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This paper presents an integral transform analytic solution to the equations governing a fluid-conveying pipeline segment where
a gyroscopic or Coriolis force effect is taken into consideration. The mathematical model idealizes a segment of the pipeline as an
elastic beam conveying an incompressible fluid. It is clearly shown that when such a system is supported at both ends and in a free
motion, the Coriolis force dissipates no energy (or simply does not work) as it generates conjugate complex vibratory components
for all flow velocities. It is demonstrated that the modal natural frequencies can be computed from the algebraic products of the
complex frequency pairs. Clearly, the patterns of the characteristics of the system’s natural frequencies are seen partly when the real
and imaginary components are plotted, aswidely seen in the literature.Nonetheless, results from this study revealed that a continuity
profile exists to connect the subcritical, critical, and postcritical vibratory behaviours when the absolute values are plotted for any
velocity. In the meantime, the efficacy and versatility of this method against the usual assumed spatial or temporal modal solutions
are demonstrated by confirming the predictions and validity of results of earlier workers such as Paidoussis, Ziegler, and others
where pre- and postdivergence behaviours are exhibited.

1. Introduction

Fluid-conveying pipes are parts of the most common engi-
neering examples of slender systems interacting with axial
flows; another good example is the deployment of flexible
conduits in the oil and gas exploration and production
industry. A compendium of other examples can be found
in Paidoussis [1] work spanning over the last 50 years. The
list of examples is not limited to the field of engineering
but cuts across other areas of human endeavor such as
the study of pulmonary and urinary tract systems or even
haemodynamics within human physiology.

These problems have generated a lot of research interests
over the years partly because some served as models for
studying the stability of certain classes of dynamical systems
leading to the development of novel numerical and analytical

methods for solving such problems. It has also turned out,
over the years, that several of these techniques have found
wider applications in other areas of research that otherwise
appeared unrelated and have in fact occasionally led to
the development of unanticipated practical applications and
devices. Thus for linear dynamics for axial flows along
slender structures, the pipe conveying fluid is regarded as
the main paradigm. It also serves as model for classical
problems involving axial momentum transport or axially
moving continua such as high speed magnetic and paper
tapes [1].

However, a careful study of the development of this
area of research revealed that most of the research interests
were curiosity-driven as some of the interesting phenom-
ena observed occurred at velocities and conditions outside
practical engineering and operational working limits as at
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that time [2]. This however gradually changed with the
study of high velocity flow within light-gauge piping used
in rocket engines and stability problems experienced by oil
pipelines at modest conveyance speeds. Nowadays, people
are looking at areas of direct applications, for example, in
the behaviour of aspirating pipes for ocean mining and LNG
in-situ production. This concept is to be utilized for the
proposed offshore mining of methane liquid-crystal deposits
and carbon sequestration. Here, the interest is in flow-
induced vibrations and instabilities that can arise at high flow
rates.

Furthermore, with the advent of High Pressure-High
Temperature (HP-HT) oil and gas exploration and produc-
tion, the lengths of the flexible risers deployed surely qualify
them as hoses or pipe strings whose vibration behaviour is of
interest in the exploration field.

In the modeling of the mechanics of fluid-conveying
pipes, one of the terms that has received considerable atten-
tion over the years is the Coriolis force that was assigned
the role of energy absorption that counters the centrifugal
effect that normally arose in free motions. Broadly speaking,
such an energy absorption affects the stability in conservative
and nonconservative systems, as was shown by Section 7
of Elishakoff ’s work (2005) [2]; Öz and Boyaci (2000) [3];
Szmidt and Przybyłowicz (2013) [4]; Askarian et al. (2014)
[5]; Kuiper and Metrikine (2004) [6]; Chellapilla and Simha
(2008) [7]. Other contributors that attempted to investigate
and explain the behaviour included Leklong et al. (2008) [8];
Al-Hilli andNtayeesh (2013) [9]; Guo et al. (2006) [10]; Zhang
et al. (2000) [11]; Modarres-Sadeghi and Paı̈doussis (2009)
[12] as well as Ibrahim (2010) [13].

Principal among these findings is that while the cen-
trifugal force imparts energy to the system, the Coriolis
force absorbs energy from the system, such that the balance
between the two, in the absence of dissipation, gives rise
to flutter. However, when confronted with a nonconser-
vative system the effect of the Coriolis force can lead to
destabilization. These conclusions were arrived at partly on
experimental work as can be found in [14, 15]. However, in
the 1950s, proofs were claimed of researchers andmathemati-
cians’ findings showing that the Coriolis has negligible effects
even on the molecular scale interaction.

Part of the interest in this present study rests on the fact
that previous explanations in literature as to the effect of the
Coriolis force on the natural frequency of the system derived
from ad hoc heuristic arguments accompanied sometimes
by authoritative and masterly analyses and interpretation
of results of numerical and experiments. What is however
missing is adequate proof based on the results of blind
solutions of the unabridged governing differential equations
for the linear problems as simple examples or justifications of
such rationalizations.

A separate but issue related is that although the gyro-
scopic (Coriolis) forces do no work in the course of free
motions, they nonetheless exert important influences on the
overall dynamical behaviour of a pipeline system as pointed
out in [1]. It would therefore be useful to know exactly what
their influences are in such cases.

Another issue that has arisen over the years is that of the
efficacy of themethodology. To be sure, several methods have
been used to tackle the class of problems associated with the
dynamics of fluid-conveying pipes but prominent amongst
these is the original work of Gregory and Paidoussis and the
sequel as presented in [1] where the use of an eigenfunction
expansion in a modified Galerkin scheme was introduced.
Part of the initial challenge was the absence of computers and
the availability of validation modules to check the results of
numerical work. With the development of the Finite element
method more emphasis was placed on numerical schemes
and laboratory experiments were framed up to confirm the
predictions of these studies. Some of the other methods used
for analyses over the years included the spectral method,
for example, deployed by Lee and Park (2006) [16] or the
differential transformation method recently applied by Qiao
et al. (2006) [17].

Other recent works are those of Dodds Jr. and Runyan
(1965) [18], who used flowvisualization and velocitymeasure-
ment to experimentally clarify the mechanism underlying
the fluid-induced vibration in double T-junction of pipeline
systems; Yamaguchi et al. (2016) [19], who used a solution
method based on the Frobenius power series on a derived
asymptotic model from the solutions of the Pridmore-
Brown equation for the Fourier transform of the vibrational
fluid pressure; Kutin and Bajsić (2014) [20], who use smart
materials; and Jweeg and Ntayeesh (2015) [21] who made
use of application of method of multiple scales to analyse
approximately the gyroscopic system for a nonlinear fluid-
conveying pipeline.

This paper further establishes the method of complex
integral transforms (where the cosine and sine transforms are
special cases) as one other effective method that can be used
to tackle such problems within the context of linear theory
for a start and is organized as follows. Section 1 introduces
the problems under investigation. In Section 2, the analy-
sis of the pipeline conveying an incompressible fluid with
the governing partial differential equation and appropriate
boundary conditions are presented. In Section 3, the complex
and natural frequencies of the system are computed together
with the relationship of the system’s natural frequency with
the flow critical velocity. Section 4 analyses the dynamic
responses for purely elastic pipe in three cases, namely, simple
supports at both ends, cantilever pipe, and a clamped-pinned
ends pipe. In Section 5, results are analysed and discussed and
Section 6 concludes the paper, whilst references are listed in
the final section and at the end found theAppendicesA andB.

