for (6) do not hold while the new
convergence criteria hold. For local convergence analysis,
weaker center-Lipschitz continuity condition is used in place
of a combination of Lipschitz and center-Lipschitz continuity
conditions. Larger convergence ball is obtained through this
study in comparison to the older one.

The paper is arranged as follows. Introduction forms
Section 1. In Section 2, the semilocal convergence analysis
of (6) under weaker convergence conditions on divided
differences of operator 𝐺 is established. In Section 3, local
convergence analysis of (6) is established using only center-
Lipschitz continuity condition on divided differences. In
Section 4, numerical examples are given to validate the
theoretical results obtained by us. Finally, conclusions and
references are included in Section 5.

2. Semilocal Convergence

In this section, firstly, we provide a lemma that will be used
to provide the semilocal convergence theorem of (6).

Lemma 1. Let 𝑘0, 𝑘, 𝑘1, 𝑘2, 𝜂, and 𝑠 be nonnegative parameters
and 𝛼 be the unique root of the polynomial defined by𝑔 (𝑡) = 𝑘𝑡3 + 𝑘0𝑡2 + (𝑘1 + 𝑘2) 𝑡 − (𝑘1 + 𝑘2) (7)

and sequences {𝑡𝑛} and {𝑠𝑛} defined for 𝑛 ≥ 0 by 𝑡0 = 0, 𝑡1 = 𝜂,𝑠0 = 𝑠, 𝑠1 = 𝑡1 + 𝑘0𝑡1 + 𝑘𝑠01 − 𝑘𝑠0 𝑡1,𝑡2 = 𝑡1 + 𝑘0𝑡1 + 𝑘𝑠01 − (𝑘0𝑡1 + 𝑘𝑠1) 𝑡1, (8)

and for all 𝑛 ≥ 1 by
𝑠𝑛+1 = 𝑡𝑛+1 + 𝑘1 (𝑡𝑛+1 − 𝑡𝑛) + 𝑘2 (𝑠𝑛 − 𝑡𝑛)1 − (𝑘0𝑡𝑛 + 𝑘𝑠𝑛) (𝑡𝑛+1 − 𝑡𝑛) ,
𝑡𝑛+2 = 𝑡𝑛+1 + 𝑘1 (𝑡𝑛+1 − 𝑡𝑛) + 𝑘2 (𝑠𝑛 − 𝑡𝑛)1 − (𝑘0𝑡𝑛+1 + 𝑘𝑠𝑛+1) (𝑡𝑛+1 − 𝑡𝑛) . (9)

Supposing

0 < 𝑘0𝑡1 + 𝑘𝑠01 − (𝑘0𝑡1 + 𝑘𝑠1) ≤ 𝛼 ≤ 1 − (𝑘0 + 𝑘) 𝑡1, (10)

then sequences {𝑠𝑛}, {𝑡𝑛} are well defined, increasing, and
bounded above by 𝑡∗∗ = 𝑡1/(1 − 𝛼) and converge to their least
upper bound 𝑡∗ which satisfies 𝑡1 ≤ 𝑡∗ ≤ 𝑡∗∗. Moreover, the
following estimates hold for all 𝑛 ≥ 1:0 ≤ 𝑠𝑛+1 − 𝑡𝑛+1 ≤ 𝛼 (𝑡𝑛+1 − 𝑡𝑛) ,0 ≤ 𝑡𝑛+2 − 𝑡𝑛+1 ≤ 𝛼 (𝑡𝑛+1 − 𝑡𝑛) . (11)

Proof. From (7), 𝑔(0) = −(𝑘1 +𝑘2) and 𝑔(1) = (𝑘 + 𝑘0). Using
intermediate value theorem, 𝑔 has at least one root in (0, 1);
also, it is increasing in this interval. So, it has a unique root in
this interval which is denoted by 𝛼. Suppose 𝑡1 = 0; then,
all terms of sequences {𝑡𝑛} and {𝑠𝑛} will be equal to 0 and
Lemma 1 holds in this case. Taking 𝑡1 = 𝜂 > 0, then (11) is
true if

0 < 𝑘1 (𝑡𝑛+1 − 𝑡𝑛) + 𝑘2 (𝑠𝑛 − 𝑡𝑛)1 − (𝑘0𝑡𝑛 + 𝑘𝑠𝑛) ≤ 𝛼,
0 < 𝑘1 (𝑡𝑛+1 − 𝑡𝑛) + 𝑘2 (𝑠𝑛 − 𝑡𝑛)1 − (𝑘0𝑡𝑛+1 + 𝑘𝑠𝑛+1) ≤ 𝛼,𝑡𝑛 ≤ 𝑠𝑛

(12)

for each 𝑛 = 1, 2, . . ..
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This implies that 0 ≤ 𝑠𝑛−𝑡𝑛 ≤ 𝛼𝑛(𝑡1−𝑡0) and 0 ≤ 𝑡𝑛+1−𝑡𝑛 ≤𝛼𝑛(𝑡1 − 𝑡0). Now, instead of showing (12), it will be sufficient
to show that (𝑘1 + 𝑘2) 𝑡1𝛼𝑛−1 + 𝑘0𝑡11 − 𝛼 (1 − 𝛼𝑛+1)+ 𝑘𝑡11 − 𝛼 (1 − 𝛼𝑛+2) ≤ 1. (13)

