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This paper is devoted to existence and uniqueness of solutions for some stochastic functional differential equations with infinite

delay in a fading memory phase space.

1. Introduction

Let | - | denote the Euclidian norm in R”. If A is a vector or
a matrix, its transpose is denoted by A’ and its trace norm is
represented by |A| = (Trace(A'A))l/z. LetaAb (aVb)be the
minimum (maximum) for a,b € R.

Let (Q,%,P) be a complete probability space with a
filtration {#},5, satisfying the usual conditions; that is, it is
right continuous and %, contains all P-null sets.

M*((—00, T];R™) denotes the family of all &,-meas-
urable R” valued processes x(t), t € (—00,T] such that
E([" Ix(t)Pdt) < co.

Assume that W (t) is an m-dimensional Brownian motion
which is defined on (Q, &, P); that is, W(t) = (W (t), W, (),
LWL

Let C* = {p € C(—00; 0; R") : limgé_ooe”e(p(G) exists in
R"} denote the family of continuous functions ¢ defined on
(—00, 0] with norm ¢, = supegoe”el(p(9)|.

Consider the n-dimensional stochastic functional differ-
ential equation

dx(t) = f (x,,t)dt + g(x,,t)dW (1),

where x;, : (-00,0] —» R%60 — x,(0) = x(t + 0);—00 <
0 < 0 can be regarded as a C*-value stochastic process, and
f:Ctx[ty,T] > R"and g : C* x [ty, T] — R™ are Borel
measurable.

to<t<T, (1)

The initial data of the stochastic process is defined on
(—00,t,]. That is, the initial value x, = & =1{0) : —00 <
6 < 0} is a #, -measurable and C*-value random variable

such that & € .4 (C*).

Our aim, in this paper, is to study existence and unique-
ness of solutions to stochastic functional differential equa-
tions with infinite delay of type (1) in a fading memory phase
space.

2. Preliminary

The theory of partial functional differential equations with
delay has attracted widespread attention. However, when the
delay is infinite, one of the fundamental tasks is the choice
of a suitable phase space 9. A large variety of phase spaces
could be utilized to build an appropriate theory for any class
of functional differential equations with infinite delay. One of
the reasons for a best choice is to guarantee that the history
function t — x, is continuous if x : (-00,a] — R" is con-
tinuous (where a > 0). In general, the selection of the phase
space plays an important role in the study of both qualitative
and quantitative analysis of solutions. Sometimes, it becomes
desirable to approach the problem purely axiomatically. The
first axiomatic approach was introduced by Coleman and
Mizel in [1]. After this paper, many contributions have been
published by various authors until 1978 when Hale and Kato
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organized the study of functional differential equations with
infinite delay in [2]. They assumed that 9 is a normed linear
space of functions mapping (-co0,0] into a Banach space
(X, |]), endowed with a norm |-| ;; and satisfying the following
axioms.

(A,) There exist a positive constant H and functions
K(),M(-) : [0,+00) — [0,+00), with K being continuous
and M being locally bounded, such that for any 0 € R and
a>0,ifx:(-00,0+a] — X, x, € B, and x(-) is continuous
on [0, 0+a], thenforalltin [0, o+a], the following conditions
hold:

(i) x, € %,
(ii) [x(®) < Hlx|g»
(iii) |x,]g < K(t = 0)sup,. ., |x(s)| + M(t = 0)|x,] .

(A,) For the function x(-) in (A,), t — x, is a $B-valued
continuous function for ¢ in [0, 0 + a].

(A5) The space 3B is complete.

Later on, the concept of fading and uniform fading
memory spaces has been adopted as the best choice.

For¢p € %, t > 0and 0 < 0, we define the linear operator
O(t) by

¢ (0) ift+6>0,

O(t 0) = 2
[0©)¢]©) <|<p(t+0) if t+6<0. @

(O(t))ss is exactly the solution semigroup associated with the
following trivial equation:

d
EU (t) = 0, (3)
Uy = .
We define
O, (t) = @%St), where B, = {p € B: ¢ (0) =0}. (4)

0

Let &, be the set of continuous functions ¢ : (—00,0] — X
with compact support. We recall the following axiom.

(A4) If a uniformly bounded sequence (¢,),s, in €y
converges to a function ¢ compactly on (0o, 0], then ¢ € A
and |¢, — ¢lgs — 0.

Definition 1.

