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The concepts of standard analysis techniques applied in the field of Fourier spectroscopy treat fundamental aspects insufficiently.
For example, the spectra to be inferred are influenced by the noise contribution to the interferometric data, by nonprobed spatial
domains which are linked to Fourier coefficients above a certain order, by the spectral limits which are in general not given by
the Nyquist assumptions, and by additional parameters of the problem at hand like the zero-path difference. To consider these
fundamentals, a probabilistic approach based on Bayes’ theorem is introduced which exploits multivariate normal distributions.
For the example application, we model the spectra by the Gaussian process of a Brownian bridge stated by a prior covariance. The
spectra themselves are represented by a number of parameters which map linearly to the data domain. The posterior for these
linear parameters is analytically obtained, and the marginalisation over these parameters is trivial. This allows the straightforward
investigation of the posterior for the involved nonlinear parameters, like the zero-path difference location and the spectral limits,
and hyperparameters, like the scaling of the Gaussian process. With respect to the linear problem, this can be interpreted as an
implementation of Ockham’s razor principle.

1. Introduction

Fourier spectroscopy is a diagnostic applicationwhich reveals
information about spectral quantities like refractive index,
absorption, and transmission of a medium under test. In
addition, the characterisation in absolute terms is possible for
broadband spectra, for example, emitted by electrons of a
high-temperature plasma, being magnetically confined [1].

Commonly, an interferometer diagnostic, let us say of
Michelson [2] or Martin-Puplett [3] design type, probes the
Fourier transform of a spectral quantity. The corresponding
interferometric data is a discrete set with finite length and
includes noise contributions. Standard Fourier data analysis
techniques [4–6] have been developed. These techniques
lack describing and capturing properly several fundamental
aspects, like the noisy nature of measured data and possible
spectral limits and their impact on the spectral quantity to be
inferred.

One misconception, arising from the standard formu-
lation, is that certain spectral information must be lost

inherently, because only a finite amount of data is acquired.
This is proven in standard literature by evaluating the
convolution function which has a finite full width at half
maximum (FWHM), implying that only a finite amount of
Fourier coefficients is accessible via measurements. While
this conclusion remains valid when a continuous spectrum
is probed, the reasoning does not hold in general for a
discrete spectrum.This fact was exploited to develop a (self-)
deconvolution procedure, so that some discrete lines which
were separated by less than the FWHM width of the convo-
lution function have been inferred [7].

Opposed to the standard data analysis techniques, a prob-
abilistic ansatz was introduced to estimatemodel parameters,
like amplitude spectra and frequencies, in the field of Fourier
spectroscopy [8, 9]. For a spectroscopic problem, a model
is formulated via Bayes’ theorem which allows to state prior
information about model parameters. Furthermore, a Gaus-
sian likelihood connects functionally the parameters with the
noisy interferometric data. Then, after having measured a
noisy data set and framing the reality by a certain model,
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the knowledge about model parameters is expressed in
probabilistic terms by the posterior. This approach [8, 9]
demonstrated that the uncertainty on the posterior mean of
a frequency to be estimated for a single-frequency problem
can be orders of magnitude below the FWHM width of the
equivalent convolution function. On top of that, a criterion
has been derived how far frequencies need to be separated, so
that the Bayesian approach is still able to make a distinction.
This separation can be well below the FWHM width of
the convolution function. These findings are a direct conse-
quence of the use of probabilistic theory.

One of the advantages of the Bayesian approach is
that different models and, hence, their assumptions can be
comparedwith each other also known asOckham’s razor.This
enables the identification of the best, that is, the most likely,
model, complying with the data. Given this context, the (self-
)deconvolution procedure mentioned above is interpreted
here as an optimisation to find a minimising set of discrete
frequencies to describe the data sufficiently. In general, the
most fundamental issue is whether the spectrum to be
inferred is discrete or continuous. If a discrete spectrum
is more likely or follows by a physics model, how many
discrete frequencies are involved and what are their estimates
including uncertainties? Each frequency is associated with an
amplitude and a phase which need to be estimated as well. If a
continuous spectrum is at hand, then the spectral limits are of
interest. In addition, in case, the underlying physics process
is understood, what is the uncertainty on the spectrum and
the phase following from experimentally inaccessible regions
in the data domain.

The investigation of the fundamental issues listed above
is quite challenging from numerical point of view. However,
the computational effort is largely reduced when even and
odd amplitudes are used instead of the phase and ampli-
tude. This ensures a linear dependence between the even
and odd amplitude parameters and the data. Formulating
the prior information about all even and odd amplitudes
as a multivariate normal with a specific prior mean and
covariance gives straightforwardly the posterior mean and
covariance. Furthermore, the marginalisation can be carried
out analytically for these linear parameters. The remaining
posterior quantity carries information about the nonlinear
model parameters like frequencies or spectral limits and so-
called hyperparameters, entering merely in the prior.

In Section 2, the basic equations for Fourier spectroscopy
and their implications are generally investigated, and the
main concepts of the standard analysis and their drawbacks
are pointed out. Section 3 of this paper presents a Bayesian
formalism, so that it lends itself to applications in the field
of Fourier spectroscopy for Gaussian (white) noise. The
fundamental information about the spectral quantity, that it
must vanish at a lower and upper spectral limit, can be stated
by the covariance function of a Brownian bridge process as
described in Section 4.This covariance is used as prior in the
example application of the Bayesian approach presented in
Section 5 to infer continuous but band-limited spectral quan-
tities given an actually measured interferometric data set.
Thereby, some diagnostic imperfections like a drifting signal
offset, the zero-path difference, and a nonuniform spatial

sampling are also taken into account. Section 6 discusses the
strategy for a plausibility study of models, using different pri-
ors for the spectral quantities, and attempts to compare results
and computational efforts obtained with the Bayesian model
and with a standard model. The last section presents the
conclusions.

2. Fourier Spectroscopy

2.1. General Definitions. Commonly, the complementary
coordinates used for Fourier transformations are the fre-
quency𝑓 and time 𝑡, or the wavenumber 𝜎 and a spatial coor-
dinate 𝑥. For the moment, the latter pair is used to state the
basic operations of Fourier transformation. Afterwards, the
wavenumber is replaced via 𝜎 = 𝑓/𝑐 for convenience.