From (13), we are motivated to construct a recurrent polyno-
mial 𝑓𝑛 (𝑡) = (𝑘1 + 𝑘2) 𝑡1𝑡𝑛−1 + 𝑘0𝑡11 − 𝑡 (1 − 𝑡𝑛+1)+ 𝑘𝑡11 − 𝑡 (1 − 𝑡𝑛+2) − 1. (14)

Replacing 𝑛 by 𝑛 + 1 in (14), this gives𝑓𝑛+1 (𝑡) = (𝑘1 + 𝑘2) 𝑡1𝑡𝑛 + 𝑘0𝑡11 − 𝑡 (1 − 𝑡𝑛+2)+ 𝑘𝑡11 − 𝑡 (1 − 𝑡𝑛+3) − 1. (15)

Now, from (7), (14), and (15) and the help of some algebraic
manipulations, we have𝑓𝑛+1 (𝑡) = 𝑓𝑛 (𝑡) + 𝑔 (𝑡) 𝑡𝑛−1𝑡1. (16)

Using (16), we get 𝑓𝑛+1(𝛼) = 𝑓𝑛(𝛼); also, 𝑓𝑛(𝑡) is an increasing
function in (0, 1). Let us define a function 𝑅(𝑡) on (0, 1) by𝑅 (𝑡) = lim

𝑛→∞
𝑓𝑛 (𝑡) . (17)

Now, we need to show only 𝑅(𝛼) ≤ 0. Using (10), this asser-
tion can be proved easily and, thus, Lemma 1 is established.

Next, we provide a semilocal convergence theorem fol-
lowed by Lemma 1 for (6).

Theorem 2. Let 𝐺 : D ⊆ X → Y be a nonlinear
operator; 𝑘0, 𝑘, 𝑘1, 𝑘2, 𝜂, and 𝑠 are given parameters. Denote𝐴𝑛 = [𝑥𝑛, 𝑦𝑛; 𝐺] for 𝑛 ≥ 0. Under the hypothesis of Lemma 1,
the following assumptions hold inB(𝑥0, 𝑡∗) ⊆ D:(𝐴1) 𝐴−10 ∈ 𝐿 (𝑌,𝑋)(𝐴2) 𝐴−10 𝐺 (𝑥0) ≤ 𝜂(𝐴3) 𝑥0 − 𝑦0 ≤ 𝑠(𝐴4) 𝐺 (𝑥0)−1 ([𝑥, 𝑦; 𝐺] − 𝐺 (𝑥0))≤ 𝑘0 𝑥 − 𝑥0 + 𝑘 𝑦 − 𝑥0(𝐴5) 𝐺 (𝑥0)−1 ([𝑥, 𝑦; 𝐺] − 𝐺 (𝑧))≤ 𝑘1 ‖𝑥 − 𝑧‖ + 𝑘2 𝑦 − 𝑧

for all 𝑥, 𝑦, 𝑧 ∈ D.

(18)

Staring with suitable 𝑥0, 𝑦0 ∈ B(𝑥0, 𝑡∗), sequences {𝑥𝑛} and{𝑦𝑛} defined in (6) are well defined, remain in B(𝑥0, 𝑡∗), and
converge to a solution 𝑥∗ in B(𝑥0, 𝑡∗) of (1). Moreover, the
following estimates hold for each 𝑛 ≥ 0:𝑦𝑛 − 𝑥𝑛 ≤ 𝑠𝑛 − 𝑡𝑛,𝑥𝑛+1 − 𝑥𝑛 ≤ 𝑡𝑛+1 − 𝑡𝑛, (19)𝑥∗ − 𝑥𝑛 ≤ 𝑡∗ − 𝑡𝑛. (20)

Further, if there exists 𝑅 > 𝑡∗ such that B(𝑥0, 𝑅) ⊆ D and𝑘0𝑡∗+𝑘𝑅 < 1, then𝑥∗ is the only solution of (1) inB(𝑥0, 𝑅)∩D.
Proof. Usingmathematical induction on 𝑛, we shall show that
(19) hold true. For 𝑛 = 1, this follows directly from (18) which
shows that 𝑥1 ∈B(𝑥0, 𝑡∗). Using Banach lemma and (18), we
get ‖𝐴−10 𝐺(𝑥0)‖ ≤ 1/(1 − 𝑘𝑠). Next,𝑦1 − 𝑥1 = 𝐴−10 (𝐺 (𝑥1) − 𝐺 (𝑥0) + 𝐺 (𝑥0))≤ 𝐴−10 𝐺 (𝑥0)⋅ (𝐺 (𝑥0)−1 ([𝑥1, 𝑥0; 𝐺] − 𝐺 (𝑥0))+ 𝐺 (𝑥0)−1 ([𝑥0, 𝑦0; 𝐺] − 𝐺 (𝑥0))) 𝑥1 − 𝑥0≤ 𝑘0 𝑥1 − 𝑥0 + 𝑘 𝑥0 − 𝑦01 − 𝑘𝑠 𝑥1 − 𝑥0≤ 𝑘0𝑡1 + 𝑘𝑠1 − 𝑘𝑠 𝑡1 = 𝑠1 − 𝑡1,𝑦1 − 𝑥0 ≤ 𝑦1 − 𝑥1 + 𝑥1 − 𝑥0 ≤ 𝑠1 − 𝑡1 + 𝑡1 − 𝑡0= 𝑠1 < 𝑡∗.