(1) &B is called a fading memory space if it satisfies the
axioms (A)), (A,), (A;),(A,) and [O(t)p| — 0 as
t — +00, for all ¢ € %,

(2) % is called a uniform fading memory space if it satis-
fies the axioms (A ), (A,), (A5),(A,) and |O,(t)| —
0ast — +oo.

Examples. We recall the definitions of some standard exam-
ples of phase spaces A.

We start first with the phase space of X-valued bounded
continuous functions ¢ defined on (-00,0], that is,
PBE((—00,0]; X) with norm |@| e = sup_. 4-0lPO)].
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(1) Let

BU = {p € BE ((~00,0];X)
(5)

: ¢ is bounded uniformly continuous},

where %€ is the space of all bounded continuous functions
mapping (—00,0] into X provided with the uniform norm

topology.
(2) Let y € R and

@t
_ {(p € @ ((-00,01;X): lim ¢ (6) exists in X}, ©
provided with the norm
lel,, = _;gggoe”e lp (). %

(3) For any continuous function g : (—00,0] — [0, +00),
we define

€, = {(p € % ((~00,0]; X):

o 0)]
g(0)

is bounded on (—oo, 0]]> , (8)

e ©®)
@, = {(p € G, ((-00,0] ;X):GEIPMW =0¢,

endowed with the norm

~ o (0)]
loly = sop "o )

Consider the following conditions on g:

(91) SUP_gocp<_i(g(t +0)/g(0)) is locally bounded for
t>0,

(92) limg_,_,g(0) = +00,
(93) hmtﬂ+oosup—oo<9§—t(g(t + 9)/9(9)) =0.

Properties of each phase space are summarized in Table 1.

For other examples, properties, and details about phase
spaces, we refer to the book by Hino et al. [3].

Fengying and Ke [4] discussed existence and uniqueness
of solutions to stochastic functional differential equation with
infinite delay in the phase space of bounded continuous
functions ¢ defined on (-co, 0] with values in R", that is,
BE((—00,0]; R") with norm |@| g¢ = sup_., <, l9(O)I.

Lemma 2 (page 22in [3]). Ifthe phase space 9 satisfies axiom
(A,), then BE((—00,0]; R") is included in AB.
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TABLE 1
(A) (A,) (Aj) (Ay) Uniform fading memory space
RBE Yes No Yes No No
BU Yes Yes Yes No No
€ 4 Under (g,) Under (g,) Yes Under (g,) Under (g5)
%g Under (g,) Under (g,) Yes Under (g,) Under (g5)
6" Yes Yes Yes Under p > 0 Under pt > 0

3. Existence and Uniqueness
Lemma 3 (see [4]). Ifp =2, g € L*([ty, T; R™™) such that
E LT lg(s)|Pds < oo, then

p
E

T
| g@aw

t

_ p/2 T
(Y v [ o

(10)

Lemma 4 (Borel-Cantelli, page 487 in [5]). If {E,} is a
sequence of events and

iP(En) < 00, (11)
n=1

then
P({E, i0.}) =0, (12)

where i.0. is an abbreviation for “infinitively often.”

Definitions 1. R"-value stochastic process x(t) defined on
—00 < t < T is called the solution of (1) with initial data
x;,» if x(t) has the following properties:

(i) x(t) is continuous and {x(t)}tosth is #,-adapted,

(i) {f(x, 1)} € L' ([ty, TI;R™) and {g(x,,1)} € ZL2([t,,
T];R™™),

(iii) x, =&, foreacht, <t < T,

X0 =EO)+ | f(x09)ds
o (13)
+ J g (x5, 5)dW (s) almost surely (a.s.).

x(t) is called unique solution, if any other solution x(t) is
distinguishable with x(t); that is,

P{x(t)=x(t), forany t, <t <T}=1. (14)
Now, we establish existence and uniqueness of solutions

for (1) with initial data x, . We suppose a uniform Lipschitz
condition and a weak linear growth condition.

Theorem 5. Assume that there exist two positive number K
and K such that,
(i) for any o, € C* and t € [t,, T}, it follows that

I (pt) = £ (w: )" V]g (@ t) - g (w.1)[*
<Klp-vl,,

(ii) for any t € [t,,T), it follows that f(0,t), g(0,t) €
L2(C*) such that

15)

If .0 Vg0 <K. (16)

Then, problem (1), with initial data X, = & e M*((~00,0];
R"), has a unique solution x(t). Moreover, x(t) € M ((~00,
T];R™.