The real-valued continuous functions 𝑉(𝑥) and 𝑆𝜎(𝜎)
form a Fourier transformation pair stated by𝑉 (𝑥) = ∫∞

−∞
𝑆𝜎 [cos (2𝜋𝜎𝑥) + sin (2𝜋𝜎𝑥)] 𝑑𝜎. (1)

The inverse operation reads𝑆𝜎󸀠 = ∫∞
−∞
𝑉[cos (2𝜋𝜎󸀠𝑥) + sin (2𝜋𝜎󸀠𝑥)] 𝑑𝑥. (2)

Note that so far 𝜎󸀠 ̸= 𝜎 holds. To find a relation, one inserts (1)
in the above expression. After applying trigonometric identi-
ties, the spatial integral becomes∫∞

−∞
[cos (2𝜋 (𝜎 − 𝜎󸀠) 𝑥) + sin (2𝜋 (𝜎 + 𝜎󸀠) 𝑥)] 𝑑𝑥= 𝛿 (𝜎 − 𝜎󸀠) , (3)

because the sinusoidal contribution vanishes. Hence,𝑆𝜎󸀠 = ∫∞
−∞
𝑆𝜎𝛿 (𝜎 − 𝜎󸀠) 𝑑𝜎,𝑆𝜎󸀠 = 𝑆𝜎 (4)

follow, because the two wavenumber coordinates equal each
other. In fact, the delta distribution occurs, because 𝑆𝜎 is a
distribution.

Replacing 𝜎 with 𝑓/𝑐 gives in the spectral domain the
quantity 𝑆(𝑓) = 𝑆𝜎/𝑐. This gives𝑉 = ∫∞

−∞
𝑆 [cos(2𝜋𝑓𝑐 𝑥) + sin(2𝜋𝑓𝑐 𝑥)] 𝑑𝑓 (5)

and rescales the inverse operation like𝑆 = 1𝑐 ∫∞−∞ 𝑉 (𝑥) [cos(2𝜋𝑓𝑐 𝑥) + sin(2𝜋𝑓𝑐 𝑥)] 𝑑𝑥 (6)

to match the units [𝑆] = [𝑉]/Hz.

2.2. Selection of Representation. The spectral domain over
which the integration is performed in (5) includes the whole
negative and the positive ranges. While the cosine transform
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acts on the even part 𝑆𝐸 = [𝑆(𝑓) + 𝑆(−𝑓)]/2 of 𝑆, the sine
transform is linked only to the odd part 𝑆𝑂 = [𝑆(𝑓) −𝑆(−𝑓)]/2. Thus, an alternative formulation reads𝑉 = 2∫∞

0
[𝑆𝐸 cos(2𝜋𝑓𝑐 𝑥) + 𝑆𝑂 sin(2𝜋𝑓𝑐 𝑥)] 𝑑𝑓, (7)

and it becomes clear that the even and the odd parts of𝑉 and𝑆 are connected.
Another representation uses the amplitude |𝑆| and the

phase 𝛼 by setting |𝑆| = 2√𝑆2𝐸 + 𝑆2𝑂,
tan (𝛼) = −𝑆𝑂𝑆𝐸 (8)

which gives 𝑉 = ∫∞
0
|𝑆| cos(2𝜋𝑓𝑐 𝑥 + 𝛼)𝑑𝑓. (9)

Because the model representations (5) and (7) are linear in𝑆, 𝑆𝐸, and 𝑆𝑂, both are favoured over the formulation (9),
when linear inversion techniques are to be applied. Of both
favoured representations, the one, using even and odd parts,
has preferred properties. Since the orders of magnitude of
the amplitudes can be quite different for the even and odd
functions, a separation is logical.

2.3. Finite Bandwidth. If the spectral domain is band-limited,
such that 𝑆𝐸 and 𝑆𝑂 are finite for the range from 𝑓𝐿 and 𝑓𝑈
with the bandwidth Δ𝐹 = 𝑓𝑈 − 𝑓𝐿 and the centre frequency𝑓𝐶 = (𝑓𝐿 + 𝑓𝑈)/2, (7) becomes𝑉 (𝑥)= 2∫𝑓𝑈

𝑓𝐿

[𝑆𝐸 cos(2𝜋𝑓𝑐 𝑥) + 𝑆𝑂 sin(2𝜋𝑓𝑐 𝑥)] 𝑑𝑓. (10)

Here, the assumptionmust be mentioned that both functions
have the same spectral limits.This is assumed in the following
but not mandatory. Furthermore, for any combination of𝑓𝐶 and Δ𝐹 the relation Δ𝐹 ≤ 2𝑓𝐶 must be fulfilled to be
meaningful.

2.3.1. Relation: Fourier Transform-Fourier Coefficients. When
the bandwidth is finite, one can express the spectral functions
by Fourier coefficients multiplied each with the associated
sinusoidal basis function of order 𝑘 (∈ 𝑁). These coefficients
are defined here by the integrals

(𝐴𝐸(𝑂),0𝐴𝐸(𝑂),𝑘𝐵𝐸(𝑂),𝑘)
= 1Δ𝐹

∫𝑓𝑈
𝑓𝐿

𝑆𝐸(𝑂)( 12 cos(2𝜋𝑘𝑓 − 𝑓𝐶Δ𝐹

)2 sin(2𝜋𝑘𝑓 − 𝑓𝐶Δ𝐹

))𝑑𝑓 (11)

which carry the unit as 𝑆𝐸 and 𝑆𝑂. The coefficients 𝐴𝐸(𝑂),0

label the mean values of 𝑆𝐸 and 𝑆𝑂 in the spectral domain
covered. Then, one can replace the even and odd functions
with 𝑆𝐸(𝑂) = 𝐴𝐸(𝑂),0 + ∞∑

𝑘=1

𝐴𝐸(𝑂),𝑘 cos(2𝜋𝑘𝑓 − 𝑓𝐶Δ𝐹

)
+ ∞∑
𝑘=1

𝐵𝐸(𝑂),𝑘 sin(2𝜋𝑘𝑓 − 𝑓𝐶Δ𝐹

) (12)

which allows performing the spectral integration in (10)
analytically. Since the result𝑉 (𝑥) = 2Δ𝐹𝐴𝐸,0 cos(2𝜋𝑓𝐶𝑐 𝑥) sinc (𝜋Δ𝐹𝑐 𝑥)+ 2Δ𝐹𝐴𝑂,0 sin(2𝜋𝑓𝐶𝑐 𝑥) sinc (𝜋Δ𝐹𝑐 𝑥)+ Δ𝐹

∞∑
𝑘=1

𝐴𝐸,𝑘 cos(2𝜋𝑓𝐶𝑐 𝑥) [sinc𝑘− + sinc𝑘+]− Δ𝐹

∞∑
𝑘=1

𝐵𝐸,𝑘 sin(2𝜋𝑓𝐶𝑐 𝑥) [sinc𝑘− − sinc𝑘+]+ Δ𝐹

∞∑
𝑘=1

𝐴𝑂,𝑘 sin(2𝜋𝑓𝐶𝑐 𝑥) [sinc𝑘− + sinc𝑘+]+ Δ𝐹

∞∑
𝑘=1

𝐵𝑂,𝑘 cos(2𝜋𝑓𝐶𝑐 𝑥) [sinc𝑘− − sinc𝑘+]

