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We obtain a Hull and White type option price decomposition for a general local volatility model. We apply the obtained formula
to CEV model. As an application we give an approximated closed formula for the call option price under a CEV model and an
approximated short term implied volatility surface.These approximated formulas are used to estimatemodel parameters.Numerical
comparison is performed for our new method with exact and approximated formulas existing in the literature.

1. Introduction

In [1], a decomposition of the price of a plain vanilla call
under the Heston model is obtained using Itô calculus.
Recently, in [2], the decomposition obtained in [1] has been
used to infer a closed form approximation formula for a plain
vanilla call price in the Heston case, and on the basis of this
approximated price, a method to calibrate model parameters
has been developed and successfully applied. In this paper,
we use the ideas presented in [1] to obtain a closed form
approximation to plain vanilla call option price under a spot-
dependent volatility model.

The model presented here assumes the volatility is a
deterministic function of the underlying stock price, and
therefore, there is only one source of randomness in the
model. These models are sometimes called local volatility
models in the industry and GARCH-type volatility models in
financial econometrics. Recall that these models are different
from the so-called stochastic volatility models, like Heston
model, where the volatility process is driven by an additional
source of randomness, not perfectly correlated with the stock
price innovations.

As an application, for the particular case of CEV model,
we obtain an approximation of the at-the-money (ATM)
implied volatility curve as a function of time and an approx-
imation of the implied volatility smile as a function of

the log-moneyness, close to the expiry date. We use these
approximations to calibrate the CEV model parameters.

2. Preliminaries and Notations

Let 𝑆 = {𝑆𝑡, 𝑡 ∈ [0, 𝑇]} be a positive price process under a
market chosen risk neutral probability that follows the model

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜃 (𝑆𝑡) 𝑆𝑡𝑑𝑊𝑡, (1)

where 𝑊 is a standard Brownian motion, 𝑟 ≥ 0 is the
constant interest rate, and 𝜃 : [0,∞) → [0,∞) is a
function of 𝐶2([0,∞)) such that 𝜃(𝑆𝑡) is a square integrable
random variable that satisfies enough conditions to ensure
the existence and uniqueness of a solution of (1).

The following notation will be used in all the paper:
(i) We define the Black-Scholes function as a function of𝑡 ∈ [0, 𝑇] and 𝑥, 𝑦 ∈ [0,∞) such that

BS (𝑡, 𝑥, 𝑦) fl 𝑥Φ (𝑑+) − 𝐾𝑒−𝑟(𝑇−𝑡)Φ(𝑑−) , (2)

where Φ(⋅) denotes the cumulative probability func-
tion of the standard normal law, 𝐾 and 𝑇 are strictly
positive constants, and

𝑑± (𝑦) fl ln (𝑥/𝐾) + (𝑟 ± 𝑦2/2) (𝑇 − 𝑡)
𝑦√𝑇 − 𝑡 . (3)
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Note that the price of a plain vanilla European call
under the classical Black-Scholes theory is BS(𝑡, 𝑆𝑡, 𝜎)
where 𝑆𝑡 is the price of the underlying process at 𝑡, 𝜎
is the constant volatility,𝐾 is the strike price, and 𝑇 is
the expiry date.

(ii) We will denote frequently by 𝜏 fl 𝑇 − 𝑡 the time to
maturity.

(iii) We use in all the paper the notation E𝑡[⋅] fl E[⋅ | F𝑡],
where {F𝑡, 𝑡 ≥ 0} is the completed natural filtration
of 𝑆.

(iv) In our setting, the call option price is given by

𝑉𝑡 = 𝑒−𝑟(𝑇−𝑡)E𝑡 [(𝑆𝑇 − 𝐾)+] . (4)

(v) Recall that from the Feynman-Kac formula, the oper-
ator

L𝜃 fl 𝜕𝑡 + 12𝜃 (𝑆𝑡)2 𝑆2𝑡 𝜕2𝑆 + 𝑟𝑆𝑡𝜕𝑆 − 𝑟 (5)

satisfiesL𝜃BS(𝑡, 𝑆𝑡, 𝜃(𝑆𝑡)𝑆𝑡) = 0.
(vi) We define the operators Λ fl 𝑥𝜕𝑥, Γ fl 𝑥2𝜕2𝑥, and Γ2 =Γ ∘ Γ. In particular, we have that

ΓBS (𝑡, 𝑥, 𝑦) fl 𝑥
𝑦√2𝜋𝜏 exp(−𝑑2+ (𝑦)2 ) ,

ΛΓBS (𝑡, 𝑥, 𝑦)
fl

𝑥
𝑦√2𝜋𝜏 exp(−𝑑2+ (𝑦)2 )(1 − 𝑑+ (𝑦)𝑦√𝜏 ) ,

Γ2BS (𝑡, 𝑥, 𝑦)
fl

𝑥
𝑦√2𝜋𝜏 exp(−𝑑2+ (𝑦)2 ) 𝑑2+ (𝑦) − 𝑦𝑑+ (𝑦)√𝜏 − 1

𝑦2𝜏 .

(6)

Lemma 1. Then, for any 𝑛 ≥ 2, and for any positive quantities𝑥, 𝑦, 𝑝, and 𝑞, one has
󵄨󵄨󵄨󵄨𝑥𝑝 (ln𝑥)𝑞 𝑥𝑛𝜕𝑛𝑥𝐵𝑆 (𝑡, 𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝐶

(𝑦√𝜏)𝑛−1 , (7)

where 𝐶 is a constant that depends on 𝑝, 𝑞, and 𝑛.
Proof. For any 𝑛 ≥ 2 we have

𝑥𝑛𝜕𝑛𝑥BS (𝑡, 𝑥, 𝑦) = 𝑥𝜙 (𝑑+)
(𝑦√𝜏)𝑛−1𝑃𝑛−2 (ln𝑥, 𝑦√𝜏) , (8)

where 𝑃𝑛−2 is a polynomial of order 𝑛−2 and the exponential
decreasing on 𝑥 of the Gaussian kernel compensates the
possible increasing of 𝑥 and ln 𝑥.

3. A General Decomposition Formula

Here we obtain a general abstract decomposition formula for
a certain family of functionals of 𝑆 that will be the basis of all
later computations.

Assume we have a functional of the form

𝑒−𝑟𝑡𝐴(𝑡, 𝑆𝑡, 𝜃2 (𝑆𝑡)) 𝐵 (𝑡) , (9)

where 𝐵 is a function of𝐶2([0, 𝑇]) and𝐴(𝑡, 𝑥, 𝑦) is a function
of 𝐶1,2,2([0, 𝑇] × [0,∞) × [0,∞)).

Then we have the following lemma.

Lemma 2 (generic decomposition formula). For all 𝑡 ∈[0, 𝑇], one has
E𝑡 [𝑒−𝑟(𝑇−𝑡)𝐴(𝑇, 𝑆𝑇, 𝜃2 (𝑆𝑇)) 𝐵 (𝑇)] = 𝐴 (𝑡, 𝑆𝑡, 𝜃2 (𝑆𝑡))

⋅ 𝐵 (𝑡) + E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢))

⋅ 𝐵󸀠 (𝑢) 𝑑𝑢]
+ 𝑟E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)𝜕𝜃2𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢)) 𝐵 (𝑢)

⋅ (𝜕𝑆𝜃2 (𝑆𝑢)) 𝑆𝑢𝑑𝑢] + 12
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)𝜕𝜃2𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢)) 𝐵 (𝑢)

⋅ (𝜕2𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢) 𝑆2𝑢𝑑𝑢] + 12
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)𝜕2𝜃2𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢)) 𝐵 (𝑢)

⋅ (𝜕𝑆𝜃2 (𝑆𝑢))2 𝜃2 (𝑆𝑢) 𝑆2𝑢𝑑𝑢]
+ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)𝜕2𝑆,𝜃2𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢)) 𝐵 (𝑢)

⋅ (𝜕𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢) 𝑆2𝑢𝑑𝑢] .