Lemma 6. Let (15) and (16) hold. If x(t) is the solution of (1)
with initial data x, = &, then

E( sup |x (t)|2) < Ceéf(T—tOH)(T—to), a7)
to<t<T
where C = 3E|f|; +6K(T —ty+1)(T —t,) + 6K (T —t,+1)(T -
to)ElE];..

Moreover, if & €
M ((-00, TT; R).

M*((-00,0];R"™), then x(t) €

Proof. For each number g > 1, define the stopping time

quT/\inf{te [to. T]: |x,|ﬂ2q}. (18)

Obviously, as g — oo, 7, /T as. Let x1(t) = x(t A Tq), te
[to» T, and then x7(t) satisfy the following equation:

O =50+ [ FOE) Ty 0ds
. (19)
+ [ 968y AW ).

Using the elementary inequality (a + b+ c)? <3(a®+b* + ),
we get

q 2 2 ?
|xT ()] < 3[¢[, +3

t
L [ (s 8) Iy () ds
° (20)
2

+3

t
[ 9Gct.5) T ey W (9
to
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Taking the expectation on both sides and using the Holder

t
2 2
E 0, ds < 3E 6(t—ty+1
inequality, Lemma 3, and (15) and (16), we get for all t in [t,,, T'] L] l9 (0,9 ds |El” +6(t=to+1)

2
E|x? ()" < 3E|&]} + 3E

t
L f(xLs) Tty (5) ds

2
+3E

t
L 9 (xs8) Ipy 1 (5) AW (s)

<3E[¢,
3=t [ I (e as
t
+ 3EJ lg (xsq,s)|2 ds < 3E |§|i +3(t—t,)
Jlf )= £ (0,9) + £ (0,9) ds
+3E r |9 (x%,5) = g(0,5) + g (0,5)[ ds
< 3E Ifli +6(t—t0)EJt |f (xZ,s) —f(0,5)|2d5
t
+6EJ g (xL,5) = g (0,5)[ ds + 6 (t — t,)
to
e st | o
to t
< 3E |E|i+6(t—t0)EL |f(x§,s)-f(o,s)|2d5
+6E r g (x8,5) = g (0,5) ds +6(t — t,)
B[ 17 @of dsroe loof as
+6EJ |f (x%5) = £(0,5)[ ds+6(t - t,)

B[ Jg(xt.5) -
o

+6E Jt |£(0,9)] ds+6(t—t,)
ty

g (0, s)|2 ds

t
EJ |9(0,5)[*ds < 3EE[} + 6 (£t + 1)
ty

EJ:|f )= £ (0,9 ds+6(t —ty+1)

)

-

EJ |g (x gO0,5) ds+6(t—t,+1)

t,

S

-

EJ |f(0,9) ds+6(t—t,+1)

E L (|f (xL,s)- f (0, s)|2

+1g (x4, 5) = g (0.9)]* +|£ (0, 5)

+ |g(0,s)|2)ds < 3E|£|i +6(t—ty+1)

t
EJ (R|<]2 + K)ds < 3E|¢[% + 6K (t ~ 1
Ly

t
+1)(t—t0)+6f(t—to+1)EJ w4 ds
ty

(21)

We have also for each t in [¢,, T]

sup |x3|i = sup { sup e’ |x1 (s+9)|2}

to<Ss<t to<s<t [ —00<6<0

sup { sup 29 |x1 (r)|2}

to<s<t l—oo<r<s

IN

sup e 2 { sup e |x1 (r)|2}

to<s<t —00<r<s

IN

- 2
sup e 2’“{ sup e |x% (r)]

to<s<t —00<r<t

Vv sup e [x (r)|2}

ty<r<s

< sup e ¥ { sup € |x(r -ty + )|

—o0o<r—t,<0

(22)

Vv sup e [x (r)|2}

ty<r<s

2ur

2
x?o (r- t0)|

-2
< supe ’“{ sup e

to<s<t —00<r—t,<0

Vv sup e |x (r)|2} < supe <le2’”° |£|’24
t

ty<r<s 0<5<

Vv sup e*” |x1 (r)|2} < supe <lez’”° |E|i
t

to<r<s 0Ss<

Vv sup e’ |x1 (r)|2} < @t~ |E|i

ty<r<s

+ sup |x1(n)|’ < |E|i+tsupt|x‘1 .
V<P

tosr<t
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Letting t = T, we get