(21)

This shows that 𝑦1 ∈B(𝑥0, 𝑡∗)𝐼 − 𝐺 (𝑥0)−1 𝐴1 = 𝐺 (𝑥0)−1 (𝐴1 − 𝐺 (𝑥0))≤ 𝑘0 𝑥1 − 𝑥0 + 𝑘 𝑦1 − 𝑥0≤ 𝑘0𝑡1 + 𝑘𝑠1 < 1. (22)

Using Banach lemma [4] on invertible operators, we get𝐴−11 𝐺 (𝑥0) ≤ 11 − (𝑘0𝑡1 + 𝑘𝑠1) . (23)

Now,𝑥2 − 𝑥1 ≤ 𝐴−11 𝐺 (𝑥1)≤ 𝐴−11 𝐺 (𝑥0) 𝐺 (𝑥0)−1 𝐺 (𝑥1)≤ 𝑘0𝑡1 + 𝑘𝑠1 − (𝑘0𝑡1 + 𝑘𝑠1) 𝑡1 = 𝑡2 − 𝑡1,𝑥2 − 𝑥0 ≤ 𝑥2 − 𝑥1 + 𝑥1 − 𝑥0 ≤ 𝑡2 − 𝑡1 + 𝑡1 − 𝑡0= 𝑡2 < 𝑡∗.
(24)
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This implies 𝑥2 ∈ B(𝑥0, 𝑡∗) and thus (19) is true for 𝑛 = 1.
Now, from (6),𝑦2 − 𝑥2 ≤ 𝐴−11 𝐺 (𝑥2)≤ 𝐴−11 𝐺 (𝑥0) 𝐺 (𝑥0)−1 𝐺 (𝑥2)≤ 𝑘1 (𝑡2 − 𝑡1) + 𝑘2 (𝑠1 − 𝑡1)1 − (𝑘0𝑡1 + 𝑘𝑠1) (𝑡2 − 𝑡1)= 𝑠2 − 𝑡2,𝑦2 − 𝑥0 ≤ 𝑦2 − 𝑥2 + 𝑥2 − 𝑥0 ≤ 𝑠2 − 𝑡2 + 𝑡2 − 𝑡0= 𝑠2 < 𝑡∗.

(25)

This shows that 𝑥2, 𝑦2 ∈ B(𝑥0, 𝑡∗). Thus, replacing𝑥1, 𝑦1, 𝑥2, 𝑦2 by 𝑥𝑛+1, 𝑦𝑛+1, 𝑥𝑛+2, 𝑦𝑛+2 and proceeding in a
similar manner, this gives the notion that {𝑥𝑛} is a complete
sequence in Banach space X such that it converges to some𝑥∗ ∈B(𝑥0, 𝑡∗). Now, to show that 𝑥∗ is a solution of (1),𝐺 (𝑥0)−1 𝐺 (𝑥𝑛+1)≤ (𝑘1 (𝑡𝑛+1 − 𝑡𝑛) + 𝑘2 (𝑠𝑛 − 𝑡𝑛)) 𝑡𝑛+1 − 𝑡𝑛 → 0

as 𝑛 → ∞. (26)

So,𝐺(𝑥∗) = 0. Suppose 𝑦∗ is another solution of (1) such that𝐺(𝑦∗) = 0. Let 𝑇 = [𝑥∗, 𝑦∗; 𝐺] be an operator and𝐺 (𝑥0)−1 (𝐺 (𝑥0) − 𝑇)≤ 𝑘0 𝑥∗ − 𝑥0 + 𝑘 𝑦∗ − 𝑥0 ≤ 𝑘0𝑡∗ + 𝑘𝑅∗ < 1. (27)

It follows that 𝑥∗ = 𝑦∗ and this establishes Theorem 2.

Tomake the paper self-content, we present the lemma and
semilocal convergence theorem of (6) that can be found in
[18].

Lemma 3 (see [18]). Let 𝑘0, �̃�, 𝑘1, 𝑘2, 𝜂, and 𝑠 be nonnegative
parameters and 𝛼 be the unique root of the polynomial defined
by 𝑔 (𝑡) = �̃�𝑡3 + 𝑘0𝑡2 + (𝑘1 + 𝑘2) 𝑡 − (𝑘1 + 𝑘2) (28)

and sequences {𝑙𝑛} and {𝑟𝑛} defined for 𝑛 ≥ 0, by 𝑙0 = 0, 𝑙1 =𝜂, 𝑟0 = 𝑠 𝑟1 = 𝑙1 + (𝑘0𝑙1 + �̃�𝑟0) 𝑙1,𝑙2 = 𝑙1 + 𝑘0𝑙1 + �̃�𝑟01 − (𝑘0𝑙1 + �̃�𝑟1) 𝑙1, (29)

and for all 𝑛 ≥ 1 by𝑟𝑛+1 = 𝑙𝑛+1 + 𝑘1 (𝑙𝑛+1 − 𝑙𝑛) + 𝑘2 (𝑟𝑛 − 𝑙𝑛)1 − (𝑘0𝑙𝑛 + 𝑘𝑟𝑛) (𝑙𝑛+1 − 𝑙𝑛) ,
𝑙𝑛+2 = 𝑙𝑛+1 + 𝑘1 (𝑙𝑛+1 − 𝑙𝑛) + 𝑘2 (𝑟𝑛 − 𝑙𝑛)1 − (𝑘0𝑙𝑛+1 + �̃� (𝑟𝑛+1 + 𝑟0)) (𝑙𝑛+1 − 𝑙𝑛) . (30)