(10)

Proof. Applying the Itô formula to process 𝑒−𝑟𝑡𝐴(𝑡, 𝑆𝑡,𝜃2(𝑆𝑡))𝐵(𝑡) we obtain
𝑒−𝑟𝑇𝐴(𝑇, 𝑆𝑇, 𝜃2 (𝑆𝑇)) 𝐵 (𝑇) = 𝑒−𝑟𝑡𝐴(𝑡, 𝑆𝑡, 𝜃2 (𝑆𝑡))

⋅ 𝐵 (𝑡) − 𝑟∫𝑇
𝑡
𝑒−𝑟𝑢𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢)) 𝐵 (𝑢) 𝑑𝑢

+ ∫𝑇
𝑡
𝑒−𝑟𝑢𝜕𝑢𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢)) 𝐵 (𝑢) 𝑑𝑢

+ ∫𝑇
𝑡
𝑒−𝑟𝑢𝜕𝑆𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢)) 𝐵 (𝑢) 𝑑𝑆𝑢

+ ∫𝑇
𝑡
𝑒−𝑟𝑢𝜕𝜃2𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢))
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⋅ 𝐵 (𝑢) 𝑑𝜃2 (𝑆𝑢) + ∫𝑇
𝑡
𝑒−𝑟𝑢𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢))

⋅ 𝐵󸀠 (𝑢) 𝑑𝑢 + 12 ∫𝑇
𝑡
𝑒−𝑟𝑢𝜕2𝑆𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢))

⋅ 𝐵 (𝑢) 𝑑 [𝑆, 𝑆]𝑢 + 12
⋅ ∫𝑇
𝑡
𝑒−𝑟𝑢𝜕2𝜃2𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢))

⋅ 𝐵 (𝑢) 𝑑 [𝜃2 (𝑆) , 𝜃2 (𝑆)]
𝑢

+ ∫𝑇
𝑡
𝑒−𝑟𝑢𝜕2𝑆,𝜃2𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢))

⋅ 𝐵 (𝑢) 𝑑 [𝑆, 𝜃2 (𝑆)]
𝑢
.

(11)

Now, applying Feynman-Kac formula for 𝜃2(𝑆𝑡)𝑆2𝑡 , multi-
plying by 𝑒𝑟𝑡, and taking conditional expectations, we obtain

E𝑡 [𝑒−𝑟(𝑇−𝑡)𝐴(𝑇, 𝑆𝑇, 𝜃2 (𝑆𝑇)) 𝐵 (𝑇)] = 𝐴 (𝑡, 𝑆𝑡, 𝜃2 (𝑆𝑡))
⋅ 𝐵 (𝑡) + E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢))

⋅ 𝐵󸀠 (𝑢) 𝑑𝑢]
+ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)𝜕𝜃2𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢))

⋅ 𝐵 (𝑢) 𝑑𝜃2 (𝑆𝑢)] + 12
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)𝜕2𝜃2𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢))

⋅ 𝐵 (𝑢) 𝑑 [𝜃2 (𝑆) , 𝜃2 (𝑆)]
𝑢
]

+ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝜕2𝑆,𝜃2𝐴(𝑢, 𝑆𝑢, 𝜃2 (𝑆𝑢)) 𝐵 (𝑢) 𝜃 (𝑆𝑢)

⋅ 𝑆𝑢𝑑 [𝑊, 𝜃2 (𝑆)]
𝑢
] .

(12)

On the other hand, using Itô calculus rules, it is easy to
see that

𝑑𝜃2 (𝑆𝑡) = 𝜕𝑆𝜃2 (𝑆𝑡) 𝑟𝑆𝑡𝑑𝑡 + 𝜕𝑆𝜃2 (𝑆𝑡) 𝜃 (𝑆𝑡) 𝑆𝑡𝑑𝑊𝑡
+ 12𝜕2𝑆𝜃2 (𝑆𝑡) 𝜃2 (𝑆𝑡) 𝑆2𝑡𝑑𝑡.

(13)

Finally, substituting this expression in (12) we finish the
proof.

For the Black-Scholes function previous lemma reduces
to the following corollary.

Corollary 3 (BS decomposition formula). For all 𝑡 ∈ [0, 𝑇],
one has

E𝑡 [𝑒−𝑟(𝑇−𝑡)𝐵𝑆 (𝑇, 𝑆𝑇, 𝜃 (𝑆𝑇))] = 𝐵𝑆 (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)) + 𝑟2
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Γ𝐵𝑆 (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) (𝑇 − 𝑢)

⋅ (𝜕𝑆𝜃2 (𝑆𝑢)) 𝑆𝑢𝑑𝑢] + 14
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Γ𝐵𝑆 (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) (𝑇 − 𝑢)

⋅ (𝜕2𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢) 𝑆2𝑢𝑑𝑢] + 18
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Γ2𝐵𝑆 (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) (𝑇 − 𝑢)2

⋅ (𝜕𝑆𝜃2 (𝑆𝑢))2 𝜃2 (𝑆𝑢) 𝑆2𝑢𝑑𝑢] + 12
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)ΛΓ𝐵𝑆 (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) (𝑇 − 𝑢)

⋅ (𝜕𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢) 𝑆𝑢𝑑𝑢] .

(14)

Proof. Applying Lemma 2 to𝐴(𝑡, 𝑆𝑡, 𝜃2(𝑆𝑡)) fl BS(𝑡, 𝑆𝑡, 𝜃(𝑆𝑡))
and 𝐵(𝑡) ≡ 1, and using equalities

𝜕𝜃2BS (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)) = 𝑇 − 𝑡2 𝑆2𝑡 𝜕2𝑆BS (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)) ,
𝜕2𝜃2BS (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡))

= (𝑇 − 𝑡)24 𝑆2𝑡 𝜕2𝑆 (𝑆2𝑡 𝜕2𝑆BS (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)))
(15)

the corollary follows straightforward. Note that to apply Itô
formula to Black-Scholes function, because the derivatives of
this function are not bounded, we have to use an approxima-
tion to the identity and the dominated convergence theorem
as it is done, for example, in [3]. For simplicity we skip this
mollifying argument across the paper.

Remark 4. For clarity, in the following we will refer to terms
of the previous decomposition as

E𝑡 [𝑒−𝑟(𝑇−𝑡)BS (𝑇, 𝑆𝑇, 𝜃 (𝑆𝑇))]
= BS (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)) + (I) + (II) + (III) + (IV) . (16)

Remark 5. In [4], an alternative formula that can be used
for local volatility models is proved. The formula presented
in [4] uses, as a base function, function BS(𝑡, 𝑆𝑡, 𝜎), but this
formula is numerically worse than the new formula presented
here that uses as a base function BS(𝑡, 𝑆𝑡, 𝜃(𝑆𝑡)). This happens
because in the formula presented in [4] the volatility is put
into the approximated term, instead of keeping it on the
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Black-Scholes term as we do here. It is precisely because
volatility is a deterministic function of the underlying asset
price that we can do that.

4. Approximation Formula

In this section we obtain an approximation formula to plain
vanilla call price by approximating terms (I)–(IV). The main
idea is to use again Lemma 2 to estimate the errors.

Theorem6 (BS decomposition formula with error term). For
all 𝑡 ∈ [0, 𝑇], one has
E𝑡 [𝑒−𝑟(𝑇−𝑡)𝐵𝑆 (𝑇, 𝑆𝑇, 𝜃 (𝑆𝑇))] = 𝐵𝑆 (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)) + 14

⋅ 𝑟 (𝜕𝑆𝜃2 (𝑆𝑡)) 𝑆𝑡Γ𝐵𝑆 (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)) (𝑇 − 𝑡)2
+ 18 (𝜕2𝑆𝜃2 (𝑆𝑡)) 𝜃2 (𝑆𝑡) 𝑆2𝑡 Γ𝐵𝑆 (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)) (𝑇 − 𝑡)2
+ 124 (𝜕𝑆𝜃2 (𝑆𝑡))2 𝜃2 (𝑆𝑡) 𝑆2𝑡 Γ2𝐵𝑆 (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡))
⋅ (𝑇 − 𝑡)3 + 14 (𝜕𝑆𝜃2 (𝑆𝑡)) 𝜃2 (𝑆𝑡)
⋅ 𝑆𝑡ΛΓ𝐵𝑆 (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)) (𝑇 − 𝑡)2 + Ω,

(17)

whereΩ is an error. Terms of Ω are written in Appendix A.

Proof. We apply Lemma 2 to terms (I)–(IV). Concretely,
functions 𝐴 and 𝐵 in every case are

(I)

𝐴(𝑡, 𝑆𝑡, 𝜃2 (𝑆𝑡)) = (𝜕𝑆𝜃2 (𝑆𝑡)) 𝑆𝑡ΓBS (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)) ,
𝐵𝑡 = 𝑟2 ∫𝑇

𝑡
(𝑇 − 𝑢) 𝑑𝑢. (18)

(II)

𝐴(𝑡, 𝑆𝑡, 𝜃2 (𝑆𝑡))
= (𝜕2𝑆𝜃2 (𝑆𝑡)) 𝜃2 (𝑆𝑡) 𝑆2𝑡 ΓBS (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)) ,

𝐵𝑡 = 14 ∫𝑇
𝑡
(𝑇 − 𝑢) 𝑑𝑢.

(19)

(III)

𝐴(𝑡, 𝑆𝑡, 𝜃2 (𝑆𝑡))
= (𝜕𝑆𝜃2 (𝑆𝑡))2 𝜃2 (𝑆𝑡) 𝑆2𝑡 Γ2BS (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)) ,

𝐵𝑡 = 18 ∫𝑇
𝑡
(𝑇 − 𝑢)2 𝑑𝑢.