2. Analysis of the Pipeline System
Conveying an Incompressible Fluid

The homogeneous Partial Differential Equation (PDE) gov-
erning the flow-induced vibration of a pipeline conveying an
incompressible fluid is given by

EI𝜕4𝑤𝜕𝑥4 + (𝜌𝑠 + 𝜌𝑓) 𝜕2𝑤𝜕𝑡2 + 𝜌𝑓𝑈2 𝜕2𝑤𝜕𝑥2 + 2𝜌𝑓𝑈 𝜕2𝑤𝜕𝑡𝜕𝑥= 0, (1)
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where EI is the flexural rigidity of the pipe, 𝜌𝑠 and 𝜌𝑓 are the
mass per unit length of pipe and fluid, respectively, flowing
with a steady flow velocity 𝑈, and 𝑤 is the lateral deflection
of the pipe. The parameters 𝑥 and 𝑡 are the axial coordinate
and time variables, respectively.

In literature of fluid structure interaction mechanics,
where fluid-induced vibrations are studied, (1) is often nondi-
mensionalized as𝜕4𝑊𝜕𝜉4 + 𝑈2 𝜕2𝑊𝜕𝜉2 + 2√𝛽𝑈𝜕2𝑊𝜕𝜉𝜕𝜏 + 𝜕2𝑊𝜕𝜏2 = 0, (2)

where

𝑈 = 𝑈𝐿√𝜌𝑓
EI

,
𝛽 = 𝜌𝑓𝜌𝑠 + 𝜌𝑓 ,
𝜏 = 𝑡𝐿2√ EI𝜌𝑠 + 𝜌𝑓 ,
𝜉 = 𝑥𝐿 ,

𝑊 = 𝑤𝐿 ,

(3)

whereas, for the present study, the dimensionless form is
given by𝜕4𝑊𝜕𝑥4 + 𝜁𝑓𝑈2 𝜕2𝑊𝜕𝑥2 + 2𝜁𝑓𝑈𝜕2𝑊𝜕𝑥𝜕𝑡 + (1 + 𝜁𝑓) 𝜕2𝑊𝜕𝑡2 = 0, (4)

where

𝑈 = 𝑈𝐿√𝜌𝑓
EI

,
𝜁𝑓 = 𝜌𝑓𝜌𝑠 ,
𝑡 = 𝑡𝜏 ,
𝜏 = 𝐿2√ 𝜌𝑠

EI
,

𝑥 = 𝑥𝐿 ,
𝑊 = 𝑤𝐿 ,

(5)

and the components involved are, respectively, the restoring,
inertia, bending/centrifugal, and Coriolis force terms.

For comparison purposes, we present the following.

Case 1. We expect that if the pipeline segment is conveying
a fluid and an eventual situation calls for the valve to be
closed or the pump/compressor shut-off, an entrained fluid,

be it hot, cold, pressurized, or otherwise, will be trapped in
the pipe. When the flow velocity 𝑈 = 0 (2) based on the
nondimensionalizing method in the literature becomes

lim𝑈→0(𝜕4𝑊𝜕𝜉4 + 𝑈2 𝜕2𝑊𝜕𝜉2 + 2√𝛽𝑓𝑈𝜕2𝑊𝜕𝜉𝜕𝜏 + 𝜕2𝑊𝜕𝜏2 )
= 𝜕4𝑊𝜕𝜉4 + 𝜕2𝑊𝜕𝜏2 = 0 (6)

leading to

Ω𝑛 = ±𝜆2 = ±𝑛2𝜋2 (7)

which shows that there is no fluid inside the pipe if the flow
velocity is zero.This is not to be so. However, considering (4),
based on this paper’s dimensionless method, with 𝑈 = 0, it
becomes

lim𝑈→0(𝜕4𝑊𝜕𝑥4 + 𝜁𝑓𝑈2 𝜕2𝑊𝜕𝑥2 + 2𝜁𝑓𝑈𝜕2𝑊𝜕𝑥𝜕𝑡
+ (1 + 𝜁𝑓) 𝜕2𝑊𝜕𝑡2 ) = 𝜕4𝑊𝜕𝑥4 + (1 + 𝜁𝑓) 𝜕2𝑊𝜕𝑡2 = 0 (8)

leading to

Ω𝑛 = ± 𝜆2√(1 + 𝜁𝑓) = ± 𝑛2𝜋2√(1 + 𝜁𝑓) . (9)

Revealing that, the system’s vibration, configuration, and
response are strongly affected by the entrainment fluid in the
pipe.

Case 2. If there is no fluid in the pipe, that is, 𝜁𝑓 = 𝛽 = 0, (2)
and (4), respectively, become

lim𝜁𝑓→0(𝜕4𝑊𝜕𝑥4 + 𝜁𝑓𝑈2 𝜕2𝑊𝜕𝑥2 + 2𝜁𝑓𝑈𝜕2𝑊𝜕𝑥𝜕𝑡
+ (1 + 𝜁𝑓) 𝜕2𝑊𝜕𝑡2 ) = 0 that is 𝜕4𝑊𝜕𝑥4 + 𝜕2𝑊𝜕𝑡2 = 0 (10)

leading to

Ω𝑛 = ±𝜆√𝜆2 − 𝑈2 = ±𝑛𝜋√𝑛2𝜋2 − 𝑈2, (11)



4 Advances in Acoustics and Vibration

lim𝜁𝑓→0(𝜕4𝑊𝜕𝑥4 + 𝜁𝑓𝑈2 𝜕2𝑊𝜕𝑥2 + 2𝜁𝑓𝑈𝜕2𝑊𝜕𝑥𝜕𝑡
+ (1 + 𝜁𝑓) 𝜕2𝑊𝜕𝑡2 ) = 0

that is 𝜕4𝑊𝜕𝑥4 + 𝜕2𝑊𝜕𝑡2 = 0.
(12)

The literature method (10) is showing that when no fluid is
present in the pipe, there is still a flow velocity.This is not pos-
sible and is likely a fundamental error in physics. However,
(12) shows that the restoring and the inertial accelerations in
dimensionless form are the balancing vectors.

Case 3. We now examine the governing equation (1) in its
original form without nondimensionalizing, such that, when𝑈 = 0, it becomes

EI𝜕4𝑤𝜕𝑥4 + (𝜌𝑠 + 𝜌𝑓) 𝜕2𝑤𝜕𝑡2 = 0 (13)

leading to

Ω𝑛 = ± EI𝜌𝑠 (1 + 𝜁𝑓) (𝜆𝐿)2 = ± EI(1 + 𝜁𝑓) 𝑛2𝜋2𝐿2 . (14)

In the absence of fluid in the pipe, that is,𝑚𝑓 = 0.
EI𝜕4𝑤𝜕𝑥4 + 𝜌𝑠 𝜕2𝑤𝜕𝑡2 = 0 (15)

leading to

Ω𝑛 = ±EI𝜌𝑠 (𝜆𝐿)2 = ±EI𝜌𝑠 𝑛2𝜋2𝐿2 . (16)

It is confirmed that (13) is similar to (8), demonstrating that
the natural frequency is dependent on the mass or density of
fluid flowing in the pipeline.