Supposing 𝑘0 (𝑡1 − 𝑡0) + �̃�𝑠01 − (𝑘0 (𝑡1 − 𝑡0) + �̃� (𝑠1 + 𝑠0)) ≤ 𝛼,0 < 𝑘0𝑙11 − 𝛼 + �̃�𝑙11 − 𝛼 + �̃�𝑟0 < 1,
(31)

then sequences {𝑟𝑛}, {𝑙𝑛} are well defined, increasing, and
bounded above by 𝑙∗∗ = 𝑙1/(1 − 𝛼) and converge to their least
upper bound 𝑙∗ which satisfies 𝑙1 ≤ 𝑙∗ ≤ 𝑙∗∗. Moreover, the
following estimates hold for all 𝑛 ≥ 1:0 ≤ 𝑟𝑛+1 − 𝑙𝑛+1 ≤ 𝛼 (𝑙𝑛+1 − 𝑙𝑛) ,0 ≤ 𝑙𝑛+2 − 𝑙𝑛+1 ≤ 𝛼 (𝑙𝑛+1 − 𝑙𝑛) ,𝑙𝑛 ≤ 𝑟𝑛. (32)

Theorem 4 (see [18]). Let 𝐺 : D ⊆ X → Y be a nonlinear
operator; 𝑘0, 𝑘, 𝑘1, 𝑘2, 𝜂, and 𝑠 are given parameters. Denote𝐴𝑛 = [𝑥𝑛, 𝑦𝑛; 𝐺] for 𝑛 ≥ 0. Under the hypothesis of Lemma 3,
the following assumptions hold inB(𝑥0, 𝑙∗) ⊆ D:(𝐴1) 𝐴−10 ∈ 𝐿 (𝑌,𝑋)(𝐴2) 𝐴−10 𝐺 (𝑥0) ≤ 𝜂(𝐴3) 𝑥0 − 𝑦0 ≤ 𝑠(𝐴4) 𝐴−10 ([𝑥, 𝑦; 𝐺] − [𝑥0, 𝑦0; 𝐺])≤ 𝑘0 𝑥 − 𝑥0 + �̃� 𝑦 − 𝑦0(𝐴5) 𝐴−10 ([𝑥, 𝑦; 𝐺] − [𝑢, V; 𝐺])≤ 𝑘1 ‖𝑥 − 𝑢‖ + 𝑘2 𝑦 − V

for all 𝑥, 𝑦, 𝑢, V ∈ D.

(33)

Starting with suitable 𝑥0, 𝑦0 ∈ B(𝑥0, 𝑙∗), sequences {𝑥𝑛} and{𝑦𝑛} defined in (6) are well defined, remain in B(𝑥0, 𝑙∗), and
converge to a unique solution 𝑥∗ inB(𝑥0, 𝑙∗) of (1). Moreover,
the following estimates hold for each 𝑛 ≥ 0:𝑦𝑛 − 𝑥𝑛 ≤ 𝑟𝑛 − 𝑙𝑛,𝑥𝑛+1 − 𝑥𝑛 ≤ 𝑙𝑛+1 − 𝑙𝑛,𝑥∗ − 𝑥𝑛 ≤ 𝑙∗ − 𝑡𝑛. (34)

Further, if there exists �̃� > 𝑙∗ such that B(𝑥0, �̃�) ⊆ D and𝑘0𝑙∗+�̃��̃� < 1, then𝑥∗ is the only solution of (1) inB(𝑥0, �̃�)∩D.

Previous assertions [17] are made for iteration (6) as
follows:𝐴−10 ([𝑥, 𝑦; 𝐺] − 𝐴0) ≤ 𝐾 (𝑥 − 𝑥0 + 𝑦 − 𝑦0) ,𝐴−10 ([𝑥, 𝑦; 𝐺] − [𝑢, V; 𝐺])≤ 𝐾1 (‖𝑥 − 𝑢‖ + 𝑦 − V) . (35)



International Journal of Analysis 5

One can easily see that our conditions are more general
than (35), and with conditions (35), the following majorizing
sequences are obtained:𝑝0 = 0,𝑝1 = 𝜂,𝑞0 = 𝑠,𝑞1 = 𝑝1 + 𝐾1 (𝑝1 + 𝑞0) 𝑝1, for 𝑛 ≥ 1,𝑝𝑛+1 = 𝑝𝑛+ 𝐾1 (𝑝𝑛 − 𝑝𝑛−1 + 𝑞𝑛−1 − 𝑝𝑛−1)1 − 𝐾0 (𝑝𝑛 − 𝑝0 + 𝑞𝑛 + 𝑞0) (𝑝𝑛 − 𝑝𝑛−1) ,𝑞𝑛+1 = 𝑝𝑛+1+ 𝐾1 (𝑝𝑛+1 − 𝑝𝑛 + 𝑞𝑛 − 𝑝𝑛)1 − 𝐾0 (𝑝𝑛 − 𝑝0 + 𝑞𝑛 + 𝑞0) (𝑝𝑛+1 − 𝑝𝑛) .