(20)

(IV)

𝐴(𝑡, 𝑆𝑡, 𝜃2 (𝑆𝑡))
= (𝜕𝑆𝜃2 (𝑆𝑡)) 𝜃2 (𝑆𝑡) 𝑆𝑡ΛΓBS (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)) ,

𝐵𝑡 = 12 ∫𝑇
𝑡
(𝑇 − 𝑢) 𝑑𝑢.

(21)

5. CEV Model

The constant elasticity of variance (CEV) model is a diffusion
process that solves the stochastic differential equation

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝛽𝑡 𝑑𝑊𝑡. (22)

Note that, writing 𝜃(𝑆𝑡) fl 𝜎𝑆𝛽−1𝑡 , CEV model can be seen
as a local volatility model. This model, introduced in [5], is
one of the first alternatives to Black-Scholes point of view that
appeared in the literature. The parameter 𝛽 ≥ 0 is called the
elasticity of the volatility and 𝜎 ≥ 0 is a scale parameter. Note
that for 𝛽 = 1, the model reduces to Osborne-Samuelson
model, for 𝛽 = 0, the model reduces to Bachelier model, and
for 𝛽 = 1/2, the model reduces to Cox-Ingersoll-Ross model.
Parameter 𝛽 controls the steepness of the skew exhibited by
the implied volatility.

There exists a closed form formula for call options; see
[5, 6]. An approximated formula is given in [7].

5.1. Approximation of the CEV Model. Applying Corollary 3
to CEV model, we obtain the following.

Corollary 7 (CEV exact formula). For all 𝑡 ∈ [0, 𝑇], one has
E𝑡 [𝑒−𝑟(𝑇−𝑡)𝐵𝑆 (𝑇, 𝑆𝑇, 𝜎𝑆𝛽−1𝑇 )] = 𝐵𝑆 (𝑡, 𝑆𝑡, 𝜎𝑆𝛽−1𝑡 )

+ 𝑟 (𝛽 − 1)E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)Γ𝐵𝑆 (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 )

⋅ (𝑇 − 𝑢) 𝜎2𝑆2(𝛽−1)𝑡 𝑑𝑢] + (𝛽 − 1) (2𝛽 − 3)
2

⋅ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)Γ𝐵𝑆 (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) (𝑇 − 𝑢)

⋅ 𝜎4𝑆4(𝛽−1)𝑢 𝑑𝑢] + (𝛽 − 1)2
2

⋅ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)Γ2𝐵𝑆 (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) (𝑇 − 𝑢)2

⋅ 𝜎6𝑆6(𝛽−1)𝑢 𝑑𝑢] + (𝛽 − 1)
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)ΛΓ𝐵𝑆 (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) (𝑇 − 𝑢)

⋅ 𝜎4𝑆4(𝛽−1)𝑢 𝑑𝑢] .

(23)

We will write

E𝑡 [𝑒−𝑟(𝑇−𝑡)BS (𝑇, 𝑆𝑇, 𝜎𝑆𝛽−1𝑇 )]
= BS (𝑡, 𝑆𝑡, 𝜎𝑆𝛽−1𝑡 ) + (ICEV) + (IICEV) + (IIICEV)

+ (IVCEV) .
(24)

The exact formula can be difficult to use in practice, so we
will use the following approximation.
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Table 1: Call option 𝛽 = 0.25, 𝑆0 = 100, 𝐾 = 100, 𝜎 = 20%, and 𝑟 = 1%.

Parameters Exact formula Approximation HW𝑇 − 𝑡 Price Price Error Price Error
0.25 0.2882882 0.2882884 −1.92𝐸 − 07 0.2882019 8.64𝐸 − 05
1 1.0103060 1.0103070 −9.78𝐸 − 07 1.0100377 2.68𝐸 − 04
2.5 2.4709883 2.4709894 −1.04𝐸 − 06 2.4708310 1.57𝐸 − 04
5 4.8771276 4.8771278 −2.22𝐸 − 07 4.8771099 1.77𝐸 − 05

Table 2: Call option 𝛽 = 0.50, 𝑆0 = 100, 𝐾 = 100, 𝜎 = 20%, and 𝑟 = 1%.

Parameters Exact formula Approximation HW𝑇 − 𝑡 Price Price Error Price Error
0.25 0.5356736 0.5356765 −2.89𝐸 − 06 0.5354323 2.41𝐸 − 04
1 1.3886303 1.3886529 −2.26𝐸 − 05 1.3868801 1.75𝐸 − 03
2.5 2.8506826 2.8507669 −8.42𝐸 − 05 2.8450032 5.68𝐸 − 03
5 5.1658348 5.1660433 −2.09𝐸 − 04 5.1543092 1.15𝐸 − 02

Table 3: Call option 𝛽 = 0.75, 𝑆0 = 100, 𝐾 = 100, 𝜎 = 20%, and 𝑟 = 1%.

Parameters Exact formula Approximation HW𝑇 − 𝑡 Price Price Error Price Error
0.25 1.3887209 1.3887438 −2.30𝐸 − 05 1.3883284 3.92𝐸 − 04
1 3.0389972 3.0391797 −1.83𝐸 − 04 3.0359001 3.10𝐸 − 03
2.5 5.2954739 5.2961870 −7.13𝐸 − 04 5.2835621 1.19𝐸 − 02
5 8.2781049 8.2800813 −1.98𝐸 − 03 8.2459195 3.22𝐸 − 02

Corollary 8 (CEV approximation formula). For all 𝑡 ∈ [0, 𝑇],
one has

E𝑡 [𝑒−𝑟(𝑇−𝑡)𝐵𝑆 (𝑇, 𝑆𝑇, 𝜎𝑆𝛽−1𝑇 )] = 𝐵𝑆 (𝑡, 𝑆𝑡, 𝜎𝑆𝛽−1𝑡 )
+ 12 (𝛽 − 1) 𝑟𝜎2𝑆2(𝛽−1)𝑡 Γ𝐵𝑆 (𝑡, 𝑆𝑡, 𝜎𝑆𝛽−1𝑡 ) (𝑇 − 𝑡)2
+ 14 (𝛽 − 1) (2𝛽 − 3) 𝜎4𝑆4(𝛽−1)𝑡 Γ𝐵𝑆 (𝑡, 𝑆𝑡, 𝜎𝑆𝛽−1𝑡 )
⋅ (𝑇 − 𝑡)2 + 16 (𝛽 − 1)2 𝜎6𝑆6(𝛽−1)𝑢 Γ2𝐵𝑆 (𝑡, 𝑆𝑡, 𝜎𝑆𝛽−1𝑡 )
⋅ (𝑇 − 𝑡)3 + 12 (𝛽 − 1) 𝜎4𝑆4(𝛽−1)𝑡 ΛΓ𝐵𝑆 (𝑡, 𝑆𝑡, 𝜎𝑆𝛽−1𝑡 )
⋅ (𝑇 − 𝑡)2 + Ω,

(25)

whereΩ is an error. Terms ofΩ are written in Appendix B. We
have that Ω ≤ (𝛽 − 1)2Π(𝑡, 𝑇, 𝑟, 𝜎, 𝛽) and Π is an increasing
function on every parameter.

Proof. Theproof is a direct consequence of applying Lemma 1
to (ICEV)–(IVCEV). In Appendix C, the upper-bounds for
every term are given.

5.2. Numerical Analysis of the Approximation for the CEV
Case. In this section, we compare our numerically approx-
imated price of a CEV call option with the following different
pricing methods:

(i) The exact formula, see [5, 6, 8]. The Matlab code is
available in [9].

(ii) The Singular Perturbation Technique, see [7].

The results for a call option with parameters 𝛽 = 0.25,𝑆0 = 100, 𝐾 = 100, 𝜎 = 20%, and 𝑟 = 1% are presented in
Table 1.

The results in the case that 𝛽 = 0.50 are presented in
Table 2.

The results in the case that 𝛽 = 0.75 are presented in
Table 3.

Finally, the results in the case that 𝛽 = 0.90 are presented
in Table 4.

Note that the new approximation is more accurate than
the approximation obtained in [7].

In Figure 1, we plot the surface of errors between the exact
formula and our approximation.

We calculate also the speed time of execution (in seconds)
of every method running the function timeit of Matlab 1.000
times. The computer used is an Intel Core i7 CPU Q740
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Table 4: Call option 𝛽 = 0.90, 𝑆0 = 100, 𝐾 = 100, 𝜎 = 20%, and 𝑟 = 1%.

Parameters Exact formula Approximation HW𝑇 − 𝑡 Price Price Error Price Error
0.25 2.6404164 2.6404455 −2.92𝐸 − 05 2.6401025 3.14𝐸 − 04
1 5.5191736 5.5194053 −2.32𝐸 − 04 5.5166821 2.49𝐸 − 03
2.5 9.1446125 9.1455159 −9.03𝐸 − 04 9.1349142 9.70𝐸 − 03
5 13.5553379 13.5578351 −2.50𝐸 − 03 13.5286009 2.67𝐸 − 02

Table 5: Call option 𝛽 = 0.9, 𝑆0 = 100, 𝐾 = 100, 𝜎 = 20%, 𝑇 − 𝑡 = 5, and 𝑟 = 1%.