Now, the following definitions hold for the Fourier com-
plex integral transforms Wrede and Spiegel [22], Olayiwola
[23], and Jeffrey [24]; namely,

𝐹 {𝑊(𝑥, 𝑡)} = 1√2𝜋 ∫∞
−∞ 𝑒−𝑖𝜆𝑥𝑊(𝑥, 𝑡) 𝑑𝑥

= 𝑊𝐹 (𝜆, 𝑡) ;
𝐹−1 {𝑊𝐹 (𝜆, 𝑡)} = 1√2𝜋 ∫∞

−∞ 𝑒𝑖𝜆𝑥𝑊𝐹 (𝜆, 𝑡) 𝑑𝜆
= 𝑊(𝑥, 𝑡)

(17)

such that in this case

𝐹 (𝑥, 𝑡) = {{{{{{{{{
0 when − ∞ ≤ 𝑥 < 0𝑊 (𝑥, 𝑡) when 0 ≤ 𝑥 ≤ 10 when 1 < 𝑥 ≤ ∞. (18)

Using (18) on (4), the following governing equation ensues in
the transforms plane:

𝑑2𝑊𝐹𝑑𝑡2 + 𝑖2 𝜆𝜁𝑓𝑈(1 + 𝜁𝑓) 𝑑𝑊𝐹𝑑𝑡 + (𝜆4 − 𝜁𝑓𝑈2𝜆2)(1 + 𝜁𝑓) 𝑊𝐹

= 1(1 + 𝜁𝑓) (−𝑊𝑥𝑥𝑥𝑒−𝑖𝜆𝑥󵄨󵄨󵄨󵄨󵄨10 − 𝑖𝜆𝑊𝑥𝑥𝑒−𝑖𝜆𝑥󵄨󵄨󵄨󵄨󵄨10
+ (𝜆2 − 𝜁𝑓𝑈2)𝑊𝑥𝑒−𝑖𝜆𝑥󵄨󵄨󵄨󵄨󵄨󵄨10
+ (𝑖𝜆3 − 𝜁𝑓𝑈2)𝑊𝑒−𝑖𝜆𝑥󵄨󵄨󵄨󵄨󵄨󵄨10 − 𝜁𝑓𝑈 𝑑𝑑𝑡 (𝑊𝑒−𝑖𝜆𝑥󵄨󵄨󵄨󵄨󵄨10)) ,

(19)

subject to simply supported conditions at both ends; namely,

𝑊(0, 𝑡) = 𝑊𝑥𝑥 (0, 𝑡) = 0,𝑊 (1, 𝑡) = 𝑊𝑥𝑥 (1, 𝑡) = 0. (20)

In conjunction with the following conditions:

𝑑𝑊 (0, 𝑡)𝑑𝑡 = 𝑑𝑊 (1, 𝑡)𝑑𝑡 = 0. (21)

Substituting (20) into (19) leads to the following ordinary
differential equation (ode) in the transform plane:

(1 + 𝜁𝑓) 𝑑2𝑊𝐹𝑑𝑡2 + 𝑖2𝜆𝜁𝑓𝑈𝑑𝑊𝐹𝑑𝑡 + (𝜆4 − 𝜁𝑓𝑈2𝜆2)𝑊𝐹

= (−𝑊𝑥𝑥𝑥𝑒−𝑖𝜆𝑥󵄨󵄨󵄨󵄨󵄨10 + (𝜆2 − 𝜁𝑓𝑈2)𝑊𝑥𝑒𝑖𝜆𝑥󵄨󵄨󵄨󵄨󵄨󵄨10) = 0. (22)

This is a nonhomogeneous second-order ordinary differential
equation in time domain.We can nowproceed to solve for the
frequency and displacement responses.

3. Complex and Natural Frequencies

In order to find the natural frequencies of the system we
seek to solve the complimentary equation of the system in its
Fourier complex transform plane by using the trial solution,
namely,

𝑊𝐹 (𝜆, 𝑡) = 𝐴𝑒𝑠𝑡, (23)

to obtain the following characteristic equation:

((1 + 𝜁𝑓) 𝑠2 + 𝑖2𝜁𝑓𝜆𝑈𝑠 + (𝜆4 − 𝜁𝑓𝑈2𝜆2))𝐴𝑒𝑠𝑡 = 0. (24)
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The preceding equation can now be solved for the roots of s
to obtain complex conjugate pairs of the forms:

𝑠1 = (−𝑖 𝜁𝑓𝑈𝜆(1 + 𝜁𝑓)
+ √(𝑖 𝜁𝑓𝑈𝜆(1 + 𝜁𝑓))

2 − ((𝜆4 − 𝜁𝑓𝑈2𝜆2)(1 + 𝜁𝑓) )) ,
𝑠2 = (−𝑖 𝜁𝑓𝑈𝜆(1 + 𝜁𝑓)

− √(𝑖 𝜁𝑓𝑈𝜆(1 + 𝜁𝑓))
2 − ((𝜆4 − 𝜁𝑓𝑈2𝜆2)(1 + 𝜁𝑓) )) .

(25)

In order to isolate the effect of the Coriolis force, we introduce
the expression

ΩCor. = 𝑖 𝜁𝑓𝑈𝜆(1 + 𝜁𝑓) (26)

into (25). On comparing these equations with the natural
frequency, the relative frequencies are related as follows:

Ω1 = −Ω𝑛 (𝜉𝑛 + √(1 + 𝜉2𝑛)) ,
Ω2 = −Ω𝑛 (𝜉𝑛 − √(1 + 𝜉2𝑛)) , (27)

where 𝜉𝑛 = ΩcorΩ𝑛 . (28)

Moreover, the product of the conjugate pairs gives the natural
frequencies of the system; namely,Ω2𝑛 = Ω1 × Ω2; (29)

that is,

Ω2𝑛 = ((𝜆4 − 𝜁𝑓𝑈2𝜆2)(1 + 𝜁𝑓) ) . (30)

Although, from mathematical physics, the complex notation
“𝑖” indicates thatΩCor. is acting perpendicularly to the natural
frequency Ω𝑛, nonetheless, an algebraic functional relation
can be deduced as follows.

Substituting a square of (26) into (30) gives

Ω𝑛 = 𝜆2√(1 + 𝜁𝑔) (1 − Ω2
cor (1 + 𝜁𝑔)2𝜆4𝜁𝑔 )1/2 . (31)

On expanding, it yields

Ω𝑛 = 𝜆2√(1 + 𝜁𝑔) {{{1 − Ω2
cor (1 + 𝜁𝑔)22𝜆4𝜁𝑔

+ 12! Ω4
cor (1 + 𝜁𝑔)44𝜆8𝜁2𝑔 − 13! 3Ω6

cor (1 + 𝜁𝑔)68𝜆12𝜁3𝑔 + ⋅ ⋅ ⋅}}} .
(32a)

But for 𝑈 → 0,Ωcor → 0 or withΩcor(1 + 𝜁𝑔) ≪ 𝜆2√𝜁𝑔, (24)
tends to a limit; that is,

Ω𝑛 = 𝜆2√(1 + 𝜁𝑔) . (32b)

The first observation to make from relations (18) and (22) is
that the natural frequency is not in the same component with
the frequency due to the Coriolis force.

Having noted this, it is also useful to conform with the
general practice in the literature by expressing the result for
the natural frequency, where possible, in a way that relates
it to physical parameters or benchmarks associated with the
flow. Thus from relation (19), it is straightforward to deduce
the following.