(36)

3. Local Convergence

In this section, the local convergence of (6) to solve (1)
is established under center-Lipschitz condition on divided
differences of order one of the involved operator 𝐺.
Theorem5. Let 𝑙0, 𝑙 ≥ 0 be given parameters and𝐺 : D×D→
Y be a nonlinear divided difference operator such that for all𝑥, 𝑦 ∈ D 𝐺 (𝑥∗) = 0,𝐺 (𝑥∗)−1 ∈ 𝐿 (Y,X) ,𝐺 (𝑥∗)−1 ([𝑥, 𝑦; 𝐺] − 𝐺 (𝑥∗))≤ 𝑙0 𝑥 − 𝑥∗ + 𝑙 𝑦 − 𝑥∗ ,

(37)

andB(𝑥∗, 𝑟∗) ⊆ D, where 𝑟∗ = 1/(2𝑙 + 3𝑙0). Then, sequences{𝑥𝑛}, {𝑦𝑛} of (6) starting from 𝑥0, 𝑦0 ∈ B(𝑥∗, 𝑟∗) are well
defined, remain in B(𝑥∗, 𝑟∗) for each 𝑛 = 0, 1, 2, . . ., and
converge to 𝑥∗. Moreover, the following error estimates hold:𝑥𝑛+1 − 𝑥∗≤ (2𝑙0 𝑥𝑛 − 𝑥∗ + 𝑙 𝑦𝑛 − 𝑥∗)1 − (𝑙0 𝑥𝑛 − 𝑥∗ + 𝑙 𝑦𝑛 − 𝑥∗) 𝑥𝑛 − 𝑥∗< 𝑥𝑛 − 𝑥∗ < 𝑟∗.

(38)

Additionally, if there exists 𝑅∗ > 𝑟∗ such thatB(𝑥∗, 𝑅∗) ⊆ D

and 𝑅∗ < 1/𝑙, then 𝑥∗ is the only solution of (1) inB(𝑥∗, 𝑅∗)∩
D.

Proof. For 𝑥0, 𝑦0 ∈B(𝑥∗, 𝑟∗) and using (37), we get𝐼 − 𝐺 (𝑥∗)−1 𝐴0 = 𝐺 (𝑥∗)−1 (𝐺 (𝑥∗) − 𝐴0)≤ 𝑙0 𝑥0 − 𝑥∗ + 𝑙 𝑦0 − 𝑥∗< (𝑙0 + 𝑙) 𝑟∗ < 1. (39)

So, by Banach lemma, 𝐴−10 exists and𝐴−10 𝐺 (𝑥∗) ≤ 11 − (𝑙0 + 𝑙) / (2𝑙 + 3𝑙0) = 2𝑙 + 3𝑙0𝑙 + 2𝑙0 . (40)

Using (37) and (40) and hypothesis of Theorem 5, we have𝑥1 − 𝑥∗ = 𝑥0 − 𝑥∗ − 𝐴−10 (𝐺 (𝑥0) − 𝐺 (𝑥∗))≤ 𝐴−10 𝐺 (𝑥∗)⋅ (𝐺 (𝑥∗)−1 ([𝑥0, 𝑦0; 𝐺] − 𝐺 (𝑥∗))+ 𝐺 (𝑥∗)−1 ([𝑥0, 𝑥∗; 𝐺] − 𝐺 (𝑥∗))) 𝑥0 − 𝑥∗≤ (2𝑙0 𝑥0 − 𝑥∗ + 𝑙 𝑦0 − 𝑥∗)1 − (𝑙0 𝑥0 − 𝑥∗ + 𝑙 𝑦0 − 𝑥∗) 𝑥0 − 𝑥∗< (2𝑙0 + 𝑙) 𝑟∗1 − (𝑙0 + 𝑙) 𝑟∗ 𝑥0 − 𝑥∗ = 𝑥0 − 𝑥∗ < 𝑟∗.
(41)

Again, using (37)–(41) and hypothesis of Theorem 5, we get𝑦1 − 𝑥∗ = 𝑥1 − 𝑥∗ − 𝐴−10 (𝐺 (𝑥1) − 𝐺 (𝑥∗))≤ 𝐴−10 𝐺 (𝑥∗)⋅ (𝐺 (𝑥∗)−1 ([𝑥0, 𝑦0; 𝐺] − 𝐺 (𝑥∗))+ 𝐺 (𝑥∗)−1 ([𝑥1, 𝑥∗; 𝐺] − 𝐺 (𝑥∗))) 𝑥1 − 𝑥∗≤ (𝑙0 (𝑥0 − 𝑥∗ + 𝑥1 − 𝑥∗) + 𝑙 𝑦0 − 𝑥∗)1 − (𝑙0 𝑥0 − 𝑥∗ + 𝑙 𝑦0 − 𝑥∗) 𝑥1
− 𝑥∗ < (2𝑙0 + 𝑙) 𝑟∗1 − (𝑙0 + 𝑙) 𝑟∗ 𝑥1 − 𝑥∗ = 𝑥1 − 𝑥∗ .

(42)

This shows that 𝑥1, 𝑦1 ∈ B(𝑥∗, 𝑟∗). Clearly, using induction
on 𝑛,𝑥𝑛+1 − 𝑥∗ = 𝑥𝑛 − 𝑥∗ − 𝐴−1𝑛 (𝐺 (𝑥𝑛) − 𝐺 (𝑥∗))≤ 𝐴−1𝑛 𝐺 (𝑥∗)⋅ (𝐺 (𝑥∗)−1 ([𝑥𝑛, 𝑦𝑛; 𝐺] − 𝐺 (𝑥∗))+ 𝐺 (𝑥∗)−1 ([𝑥𝑛, 𝑥∗; 𝐺] − 𝐺 (𝑥∗))) 𝑥𝑛 − 𝑥∗≤ (2𝑙0 𝑥𝑛 − 𝑥∗ + 𝑙 𝑦𝑛 − 𝑥∗)1 − (𝑙0 𝑥𝑛 − 𝑥∗ + 𝑙 𝑦𝑛 − 𝑥∗) 𝑥𝑛 − 𝑥∗< 𝑥𝑛 − 𝑥∗ < 𝑟∗.