(13)

with

sinc𝑘± = sinc [𝜋 (𝑘 ± 𝑥𝑐 Δ𝐹)] . (14)

follows, it becomes clear that the Fourier transformof a band-
limited function can be expressed by Fourier coefficients
scaled with the bandwidth and multiplied each with the
associated continuous basis function in the spatial domain.
These basis functions have two contributions. The first is a
sum/difference of two sinc𝑘± functions which depend on the
order 𝑘, the spatial coordinate, and the bandwidth. The latter
quantity determines the spatial width of sinc±. Furthermore,
the localisation is permitted at 𝑥𝑘 = ±𝑘𝑐/Δ𝐹, where a coef-
ficient for a given 𝑘 mainly acts. Hence, increasing the order
implies the localisation at a larger distance from the spatial
origin. This explains the occurrence of factor 2 for 𝐴𝐸(𝑂),0

for which both sinc functions coincide.
The second contribution causes a modulation of sinc𝑘±

and is given by a sine/cosine with the centre frequency and
spatial coordinate in the argument. This dependency makes
the basis function for 𝐴𝑂,0 vanish at the spatial origin.

With respect to the spatial origin, the transformed basis
functions of the coefficients for 𝑆𝐸 and 𝑆𝑂 are symmetric and
antisymmetric, respectively.

Some basis functions in the spatial domain are shown in
Figures 1(a) and 1(b) for 𝑓𝐶 = 500GHz and Δ𝐹 = 1000GHz.
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Figure 1: Basis functions in spatial domain of Fourier coefficients (of order 𝑘 = 0, 1, and 12)𝐴𝐸,𝑘, 𝐵𝐸,𝑘 for even spectral function (a) and𝐴𝑂,𝑘,𝐵𝑂,𝑘 for odd spectral function (b). The spectral functions are finite for the interval from 0GHz to 1000GHz for which the centre frequency𝑓𝐶 = 500GHz and bandwidth Δ𝐹 = 1000GHz follow. The basis functions in the spatial domain are given by a sum or difference of two sinc
functions, depending each on the optical path difference 𝑥, Δ 𝐹, and 𝑘. Furthermore, the sinc functions are modulated by sine or cosine with𝑓𝐶 and 𝑥 in the argument. The sinc functions for fixed 𝑘 become unity at 𝑥𝑘 = ±𝑘𝑐/Δ 𝐹, obviously increasing in 𝑘.
2.3.2. Embedding into Larger Spectral Domain. The functions𝑆𝐸 and 𝑆𝑂 may be finite in the spectral domain with limits𝑓𝐿 and 𝑓𝑈 or centre frequency 𝑓𝐶 and bandwidth Δ𝐹.
Embedding this domain in a larger one with limits 𝑓󸀠𝐿 < 𝑓𝐿
and 𝑓󸀠𝑈 > 𝑓𝑈 (Δ𝐹 < Δ󸀠𝐹), another set of Fourier coeffi-
cients 𝐴󸀠𝐸(𝑂),𝑘󸀠 and 𝐵󸀠𝐸(𝑂),𝑘󸀠 is obtained with associated basis
functions for the spectral domain. Without going into more
detail here, these coefficients can be evaluated from 𝐴𝐸(𝑂),𝑘

and 𝐵𝐸(𝑂),𝑘 and the scalar products of the basis functions
labeled with 𝑘 and 𝑘󸀠. For instance, one finds for the ratio
of the means 𝐴󸀠𝐸(𝑂),0/𝐴𝐸(𝑂),0 = Δ𝐹/Δ󸀠𝐹 < 1. Basically,𝐴𝐸(𝑂),𝑘 and 𝐵𝐸(𝑂),𝑘 maximise the information per coefficient
when 𝑓𝐿 and 𝑓𝑈 are known. For example, a function which is
constant inside a spectral domain and zero outside appears
as a boxcar function from outside this domain. Thus, the
only coefficient 𝐴𝐸(𝑂),0 is mapped to an infinite number
of coefficients 𝐴󸀠𝐸(𝑂),𝑘󸀠 and 𝐵󸀠𝐸(𝑂),𝑘󸀠 which are mandatory to
capture both discontinuities.

In the spatial domain, the basis functions for 𝐴󸀠𝐸(𝑂),𝑘󸀠
and 𝐵󸀠𝐸(𝑂),𝑘󸀠 behave differently than the ones for 𝐴𝐸(𝑂),𝑘 and𝐵𝐸(𝑂),𝑘. Important to mention is the effect which the larger
bandwidth has; sinc𝑘󸀠± are spatially narrower than sinc𝑘±.
In addition, the number of coefficients per spatial domain
increases which is expressed by 𝑘󸀠 = 𝑘Δ󸀠𝐹/Δ𝐹.

For 𝑓󸀠𝐶 = 1873.7GHz and Δ󸀠𝐹 = 2𝑓󸀠𝐶 Figure 2 shows some
basis functions (𝑘󸀠 = 0, 1, and 2) in the spatial domain.
Indeed, the basis function for 𝐴𝐸,0 with 𝑓𝐶 = 500GHz andΔ𝐹 = 1000GHz (see Figure 1(a)) is broader.
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Figure 2: Basis functions in spatial domain of Fourier coefficients𝐴󸀠
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with order 𝑘󸀠 = 0, 1, and 2 for even spectral
function, being finite in spectral domain with centre frequency 𝑓󸀠𝐶
= 1873.7 GHz and bandwidth Δ󸀠𝐹 = 2𝑓󸀠𝐶. For this domain, the sinc
functions, contributing to the basis functions, are narrower than
for 𝑓𝐶 = 500GHz and Δ 𝐹 = 1000GHz (see Figure 1(a)). As an
example, the basis function for 𝐴𝐸,0 (dashed-black) is given. SinceΔ󸀠𝐹 ≈ 4Δ𝐹 holds, approximately 4 times more Fourier coefficients
locate inside a given spatial domain. Δ󸀠𝐹 was chosen to equal the
Nyquist frequency 𝑓Ny = 𝑐/(2Δ𝑥), having set the spatial sampling
increment Δ𝑥 = 40 𝜇m (black dots).
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2.4. Parseval’s Theorem. Parseval’s theorem states abstractly
that the length of a function in the spectral domain equals
the length of its Fourier transform counterpart in the spatial
domain.The length 𝑙𝑆 of the band-limited function 𝑆 is stated
by 𝑙2𝑆 = 𝑐∫𝑓𝑈