(a) The critical axial velocity at which the natural fre-
quency of the system is zero satisfies the relation

𝑈2
cr = 𝜆2𝜁𝑓 (33a)

and defines the condition for the onset of irregular oscilla-
tions.

(b) When there is no axial flow, that is,𝑈 = 0, the natural
frequency of the system satisfies the relation

Ω20 = ( 𝜆4(1 + 𝜁𝑓)) . (33b)

(c) The general relation for the magnitude of the natural
frequency can be rearranged as

Ω2𝑛 = Ω20 (1 − 𝑈2
𝑈2

cr

) . (34)

This is a simple expression that relates the natural frequency
to the critical flow velocity. Equation (34) actually proves the
existence of such relationship as it could be argued that the
results of the experiment of Dodds Jr. and Runyan (1965)
[18] provide indirect evidence of the existence of such a
relationship for the eigenfrequency mode 𝑛 = 1.

Furthermore, evaluation of the critical velocity and fun-
damental frequency can be carried out by substituting the
appropriate eigenvalues into (24).Thus it can be asserted that,
for this case, this method facilitates the derivation of explicit
closed form expressions for possible design parameters such
as the critical velocity. This method of solution also sets the
stage for deriving equivalent results for 𝑈cr and Ω𝑛 for the
dynamic response when other effects such as damping for
example are included.
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4. Dynamic Response Analysis
for Purely Elastic Pipe

If we consider the dynamic response of the simple system
of a purely elastic horizontal pipe with uniformly distributed
loads of 𝑓Newton per unit length, then (4) is transformed as
follows:

𝑑2𝑊𝐹𝑑𝑡2 + 2Ωcor
𝑑𝑊𝐹𝑑𝑡 + Ω2𝑛𝑊𝐹 = 𝐽 (𝜆)(1 + 𝜁𝑓) , (35)

where

Ωcor = 𝑖 𝜆𝜁𝑓𝑈(1 + 𝜁𝑓) ,
Ω2𝑛 = (𝜆4 − 𝜁𝑓𝑈2𝜆2)(1 + 𝜁𝑓) , (36)

𝐽 (𝜆) = (−𝑊𝑥𝑥𝑥 (𝑥, 0) 𝑒−𝑖𝜆𝑥󵄨󵄨󵄨󵄨󵄨10 − 𝑖𝜆𝑊𝑥𝑥 (𝑥, 0) 𝑒−𝑖𝜆𝑥󵄨󵄨󵄨󵄨󵄨10
+ (𝜆2 − 𝜁𝑓𝑈2)𝑊𝑥 (𝑥, 0) 𝑒−𝑖𝜆𝑥󵄨󵄨󵄨󵄨󵄨󵄨10+ (𝑖𝜆3 − 𝜁𝑓𝑈2)𝑊 (𝑥, 0) 𝑒−𝑖𝜆𝑥󵄨󵄨󵄨󵄨󵄨󵄨10
− 𝜁𝑓𝑈 𝑑𝑑𝑡 (𝑊 (𝑥, 0) 𝑒−𝑖𝜆𝑥󵄨󵄨󵄨󵄨󵄨10)) .

(37)

The general solution for the deflection response of the system
is hence given as

𝑊𝐹 (𝜆, 𝑡) = 𝐴 (𝜆) 𝑒−𝑖Ω1𝑡 + 𝐵 (𝜆) 𝑒−𝑖Ω2𝑡 + 𝐽 (𝜆)Ω2𝑛 (1 + 𝜁𝑓) , (38)

where

𝐴 (𝜆) = − 1Ω1 − Ω2 (Ω1𝐻(𝜆, 0) − Ω2𝐽 (𝜆)Ω2𝑛 (1 + 𝜁𝑓))
− 2ΩcorΩ1 − Ω2𝐻(𝜆, 0) ,

𝐵 (𝜆) = 2ΩcorΩ1 − Ω2𝐻(𝜆, 0)
+ 1Ω1 − Ω2 (Ω2𝐻(𝜆, 0) − Ω1𝐽 (𝜆)Ω2𝑛 (1 + 𝜁𝑓)) .

(39)

L = 1.0

x

f
Fluid in

fL

2

fL

2

Figure 1: Simply supported beam with distributed load.

Therefore, in the Fourier plane, the dynamic response is
obtained as

𝑊𝐹 (𝜆, 𝑡)
= −Ω2𝑒−𝑖Ω2𝑡 − Ω1𝑒−𝑖Ω1𝑡 − 2Ωcor (𝑒−𝑖Ω1𝑡 − 𝑒−𝑖Ω2𝑡)Ω1 − Ω2
⋅ 𝐻 (𝜆, 0) − (Ω1𝑒−𝑖Ω2𝑡 − Ω2𝑒−𝑖Ω1𝑡) − (Ω1 − Ω2)(Ω1 − Ω2) (1 + 𝜁𝑓)
⋅ 𝐽 (𝜆)Ω2𝑛 ,

(40)

where

𝐻(𝜆, 0) = I {𝑊 (𝑥, 0)} . (41)

We now examine the deflection responses for three cases of
horizontal pipeline systemwith regard to solution (40) above.

Case 1.

Pipe with Simple Supports at Both Ends. In this case, as shown
in Figure 1, the initial configuration of the pipe before it is
dynamically excited shows that deflection is symmetric about
the middle of the beam (or the pipe).

For this case, when the system is at the static state, time𝑡 = 0, the flow velocity is also zero, though the pipe might
have trapped some fluid within it. (See Appendix for further
analysis.)

The deflection function is given by Nash [25]:

𝑊 = 𝑤(𝑥312 − 𝑥424 − 𝑥24) , (42)

where 𝑤 = 𝛽𝑓(1 + 𝜁𝑓) and 𝛽𝑓 = 𝑚𝑝𝐿/2𝐸𝐼̂.
Now, (37) reduces to

𝐽𝑠𝑠 (𝜆) = (−𝑊𝑥𝑥𝑥 (𝑥, 0) 𝑒−𝑖𝜆𝑥󵄨󵄨󵄨󵄨󵄨10
+ (𝜆2 − 𝜁𝑓𝑈2)𝑊𝑥 (𝑥, 0) 𝑒−𝑖𝜆𝑥󵄨󵄨󵄨󵄨󵄨󵄨10) (43)
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so that

𝐽𝑠𝑠 (𝜆) = 𝛽𝑓12 (1 + 𝜁𝑓) {(𝜆2 − 𝜁𝑓𝑈2 + 12) (𝑒−𝑖𝜆 − 1)} , (44)

𝐻(𝜆, 0) = I {𝑊 (𝑥, 0)}
= 𝛽𝑓 (1 + 𝜁𝑓)∫1

0 (𝑥312 − 𝑥424 − 𝑥24) 𝑒−𝑖𝜆𝑥𝑑𝑥. (45)

The inverse Fourier transform is given as

𝑊(𝑥, 𝑡) = 1√2𝜋 ∫∞
−∞ 𝑊(𝜆, 𝑡) 𝑒𝑖𝜆𝑥𝑑𝜆. (∗a)

With 𝑡 = 0 and using (45) and (40) the response becomes

𝑊(𝑥, 𝑡) = (−∫∞
0

Ω2𝑒−𝑖Ω2𝑡 − Ω1𝑒−𝑖Ω1𝑡 − 2Ωcor (𝑒−𝑖Ω1𝑡 − 𝑒−𝑖Ω2𝑡)Ω1 − Ω2 𝐻(𝜆, 0) 𝑒𝑖𝜆𝑥𝑑𝜆
− ∫∞

0
(Ω1 (𝑒−𝑖Ω2𝑡 − 1) − Ω2 (𝑒−𝑖Ω1𝑡 − 1))(Ω1 − Ω2) 𝐽𝑠𝑠 (𝜆)Ω2𝑛 𝑒𝑖𝜆𝑥𝑑𝜆) .