E( sup |x? (s)|2)
to<s<T

< 3E[E]) + 6K (T — to +1) (T ~ t,)

(23)
+6E(T—t0+l)EJ <|E| + sup |x (r)] )

T
<C+6K(T-ty+1) J E( sup |x? (r)|2>dr
ty to<r<T

where C = 3E|£|i +6K(T —ty+1)(T —ty) +6K(T —to+1)(T -

to)E |E|i-
By the Gronwall inequality, we infer

E( sup |x7 (s)|2> < CeSK Tt D(T=to), (24)
to<s<T
That is,
2 R(T— _
E< sup 'x (5/\ T )| ) < CeSK T+ D(T o), (25)
to<s<T
Consequently

E( sup |x (s)|2> < CeSKT-to+D(T~to), (26)
ty<s<t,
Letting g — o0, that implies the following inequality

E( sup |x(s)|2) < CeSK Tt D(T=to), (27)

to<s<T

Now, to prove the second part or the lemma, suppose that
& € M*((~00,0]; R"). Then

E(_supT|x(t>|2)= ( sup |x(t>|>
( sup |x<t)|2)
to<t<T

SE( sup |x(¢)] )
—cos<t<t,

+ Ce 6K (T—ty+1)(T—t,)

T

—00<t—t;<0

n Ceéf(T—toﬂ)(T—to)

From the fact x, ()

5
< E< sup 'xt (s)| )
00<s<0
+ C KTt +1)(Tt;)
<E |El2 + Ce6K(T7t0+1)(T—t0)
< 00.
(28)
The demonstration of the lemma is complete. O

Proof of Theorem 5. We begin by checking uniqueness of
solution. Let x(t) and X(t) be two solutions of (1), by
Lemma 6 x(t) and x(¢) € #*((-c0, T]; R™). Note that

O -F0) = | [f (509~ f (79))ds
’ (29)

+ J: [g(xs8) =g (X 8)] AW (s).

By the elementary inequality, (a + b)* < 2(a® + b%), one then
gets

Ix (t) - x (1)

2

2 [ 1 (o) £ (o) s

(30)

2
+2

[ 196es) - g o9l aw 9

By Hoélder inequality, Lemma 3, and (15) and (16), we have
Elx(t) - X (t)’

<201 B[ 1f (es) = £ (o5 s

t
#2E [ |g(xs) - g (Fos)[ ds
to

- t 5 (31)
< 2K (t- to)EJ |x —Es|# ds
to

t
+2KE J |x, - Esﬁ ds
t

t
<2K (t—ty+ I)EJ |xS—ES|’24ds.
to
=%,(s) = &(s), s € (-00,0],and

sup |x5 - 75|2
to<s<t #

= sup { sup ezﬂelx(5+9)—§(s+9)|2}

to<s<t [ —00<h<0

= sup { sup e |x (I’)—E(T‘Nz}

to<s<t l—-oo<r<s



< supe { sup e |x (r) - E(r)|2]’

to<s<t —00<T<s

x, 0) -, 0)]

) 2
< supe #{ sup O
—00<0<0

Vv sup e |x (r) —E(r)lz}

ty<r<s

< sup e ¥ { sup e |x (r) - f(”)|2}

to<s<t to<r<s
< sup |x(r) - E(r)l2 .
tosr<t

(32)

We have

E( sup |x (s) —E(s)|2>

ty<s<t

. (33)
<2K (t—t, + I)J E( sup |x (r) —E(r)lz)ds.

t to<r<s
Applying the Gronwall inequality yields
E(Ix()-x@®)*) =0, ty<t<T. (34)

The above expression means that x(t) = x(t) a.s. fort, <t <
T. Therefore, for all —co < t < T, x(t) = x(t) a.s., the proof
of uniqueness is complete. O

Next, to check the existence, define x?o = &and x°(t) =

E(0)forty <t <T.Let Xk = &, k=1,2,...,and define Picard
0 ty
sequence

t

X5 (t) = £(0) + J f (xf_l,s) ds

, (35)
+J g(xf_l,s)dW(s), ty<t<T.
to

Obviously X)) € MP*((~c0, T;R™). By induction, we can
see that x*(¢) € *((—0c0, T];R™).
In fact, by elementary inequality (a+b+c)* < 3(a*+b*+c?)