𝑓𝐿

𝑆2𝑑𝑓 + 𝑐∫−𝑓𝐿
−𝑓𝑈

𝑆2𝑑𝑓 = 2𝑐∫𝑓𝑈
𝑓𝐿

(𝑆2𝐸 + 𝑆2𝑂) 𝑑𝑓, (15)

because only the term 𝑆𝐸𝑆𝑂 remains odd and cancels by the
integration. Furthermore, the scaling by the factor 𝑐 appears
which originates in 𝑑𝑓/𝑑𝜎 = 𝑐. Replacing 𝑆𝐸(𝑂) with the
expression (12) and exploiting that the basis functions are
perpendicular in the spectral domain leaves𝑙2𝑆 = 𝑐Δ𝐹 ∑

𝑖=𝐸,𝑂

[2𝐴2𝑖,0 + ∞∑
𝑘=1

(𝐴2𝑖,𝑘 + 𝐵2𝑖,𝑘)] . (16)

Thus, the length is given by the sumof the Fourier coefficients
squared. According to Parseval’s theorem,𝑙2𝑆 = ∫∞

−∞
𝑉2 (𝑥) 𝑑𝑥, (17)

the length in the spectral and spatial domain remains
unchanged. Inserting (13) in the above expression implies that
the spatial basis functions must be orthogonal for 𝑘1 ̸= 𝑘2,
and the spatial integral yields 𝑐/(2Δ𝐹) for 𝑘1 = 𝑘2 = 0 and𝑐/Δ𝐹 for 𝑘1 = 𝑘2 > 0. Analytically, this is hard to prove;
however, this was numerically investigated and is considered
to be valid.

2.4.1. Square-Integrable Functions. The function 𝑆 is said to
be square-integrable, when the condition 𝑙2𝑆 < ∞ holds.
Furthermore, if 𝑆 is square-integrable, then the Fourier series
representations in (12) converges towards 𝑆𝐸 and 𝑆𝑂 almost
everywhere in the spectral domain as the order 𝑘 grows [10].
Hence, the requirement on 𝑆 to be square-integrable seems
reasonable.

2.5. Interferometric Data and Basic Model

2.5.1. Ideal and Real-World Interferometer. The Fourier trans-
form can be performed by an interferometer, achieving an
optical path difference between two partial beams, and the
real-valued function 𝑉(𝑥) can be sampled. From theoretical
point of view, with an ideal interferometer diagnostic, a
purely symmetric and noiseless interferogram is acquired.
However, a real-world interferometer suffers from diagnostic
imperfections like, for example, dispersion of any kind and/or
misalignment. As a consequence, any acquired interferogram
is to some degree asymmetric, and, hence, an odd feature
is inherent due to the measuring principle. Furthermore, a
measurement involves noise, always.

2.5.2. Spatial Sampling and Implications. In the spatial
domain, 𝑉(𝑥) is sampled at a finite set of optical path
difference locations 𝑥𝑖 with 𝑖 ∈ [1,𝑁𝐷], and 𝑁𝐷 marks the

number of sample points. Usually, the samplingwith constant
increment Δ𝑥 = 𝑥𝑖+1 − 𝑥𝑖 between subsequent locations is
preferred which puts constraints on the diagnostic design.
Furthermore, the spatial origin is most likely missed by
the sampling, and, thus, the absolute value of 𝑥𝑖 might be
unknown. If so, it is mandatory to introduce the zero-path
difference 𝑥0 which is in the following set that 𝑥1 = 𝑥0 holds.

The finite spatial sampling leaves 𝑉(𝑥) undetermined
between the sampling nodes and outside the limits 𝑥1 and𝑥𝑁𝐷 . Assuming Δ𝑥 = const. holds, the Nyquist theorem
states that the maximum frequency accessible is given by the
Nyquist frequency 𝑓Ny = 𝑐/(2Δ𝑥). Hence, for the spectral
quantities 𝑆𝐸 and 𝑆𝑂 to be inferred, a maximum for the upper
limit 𝑓𝑈,Max = 𝑓Ny follows from sampling theory. To prevent
aliasing, Δ𝑥 needs to be chosen small enough so that 𝑆𝐸 and𝑆𝑂 vanish below 𝑓Ny. In case, 𝑓𝑈 can be acted on by reducing
the diagnostic throughput via optical filters, the transmission
line, the detector sensitivity, and postdetection amplifier
settings. In fact, solely by these precautions, one can make
sure that no other band well above 𝑓Ny contributes to 𝑉(𝑥𝑖).
If and only if no such band exists, then the interferogram
is smooth with respect to the chosen sampling nodes, and
missing to sample exactly at 𝑥0 has no profound impact.

A diagnostic limitation is that the distance 𝑥𝑁𝐷 − 𝑥1 is
finite, and, thus, no sampling is achieved below and above
these limits. To gain information about 𝑆𝐸 and 𝑆𝑂 or the
phase 𝛼 (see (8)), 𝑉(𝑥) needs to be sampled on both sides
of the spatial origin, so that the asymmetric feature in the
interferogram is captured. Hence, in the following 𝑥1 and,
thus, 𝑥0 are set to be negative, and the double-sided region
is identified for the locations |𝑥𝑖| ≤ |𝑥0|. This diminishes
the maximum optical path difference 𝑥𝑁𝐷 achievable, being
positive, and, thus, the length of the single-sided domain is
identified by the relation |𝑥0| < 𝑥𝑖 ≤ 𝑥𝑁𝐷 . Because 𝑥𝑁𝐷 scales
with the order 𝑘 of the Fourier coefficients (see Section 2.3),
only a finite number of coefficients can be probed. According
to Parseval’s theorem (see Section 2.4), information about the
total length is missing. Furthermore, the Gibbs phenomenon,
that is, a ringing, is present when 𝑆𝐸 and 𝑆𝑂 are inferred.
Hence, 𝑥𝑁𝐷 should be maximal, so that as many as possible
coefficients can be probed to decrease the loss of information.
However, a trade-off between lengths of the single-sided and
double-side domains is inevitable, depending on the level of
the asymmetric imperfection.