Measure Exact formula Approximation HW
Average 2.56𝐸 − 02 1.73𝐸 − 04 1.67𝐸 − 04
Standard deviation 3.03𝐸 − 03 2.86𝐸 − 05 2.52𝐸 − 05
Max 4.68𝐸 − 02 3.65𝐸 − 04 3.67𝐸 − 04
Min 2.42𝐸 − 02 1.64𝐸 − 04 1.59𝐸 − 04

@1.73GHz 1.73GHz with 4GB of RAM with a Windows 10
(×64). The results are presented in Table 5.

We observe that singular perturbation method is the
fastest method to calculate the price of CEV call option. The
method developed in this work is a little more expensive in
computation time. But to compute the exact price is much
more expensive than any of the other twomethods. Note that,
in our method, we also are able to calculate at the same time
the price and the Gamma of the log-normal price.

6. The Approximated Implied Volatility
Surface under CEV Model

In the above section we have computed a bound for the
error between the exact and the approximated pricing for-
mulas for the CEV model. Now, we are going to derive an
approximated implied volatility surface of second order in the
log-moneyness. This approximated implied volatility surface
can help us to understand better the volatility dynamics.
Moreover we obtain an approximation of the ATM implied
volatility dynamics.

6.1. Deriving an Approximated Implied Volatility Surface for
the CEV Model. In this section, for simplicity and without
losing generality, we assume 𝑡 = 0. So 𝑇 = 𝜏 denotes time
to maturity. The price of an European call option with strike𝐾 and maturity 𝑇 is an observable quantity which will be
referred to as 𝑃obs

0 = 𝑃obs(𝐾, 𝑇). The implied volatility is
defined as the value 𝐼(𝑇,𝐾) that makes

BS (0, 𝑆0, 𝐼 (𝑇,𝐾)) = 𝑃obs
0 . (26)

Using the results from the previous section, we are going
to derive an approximation to the implied volatility as in [10].
We use the idea to expand the function with respect to an
asymptotic sequence {𝛿𝑘}∞𝑘=0 converging to 0. Thus, we can
write

𝑓 = 𝑓0 + 𝛿𝑓1 + 𝛿2𝑓2 + 𝑂 (𝛿3) (27)

and assuming 𝛽 ∈ (0, 2) we can choose 𝛿 = 𝛽 − 1. Then, we
can expand 𝐼(𝑇,𝐾) with respect to this scale as

𝐼 (𝑇,𝐾) = V0 + (𝛽 − 1) 𝐼1 (𝑇,𝐾) + (𝛽 − 1)2 𝐼2 (𝑇,𝐾)
+ 𝑂 ((𝛽 − 1)3) (28)

and write

𝐼 (𝑇,𝐾) = V0 + (𝛽 − 1) 𝐼1 (𝑇,𝐾) + (𝛽 − 1)2 𝐼2 (𝑇,𝐾) . (29)

Let V0 fl 𝜎𝑆𝛽−10 . Write BS(V0) as a shorthand for BS(0,𝑆0, V0).We can rewrite Corollary 8 as

𝑉̂ (0, 𝑆0, V0) = BS (V0) + 14 (𝛽 − 1)
⋅ 𝑇V0 (2𝑟 + V20 [1 − 2𝑑+

V0√𝑇])
⋅ 𝜕𝜎BS (V0) + 16 (𝛽 − 1)2
⋅ V30𝑇 ([𝑑2+ − V0√𝑇𝑑+ + 2])
⋅ 𝜕𝜎BS (V0) .

(30)

On the other hand we can consider the Taylor expansion
of BS(0, 𝑆0, 𝐼(𝑇,𝐾)) around V0.We have that

𝑉̂0 = BS (V0) + 𝜕𝜎BS (V0)
⋅ ((𝛽 − 1) 𝐼1 (𝑇,𝐾) + (𝛽 − 1)2 𝐼2 (𝑇,𝐾) + ⋅ ⋅ ⋅) + 12
⋅ 𝜕2𝜎BS (V0)
⋅ ((𝛽 − 1) 𝐼1 (𝑇,𝐾) + (𝛽 − 1)2 𝐼2 (𝑇,𝐾) + ⋅ ⋅ ⋅)2
+ ⋅ ⋅ ⋅

(31)
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Figure 1: Error surface between exact formula and our approxima-
tion for 𝑆0 = 100, 𝜎 = 20%, and 𝑟 = 5%.

and this expression can be rewritten as

BS (𝐼 (𝑇,𝐾)) = BS (V0) + (𝛽 − 1) 𝜕𝜎BS (V0) 𝐼1 (𝑇,𝐾)
+ (𝛽 − 1)2 𝜕𝜎BS (V0) 𝐼2 (𝑇,𝐾)
+ 𝑂 ((𝛽 − 1)2) .

(32)

Then, equating this expression to 𝑉̂0 we have
𝐼1 (𝑇,𝐾) = 𝑇V04 (2𝑟 + V20 [1 − 2𝑑+

V0√𝑇]) ,

𝐼2 (𝑇,𝐾) = 𝑇V306 (𝑑2+ − V0√𝑇𝑑+ + 2) .
(33)

Note that 𝐼1(𝑇,𝐾) is linear with respect to the log-
moneyness, while 𝐼2(𝑇,𝐾) is quadratic.
Remark 9. Note that the pricing formula has an error of𝑂((𝛽 − 1)2) as we have proved in Corollary 8, and this is
translated into an error of𝑂((𝛽−1)2) into our approximation
of the implied volatility. The quadratic term of the volatility
shape is not accurate.

We calculate now the short time behavior of the approx-
imated implied volatility 𝐼(𝑇,𝐾). We write the approximated
equations in terms of 1−𝛽, because the case 𝛽 < 1 is the most
interesting, and in terms of the log-moneyness ln𝐾 − ln 𝑆0.
Lemma 10. For 𝑇 close to 0 one has

𝐼 (𝑇,𝐾) ≈ V0 − V02 (1 − 𝛽) (ln𝐾 − ln 𝑆0)
+ V06 (1 − 𝛽)2 (ln𝐾 − ln 𝑆0)2 .

(34)

Proof. Note that

lim
𝑇→0

𝐼1 (𝑇,𝐾) = V02 (ln𝐾 − ln 𝑆0) ,
lim
𝑇→0

𝐼2 (𝑇,𝐾) = lim
𝑇→0

V30𝑇6 (𝑑2+ − V0√𝑇𝑑+ + 2)
= V06 (ln𝐾 − ln 𝑆0)2 .

(35)

Remark 11. Note that (34) is a parabolic equation in the log-
moneyness. Also, from the above expression it is easy to see
that the slope with respect to ln𝐾 is negative when 𝐾 <𝑆0 exp(3/2(1 −𝛽)) and positive when𝐾 > 𝑆0 exp(3/2(1 −𝛽)),
showing that the implied volatility for short times tomaturity
is smile-shaped. This is consistent with the result in [11].
Furthermore, there is a minimum of the implied volatility
with respect to ln𝐾 attained at 𝐾 = 𝑆0 exp(3/2(1 − 𝛽)).
Remark 12. Note that, in stochastic volatility models, the
implied volatility depends homogeneously on the pair (𝑆, 𝐾),
and in fact it is a function of the log-moneyness ln(𝑆0/𝐾).
As extensively discussed in [12] and exemplified for GARCH
option pricing in [13], this homogeneity property is at odds
with any type of GARCH option pricing. We found also this
phenomenon in the quadratic expansion (34).

The behavior of the approximated implied volatility when
the option is ATM is easy to obtain:

𝐼 (𝑇,𝐾) = V0 + (V0𝑟 (𝛽 − 1)
2 + V30 (𝛽 − 1)2

3 )𝑇

− (𝛽 − 1)2 V6024 𝑇2.
(36)

6.2. Numerical Analysis of the Approximation of the Implied
Volatility for the CEV Case. In this section, we com-
pare numerically our approximated implied volatilities with
implied volatility computed from call option prices calculated
with the exact formula and with the ones obtained using the
following formula obtained in [7]:

𝐼 (𝑇,𝐾) = 𝜎
𝑓1−𝛽av

[1 + (1 − 𝛽) (2 + 𝛽)
24 (𝐹0 − 𝐾𝑓av )2

+ (1 − 𝛽)2
24 𝜎2𝑇

𝑓2−2𝛽av
] ,

(37)

where 𝑓av = (1/2)(𝐹0 − 𝐾) and 𝐹0 is the forward price.
In Figure 2, we can see that the implied volatility dynam-

ics behaves well for long dated maturities and short dated
maturities when 𝛽 is close to 1. When this is not the case, the
formula behaves well at-the-money but the error increases far
from the ATM value. This behavior is a consequence of the
quadratic error of our approximation.

Comparing the ATM volatility structure, we have the
following graphics.