(∗a󸀠)

That is,

𝑊(𝑥, 𝑡) = 𝑤{{{(Ω2𝑒−𝑖Ω2𝑡 − Ω1𝑒−𝑖Ω1𝑡 − 2Ωcor (𝑒−𝑖Ω1𝑡 − 𝑒−𝑖Ω2𝑡)Ω2 − Ω1 )(𝑥312 − 𝑥424 − 𝑥24)
+ ∫∞

0
(Ω1 (𝑒−𝑖Ω2𝑡 − 1) − Ω2 (𝑒−𝑖Ω1𝑡 − 1))24 (Ω1 − Ω2) (𝜆2 − 𝜁𝑓𝑈2 + 12) (𝑒−𝑖𝜆 − 1)𝜆2 (𝜆2 − 𝜁𝑓𝑈2) 𝑑𝜆}}} .

(∗b)

On enforcing the dynamic boundary conditions, namely,𝑊(0, 𝑡) = 𝑊(1, 𝑡) = 0;𝑊𝑥𝑥(0, 𝑡) = 𝑊𝑥𝑥(1, 𝑡) = 0, the system’s
dynamic response is given by

𝑊(𝑥, 𝑡)
= 𝑤{{{(Ω2𝑒−𝑖Ω2𝑡 − Ω1𝑒−𝑖Ω1𝑡 − 2Ωcor (𝑒−𝑖Ω1𝑡 − 𝑒−𝑖Ω2𝑡)Ω2 − Ω1 )
⋅ (𝑥312 − 𝑥424 − 𝑥24) + 𝑖
⋅ (Ω1 (𝑒−𝑖Ω2𝑡 − 1) − Ω2 (𝑒−𝑖Ω1𝑡 − 1))2𝑛𝜋 (Ω1 − Ω2) {sin 𝑛𝜋 (1 − 𝑥)
− sin 𝑛𝜋𝑥}}}}

(46)

or𝑊(𝑥, 𝑡)
= 𝑤{{{(Ω2𝑒−𝑖Ω2𝑡 − Ω1𝑒−𝑖Ω1𝑡 − 2Ωcor (𝑒−𝑖Ω1𝑡 − 𝑒−𝑖Ω2𝑡)Ω2 − Ω1 )

⋅ (𝑥312 − 𝑥424 − 𝑥24) + 𝑖
⋅ (Ω1 (𝑒−𝑖Ω2𝑡 − 1) − Ω2 (𝑒−𝑖Ω1𝑡 − 1))2𝑛𝜋 (Ω1 − Ω2) (1 − (−1)𝑛+1)
⋅ sin 𝑛𝜋𝑥}}} ,

(47)
whereΩ1 = −Ωcor − √Ω2

cor + Ω2𝑛,Ω2 = −Ωcor + √Ω2
cor + Ω2𝑛,

Ωcor = (Ω2 + Ω1)𝑖2 = 𝜁𝑓𝑈𝜆(1 + 𝜁𝑓) ,
Ω2𝑛 = ((𝜆4 − 𝜁𝑓𝑈2𝜆2)(1 + 𝜁𝑓) )
𝜆 = 𝑛𝜋;∀𝜆 = 𝑈cr = 𝑛𝜋√𝜁𝑓 (See Appendix A for expanded analysis).

(48)
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To enable us understand fully the characteristics of the
natural frequencies of such a pipeline system, the three
scenarios, namely, critical, subcritical, and postcritical flow
points, are examined; that is, comparing (30) and (34), we
deduce

1 − Γ2 = 𝜆2Ω20 (1 + 𝜁𝑓) (𝜆2 − 𝜁𝑓𝑈2) , (49)

where

Γ2 = 𝑈2
𝑈2

cr

. (50)

The arguments for computing the residues in (40) are 𝜆 =±𝑈√𝜁𝑓, when
𝜆2 (𝜆2 − 𝜁𝑓𝑈2)(1 + 𝜁𝑓) = 0. (51)

Nonetheless, a critical flow point Γ = 1 is attained for any
corresponding velocity, when (47) is zero; that is,𝑈 = 𝑈cr. (52)

For a subcritical flow Γ < 1, this corresponds to the
characteristics of the real part of natural frequency against
flow velocity as normally seen in literature; that is,𝑈 < 𝑈cr, (53)

and for any postcritical flow point, Γ > 1 which corresponds
to the characteristics of the imaginary part of natural fre-
quency against flow velocity; that is,𝑈 > 𝑈cr. (54)

The point to note here is that, in actual practice, continuity
must exist. As such the natural frequency cannot be zero
perpetually for postcritical flow velocity.This necessitated the
essence of the plot of absolute characteristics of the natural
frequency for all regimes of flow, as demonstrated in this
paper. These three scenarios are described graphically in
Section 5.

Case 2. A cantilever pipe is described.
From Figure 2, the initial configuration is described by

𝑊(𝑥, 0) = 𝑤24 (6𝑥2 + 4𝑥3 − 𝑥4) ; (∗ ∗ a)
thus,

𝐽𝑐 (𝜆) = (𝑊𝑥𝑥𝑥 (0, 0) − 𝑖𝜆𝑊𝑥𝑥 (0, 0)
+ (𝜆2 − 𝜁𝑓𝑈2)𝑊𝑥 (1, 0) 𝑒−𝑖𝜆
+ (𝑖𝜆3 − 𝜁𝑓𝑈2)𝑊 (1, 0) 𝑒−𝑖𝜆) .

(∗ ∗ a󸀠)

x

w(x, t)

Figure 2: A fluid-conveying cantilever beam.

𝐽𝑐(𝜆) becomes

𝐽𝑐 (𝜆)= 𝑤 {−12 (2 − 𝑖𝜆) + (4𝜆2 + 𝑖𝜆3 − 5𝑈2𝜁𝑓) 𝑒−𝑖𝜆} , (∗ ∗ b)
𝐻 (𝜆, 0) = I {𝑊 (𝑥, 0)}

= 𝑤24 ∫1
0 (6𝑥2 + 4𝑥3 − 𝑥4) 𝑒−𝑖𝜆𝑥𝑑𝑥. (55)

The response for the fluid-conveying cantilever beam is
therefore given as

𝑊(𝑥, 𝑡)
= 𝑤{{{ 124 (Ω2𝑒−𝑖Ω2𝑡 − Ω1𝑒−𝑖Ω1𝑡 − 2Ωcor (𝑒−𝑖Ω1𝑡 − 𝑒−𝑖Ω2𝑡)Ω2 − Ω1 )
⋅ (6𝑥2 + 4𝑥3 − 𝑥4) − Ω1 (𝑒−𝑖Ω2𝑡 − 1) − Ω2 (𝑒−𝑖Ω1𝑡 − 1)(1 + 𝜁𝑓) (Ω1 − Ω2)
⋅ 𝐽𝑐 (𝜆) 𝑒𝑖𝜆𝑥𝑑𝜆Ω2𝑛