2.5.3. Noise Contribution. Since anymeasurement has a noise
contribution, the noisy data value can be written as 𝐷(𝑥𝑖) =𝑉(𝑥𝑖) + 𝜖𝑖, and the actual interferometric data is expressed by
the vector 󳨀→𝐷 = 󳨀→𝑉+󳨀→𝜖 . As spectral quantities are investigated,
photons are involved in the measuring principle, and, hence,
a part of 𝜖𝑖 has a Poissonian origin. However, the diagnostic
under investigation later probes broadband spectra in the
microwave and far-infrared range, and, thus, a large number
of photons are present. Hence, the central limit theorem
suggests that 𝜖𝑖 is a sample of a normal distribution with
vanishing mean and a certain variance given by the squared
noise level 𝜎2𝐷. In any case, dedicated diagnostics tests are
mandatory to characterise 𝜖𝑖 for a given interferometer.
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2.5.4. Basic Model. The combination of the relation (10) with
the interferometric data, being noisy and sampled in a finite
spatial domain, gives the most basic model. Formally, this
model is stated here by𝐷(𝑥𝑖)= 2∫𝑓𝑈

𝑓𝐿

[𝑆𝐸 cos(2𝜋𝑓𝑐 𝑥𝑖) + 𝑆𝑂 sin(2𝜋𝑓𝑐 𝑥𝑖)]𝑑𝑓+ 𝜖𝑖 (18)

with the additional information: the zero-path difference
location 𝑥0 < 0, the spatial limits are restricted by 𝑥1 = 𝑥0,𝑥𝑁𝐷 > 0 and |𝑥𝑖| < ∞, the sampling incrementΔ𝑥 = 𝑥𝑖+1−𝑥𝑖
is constant and known, 𝑆𝐸 and 𝑆𝑂 have the same spectral
limits which obey 𝑓𝐿 ≥ 0 and 𝑓𝑈 ≤ 𝑓Ny = 𝑐/(2Δ𝑥), and in
case of Gaussian noise 𝑝(𝜖𝑖) = N(0, 𝜎2𝐷). To be precise, the
unknowns of the model are 𝑥0, 𝑓𝐿, 𝑓𝑈, 𝑆𝐸(𝑓) and 𝑆𝑂(𝑓), and𝜎𝐷.

The basic model is a starting point and must be amended
by diagnostic imperfections and specifics to the interferome-
ter design type.

2.6. Inferring Spectra by Standard Analysis Techniques. To
infer the spectral quantities 𝑆𝐸 and 𝑆𝑂 from an interfero-
metric data set 󳨀→𝐷, the standard techniques rely on a noise-
less model and follow a hierarchical ansatz. After making
assumptions on the spectral limits 𝑓𝐿 and 𝑓𝑈, the zero-path
difference location 𝑥0 is estimated. The next step evaluates a
phase 𝛼 which is a measure of the ratio 𝑆𝑂/𝑆𝐸, relying on the
data located in the double-sided region. Given the model, the
spectral limits, the spatial origin, and the phase, 𝑆𝐸 and 𝑆𝑂
are estimated up to the Nyquist frequency from the whole
data set. To reduce the Gibbs phenomenon on the inferred
spectral quantities, window functions are multiplied to the
interferometric data. In the following, the weak points of the
standard analysis techniques are described.

2.6.1. Noiseless Model. The model used and stated by (18)
lacks the noise contribution by definition, and, hence, treats
the noisy data 󳨀→𝐷 as being not noisy. Strictly speaking, the
model is not applicable for the problem at hand. Only by
repeating the measurement sufficiently often so that the total
noise contribution given by the vector 󳨀→𝜖 becomes small,
implying 󳨀→𝐷 = 󳨀→𝑉, the model applies. Because the integration
time remains finite or only a single measurement is possible,
the influence of the noise on the inferred quantities cannot be
derived from the noiseless model.

2.6.2. Hierarchical Ansatz. Several steps are carried out to
deduce the quantities of main interest 𝑆𝐸 and 𝑆𝑂. Each step
relies on model assumptions, which are not questioned or
tested in any way, and results of previous steps, which carry
an unstated uncertainty. This hierarchical ansatz lacks the
uncertainty propagation onto 𝑆𝐸 and 𝑆𝑂 entirely.

2.6.3. Spectral Limits: Nyquist Assumptions. Two fundamen-
tal assumptions, called Nyquist assumptions in the following,
are made by setting the spectral limits to 0 and the Nyquist
frequency 𝑓Ny = 𝑐/(2Δ𝑥) (see Section 2.5.2). Hence, the
chosen spatial sampling would determine the bandwidth of
the spectrum which is a misconception. Furthermore, the
associated Fourier coefficients are located Δ𝑥 apart via their
basis functions in the spatial domain, and the maximum
order probed is artificially blown up to 𝑥𝑁𝐷/(2Δ𝑥) due to
the Nyquist assumptions (see Section 2.3). However, if the
functions 𝑆𝐸 and 𝑆𝑂 are finite in the spectral domain with
limits 𝑓𝐿 > 0 and 𝑓𝑈 < 𝑓Ny, then the embedding of the
smaller domain [𝑓𝐿, 𝑓𝑈] into the domain [0, 𝑓Ny] leads to the
reduction of the information content per Fourier coefficient
as discussed in Section 2.3.2. Figure 2 compares the narrower
spatial basis functions for theNyquist assumptions withΔ𝑥 =40 𝜇m, that is, 𝑓󸀠𝐿 = 0GHz and 𝑓󸀠𝑈 = 3747.4GHz (𝑓󸀠𝐶 =
1873.7GHz, Δ󸀠𝐹 = 2𝑓󸀠𝐶) with the wider basis function for
the absolute term for 𝑓𝐿 = 0GHz and 𝑓𝑈 = 1000GHz (𝑓𝐶 =500GHz, Δ𝐹 = 1000GHz).

The uncertainty of a Fourier coefficient, relying
on the Nyquist assumptions, scales like 𝜎𝐷/𝑓Ny (noise
level/maximum bandwidth) which follows from the linear
uncertainty propagation for (13). But for the band-limited
case, the uncertainty would scale like (Δ𝐹/𝑓Ny)1/2𝜎𝐷/Δ𝐹,
where the square root term states that more than one data
point is related to one coefficient. Hence, if a band-limitation
exists but is not taken into account, then the uncertainty is
maximised on the inferred spectral quantities.

2.6.4. Estimation of Spatial Origin. The spatial origin or
zero-path difference 𝑥0 is most likely missed by the spatial
sampling. One of the standard approaches to estimate 𝑥0
fits a parabola to the main interferogram peak without any
information about the even and odd spectra itself. However,
as one can see from (13), the basis functions for the even and
odd absolute terms (𝐴𝐸,0 and𝐴𝑂,0) are of leading order close
to the spatial origin. Hence, information about the zeroth-
order coefficients and the spectral limits should be at hand
for the estimation of 𝑥0.

With 𝑥0 available, the double-sided and single-sided
regions are identified. Though, a systematically affected esti-
mate of the origin causes an additional asymmetry in the
interferometric data which would result in an increase of 𝑆𝑂
and a decrease in 𝑆𝐸 which is usually interpreted as a phase
ramp feature. Hence, the origin should be determined with
the criterion that it minimises the odd spectral function.