In Figure 3, we observe that, for ATM options, the
approximated implied volatility surface fits really well the real
implied volatility structure.

Now, we put the implied volatility approximation found
in (34) into Black-Scholes formula and compare the obtained
results with Hagan and Woodward results. The results for a
call option with parameters 𝛽 = 0.25, 𝑆0 = 100, 𝐾 = 100,𝜎 = 20%, and 𝑟 = 1% are presented in Table 6.

The results in the case that 𝛽 = 0.50 are presented in
Table 7.
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Figure 2: Comparative of implied volatility approximations for 𝑆0 = 100, 𝜎 = 20%, and 𝑟 = 5%.
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Table 6: Call option 𝛽 = 0.25, 𝑆0 = 100, 𝐾 = 100, 𝜎 = 20%, and 𝑟 = 1%.

Parameters Exact formula BS with implied volatility (34) HW𝑇 Price Price Error Price Error
0.25 0.2882882 0.2882882 3.51𝐸 − 08 0.28820185 8.64𝐸 − 05
1 1.0103060 1.0103057 2.36𝐸 − 07 1.010037675 2.68𝐸 − 04
2.5 2.4709883 2.4709880 2.94𝐸 − 07 2.470830954 1.57𝐸 − 04
5 4.8771276 4.8771275 6.72𝐸 − 08 4.877109923 1.77𝐸 − 05

Table 7: Call option 𝛽 = 0.50, 𝑆0 = 100, 𝐾 = 100, 𝜎 = 20%, and 𝑟 = 1%.

Parameters Exact formula BS with implied volatility (34) HW𝑇 Price Price Error Price Error
0.25 0.5356736 0.5356732 4.27𝐸 − 07 0.53543231 2.41𝐸 − 04
1 1.3886303 1.3886267 3.65𝐸 − 06 1.386880117 1.75𝐸 − 03
2.5 2.8506826 2.8506672 1.54𝐸 − 05 2.845003212 5.68𝐸 − 03
5 5.1658348 5.1657911 4.36𝐸 − 05 5.154309238 1.15𝐸 − 02

The results in the case that 𝛽 = 0.75 are presented in
Table 8.

And the results in the case that 𝛽 = 0.90 are presented in
Table 9.

Our approximation is better than Hagan and Woodward
one.

We compare also execution times (see Table 10).
We can observe that both formulas are similar in compu-

tation time, with the new approximation formula being a bit
faster.

6.3. Calibration of the Model. Following the ideas of [2], we
propose a method to calibrate the model. This method will
allow us to find 𝜎 and 𝛽 using quadratic linear regression.
We can recover the parameters with a set of options of the
same maturity with (34) or with ATM options of different
maturities (36).

6.3.1. Calibration Using the Smile of Volatility. Using a set of
options with the same maturity and the parameters 𝑆0 = 100,𝜎 = 20%, 𝑟 = 5%, 𝐾 = 98 ⋅ ⋅ ⋅ 102, 𝑇 = 1, and 𝛽 = 0.5. We
calculate the price and their implied volatilities with the exact
formula. We do a quadratic regression adjusting a parabola𝑎 + 𝑏𝑐 + 𝑐𝑥2 with 𝑥 = ln𝐾 − ln 𝑆0 to the implied volatilities.
Using (34), it is easy to see that 𝛽 = 2𝑏/𝑎 + 1 and 𝜎 = 𝑎/𝑆𝛽−1.
In this case, we have

0.000200446𝑥2 − 0.00497683𝑥 + 0.020000611 (38)

from which we obtain 𝛽 = 0.50233 and 𝜎 = 19.787%.
Using the same procedure, for 𝑇 = 5 and 𝛽 = 0.5, we find

that

−0.001234308𝑥2 − 0.004881387𝑥 + 0.020013633 (39)

from which we obtain 𝛽 = 0.51219 and 𝜎 = 18.921%.

Using the same procedure, for 𝑇 = 1 and 𝛽 = 0.9, we find
that

0.000382876𝑥2 − 0.006311173𝑥 + 0.126192162 (40)

from which we obtain 𝛽 = 0.89997 and 𝜎 = 20.002%.
Using the same procedure, for 𝑇 = 5 and 𝛽 = 0.9, we find

that

0.00010393𝑥2 − 0.00628411𝑥 + 0.126198861 (41)

from which we obtain 𝛽 = 0.90041 and 𝜎 = 19.963%.

6.3.2. Calibration Using ATM Implied Volatilities. Using a
set of ATM options with the same maturity and parameters𝑆0 = 100, 𝜎 = 20%, 𝑟 = 5%, 𝑇 = 0.3, 0.5, 0.8, 0.9, 1, and𝛽 = 0.5, we calculate the price and their implied volatilities
with the exact formula. Then we do a quadratic regression
adjusting a parabola 𝑎 + 𝑏𝑐 + 𝑐𝑥2 with 𝑥 = 𝑇 to the implied
volatilities. Using (36), it is easy to see that 𝛽 = 1 + (−3𝑟 ±√9𝑟2 + 16𝑎𝑏)/4𝑎2 and 𝜎 = 𝑎/𝑆𝛽−1. In this case, we have

0.0000086𝑥2 − 0.0002577𝑥 + 0.0200020 (42)

from which we obtain 𝛽 = 0.48324 (or 𝛽 = −185.94 which
we can discard) and 𝜎 = 21.607%.

Using the same procedure, for𝑇 = 1, 2, 3, 4, 5 and𝛽 = 0.5,
we find that

0.0000024𝑥2 − 0.0002495𝑥 + 0.0199997 (43)

from which we obtain 𝛽 = 0.49970 (or 𝛽 = −186.0055 which
we can discard) and 𝜎 = 20.028%.

Using the same procedure, for 𝑇 = 0.3, 0.5, 0.8, 0.9, 1 and𝛽 = 0.9, we find that

−0.0000054𝑥2 − 0.0003076𝑥 + 0.1261899 (44)
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Table 8: Call option 𝛽 = 0.75, 𝑆0 = 100, 𝐾 = 100, 𝜎 = 20%, and 𝑟 = 1%.

Parameters Exact formula BS with implied volatility (34) HW𝑇 Price Price Error Price Error
0.25 1.3887209 1.3887176 3.29𝐸 − 06 1.388328423 3.92𝐸 − 04
1 3.0389972 3.0389707 2.64𝐸 − 05 3.035900123 3.10𝐸 − 03
2.5 5.2954739 5.2953686 1.05𝐸 − 04 5.283562121 1.19𝐸 − 02
5 8.2781049 8.2778040 3.01𝐸 − 04 8.245919491 3.22𝐸 − 02

Table 9: Call option 𝛽 = 0.90, 𝑆0 = 100, 𝐾 = 100, 𝜎 = 20%, and 𝑟 = 1%.

Parameters Exact formula BS with implied volatility (34) HW𝑇 Price Price Error Price Error
0.25 2.6404164 2.6404122 4.17𝐸 − 06 2.640102524 3.14𝐸 − 04
1 5.5191736 5.5191404 3.31𝐸 − 05 5.51668209 2.49𝐸 − 03
2.5 9.1446125 9.1444830 1.29𝐸 − 04 9.134914233 9.70𝐸 − 03
5 13.5553379 13.5549787 3.59𝐸 − 04 13.52860091 2.67𝐸 − 02

Table 10: Call option 𝛽 = 0.9, 𝑆0 = 100, 𝐾 = 100, 𝜎 = 20%, 𝑇 = 5, and 𝑟 = 1%.

Measure HW BS with implied volatility (34)
Average 1.67𝐸 − 04 1.66𝐸 − 04
Standard deviation 2.52𝐸 − 05 2.37𝐸 − 05
Max 3.67𝐸 − 04 3.48𝐸 − 04
Min 1.59𝐸 − 04 1.58𝐸 − 04

from which we obtain 𝛽 = 0.90040 (or 𝛽 = −3.6103 which
we can discard) and 𝜎 = 19.963%.

Using the same procedure, for𝑇 = 1, 2, 3, 4, 5 and𝛽 = 0.9,
we find that

0,0000006𝑥2 − 0.0003141𝑥 + 0.1261907 (45)

from which we obtain 𝛽 = 0.89822 (or 𝛽 = −3.6081 which
we can discard) and 𝜎 = 20.164%.

We have seen that to do a quadratic regression is enough
to recover a good approximation of the parameters.

7. Conclusion

In this paper, we notice that ideas developed in [1] for Heston
model can be used for spot-dependent volatility models. It
is interesting to realize that the approximation found in this
case has more terms than the one obtained for stochastic
volatility models (see [4]). We have applied this technique to
the CEV model, doing a comparison between exact prices,
Black-Scholes using Hagan andWoodward implied volatility,
and our price approximation. We have seen that our approx-
imation is better than Hagan and Woodward approximation
for pricing, but a bit more expensive in computation time.
As well, we have calculated an approximation of the implied
volatility as the limit of the implied volatility close to zero
as a function of log-moneyness and an approximation of
the ATM implied volatility as a function of time. We have
compared our approximationwith the exact implied volatility

and Hagan and Woodward approximation. We note that
if we put our implied volatility approximation into Black-
Scholes function, we get a better approximation than Hagan
and Woodward in the same computation time. So we have
developed an easy way to calibrate CEV model that consists
essentially in doing a quadratic regression.