}}} ;
(56)

that is,

𝑊(𝑥, 𝑡)
= 𝑤24 {{{(Ω2𝑒−𝑖Ω2𝑡 − Ω1𝑒−𝑖Ω1𝑡 − 2Ωcor (𝑒−𝑖Ω1𝑡 − 𝑒−𝑖Ω2𝑡)Ω2 − Ω1 )
⋅ (6𝑥2 + 4𝑥3 − 𝑥4) − 𝑖4
⋅ Ω1 (𝑒−𝑖Ω2𝑡 − 1) − Ω2 (𝑒−𝑖Ω1𝑡 − 1)2𝜆 (Ω1 − Ω2) (−24 sin 𝜆𝑥
− 𝜆2 sin 𝜆 (1 − 𝑥) + 𝜆 cos 𝜆𝑥 + 𝜆3 cos 𝜆 (1 − 𝑥))}}} ,

(57)
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L = 1.0

x

M

fL

R1 R2

Figure 3: A clamped-pinned ended fluid-carrying pipe.

where 𝑤 = 𝛽𝑓(1 + 𝜁𝑓)
Ω1 = −Ωcor + √Ω2

cor − Ω2𝑛,
Ω2 = −Ωcor − √Ω2

cor − Ω2𝑛,
Ωcor = 𝑖 𝑈𝜁𝑓𝜆1 + 𝜁𝑓 ,
Ω𝑛 = √𝜆4 − 𝜆2𝑈2𝜁𝑓1 + 𝜁𝑓 ,

(58)

for which the characteristic equation at 𝑥 = 0, 1 is given by

(2 − 𝜆2) tan𝜆 − 3𝜆 = 0. (59)

Case 3. For clamped and pinned ended supports: see
Figure 3.

From Figure 4, the initial configuration is

𝑊(𝑥, 0) = 𝑤48𝑥2 (−3 + 5𝑥 − 2𝑥2) . (60)

Dynamic response of the clamped-pinned pipeline is given as

𝑊(𝑥, 𝑡)
= 𝑤48 {{{(Ω2𝑒−𝑖Ω2𝑡 − Ω1𝑒−𝑖Ω1𝑡 − 2Ωcor (𝑒−𝑖Ω1𝑡 − 𝑒−𝑖Ω2𝑡)Ω2 − Ω1 )
⋅ 𝑥2 (−3 + 5𝑥 − 2𝑥2) − 𝑖
⋅ 1𝜆 (Ω1 (𝑒−𝑖Ω2𝑡 − 1) − Ω2 (𝑒−𝑖Ω1𝑡 − 1)(Ω1 − Ω2) )
⋅ (6𝜆 cos 𝜆𝑥 − 30 sin 𝜆𝑥 − 18 sin 𝜆 (1 − 𝑥))}}} ,

(61)

where Ω1 = −Ωcor + √Ω2
cor − Ω2𝑛,

Ω2 = −Ωcor − √Ω2
cor − Ω2𝑛,

Ωcor = 𝑖 𝑈𝜁𝑓𝜆1 + 𝜁𝑓 ,
Ω𝑛 = √𝜆4 − 𝜆2𝑈2𝜁𝑓1 + 𝜁𝑓

(62)

with the characteristic equation for the values of 𝜆 at both
ends as

tan𝜆 − 53𝜆 = 0 (63)

and Appendix B gives the summary of the above results.

5. Analysis of Results and Discussion

Although the effect of Coriolis force on the dynamics of
a fluid-conveying pipeline has been well known over the
decades, early studies were shrouded in ad hoc heuristic
arguments on the one hand and elegant interpretation of
physical and numerical experiments on the other. The chal-
lenge has been to find a simple and straightforward way of
demonstrating what has come to be accepted as the general
pattern of behaviour of these systems.

In several investigations to date on the general behaviour
and conditions of stability associatedwith unstable oscillation
of pipe conveying fluid, researchers were preoccupied with
finding answers to two basic questions, namely,

(a) constructing the general pattern of the dynamic
response of the system,

(b) establishing the region and or regime where such a
solution holds validity.

Within the context of linear theory, the latter question invari-
ably involves determining the critical velocity of internal fluid
flow for the system while the former exercise has unraveled
curious and unexpected paradoxical patterns of flow.

Most of the difficulties encountered can be traced to
the methodology used in tackling these problems wherein
reliance was put on solving abridged equations whose solu-
tionswere fortifiedwith powerful andmasterly interpretation
of physical and numerical experimental results.

In this short note we recovered some of the well-known
results from a straightforward application of Fourier complex
transform to the full linear equations. This affords us the
opportunity to

(a) obtain closed form explicit expressions for classical
flow variables such as the critical flow velocity and
natural frequency of the system,

(b) avoid the tedium of laborious numerical work by
being able to locate the eigenvalues of the critical flow
velocity in a relatively simple fashion,
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(b) Graph of 𝑠 = real(Ωcor ± √Ω2
cor − Ω2𝑛)

Figure 4: Variation of complex frequency with internal axial flow velocity for different modes.

(c) undertake easy comparative parametric analysis of
the variables contained in the solution without heavy
reliance on numerical computation,

(d) guarantee, ab initio, that the derived solution com-
plies with the exact or complete configuration and
profile of the entire pipe length at onset so that the
evolution of the final configuration as a direct result
of the initial pipe profile does not constitute an issue,

(e) also provide confirmation of predictions of earlier
workers and facilitates a better understanding, orga-
nization, and interpretation of some of the phenom-
ena reported to date in the literature.

In respect of the case of a simply supported beam hanging
above the ground, our investigation clearly shows from (26)
that the frequency associated with the Coriolis force is partly
driven by the mass ratio of the internal fluid and increases
linearly with the flow velocity. The critical flow velocity is
found to be dependent on the fluid-to-pipe mass ratio 𝜁𝑓,
thereby showing that it is a function of the mass of the
fluid flowing in the pipe. Equations (47), (57), and (61)
also demonstrated that the system’s dynamic responses are
dependent on the initial configurations of the pipeline system
and the boundaries’ forces and moments.

The profiles illustrated (Figures 4–6) confirmed the
mirror imaging or characteristics for the real, imaginary,
and absolute values of the complex frequencies. At the
critical points, flow bifurcations are demonstrated. As for the
absolute values of the complex frequency pairs, the critical
values and the two regimes of the beam divergence are clearly
represented in the figures. We have equally noted that, for
a given mass ratio, critical flow velocities are ordered in
consonant with the number of modes.

The family of curves for the natural frequency of the
system are illustrated (Figures 7–9) as a function of the
flow velocity and fluid-pipe mass ratio. With (34) and
(52), the subcritical velocity points corresponding to the
predivergence values of the system are shown by the curves
representing the imaginary parts of Ω𝑛 against the flow
velocity 𝑈 in Figures 7(a) and 8(a) and against mass fluid

ratio 𝜁𝑓 in Figure 9(a). Also, as described by (34) and (53) and
Figures 7(b), 8(b), and 9(b), the postcritical velocity points
corresponding to the postdivergence values are demonstrated
for the real part ofΩ𝑛, while the curves for the absolute values
of Ω𝑛 as illustrated with (51) show clearly the critical points
for both the flow velocity and the fluid mass ratio.The curves
for both the imaginary and real parts of Ω𝑛 appear to depict
quasi-static configurations from zero flow velocity and mass
fluid ratio to the neighbourhood of the critical points and
from the same neighbourhood, such quasi-static behaviour is
observable as the flow velocity and mass fluid ratio increases
beyond the critical points, respectively.