2.6.5. Windowing. Having only a finite amount of Fourier
coefficients probed causes the Gibbs phenomenon to appear
for the spectral quantities inferred. To reduce this ringing
feature, window functions are applied in the spatial domain
to bring the interferometric data smoothly to zero towards
the sampling limits. More precise, probed Fourier coeffi-
cients of higher orders are damped out, and a window
function corresponds to a certain convolution function in
the spectral domain. Hence, a weighted averaging of the
spectral quantities is carried out which reduces the ringing.
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This approach can give a good global approximation of 𝑆𝐸
and 𝑆𝑂 for regions with no significant gradients. However,
the damping of Fourier coefficients worsens the conver-
gence of the inferred quantities in regions with considerable
gradients.

Implicitly, the application of window functions excludes
the investigation of the uncertainty on 𝑆𝐸 and 𝑆𝑂 introduced
by nonprobed Fourier coefficients. Hence, the requirement of
square-integrability of the spectral functions is not taken into
account.

3. Bayesian Formalism

3.1. Bayes’ Theorem. The joint probability density function
(pdf) 𝑝(𝑑, V) captures the chance that the outcome 𝑑, let us
say a data value or set, and the outcome V, a single model
parameter or a set, are realised simultaneously.

The product rule𝑝 (𝑑, V) = 𝑝 (𝑑 | V) 𝑝 (V) = 𝑝 (V | 𝑑) 𝑝 (𝑑) (19)

introduces the conditional probabilities for finding the out-
come 𝑑, if the outcome V were true and vice versa. By the
theorem of Bayes𝑝 (V | 𝑑) = 𝑝 (𝑑 | V)𝑝 (𝑑) 𝑝 (V) , (20)

one conditional probability can be expressed by the other,
when the marginal distributions 𝑝(𝑑) = ∫𝑝(V | 𝑑)𝑝(𝑑)dV
and 𝑝(V) = ∫ 𝑝(𝑑 | V)𝑝(V)d𝑑 are known. Hence, Bayes’
theorem captures the information/knowledge gained for V
when a certain outcome for 𝑑 has manifested. For the pdfs
occurring in Bayes’ theorem, common names are used, that
is, the posterior 𝑝(V | 𝑑), the likelihood 𝑝(𝑑 | V), the evidence𝑝(𝑑), and the prior 𝑝(V). The link or functional dependence𝑑 = f(V) + 𝜖 enters in the likelihood which takes into account
known uncertainties 𝜖 like, for example, measurement noise.
Any knowledge about V before new data is available can be
found in the prior 𝑝(V).

Bayes’ rule can be extended to𝑝 (V, ℎ | 𝑑) = 𝑝 (𝑑 | V)𝑝 (𝑑) 𝑝 (V | ℎ) 𝑝 (ℎ) , (21)

introducing a set of hyperparameter ℎ which enters per
definition solely in the prior 𝑝(V | ℎ). The additional pdf 𝑝(ℎ)
is called hyperprior which allocates trust in ℎ. Apart from
having the posterior for the parameters V, themarginalisation
with respect to V reveals the posterior𝑝 (ℎ | 𝑑) = ∫𝑝 (V, ℎ | 𝑑) dV = 𝑝 (𝑑 | ℎ)𝑝 (𝑑) 𝑝 (ℎ) (22)

for ℎ which measures the plausibility of an outcome of the
hyperparameter given the data. Since 𝑝(𝑑) does not depend
on ℎ, the most likely hyperparameter set is identified by the
maximum of 𝑝(𝑑 | ℎ), assuming 𝑝(ℎ) is uniform.

3.2. Formalism for Linear, Nonlinear, and Hyperparameter
Problem for Gaussian Noise

3.2.1. Multivariate Normal. Let the joint pdf for the random
vector 󳨀→𝑦 (∈ 𝑅𝑁) be a multivariate normal with mean 󳨀→𝜇
(∈ 𝑅𝑁) and covariance matrix Σ (∈ 𝑅𝑁 × 𝑅𝑁); then the pdf
becomes𝑝 (󳨀→𝑦 | 󳨀→𝜇,Σ) =N (󳨀→𝑦 | 󳨀→𝜇,Σ)

= exp [− (1/2) (󳨀→𝑦 − 󳨀→𝜇)𝑇 Σ−1 (󳨀→𝑦 − 󳨀→𝜇)](2𝜋)𝑁/2 |Σ|1/2 (23)

with the determinant |Σ|.
3.2.2. Model for Linear Problem. If the dependency between
the data and the parameters of interest is linear, and the
likelihood and the prior can be expressed by multivariate
normals, then the evaluation of the posterior is analyti-
cally straightforward. Such a model is the starting point
for investigating a more complex model which includes
parameters with a nonlinear mapping to the data domain
and/or hyperparameters.

(a) Gaussian Likelihood. The data may be represented by the
vector 󳨀→𝐷 (∈ 𝑅𝑁𝐷). The parameters of interest

󳨀→𝑙 (∈ 𝑅𝑁𝑙) map
linearly to the data domain like󳨀→𝐷 = M󳨀→𝑙 + 󳨀→𝜖 , (24)

where the𝑁𝐷 ×𝑁𝑙 dimensional matrixM encodes the linear
mapping, and 󳨀→𝜖 captures the random noise contribution.
When the data is acquired independently, and the noise is
independent for each datum and follows a Gaussian 𝜖𝑖 =
N(0, 𝜎2𝐷) with vanishing mean and standard deviation 𝜎𝐷
(noise level), then the Gaussian likelihood𝑝 (󳨀→𝐷 | 󳨀→𝑙 ) =N (󳨀→𝐷 | 󳨀→𝑙 ,Σ𝐷)

= exp [− (1/2) (󳨀→𝐷 −M󳨀→𝑙 )𝑇 Σ−1𝐷 (󳨀→𝐷 −M󳨀→𝑙 )](2𝜋)𝑁𝐷/2 󵄨󵄨󵄨󵄨Σ𝐷󵄨󵄨󵄨󵄨1/2 (25)

can be found with the covariance matrix Σ𝐷 = 𝜎2𝐷𝛿𝑖𝑗.
(b) Gaussian Prior. The prior information about

󳨀→𝑙 may be
expressed by the multivariate normal𝑝 (󳨀→𝑙 ) =N (󳨀→𝑙 | 󳨀→𝑙 Pr,ΣPr)

= exp [− (1/2) (󳨀→𝑙 − 󳨀→𝑙 Pr)𝑇 Σ−1Pr (󳨀→𝑙 − 󳨀→𝑙 Pr)](2𝜋)𝑁𝑙/2 󵄨󵄨󵄨󵄨ΣPr󵄨󵄨󵄨󵄨1/2 (26)

with the prior mean
󳨀→𝑙 Pr and the prior covariance ΣPr.
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(c) Gaussian Posterior and Evidence. Formally, Bayes’ theorem
states the posterior by