Appendix

In the following appendices we obtain the error terms of the
decomposition inTheorem 6 (Appendix A), the same formu-
las in the particular case of CEV model (Appendix B), and
upper-bounds for those terms using Lemma 1 (Appendix C).
In all the section we write 𝜏𝑢 fl 𝑇 − 𝑢.
A. Decomposition Formulas in the

General Model

A.1. Decomposition of Term (I). The term (I) can be decom-
posed by

𝑟2E𝑡 [∫
𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)ΓBS (𝑢, 𝑆𝑢, 𝜃 (S𝑢)) 𝜏𝑢 (𝜕𝑆𝜃2 (𝑆𝑢))

⋅ 𝑆𝑢𝑑𝑢] − 𝑟4 (𝜕𝑆𝜃2 (𝑆𝑡)) 𝑆𝑡ΓBS (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)) (𝑇
− 𝑡)2 = 𝑟28 E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Γ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))
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⋅ 𝜏3𝑢 (𝜕𝑆𝜃2 (𝑆𝑢))2 𝑆2𝑢𝑑𝑢] + 𝑟16
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡) (𝜕𝑆𝜃2 (𝑆𝑢)) Γ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))

⋅ 𝜏3𝑢 (𝜕2𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢) 𝑆3𝑢𝑑𝑢] + 𝑟32
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Γ3BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))

⋅ 𝜏4𝑢 (𝜕𝑆𝜃2 (𝑆𝑢))3 𝜃2 (𝑆𝑢) 𝑆3𝑢𝑑𝑢] + 𝑟8
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Λ((𝜕𝑆𝜃2 (𝑆𝑢))

⋅ 𝑆𝑢Γ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))) 𝜏3𝑢 (𝜕𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢)
⋅ 𝑆𝑢𝑑𝑢] .

(A.1)

A.2. Decomposition of Term (II). The term (II) can be decom-
posed by

14E𝑡 [∫
𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)ΓBS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) 𝜏𝑢 (𝜕2𝑆𝜃2 (𝑆𝑢))

⋅ 𝜃2 (𝑆𝑢) 𝑆2𝑢𝑑𝑢] − 18 (𝜕2𝑆𝜃2 (𝑆𝑡)) 𝜃2 (𝑆𝑡)
⋅ 𝑆2𝑡 ΓBS (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)) (𝑇 − 𝑡)2 = 𝑟8
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)𝜕2𝑆𝜃2 (𝑆𝑢) ΓBS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))

⋅ 𝜏2𝑢 (𝜕𝑆𝜃2 (𝑆𝑢)) 𝑆3𝑢𝑑𝑢] + 𝑟16
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡) (𝜕2𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢)

⋅ 𝑆3𝑢Γ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) 𝜏3𝑢 (𝜕𝑆𝜃2 (𝑆𝑢)) 𝑑𝑢]
+ 116E𝑡 [∫

𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)ΓBS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))

⋅ 𝜏2𝑢 (𝜕2𝑆𝜃2 (𝑆𝑢))2 𝜃2 (𝑆𝑢) 𝑆4𝑢𝑑𝑢] + 132
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Γ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))

⋅ 𝜏3𝑢 (𝜕2𝑆𝜃2 (𝑆𝑢))2 𝜃4 (𝑆𝑢) 𝑆4𝑢𝑑𝑢] + 116
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Γ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) 𝜏3𝑢 (𝜕2𝑆𝜃2 (𝑆𝑢))

⋅ (𝜕𝑆𝜃2 (𝑆𝑢))2 𝜃2 (𝑆u) 𝑆4𝑢𝑑𝑢] + 164

⋅ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (𝜕2𝑆𝜃2 (𝑆𝑢)) Γ3BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))

⋅ 𝜏4𝑢 (𝜕𝑆𝜃2 (𝑆𝑢))2 𝜃4 (𝑆𝑢) 𝑆4𝑢𝑑𝑢] + 18
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Λ(𝜕2𝑆𝜃2 (𝑆𝑢)

⋅ 𝑆2𝑢ΓBS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))) 𝜏2𝑢 (𝜕𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢)
⋅ 𝑆𝑢𝑑𝑢] + 116E𝑡 [∫

T

𝑡
𝑒−𝑟(𝑢−𝑡)Λ((𝜕2𝑆𝜃2 (𝑆𝑢))

⋅ 𝜃2 (𝑆𝑢) 𝑆2𝑢Γ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))) 𝜏3𝑢 (𝜕𝑆𝜃2 (𝑆𝑢))
⋅ 𝜃2 (𝑆𝑢) 𝑆𝑢𝑑𝑢] .

(A.2)

A.3. Decomposition of Term (III). The term (III) can be
decomposed by

18E𝑡 [∫
𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Γ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) 𝜏2𝑢 (𝜕𝑆𝜃2 (𝑆𝑢))2

⋅ 𝜃2 (𝑆𝑢) 𝑆2𝑢𝑑𝑢] − 124 (𝜕𝑆𝜃2 (𝑆𝑡))2 𝜃2 (𝑆𝑡)
⋅ 𝑆2𝑡 Γ2BS (𝑡, 𝑆𝑡, 𝜃 (𝑆𝑡)) (𝑇 − 𝑡)3 = 𝑟24
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡) (𝜕𝑆𝜃2 (𝑆𝑢))2 Γ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))

⋅ 𝜏3𝑢 (𝜕𝑆𝜃2 (𝑆𝑢)) 𝑆3𝑢𝑑𝑢] + 𝑟48
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡) (𝜕𝑆𝜃2 (𝑆𝑢))2 𝜃2 (𝑆𝑢)

⋅ Γ3BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) 𝜏4𝑢 (𝜕𝑆𝜃2 (𝑆𝑢)) 𝑆3𝑢𝑑𝑢] + 148
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡) (𝜕𝑆𝜃2 (𝑆𝑢))2 Γ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))

⋅ 𝜏3𝑢 (𝜕2𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢) 𝑆4𝑢𝑑𝑢] + 196
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡) (𝜕𝑆𝜃2 (𝑆𝑢))2 𝜃2 (𝑆𝑢)

⋅ Γ3BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) 𝜏4𝑢 (𝜕2𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢) 𝑆4𝑢𝑑𝑢]
+ 148E𝑡 [∫

𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Γ3BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))

⋅ 𝜏4𝑢 (𝜕𝑆𝜃2 (𝑆𝑢))4 𝜃2 (𝑆𝑢) 𝑆4𝑢𝑑𝑢] + 1192
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡) (𝜕𝑆𝜃2 (𝑆𝑢))2 𝜃2 (𝑆𝑢)
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⋅ Γ4BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) 𝜏5𝑢 (𝜕𝑆𝜃2 (𝑆𝑢))2 𝜃2 (𝑆𝑢) 𝑆4𝑢𝑑𝑢]
+ 124E𝑡 [∫

𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Λ((𝜕𝑆𝜃2 (𝑆𝑢))2

⋅ Γ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))) 𝜏3𝑢 (𝜕𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢) 𝑆3𝑢𝑑𝑢]
+ 148E𝑡 [∫

𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Λ((𝜕𝑆𝜃2 (𝑆𝑢))2 𝜃2 (𝑆𝑢)

⋅ Γ3BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))) 𝜏4𝑢 (𝜕𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢)
⋅ 𝑆3𝑢𝑑𝑢] .