(43)

This shows (38). Now, let 𝑦∗ be another solution of (1) in
B(𝑥∗, 𝑅∗) such that 𝐺(𝑦∗) = 0. Using (37), this gives𝐺 (𝑥∗)−1 ([𝑥∗, 𝑦∗; 𝐺] − 𝐺 (𝑥∗)) ≤ 𝑙 𝑦∗ − 𝑥∗< 1. (44)

This shows that 𝑥∗ is the unique solution of (1) inB(𝑥∗, 𝑅∗)∩
D.
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Figure 1: Domain of (1).

4. Numerical Examples

In this section, some numerical examples are given to
show the effectiveness of the present study. We have used
approach-1, approach-2, and approach-3 by (18), (33), and
(35), respectively.

Example 1. Let X = Y = R, D = B(𝑥0, 1) and define
function 𝐺 onD by 𝐺 (𝑥) = 𝑥3 − 𝜃. (45)

We take 𝑥0 = 1 and 𝑦0 free in order to find a relation
between 𝜃 and 𝑦0 for which all the criteria for ensuring
the convergence are satisfied. In Figure 1, we have taken
horizontal axis for 𝑦0 and vertical axis for 𝜃. With the help
of (6), we obtain 𝑠 = |1 − 𝑦0|, 𝜂 = |1 − 𝜃|/(1 + 𝑦0 + 𝑦20),𝑘0 = 2, 𝑘 = 1, 𝑘1 = 8/3, 𝑘2 = 4/3, 𝑘0 = 6, �̃� = 3, 𝑘1 = 4,𝐾1 = 𝑘2 = 8, and 𝐾 = 4. The efficacy of our approach can be
seen in Figure 1.

For comparing the error estimation where all approaches
including the older approach are satisfied, we take the domain
D = B(𝑥0, 0.3) and fix 𝜃 = 0.75, 𝑦0 = 0.95. In this case, we
get 𝐺 (𝑥) = 𝑥3 − 0.75 (46)

and 𝑠 = 0.05, 𝜂 = 0.0876424, 𝑘0 = 1.53333, 𝑘 = 0.766666,𝑘1 = 1.73333, 𝑘2 = 0.86666, �̃� = 0.8063, 𝐾 = 𝑘0 = 1.6126,𝑘1 = 0.9115, and 𝐾1 = 𝑘2 = 1.8230. Comparison of error
estimations with different approaches is given in Table 1.

From Figure 1, it can be seen that there exists some
combination of 𝑦0 and 𝜃 where the condition used earlier

fails. When all conditions hold, then it gives the precise error
bounds. Thus, the claim made by us in the abstract and the
Introduction is justified here.

Example 2. LetX = Y = C[0, 1], the space of all continuous
functions defined in [0, 1] equipped with the max-norm. Let
D = {𝑥 ∈ C[0, 1]; ‖𝑥‖ ≤ 𝑅} such that 𝑅 = 1 and define 𝐺 on
D by𝐺 (𝑥) = 𝑥 (𝑠) − 𝑓 (𝑠) − 18 ∫10 𝐺1 (𝑠, 𝑡) 𝑥 (𝑡)3 𝑑𝑡,𝑥 ∈ C [0, 1] , 𝑠 ∈ [0, 1] , (47)

where 𝑓 ∈ C[0, 1] is a given function and the kernel 𝐺1 is
Green’s function:𝐺1 (𝑠, 𝑡) = {{{𝑡 (1 − 𝑠) , if 𝑡 ≤ 𝑠,𝑠 (1 − 𝑡) , if 𝑠 ≤ 𝑡. (48)

Now, one can represent a linear operator 𝐺(𝑥) by(𝐺 (𝑥)) V (𝑠) = V (𝑠) − 38 ∫10 𝐺1 (𝑠, 𝑡) 𝑥 (𝑡)2 V (𝑡) 𝑑𝑡,
V ∈ C [0, 1] , 𝑠 ∈ [0, 1] . (49)

Choose 𝑥0(𝑠) = 𝑓(𝑠) = 𝑠 and 𝑦0(𝑠) = 2𝑠; we obtain𝐺 (𝑥0) ≤ 164 . (50)

It can be easily seen that[𝑥, 𝑦; 𝐺] − 𝐺 (𝑧)≤ ∫1
0

𝐺 (𝛾𝑥 + (1 − 𝛾) 𝑦) − 𝐺 (𝑧) 𝑑𝛾≤ 164 (𝑥2 − 𝑧2 + 𝑦2 − 𝑧2 + 𝑥𝑦 − 𝑧2) .
(51)

𝜂 = 0.1404, 𝑘0 = 0.0984, 𝑘 = 0.0492, 𝑘1 = 0.1311, 𝑘2 =0.0565, �̃� = 0.0526, 𝐾 = 𝑘0 = 0.1228, 𝑘1 = 0.1404, 𝐾1 = 𝑘2 =0.0702, and 𝑠 = 1. Comparison of the error estimation with
the older one is given in Table 2.