𝑝 (󳨀→𝑙 | 󳨀→𝐷) = N (󳨀→𝐷 | 󳨀→𝑙 ,Σ𝐷)𝑝 (󳨀→𝐷) N (󳨀→𝑙 | 󳨀→𝑙 Pr,ΣPr) . (27)

After some algebra, one can show that the posterior𝑝 (󳨀→𝑙 | 󳨀→𝐷) =N (󳨀→𝑙 | 󳨀→𝑙 Po,ΣPo) (28)

is a multivariate normal with posterior mean󳨀→𝑙 Po = 󳨀→𝑙 Pr + ΣPoM𝑇
Σ
−1
𝐷 (󳨀→𝐷 −M󳨀→𝑙 Pr) (29)

and covariance

ΣPo = (M𝑇
Σ
−1
𝐷 M + Σ−1Pr )−1 (30)

which are both analytically obtained. Furthermore, the evi-
dence reads

𝑝 (󳨀→𝐷) = exp [− (1/2) 󳨀→𝐷𝑇

Σ
−1
𝐷

󳨀→𝐷](2𝜋)𝑁𝐷/2 󵄨󵄨󵄨󵄨Σ𝐷󵄨󵄨󵄨󵄨1/2 󵄨󵄨󵄨󵄨ΣPo󵄨󵄨󵄨󵄨1/2󵄨󵄨󵄨󵄨ΣPr󵄨󵄨󵄨󵄨1/2
⋅ exp [(1/2) 󳨀→𝑙 𝑇PoΣ−1Po󳨀→𝑙 Po]
exp [(1/2) 󳨀→𝑙 𝑇PrΣ−1Pr󳨀→𝑙 Pr] ,

(31)

where the first part depends explicitly on the measured data,
and the second part, being dimensionless, incorporates the
ratio dependent on the means and covariances of the prior
and posterior.

3.2.3. Model for Linear, Nonlinear, and Hyperparameter Prob-
lem. The linear model is amended by hyperparameters,
entering in some way in the prior, and parameters with a
nonlinear connection to the data domain. Such a model is
then applicable in the field of Fourier spectroscopy.

(a) Gaussian Likelihood. The linear mapping M of the
parameters

󳨀→𝑙 to the data domain, as stated by (24), should
remain valid. However, themapping itself may depend on the
parameters 󳨀→𝑛 in a nonlinear way, so that M = M(󳨀→𝑛 ). This
leaves theGaussian likelihood in (25) formally unchanged but
is symbolically stated as 𝑝(󳨀→𝐷 | 󳨀→𝑙 , 󳨀→𝑛 ).
(b) Priors. The Gaussian prior for

󳨀→𝑙 should be given by𝑝(󳨀→𝑙 | 󳨀→ℎ ) = N(󳨀→𝑙 Pr(󳨀→ℎ ),ΣPr(󳨀→ℎ )), where the prior mean
and covariance depend on some of the hyperparameters󳨀→ℎ . Similarly, a prior 𝑝(󳨀→𝑛 | 󳨀→ℎ ) follows for the nonlinear

parameters. Finally, the hyperparameters have an assigned
prior 𝑝(󳨀→ℎ ).
(c) Posteriors and Evidence. According to Bayes’ theorem, one
can write the joint posterior like𝑝 (󳨀→𝑙 | 󳨀→𝑛 , 󳨀→ℎ , 󳨀→𝐷)𝑝(󳨀→𝑛 , 󳨀→ℎ | 󳨀→𝐷)

= 𝑝 (󳨀→𝐷 | 󳨀→𝑙 , 󳨀→𝑛)𝑝 (󳨀→𝐷) 𝑝(󳨀→𝑙 | 󳨀→ℎ)𝑝 (󳨀→𝑛 | 󳨀→ℎ)𝑝 (󳨀→ℎ) , (32)

and the conditional amplitude posterior for
󳨀→𝑙 becomes a

multivariate normal𝑝 (󳨀→𝑙 | 󳨀→𝑛 , 󳨀→ℎ , 󳨀→𝐷)=N (󳨀→𝑙 | 󳨀→𝑙 Po (󳨀→𝑛 , 󳨀→ℎ) ,ΣPo (󳨀→𝑛 , 󳨀→ℎ)) . (33)

Thus, both, the conditional posterior mean
󳨀→𝑙 Po and covari-

ance ΣPo evaluated by (29) and (30), depend on the nonlinear
parameters and hyperparameters. After the trivial marginal-
isation with respect to

󳨀→𝑙 , the joint posterior for 󳨀→𝑛 and
󳨀→ℎ

𝑝(󳨀→𝑛 , 󳨀→ℎ | 󳨀→𝐷) = exp [− (1/2) 󳨀→𝐷𝑇

Σ
−1
𝐷

󳨀→𝐷](2𝜋)𝑁𝐷/2 󵄨󵄨󵄨󵄨Σ𝐷󵄨󵄨󵄨󵄨1/2 1𝑝 (󳨀→𝐷)
⋅ 󵄨󵄨󵄨󵄨ΣPo󵄨󵄨󵄨󵄨1/2󵄨󵄨󵄨󵄨ΣPr󵄨󵄨󵄨󵄨1/2 exp [(1/2)

󳨀→𝑙 𝑇PoΣ−1Po󳨀→𝑙 Po]
exp [(1/2) 󳨀→𝑙 𝑇PrΣ−1Pr󳨀→𝑙 Pr]⋅ 𝑝 (󳨀→𝑛 | 󳨀→ℎ)𝑝 (󳨀→ℎ)

(34)

remains. By expressing the posterior, named settings poste-
rior in the following, like

𝑝 (󳨀→𝑛 , 󳨀→ℎ | 󳨀→𝐷) = 1𝐾󸀠 󵄨󵄨󵄨󵄨ΣPo󵄨󵄨󵄨󵄨1/2󵄨󵄨󵄨󵄨ΣPr󵄨󵄨󵄨󵄨1/2 exp [(1/2)
󳨀→𝑙 𝑇PoΣ−1Po󳨀→𝑙 Po]

exp [(1/2) 󳨀→𝑙 𝑇PrΣ−1Pr󳨀→𝑙 Pr]⋅ 𝑝 (󳨀→𝑛 | 󳨀→ℎ)𝑝 (󳨀→ℎ) , (35)

the evidence is identified with

𝑝 (󳨀→𝐷) = 𝐾󸀠 exp [− (1/2) 󳨀→𝐷𝑇

Σ
−1
𝐷

󳨀→𝐷](2𝜋)𝑁𝐷/2 󵄨󵄨󵄨󵄨Σ𝐷󵄨󵄨󵄨󵄨1/2 . (36)

Note, that the dimensionless constant 𝐾󸀠, and, thus, the
evidence depend on the chosen model, including likelihood
and priors. Hence, 𝐾󸀠 is of importance, when the model is
even further abstracted or compared with alternativemodels.
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(d) Role of Settings Posterior. The optimisation, that is, the
finding of the maximum of the settings posterior 𝑝(󳨀→𝑛 , 󳨀→ℎ |󳨀→𝐷), can be interpreted as an implementation of the Ockham’s
razor principle and/or as a regularisation procedure. This is
essential when the number of parameters exceeds the number
of data points.