(A.3)

A.4. Decomposition of Term (IV). The term (IV) can be
decomposed by

12E𝑡 [∫
𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)ΛΓBS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) 𝜏𝑢 (𝜕𝑆𝜃2 (𝑆𝑢))

⋅ 𝜃2 (𝑆𝑢) 𝑆𝑢𝑑𝑢] − 14 (𝜕𝑆𝜃2 (𝑆𝑡)) 𝜃2 (𝑆𝑡) 𝑆𝑡ΛΓBS (𝑡,
𝑆𝑡, 𝜃 (𝑆𝑡)) (𝑇 − 𝑡)2 = 𝑟4E𝑡 [∫

𝑇

𝑡
𝑒−𝑟(𝑢−𝑡) (𝜕𝑆𝜃2 (𝑆𝑢))

⋅ ΛΓBS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) 𝜏2𝑢 (𝜕𝑆𝜃2 (𝑆𝑢)) 𝑆2𝑢𝑑𝑢] + 𝑟8
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡) (𝜕𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢)

⋅ ΛΓ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) 𝜏3𝑢 (𝜕𝑆𝜃2 (𝑆𝑢)) 𝑆2𝑢𝑑𝑢] + 18
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡) (𝜕𝑆𝜃2 (𝑆𝑢)) ΛΓBS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))

⋅ 𝜏2𝑢 (𝜕2𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢) 𝑆3𝑢𝑑𝑢] + 116
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡) (𝜕𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢)

⋅ ΛΓ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) 𝜏3𝑢 (𝜕2𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢)
⋅ 𝑆3𝑢𝑑𝑢] + 18E𝑡 [∫

𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)ΛΓ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))

⋅ 𝜏3𝑢 (𝜕𝑆𝜃2 (𝑆𝑢))3 𝜃2 (𝑆𝑢) 𝑆3𝑢𝑑𝑢] + 132
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡) (𝜕𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢)

⋅ ΛΓ3BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) 𝜏4𝑢 (𝜕𝑆𝜃2 (𝑆𝑢))2 𝜃2 (𝑆𝑢)

⋅ 𝑆3𝑢𝑑𝑢] + 14E𝑡 [∫
𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Λ((𝜕𝑆𝜃2 (𝑆𝑢))

⋅ 𝑆𝑢ΛΓBS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))) 𝜏2𝑢 (𝜕𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢)
⋅ 𝑆𝑢𝑑𝑢] + 18E𝑡 [∫

𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Λ((𝜕𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢)

⋅ 𝑆𝑢ΛΓ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))) 𝜏3𝑢 (𝜕𝑆𝜃2 (𝑆𝑢)) 𝜃2 (𝑆𝑢)
⋅ 𝑆𝑢𝑑𝑢] .

(A.4)

B. Decomposition Formulas for the
CEV Model

B.1. Decomposition of the Term (I𝐶𝐸𝑉)

𝑟 (𝛽 − 1)E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)ΓBS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 )

⋅ 𝜏𝑢𝜎2𝑆2(𝛽−1)𝑢 𝑑𝑢] − 12 (𝛽 − 1)
⋅ 𝑟𝜎2𝑆2(𝛽−1)𝑡 ΓBS (𝑡, 𝑆𝑡, 𝜎𝑆𝛽−1𝑡 ) (𝑇 − 𝑡)2 = 𝑟22 (𝛽 − 1)2

⋅ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)Γ2BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) 𝜏3𝑢𝜎4𝑆4(𝛽−1)𝑢 𝑑𝑢]

+ 𝑟4 (𝛽 − 1)2 (2𝛽 − 3)
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Γ2BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) 𝜏3𝑢𝜎6𝑆6(𝛽−1)𝑢 𝑑𝑢]

+ 𝑟4 (𝛽 − 1)3 E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)Γ3BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 )

⋅ 𝜏4𝑢𝜎8𝑆8(𝛽−1)𝑢 𝑑𝑢] + 𝑟2 (𝛽 − 1)2

⋅ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)Λ(𝜎2𝑆2(𝛽−1)𝑢 Γ2BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ))

⋅ 𝜏3𝑢𝜎4𝑆4(𝛽−1)𝑢 𝑑𝑢] .

(B.1)

B.2. Decomposition of the Term (II𝐶𝐸𝑉)

12 (𝛽 − 1) (2𝛽 − 3)E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)ΓBS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑇 )

⋅ 𝜏𝑢𝜎4𝑆4(𝛽−1)𝑢 𝑑𝑢] − 14 (𝛽 − 1) (2𝛽 − 3)
⋅ 𝜎4𝑆4(𝛽−1)𝑡 ΓBS (𝑡, 𝑆𝑡, 𝜎𝑆𝛽−1𝑡 ) (𝑇 − 𝑡)2 = 𝑟2 (𝛽 − 1)2
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⋅ (2𝛽 − 3)E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)ΓBS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 )

⋅ 𝜏2𝑢𝜎4𝑆4(𝛽−1)𝑢 𝑑𝑢] + 𝑟4 (𝛽 − 1)2 (2𝛽 − 3)
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)𝜎6𝑆6(𝛽−1)𝑢 Γ2BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) 𝜏3𝑢𝑑𝑢]

+ 14 (𝛽 − 1)2 (2𝛽 − 3)2

⋅ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)ΓBS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) 𝜏2𝑢𝜎6𝑆6(𝛽−1)𝑢 𝑑𝑢]

+ 18 (𝛽 − 1)2 (2𝛽 − 3)2

⋅ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)Γ2BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) 𝜏3𝑢𝜎8𝑆8(𝛽−1)𝑢 𝑑𝑢]

+ 12 (𝛽 − 1)3 (2𝛽 − 3)
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Γ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢)) 𝜏3𝑢𝜎8𝑆8(𝛽−1)𝑢 𝑑𝑢]

+ 18 (2𝛽 − 3) (𝛽 − 1)3

⋅ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)Γ3BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) 𝜏4𝑢𝜎10𝑆10(𝛽−1)𝑢 𝑑𝑢]

+ 12 (𝛽 − 1)2 (2𝛽 − 3)
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Λ(𝜎2𝑆2(𝛽−1)𝑢 ΓBS (𝑢, S𝑢, 𝜎𝑆𝛽−1𝑢 ))

⋅ 𝜏2𝑢𝜎4𝑆4(𝛽−1)𝑢 𝑑𝑢] + 14 (𝛽 − 1)2 (2𝛽 − 3)
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Λ(𝜎4𝑆4(𝛽−1)𝑢 Γ2BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ))

⋅ 𝜏3𝑢𝜎4𝑆4(𝛽−1)𝑢 𝑑𝑢] .
(B.2)

B.3. Decomposition of the Term (III𝐶𝐸𝑉)

12 (𝛽 − 1)2 E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)Γ2BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑇 )

⋅ 𝜏2𝑢𝜎6𝑆6(𝛽−1)𝑢 𝑑𝑢] − 16 (𝛽 − 1)2
⋅ 𝜎6𝑆6(𝛽−1)𝑢 Γ2BS (𝑡, 𝑆𝑡, 𝜎𝑆𝛽−1𝑡 ) (𝑇 − 𝑡)3 = 𝑟3 (𝛽 − 1)3

⋅ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)Γ2BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) 𝜏3𝑢𝜎6𝑆6(𝛽−1)𝑢 𝑑𝑢]

+ 𝑟6 (𝛽 − 1)3 E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)Γ3BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 )

⋅ 𝜏4𝑢𝜎8𝑆8(𝛽−1)𝑢 𝑑𝑢] + 16 (𝛽 − 1)3 (2𝛽 − 3)
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Γ2BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) 𝜏3𝑢𝜎8𝑆8(𝛽−1)𝑢 𝑑𝑢]

+ 112 (𝛽 − 1)3 (2𝛽 − 3)
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Γ3BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) 𝜏4𝑢𝜎10𝑆10(𝛽−1)𝑢 𝑑𝑢]

+ 13 (𝛽 − 1)4 E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)Γ3BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))

⋅ 𝜏4𝑢𝜎10𝑆10(𝛽−1)𝑢 𝑑𝑢] + 112 (𝛽 − 1)4

⋅ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)Γ4BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) 𝜏5𝑢𝜎12𝑆12(𝛽−1)𝑢 𝑑𝑢]

+ 13 (𝛽 − 1)3

⋅ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝑆2𝑢Λ(𝜎4𝑆4𝛽−6𝑢 Γ2BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ))

⋅ 𝜏3𝑢 (𝜎4𝑆4(𝛽−1)𝑢 ) 𝑑𝑢] + 16 (𝛽 − 1)3

⋅ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝑆2𝑢Λ(𝜎6𝑆6𝛽−8𝑢 Γ3BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ))

⋅ 𝜏4𝑢𝜎4𝑆4(𝛽−1)𝑢 𝑑𝑢] .
(B.3)

B.4. Decomposition of the Term (IV𝐶𝐸𝑉)

(𝛽 − 1)E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)ΛΓBS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) 𝜎4𝑆4(𝛽−1)𝑢 𝜏𝑢𝑑𝑢]

− 12 (𝛽 − 1) 𝜎4𝑆4(𝛽−1)𝑡 ΛΓBS (𝑡, 𝑆𝑡, 𝜎𝑆𝛽−1𝑡 ) (𝑇 − 𝑡)2
= 𝑟 (𝛽 − 1)2 E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)ΛΓBS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 )

⋅ 𝜏2𝑢𝜎4𝑆4(𝛽−1)𝑢 𝑑𝑢] + 𝑟2 (𝛽 − 1)2

⋅ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)ΛΓ2BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) 𝜏3𝑢𝜎6𝑆6(𝛽−1)𝑢 𝑑𝑢]

+ 12 (𝛽 − 1)2 (2𝛽 − 3)
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)ΛΓBS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) 𝜏2𝑢𝜎6𝑆6(𝛽−1)𝑢 𝑑𝑢]
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+ 14 (𝛽 − 1)2 (2𝛽 − 3)
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)ΛΓ2BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) 𝜏3𝑢𝜎8𝑆8(𝛽−1)𝑢 𝑑𝑢]