Example 3. Consider the partial differential equation𝑢 = 𝑢3, (52)

where  = 𝜕2𝜕𝜉21 + 𝜕2𝜕𝜉22 (53)

is the two-dimensional Laplace operator. These types of
equations arise in the theory of gas dynamics [19]. Assume
that (52) is satisfied in the rectangular domainD = {(𝜉1, 𝜉2) ∈
R2; 0 ≤ 𝜉1 ≤ 1, 0 ≤ 𝜉2 ≤ 1} with the Dirichlet boundary
condition given by𝑢 (𝜉1, 0) = 2𝜉21 − 𝜉1 + 1, 𝑢 (𝜉1, 1) = 2,𝑢 (0, 𝜉2) = 2𝜉22 − 𝜉2 + 1, 𝑢 (1, 𝜉2) = 2. (54)
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Table 1: Comparison of error estimation for (46).𝑡𝑛+1 − 𝑡𝑛 𝑠𝑛 − 𝑡𝑛 𝑙𝑛+1 − 𝑙𝑛 𝑟𝑛 − 𝑙𝑛 𝑝𝑛+1 − 𝑝𝑛 𝑞𝑛 − 𝑝𝑛1.9250𝑒 − 02 1.5700𝑒 − 02 2.1668𝑒 − 02 1.5922𝑒 − 02 3.2362𝑒 − 02 2.1993𝑒 − 021.2013𝑒 − 03 1.1508𝑒 − 03 1.6866𝑒 − 03 1.5928𝑒 − 03 6.1234𝑒 − 03 5.3343𝑒 − 034.9236𝑒 − 06 4.9113𝑒 − 06 1.1047𝑒 − 05 1.1002𝑒 − 05 2.4979𝑒 − 04 2.4428𝑒 − 048.3814𝑒 − 11 8.3813𝑒 − 11 4.8224𝑒 − 10 4.8222𝑒 − 10 4.3972𝑒 − 07 4.3937𝑒 − 07
0 0 0 0 1.3772𝑒 − 12 1.3772𝑒 − 12

Table 2: Comparison of error estimation for Example 2.𝑡𝑛+1 − 𝑡𝑛 𝑠𝑛 − 𝑡𝑛 𝑙𝑛+1 − 𝑙𝑛 𝑟𝑛 − 𝑙𝑛 𝑝𝑛+1 − 𝑝𝑛 𝑞𝑛 − 𝑝𝑛9.3052𝑒 − 03 9.0388𝑒 − 03 1.0231𝑒 − 02 9.4607𝑒 − 03 1.9542𝑒 − 02 2.2479𝑒 − 021.6579𝑒 − 05 1.6594𝑒 − 05 2.3267𝑒 − 05 2.3239𝑒 − 05 1.3390𝑒 − 04 1.3363𝑒 − 045.5371𝑒 − 11 5.5371𝑒 − 11 1.2339𝑒 − 10 1.2339𝑒 − 10 5.8417𝑒 − 09 5.8416𝑒 − 09
In order to transform (52) into a system of nonlinear
equations, central divided differences scheme has been used.
This leads to a nonlinear system of equations:𝑢𝑖+1,𝑗 − 4𝑢𝑖,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1 − ℎ2𝑢𝑖,𝑗 = 0,𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚. (55)

𝑢(𝑖, 𝑗) denotes the estimation 𝑢(𝜉1,𝑖, 𝜉2,𝑗). Now, taking 𝑛 =𝑚 = 5, this generates a 6 × 6 mesh. Boundary values can be
obtained from (54), and to find interior points, we transform
interior values as 𝑥1 = 𝑢1,1, 𝑥2 = 𝑢2,1, 𝑥3 = 𝑢3,1, 𝑥4 =𝑢4,1, 𝑥5 = 𝑢1,2, 𝑥6 = 𝑢2,2, 𝑥7 = 𝑢3,2, 𝑥8 = 𝑢4,2, 𝑥9 = 𝑢1,3, 𝑥10 =𝑢2,3, 𝑥11 = 𝑢3,3, 𝑥12 = 𝑢4,3, 𝑥13 = 𝑢1,4, 𝑥14 = 𝑢2,4, 𝑥15 =𝑢3,4, 𝑥16 = 𝑢4,4. So, for X = Y = R16, the system can be
expressed as 𝐺 (𝑥) = 𝐴𝑥 + ℎ2𝜙 (𝑥) − 𝑏 = 0, (56)

where 𝐴, ℎ, and 𝑏 are given by

ℎ = 15 ,
𝐴 =(𝐵 𝐶 0 0𝐶 𝐵 𝐶 00 𝐶 𝐵 𝐶0 0 𝐶 𝐵),
𝐵 =( 4 −1 0 0−1 4 −1 00 −1 4 −10 0 −1 4 ),
𝐶 = −𝐼4,𝜙 (𝑡) = (𝑥31, 𝑥32, . . . , 𝑥316)𝑇 ,𝑏 = (4425 , 2325 , 2825 , 8725 , 2325 , 0, 0, 2, 2825 , 0, 0, 2, 8725 , 2, 2, 4)𝑇 .