2
@ <35 +3

L: f (xf_l, 5) ds

(36)
2

+3

r g (xffl, s) dW (s)
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From the Holder inequality and Lemma 3, we have

E|xk (t)|2 < 3E|E|i +3(t-t,)
Ef () s foafa

+3E jt 'g (xl;_l,s) -g(0,5)+ g (0, s)|2 ds.
to

Again the elementary inequality (a + b)? < 2a% +2b%, (22),
(15), and (16) imply that
2
E|x* ()| <3E |£|i

t

+3(t—ty+ I)EJ (2?|xf‘1|i +2K)ds

to

t
§3E|£|i+6K(t—t0+1)EJ ds
t,

0

t
+6K (t -ty + 1)EL |xf‘1|ids <C
0
(38)
t
+6K (t—ty + I)EJ |xffl|ids <C
to

t
+6K (t—ty+1) EJ (|E|/24 + sup |xk_1 (r)'z) ds
ty ty<r<s

<C +GC,

t
+6K (t—ty+1) J E( sup 'xkfl (r)'2> ds,
to

ty<r<s

where C, = 3E|§|,§ +6K(t —t, +1)(t —t,) and C, = 6K(t —
fo + 1)(¢ ~ 1) EIELE.
Hence, for any € > 1, one can derive that

2
max E | sup 'xk (s)'
1<k<e ty<s<t

<C +C, (39)

— ! k=1, ]2
+6K(t—t0+1)J maxE( sup 'x (r)' )ds.

t, 1sk<e ty<r<s
Note that

P;z?g)%E P (s)|2 = max {E |E (0)|2 ,E |x1 (s)'2 e

E |x€_1 (s)|2} < max {E |£|[24,E'x1 (s)|2 e

-1, 42 e, N2 2 (40)
E|x (s)| ,E|x (s)| }—max{E|E|M,

ko) 2 k|2
maxE|x (s)| }SE|E| +maxE'x (5)| ,
1<k<¢ B 1<kee
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and then

maxE( sup |xk (s)|2) <C +C,+6K (t—ty+1)

1<kse ty<s<t

t
. J;O <E|E|i + P;l?s)%'E( sup |xk (r)|2)) ds<Cy; (41)

ty<r<s

_ ¢ 2
+6K(t—t0+1)J max E( sup xk(r)| )ds,
t, 1sk<et ty<r<s

where C; = C, +2C,.
From the Gronwall inequality, we have

2 R(T— _
max E 'xk (t)| < C366K(T fo*)(Tto) (42)
1<k<e

Since k is arbitrary
, _
E[x* (0 < Cue™ Tl i<, k21 (43)

From the Holder inequality, Lemma 3, and (15) and (16), as in
a similar earlier inequality, one then has

Elx' ) - x* )

L: f (x?,s) ds

2

2
<2E +2E

Jt g (xg, s) dw (s)

<2(t—ty)E J-: 'f (x?,s)|2 ds

+2E t x,s 2ds (44)
[

<2(t-t +1)Er (zf'xor +2K)ds
= 0 o Slu
<AK (t—-ty+1)(t—t,)

+4K (t -ty + 1)(t—t0)E|E|i.

That is,

E( sup |x1 (t) - X (t)|2)

(45)
<4(t—to+1)(t—to) (K+KE[E) = R.

7
By similar arguments as above, we also have
E |x2 ) - x" (t)|2
<[ [ (<) - (29
2] [ o (shs) - g (s aw o] <20
) [ [ () - £ (<) s
§ (46)

+2E L |g (xsl,s) - g(xg,s)'z ds<2(t-t,
¥ I)EL (I (xhs) - £ (<25

+ |g (xsl,s) - g(xg,s)ﬂ ds < 2K (t - t,

t
+1)EJ xl - x?

ty

2 ds.
u
Then

E( sup 'xz (s) — x' (s)'2>

to<s<t

<2K(t-ty+1) Jt E( sup |x1 (r)-x° (r)|2)ds (47)
ty ty<r<s

<2RK (t—ty+1)(t—t,) =RM(t - t,),

where M = 2K(t — t, + 1). Similarly

E( sup |x3 (s) — x° (s)|2)

ty<s<t
! 2 1,52
sMJ E(sup |x (r)—x (r)| )ds (48)
ty ty<r<s
‘ R[M(t-t,)]
SMJ RM (s —ty)ds < M.
ty 2
Continue this process to find that
E( sup 'x4 (s) - x (s)'2>
to<s<t
t 5 2
sMJ E( sup 'x3 (r)—x (T)' )ds (49)
t ty<r<s