From the foregoing, it does not sound reasonable and
possible even from actual experiments for a buckled fluid-
conveying pipeline to exhibit a quasi-static geometrical con-
figuration beyond the critical points ad infinitum as shown
theoretically in literature. It therefore seems scientifically
sensible to study the dynamic response and natural frequency
characteristics of a pipeline from the subcritical through
critical and postcritical points in order to clearly describe the
behavioural divergences of the system.

As shown in Figures 1 and 10, buckling occurs even in the
absence of flow for a pipeline segment simply supported at
both ends. This condition arises from the deformation of the
neutral axis of an originally straight beam, at equilibrium,
but is subjected to the action of its weight and the two
end reactions. Thus, for a pipeline segment closed at both
ends that is carrying an entrained static fluid, the degree
of buckling increases as the mass of internal flow increases.
However, if dynamic buckling occurs when a fully developed
fluid is flowing through the pipe under the same conditions
at any flow velocity, the direction of buckling alternates
different values of flow velocity as demonstrated in Dodds
Jr. and Runyan (1965) [18] for the case of the principal
buckling mode 𝑛 = 1 and the behavioural pattern of
curves in Figure 10. As demonstrated in this figure, the
curves describing the physics of dynamically excited simply
supported pipeline systems are parabolas and then show
that the downward sagging of the pipe for time 𝑡 = 0
and as the pipe is dynamically moving due to the fluid
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Figure 5: Variation of complex frequency with axial flow velocity for different fluid mass ratios.
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Figure 6: Movement of critical flow velocity as a function of fluid
mass ratio for different axial flow velocities.

flow, depending on its magnitude, the pipe characteristics
alternate to give convex and concave curvatures. More so,
as interchange of energy develops between the generated
Coriolis force and the system, symmetric and antisymmetric
oscillations emerge. Also, the slow-moving frequency driven
responses enveloping the fast-moving frequency driven ones
are demonstrated in Figure 11, thus generating two distinct
modes for the system.

As for Case 2 results, in Figures 12–17, the frequency
curves for both the complex and natural frequencies are
demonstrated to be similar to those for the simply supported
pipe, except that their wave numbers are smaller 𝜆 values
and of complex forms as the transcendental characteristic
equation is solved.Thefluttering behaviours that are expected
of cantilever systems are illustrated in Figures 15 and 16.
This naturally explains the results that a pipe with a free-
end gives. For these pipeline arrangements, the response-time
characteristics shown in Figure 17 explain the envelopments

of the fast-moving frequency responses by their slow-moving
counterparts and that as time increases the amplitudes decay.
These indeed show that the system performs what is known
as beats phenomenon. These features are of paramount
significance for design purposes.

Illustrated by Figures 18 and 19 are the results for Case 3,
that is, the clamped-pinned pipeline segment. In the figures,
the dynamic responses against the pipe lengths are clearly
demonstrated as the clamped end reveals the zero gradients
due to the moments and reactions at that end as well as zero
moments and deflections at the simply supported end.

Case 1 Results. For responses of the pipe simply supported at
both ends see Figures 4–11.

Case 2. For results of the cantilever pipe, see Figures 12–17.

Case 3 Results. For responses of the clamped-pinned ends
pipe, see Figures 18 and 19.

6. Conclusion

The suitability of Fourier complex exponential transform
method for the solution of the homogeneous Coriolis-term
dependent mathematical physics equation governing the
flow-induced vibration propelled by the conveyance of an
incompressible fluid through a pipe segment is presented.
The study assumed a linear theory for the fluid structure
interaction mechanics where the relevant forces are properly
accounted for.

Notably, this fluid structure interaction process as dis-
cussed in this paper has the tendency to induce the occur-
rences of conjugate modal complex and natural frequen-
cies for all flow velocities and other associated parametric
variables. This conjugateness of the complex frequencies is
the prime sources for the initiation of bifurcation responses.
Nevertheless, the modal natural frequencies as inferred in
the investigation above can be functionally related to the
Coriolis frequency. It is instructive to state that their lines
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Figure 8: Variation of natural frequency with axial flow velocity for different fluid mass ratios.

of action are directed orthogonally to the directrices of the
complex frequencies where the Coriolis force is playing a
central role. It is also noteworthy to state thatwhilst themodal
natural frequency equation can be alternatively conjured to
be independent of Coriolis force as an option, the dynamic

responses and complex frequencies are seen to be explicitly
tied to the modulating roles of the Coriolis acceleration.
Consequently, the use of this transform method can be very
apt to conjure approximate closed form solutions for non-
linear problems in conjunction with homotopy perturbation
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method (HPM), homotopy analysis method, and differential
transformation method (DTM), without having recourse to
the uses of singular or parameter perturbationmethod where
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the issue of smaller parameters for the perturbation series
expansions is an issue.
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Figure 12: (a) Graphs of natural frequency versus flow velocity. (b) Graphs of natural frequency versus flow velocity.

𝜁f = 0.1
𝜁f = 0.2

𝜁f = 0.3
𝜁f = 0.4; 𝜆 = 3.80

0 5 10 15 20 25
Dimensionless flow velocity U

0

10

20

30

40

50

Im
ag

 (n
at

ur
al

 fr
eq

ue
nc

y,
Ω

n
)

(a)

𝜁f = 0.1
𝜁f = 0.2

𝜁f = 0.3
𝜁f = 0.4; 𝜆 = 3.80

0 5 10 15 20 25
Dimensionless flow velocity U

0

2

4

6

8

10

12

14
N

at
ur

al
 fr

eq
ue

nc
y
Ω

n

(b)

Figure 13: (a) Graphs of natural frequency versus flow velocity. (b) Graphs of natural frequency versus flow velocity.
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Figure 15:Dynamic response of pipe of a given internal flowvelocity
and different mass ratio.
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Figure 16: Dynamic response of pipe of a given mass ratio for
different time.

0 1 2 3 4 5 6
Dimensionless time t

x = 0.5
x = 1.0, 0.3, 𝜁f = 0.9

×10−3

W

−6

−4

−2

0

2

4

6

D
yn

am
ic

 re
sp

on
se

U =

Figure 17: Dynamic response of pipe at 𝑥 = 0.5 and 1.0 for a given
axial flow velocity and fluid-pipe mass ratio of 0.9.
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Appendix

A. Critical Flow Velocity

For Case 1, a pipe simply supported at both ends has physical
configuration as shown schematically in Figure 20. Since the
pipe and the fluid it is carrying have uniformly distributed
downward vertical loads of intensity 𝑓 on the system, then
we consider the shearing force 𝐹 at a distance 𝑥 from the left
end; it is given as shown in Figure 20.

The deflection function is given as

𝑊 = 𝑤(𝑥312 − 𝑥424 − 𝑥24) , (A.1)

where 𝑤 = 𝛽𝑓(1 + 𝜁𝑓) and 𝛽𝑓 = 𝑚𝑝𝐿/2𝐸𝐼̂.
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Figure 20: Simply supported beam.