(57)

Now, 𝐺 (𝑥) − 𝐺 (𝑦) = diag{3ℎ2⋅ max
0≤𝑥𝑖 ,𝑦𝑖≤1

{𝑥21 − 𝑦21 , 𝑥22 − 𝑦22 , . . . , 𝑥216 − 𝑦216}}≤ 3ℎ2max
1≤𝑖≤16

𝑥2𝑖 − 𝑦2𝑖  ≤ 3ℎ2 𝑥2 − 𝑦2 .
(58)

So, [𝑥, 𝑦; 𝐺] − 𝐺 (𝑧)≤ ∫1
0

𝐺 (𝛾𝑥 + (1 − 𝛾) 𝑦) − 𝐺 (𝑧) 𝑑𝛾≤ ℎ2 (‖𝑥 + 𝑧‖ ‖𝑥 − 𝑧‖ + 𝑦 + 𝑥 + 𝑧 𝑦 − 𝑧) .
(59)

We choose 𝑥0 = (4/5, 4/5, . . . , 4/5)𝑇 and 𝑦0(𝑖) = 𝑥0(𝑖) + 0.1,
and we get 𝑘0 = 0.2169, 𝑘 = 0.1084, 𝑘1 = 0.2168, 𝑘2 = 0.1205,𝑠 = 0.1, 𝜂 = 1.0425, �̃� = 0.1070813, 𝐾 = 𝑘0 = 0.2201, 𝑘1 =0.2379, and 𝐾1 = 𝑘2 = 0.1189. In this example, approach-3
does not hold but approach-1 and approach-2 hold well. Now,
we compare approach-1 and approach-2 for this example and
a comparison is given in Table 3. Next, we use (6) to solve (56)
and the approximate solution is given with stopping criterion‖𝑥𝑛 − 𝑥𝑛−1‖ ≤ 10−15.The approximate solution is then given
in Table 4.

Interpolating the value of Table 4, we get the numerical
approximation of the solution which can be seen in Figure 2.

Example 4. Let X = Y = 𝑅3, D = 𝑅3, and 𝑥∗ = (0, 0, 0)𝑇
and define a function 𝐺 onD by𝐺 (𝑥, 𝑦, 𝑧) = (𝑒𝑥 − 1, 𝑦2 + 𝑦, 𝑧)𝑇 . (60)

For 𝑡 = (𝑥, 𝑦, 𝑧)𝑇,
𝐺 (𝑡) = (𝑒𝑥 0 00 2𝑦 + 1 00 0 1) . (61)
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Table 3: Comparison of error estimation for Example 3.𝑡𝑛+1 − 𝑡𝑛 𝑠𝑛 − 𝑡𝑛 𝑙𝑛+1 − 𝑙𝑛 𝑟𝑛 − 𝑙𝑛0.3897 0.2497 0.4029 0.25049.1893𝑒 − 02 7.6239𝑒 − 02 9.9774𝑒 − 02 8.1506𝑒 − 025.7163𝑒 − 03 5.4747𝑒 − 03 6.9079𝑒 − 03 6.5728𝑒 − 032.3179𝑒 − 05 2.3121𝑒 − 05 3.4807𝑒 − 05 3.4695𝑒 − 053.8625𝑒 − 10 3.8624𝑒 − 10 8.9732𝑒 − 10 8.9730𝑒 − 10
Table 4: Approximate solution of (52).𝑖 𝑥∗𝑖

1 0.967514648571165
2 1.073142808305482
3 1.255308661675940
4 1.547504427760980
5 1.073142808305482
6 1.199182696602124
7 1.359712017969179
8 1.602945733655613
9 1.255308661675940
10 1.359712017969179
11 1.481965315289151
12 1.669313085344323
13 1.547504427760980
14 1.602945733655613
15 1.669313085344323
16 1.778410018624668

1 652 3 44 325 6 1 21

0.8

1
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1.4
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Figure 2: Approximated solution of (52).

Using max-norm of rows, one can easily find that 𝐺(𝑥∗) =
diag {1, 1, 1}, 𝑙0 = 𝑒/2, and 𝑙 = 1, 𝑟∗ = 0.164543. So, from
Theorem 5, (6) starting from 𝑥0, 𝑦0 ∈B(𝑥∗, 𝑟∗) converges to𝑥∗.

For comparison of the radius of ball convergence with a
previous study, we take another example which satisfies the
previous condition given in [17].

Example 5. Let X = Y = 𝑅, D = 𝑅, 𝑥∗ = 0 and define a
function 𝐺 onD by 𝐺 (𝑥) = 𝑒𝑥 − 1. (62)

Clearly, 𝐺(𝑥∗) = 1. In this case, we get 𝑙0 = 𝑙 = (𝑒 − 1)/2, and
using Theorem 5, we get 𝑟∗ = 0.23279 which is bigger than
the corresponding radius 0.20002 in [17].

Example 6. Let X = Y = C[0, 1], the space of continuous
functions defined on [0, 1], equippedwith themax-norm and
D =B(0, 1). Define 𝐺 onD, given by𝐺 (𝑥) (𝑠) = 𝑥 (𝑠) − 5∫1

0
𝑠𝑡𝑥3 (𝑡) 𝑑𝑡, (63)𝑠 ∈ [0, 1]. We obtain 𝑙0 = 𝑙 = 3.75, and using this value, we

find that 𝑟∗ = 0.05333which is bigger than the corresponding
radius 0.039052 in [17].

5. Conclusions

In this work, the semilocal and local convergence analysis
for two-step secant method is established. A comparison
is established on different types of center conditions used
earlier for the convergence analysis. It is shown that the
approach used in this paper gives precise error bounds along
with the better information to the solution. It is also shown
that sometimes earlier condition fails to converge but the
sufficient conditions used in this paper hold. Moreover, it
gives precise error bounds. Finally, some numerical examples
including gas dynamics and integral equations validate the
theoretical results obtained in this study.
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