IA

Ml RIM(s—t)]"  _R[M(t-t))]"
£ 2 - 6 '

0



Now we claim that for any k > 0

)- RIM (e~ 1)

E S TN AN )
(sup |x (s) — x (s)' i (50)

to<s<t

So, for k = 0, 1,2, 3, inequality (50) holds. We suppose that
(50) holds for some k, and check (50) for k + 1. In fact

E( sup lxk+2 (s) — x**1 (s)'2>

ty<s<t

k+1 k|2

X, =X H) ds  (51)

t
£2K(t—t0+1)J' E(sup
to to<sst

<M Jt < sup |xk+1 (r)— X (r)'z) ds.

to<r<s
From (50)
2
E( sup 'xk+2 (s) - P (s)' )
ty<s<t

(52)

CRIM(s—to)]°  R[M(t—t,)]""
<M J-t i ds <

. (k+1)!

>

which means that (50) holds for k+ 1. Therefore, by induction
(50) holds for any k > 0.

Next to verify {xk ()} converge to x(t) in L? with x(¢) in
M*((—00, T]; R™) and x(¢) is the solution of (1) with initial
data x;,. For (50), taking t = T, then

)SEEHZ;@f‘ (53)

2
E( sup [ (1) - &* (1) -

ty<t<T

By the Chebyshev inequality

P{ sup .ka (t) - X" (t)| > ik}
to<t<T 2
(54)

_ REAM(T - 1))

< 0 .
By using Alembert’s rule, we show that Y ;S0 (R[AM(T -
to)]k/k!) converge.

That is, ¥ ;°0(R[4AM(T ~ t)]*/k!) < co, and by Borel-
Cantelli’s lemma, for almost all w € Q, there exists a positive
integer k,, = k,(w) such that

1
sup |xk+1 t) - x* (t)' < ask=>k, (55)
tost<T 2

and then, {x(t)} is also a Cauchy sequence in L. Hence,
{xk (t)} converges uniformly and let x(t) be its limit for any
t € (—00,T]; since xk(t) is continuous on t € (—00,T] and
F, adapted, x(t) is also continuous and &, adapted.
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So, as k — +00, x(t) — x(t) in L2, That is, E|x"(¢) -
x(t)> = 0ask — oo.
Then from (43)

E|x (t)lz < CseGF(T—tUH)(T—tO) Vi, <t<T, (56)

and therefore

T to T
EJ |x(s)|2d5=EJ |x(s)|2ds+Ej lx (s)|* ds

- -0

0 2
< EJ HORE (57)

-0

T
N j S RTHDT1) g
to

That is, x(t) € *((—0c0, T]; R").
Now, to show that x(t) satisfies (1)

E

J: [ (5 s) - f (x05)] ds

4 2
+L[9C€ﬁ)—g6nstWWQ

2
<2E

J;t [f (xf,s) - f (xs,s)] ds

2

+2E <2(t

Lt [g (xf, s) - g(x, s)] dW (s)

~1t,) E L 1F (x5.5) = f (xos)[ ds (58)

+2E Jt 'g (xf, s) - g(x, s)|2 ds
t

<M r E< sup |xk (r) —x(r).2>ds

ty<r<s

<M jT E 'xk (s)—x (s)|2 ds.

Noting that the sequence {x*} — x(t) means that for any
given £ > 0 there exists k, such that k > kg, for any t €
(=00, T], one then deduces that

Elx ) -x@) <e

T 5 (59)
J E[x*(t)-x ()| ds < (T -t)e,
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which means that, for any t € [t,, T], one has

t X t
LO f (xs’ S) ds — Lo f (xs’ 5) d5>
t t (60)
J g(x’:,s) dw (s) — J. g(x,s)dW (s) in L%

For t, < t < T, taking limits on both sides of (35), we deduce
that

t

l}irgoxk ) =&(0) + I}Lrgoj f(x’;—l,s) ds

o (61
+lim L g(xs)aw ),
and consequently
x(t) =&(0) + J f(x58)ds+ J g (x.,s)dW (s)
ty ty (62)

ty<t<T.

Finally, x(t) is the solution of (1), and the demonstration of
existence is complete.
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