+ (𝛽 − 1)3 E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)ΛΓ2BS (𝑢, 𝑆𝑢, 𝜃 (𝑆𝑢))

⋅ 𝜏3𝑢𝜎8𝑆8(𝛽−1)𝑢 𝑑𝑢] + 14 (𝛽 − 1)3

⋅ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)ΛΓ3BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ) 𝜏4𝑢𝜎10𝑆10(𝛽−1)𝑢 𝑑𝑢]

+ (𝛽 − 1)2
⋅ E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Λ(𝜎2𝑆2(𝛽−1)𝑢 ΛΓBS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ))

⋅ 𝜏2𝑢𝜎4𝑆4(𝛽−1)𝑢 𝑑𝑢] + 12 (𝛽 − 1)2

⋅ E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)Λ(𝜎4𝑆4(𝛽−1)𝑢 ΛΓ2BS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 ))

⋅ 𝜏3𝑢𝜎4𝑆4(𝛽−1)𝑢 𝑑𝑢] .
(B.4)

C. Upper-Bound First-Order
Decomposition Formulas

C.1. Upper-Bound of the Term (I𝐶𝐸𝑉)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟 (𝛽 − 1)E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)ΓBS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 )

⋅ 𝜎2𝑆2(𝛽−1)𝑢 𝜏𝑢𝑑𝑢] − 12 (𝛽 − 1) 𝑟𝜎2𝑆2(𝛽−1)𝑡 ΓBS (𝑡, 𝑆𝑡,
𝜎𝑆𝛽−1𝑡 ) (𝑇 − 𝑡)2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤

𝑟22 𝐶1 (𝛽 − 1)2

⋅ 𝜎 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 𝑟4𝐶2 (𝛽 − 1)2 (2𝛽 − 3)

⋅ 𝜎3 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 𝑟4𝐶3 (𝛽 − 1)3

⋅ 𝜎3 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 𝐶4𝑟 (𝛽 − 1)3 𝜎3

⋅ ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 𝑟2𝐶5 (𝛽 − 1)2

⋅ 𝜎2 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝜏𝑢𝑑𝑢 ≤ 𝐶 (𝛽 − 1)2Π1 (𝑡, 𝑟, 𝜎, 𝛽) ,

(C.1)

where Π1(𝑡, 𝑇, 𝑟, 𝜎, 𝛽) is an increasing function for every
parameter, 𝐶𝑖 (𝑖 = 1, . . . , 5) are some constants, and 𝐶 =
max(𝐶𝑖).

C.2. Upper-Bound of the Term (II𝐶𝐸𝑉)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
12 (𝛽 − 1) (2𝛽 − 3)E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)ΓBS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑇 )

⋅ 𝜏𝑢𝜎4𝑆4(𝛽−1)𝑢 𝑑𝑢] − 14 (𝛽 − 1) (2𝛽 − 3)
⋅ 𝜎4𝑆4(𝛽−1)𝑡 ΓBS (𝑡, 𝑆𝑡, 𝜎𝑆𝛽−1𝑡 ) (𝑇 − 𝑡)2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤

𝑟2𝐶1 (𝛽
− 1)2 (2𝛽 − 3) 𝜎3 ∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 𝑟4𝐶2 (𝛽

− 1)2 (2𝛽 − 3) 𝜎3 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 14𝐶3 (𝛽

− 1)2 (2𝛽 − 3)2 𝜎5 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 18𝐶4 (𝛽

− 1)2 (2𝛽 − 3)2 𝜎5 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 12𝐶5 (𝛽

− 1)3 (2𝛽 − 3) 𝜎5 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 18𝐶6 (2𝛽

− 3) (𝛽 − 1)3 𝜎5 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 𝐶7 (𝛽

− 1)3 (2𝛽 − 3) 𝜎5 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 12𝐶8 (𝛽

− 1)2 (2𝛽 − 3) 𝜎4 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝜏𝑢𝑑𝑢 + 𝐶9 (𝛽 − 1)3

⋅ (2𝛽 − 3) 𝜎5 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 14𝐶10 (𝛽

− 1)2 (2𝛽 − 3) 𝜎4 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝜏𝑢𝑑𝑢 ≤ 𝐶 (𝛽 − 1)2

⋅ Π2 (𝑡, 𝑟, 𝜎, 𝛽) ,

(C.2)

where Π2(𝑡, 𝑇, 𝑟, 𝜎, 𝛽) is an increasing function for every
parameter, 𝐶𝑖 (𝑖 = 1, . . . , 10) are some constants, and 𝐶 =
max(𝐶𝑖).
C.3. Upper-Bound of the Term (III𝐶𝐸𝑉)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
12 (𝛽 − 1)2 E𝑡 [∫𝑇

𝑡
𝑒−𝑟(𝑢−𝑡)Γ2BS (𝑢, S𝑢, 𝜎𝑆𝛽−1𝑇 )

⋅ 𝜎6𝑆6(𝛽−1)𝑢 𝜏2𝑢𝑑𝑢] − 16 (𝛽 − 1)2 𝜎6𝑆6(𝛽−1)𝑢 Γ2BS (𝑡,
𝑆𝑡, 𝜎𝑆𝛽−1𝑡 ) (𝑇 − 𝑡)3󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤

𝑟3𝐶1 (𝛽 − 1)3

⋅ 𝜎3 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 𝑟6𝐶2 (𝛽 − 1)3
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⋅ 𝜎3 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 16𝐶3 (𝛽 − 1)3 (2𝛽

− 3) 𝜎5 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 112𝐶4 (𝛽 − 1)3 (2𝛽

− 3) 𝜎5 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 13𝐶5 (𝛽 − 1)4

⋅ 𝜎5 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 112𝐶6 (𝛽 − 1)4

⋅ 𝜎5 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 23𝐶7 (𝛽 − 1)3 (2𝛽

− 3) 𝜎5 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 13𝐶8 (𝛽 − 1)3

⋅ 𝜎4 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝜏𝑢𝑑𝑢 + 13𝐶9 (𝛽 − 1)3 (3𝛽 − 4)

⋅ 𝜎5 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡) (√𝜏𝑢)3 𝑑𝑢 + 16𝐶10 (𝛽 − 1)3

⋅ 𝜎4 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝜏𝑢𝑑𝑢 ≤ 𝐶 (𝛽 − 1)3Π3 (𝑡, 𝑟, 𝜎, 𝛽) ,

(C.3)

where Π3(𝑡, 𝑇, 𝑟, 𝜎, 𝛽) is an increasing function for every
parameter, 𝐶𝑖 (𝑖 = 1, . . . , 10) are some constants, and 𝐶 =
max(𝐶𝑖).
C.4. Decomposition of the Term (IV𝐶𝐸𝑉)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝛽 − 1)E𝑡 [∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)ΛΓBS (𝑢, 𝑆𝑢, 𝜎𝑆𝛽−1𝑢 )

⋅ 𝜎4𝑆4(𝛽−1)𝑢 𝜏𝑢𝑑𝑢] − 12 (𝛽 − 1) 𝜎4𝑆4(𝛽−1)𝑡 ΛΓBS (𝑡, 𝑆𝑡,
𝜎𝑆𝛽−1𝑡 ) (𝑇 − 𝑡)2󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶1𝑟 (𝛽 − 1)2

⋅ 𝜎2 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝜏𝑢𝑑𝑢 + 𝑟2𝐶2 (𝛽 − 1)2

⋅ 𝜎2 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝜏𝑢𝑑𝑢 + 12𝐶3 (𝛽 − 1)2 (2𝛽 − 3)

⋅ 𝜎4 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝜏𝑢𝑑𝑢 + 14𝐶4 (𝛽 − 1)2 (2𝛽 − 3)

⋅ 𝜎4 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝜏𝑢𝑑𝑢 + 𝐶5 (𝛽 − 1)3

⋅ 𝜎4 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝜏𝑢𝑑𝑢 + 14𝐶6 (𝛽 − 1)3

⋅ 𝜎4 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝜏𝑢𝑑𝑢 + 2𝐶7 (𝛽 − 1)3

⋅ 𝜎4 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝜏𝑢𝑑𝑢 + 𝐶8 (𝛽 − 1)2

⋅ 𝜎3 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)√𝜏𝑢𝑑𝑢 + 2𝐶9 (𝛽 − 1)3

⋅ 𝜎4 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)𝜏𝑢𝑑𝑢 + 12𝐶10 (𝛽 − 1)2

⋅ 𝜎3 ∫𝑇
𝑡
𝑒−𝑟(𝑢−𝑡)√𝜏𝑢𝑑𝑢 ≤ 𝐶 (𝛽 − 1)2Π4 (𝑡, 𝑟, 𝜎, 𝛽) ,

(C.4)

where Π4(𝑡, 𝑇, 𝑟, 𝜎, 𝛽) is an increasing function for every
parameter, 𝐶𝑖 (𝑖 = 1, . . . , 10) are some constants, and 𝐶 =
max(𝐶𝑖).
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