In this case, while the shearing force varies linearly, the
bending moment varies parabolically along the length of the
beam.𝑊(𝑥, 𝑡)

= {{{𝑤((Ω2𝑒−𝑖Ω1𝑡 − Ω1𝑒−𝑖Ω2𝑡) − 𝑖2Ωcor (𝑒−𝑖Ω1𝑡 − 𝑒−𝑖Ω2𝑡)(Ω2 − Ω1) )
⋅ (𝑥424 − 𝑥312 + 𝑥24) − (Ω1 (𝑒−𝑖Ω2𝑡 − 1) − Ω2 (𝑒−𝑖Ω1𝑡 − 1))(Ω1 − Ω2)
⋅ ∫∞

0
𝐽𝑠𝑠 (𝜆)Ω2𝑛 𝑑𝜆}}} ;

(A.2)

that is,

𝑊(𝑥, 𝑡)
= 𝑤{{{((Ω2𝑒−𝑖Ω1𝑡 − Ω1𝑒−𝑖Ω2𝑡) − 𝑖2Ωcor (𝑒−𝑖Ω1𝑡 − 𝑒−𝑖Ω2𝑡)(Ω2 − Ω1) )
⋅ (𝑥424 − 𝑥312 + 𝑥24) − (Ω1 (𝑒−𝑖Ω2𝑡 − 1) − Ω2 (𝑒−𝑖Ω1𝑡 − 1))12 (Ω1 − Ω2)
⋅ ∫∞

0
{(𝜆2 − 𝜁𝑓𝑈2 − 12) (𝑒−𝑖𝜆(1−𝑥) + 𝑒𝑖𝜆𝑥)}Ω2𝑛 𝑑𝜆}}} .

(A.3)

Butwith the boundary conditions, that is,𝑊(0, 𝑡) = 𝑊(1, 𝑡) =0, the above equation shows that

𝑤((Ω2𝑒−𝑖Ω1𝑡 − Ω1𝑒−𝑖Ω2𝑡) − 𝑖2Ωcor (𝑒−𝑖Ω1𝑡 − 𝑒−𝑖Ω2𝑡)(Ω2 − Ω1) )
⋅ (𝑥424 − 𝑥312 + 𝑥24) = 0 (A.4)

and thus the second term must be zero also; that is,

−∫∞
0

(Ω1 (𝑒−𝑖Ω2𝑡 − 1) − Ω2 (𝑒−𝑖Ω1𝑡 − 1))12 (Ω1 − Ω2) {12 (2𝑒−𝑖𝜆(1−𝑥) + 𝑒𝑖𝜆𝑥) + (𝜆2 − 𝜁𝑓𝑈2) (𝑒−𝑖𝜆(1−𝑥) + 𝑒𝑖𝜆𝑥)}Ω2𝑛 𝑑𝜆 = 0. (A.5)

That is, for all 𝑡,

∫∞
0

(Ω1 (𝑒−𝑖Ω2𝑡 − 1) − Ω2 (𝑒−𝑖Ω1𝑡 − 1))12 (Ω1 − Ω2) {12 (2𝑒−𝑖𝜆(1−𝑥) + 𝑒𝑖𝜆𝑥) + (𝜆2 − 𝜁𝑓𝑈2) (𝑒−𝑖𝜆(1−𝑥) + 𝑒𝑖𝜆𝑥)}(𝜆4 − 𝜆2𝑈2𝜁𝑓) 𝑑𝜆 = 0 (A.6)

becoming

∫∞
0

(Ω1 (𝑒−𝑖Ω2𝑡 − 1) − Ω2 (𝑒−𝑖Ω1𝑡 − 1))12 (Ω1 − Ω2) {12 (2𝑒−𝑖𝜆(1−𝑥) + 𝑒𝑖𝜆𝑥) + (𝜆2 − 𝜁𝑓𝑈2) (𝑒−𝑖𝜆(1−𝑥) + 𝑒𝑖𝜆𝑥)}(𝜆 − √𝜂1) (𝜆 + √𝜂1) 𝑑𝜆 = 0, (A.7)

where

𝜂1 = 𝑈2𝜁𝑓2 ± √𝑈4𝜁2𝑓2 . (A.8)

Using residue theory and contour integration, we deduce that

𝜆 = √𝜂1
or 𝜆 = ±𝑈√𝜁𝑓. (A.9)
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Adding the residues of (A.7) gives122√𝜂1 {2 (𝑒−𝑖√𝜂1(1−𝑥) − 𝑒𝑖√𝜂1(1−𝑥))
+ (𝑒𝑖√𝜂1𝑥 − 𝑒−𝑖√𝜂1𝑥)}󵄨󵄨󵄨󵄨󵄨𝑥=0,1 = 0, (A.10)

that is,

𝑖 12√𝜂1 {−2 sin√𝜂1 (1 − 𝑥) + sin√𝜂1𝑥}󵄨󵄨󵄨󵄨𝑥=0,1 = 0 (A.11)

so that when 𝑥 = 0, at one end, then,
sin√𝜂1 = 0, ∀√𝜂1 = 𝜆 = 𝑛𝜋. (A.12)

Similarly with 𝑥 = 1, at the other end, therefore the critical
velocity is given as

𝑈critical = 𝑛𝜋√𝜁𝑓 ∀𝑛 = 1, 2, . . . , (A.13)

and the dynamic response becomes

𝑊(𝑥, 𝑡)
= 𝑤{{{((Ω2𝑒−𝑖Ω1𝑡 − Ω1𝑒−𝑖Ω2𝑡) − 𝑖2Ωcor (𝑒−𝑖Ω1𝑡 − 𝑒−𝑖Ω2𝑡)(Ω2 − Ω1) )
⋅ (𝑥424 − 𝑥312 + 𝑥24) + 𝑖
⋅ (Ω1 (𝑒−𝑖Ω2𝑡 − 1) − Ω2 (𝑒−𝑖Ω1𝑡 − 1))𝑛𝜋 (Ω1 − Ω2) {2 sin 𝑛𝜋 (1 − 𝑥)
− sin 𝑛𝜋𝑥}}}} .

(A.14)

B. Summary of Derived Results

See Table 1.

Nomenclature𝐸: Young’s modulus𝐼: Moment of inertia𝜌𝑠: Mass density of pipe per unit length𝜌𝑓: Mass density of fluid per unit length𝑈: Internal flow velocity𝑤: Transverse deflection𝑊: Dimensionless dynamic response𝑊𝑥: Pipe’s end slope𝑊𝑥𝑥: Pipe’s end moment𝑊𝑥𝑥𝑥: Pipe’s end shear force𝑡: Dimensionless time𝑥: Coordinate of pipe’s neutral axis𝑔: Gravitational acceleration𝐿: Pipe length

𝜆: Wave number𝜁𝑓: Fluid-pipe mass ratioΩ0: System frequency at zero flow velocityΩ𝑛: Natural frequencyΩ1: Complex frequencyΩ2: Conjugate complex frequency𝑝: Dimensionless pressure𝑇: Dimensionless temperature
V: Poison ratio𝛼: Linear expansivity𝑝: Dimensionless pressureΩcor: Frequency due to Coriolis force𝑈cr: Critical flow velocity.
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