Unfortunately, a general analytical expression is not avail-
able for this posterior, and, thus, it needs to be investigated
numerically for the problem at hand. In order to do so, the
quantity 𝑝×𝐾󸀠 = 𝑝 (󳨀→𝑛 , 󳨀→ℎ | 󳨀→𝐷) × 𝐾󸀠 (37)

is of interest, because it is numerically accessible. In case,𝑝×𝐾󸀠 has a well distinguishable global maximum, 𝑝×𝐾󸀠 can be
approximated by amultivariate normal which is estimated by
evaluating the Hessian matrix. Thus, one finds the posterior
means 󳨀→𝑛 Po and 󳨀→ℎ Po with the associated posterior covariance.
This allows an approximate marginalisation with respect to󳨀→𝑛 and/or

󳨀→ℎ . This can be understood as a propagation of
the posterior uncertainties in 󳨀→𝑛 and

󳨀→ℎ to the marginalised
posterior 𝑝(󳨀→𝑙 | 󳨀→𝐷) for the parameters of interest.

(e) Simplifications. For the remainder of this paper, some
simplifications are made which modify (34), (35), and (36)
accordingly. The prior mean

󳨀→𝑙 Pr is set to 0, and the priors𝑝(󳨀→𝑛 | 󳨀→ℎ ) and 𝑝(󳨀→ℎ ) are chosen to be uniform. Then, one can
set 𝐾󸀠 = 𝐾𝑝(󳨀→𝑛 | 󳨀→ℎ )𝑝(󳨀→ℎ ) which modifies (37) to

𝑝×𝐾 = 󵄨󵄨󵄨󵄨ΣPo󵄨󵄨󵄨󵄨1/2󵄨󵄨󵄨󵄨ΣPr󵄨󵄨󵄨󵄨1/2 exp [12󳨀→𝑙 𝑇PoΣ−1Po󳨀→𝑙 Po] . (38)

4. Brownian Bridge Covariance

The continuous even and odd spectral functions to be
inferred can be modelled each by a Gaussian process [11].
Thereby, the Brownian bridge process is a good starting
point, because it exploits a fundamental condition to prevent
aliasing for Fourier spectroscopy applications.This condition
states that the spectrum 𝑆 and, thus, 𝑆𝐸 and 𝑆𝑂 must vanish
at the spectral origin and at an upper limit which is smaller
than the Nyquist frequency (see Section 2.6.3). However, this
information is usually not taken into account any further
in the analysis. On the contrary, a Brownian bridge and its
associated covariance function fulfil the boundary conditions
for any lower and upper limit. Hence, the covariance can be
used in the Gaussian prior for 𝑆𝐸 and 𝑆𝑂. In addition, this
process has only one scaling hyperparameter which makes it
attractive from data analysis point of view.This scaling can be
estimated aswell from the Fourier coefficients probed. In fact,
this reveals information about the nonprobed coefficients and
gives an additional uncertainty on 𝑆𝐸 and 𝑆𝑂. After presenting
some properties of the Brownian bridge covariance, it is

used as prior covariance in the example application (see
Section 5).

4.1. Standard Definition. The Brownian bridge is a con-
tinuous stochastic process for an interval, say from 0 to𝑇. This bridge is constructed by tying-down a Brownian
motion process to 0 at the end of the interval in question.
Furthermore, the tie-down at the beginning of the interval is
inherited from the Brownianmotion process.The covariance
function for the bridge is defined in standard literature
by

Σ
󸀠
BB (𝑠, 𝑡) = −𝑠𝑡𝑇 + {{{𝑠: 𝑠 ≤ 𝑡𝑡: 𝑠 > 𝑡 (39)

for 𝑠 and 𝑡 ∈ [0, 𝑇].
4.2. AdaptedDefinition. Theeven and odd spectral functions,
being finite for the interval [𝑓𝐿, 𝑓𝑈], demand some adaption
of the standard covariance expression (39) whenmodelled by
a Brownian bridge process. To keep the same properties on
spectral scale, a shift by 𝑓𝐿 and the interval length 𝑇 = 𝑓𝑈 −𝑓𝐿 = Δ𝐹 need to be set. Thus, one gets

Σ
󸀠
BB (𝑓, 𝑓󸀠) = −(𝑓 − 𝑓𝐿) (𝑓󸀠 − 𝑓𝐿)Δ𝐹+ {{{𝑓 − 𝑓𝐿: 𝑓 ≤ 𝑓󸀠𝑓󸀠 − 𝑓𝐿: 𝑓 > 𝑓󸀠

(40)

with the unit [Σ󸀠BB] = Hz. With the normalisation

∫𝑓𝑈
𝑓𝐿

∫𝑓𝑈
𝑓𝐿

Σ
󸀠
BB (𝑓, 𝑓󸀠) 𝑑𝑓𝑑𝑓󸀠 = Δ3𝐹12 , (41)

the modified covariance becomes

ΣBB (𝑓, 𝑓󸀠) = 12Δ3𝐹Σ󸀠BB (𝑓, 𝑓󸀠) , (42)

where [ΣBB] = Hz−2 has now the proper unit with respect to
the spectral scale.

The parameters 𝑎𝐸 and 𝑎𝑂 of unit [𝑎𝐸(𝑂)] = V2 are intro-
duced which are defined each as a scaling factor for the asso-
ciated process. With these scalings the covariances ΣBB,𝐸(𝑂) =𝑎𝐸(𝑂)ΣBB are obtained, so that the units [ΣBB,𝐸(𝑂)] = [𝑆𝐸(𝑂)]2
= V2/Hz2 match.

4.3. Covariance for Fourier Coefficients. TheBrownian bridge
covariance function for the spectral domain can be studied
in the domain of the Fourier coefficients via the coordinate
transform stated in (11) [11]. Compactly written, one finds
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the infinite-dimensional covariance matrix for the Fourier
coefficients analytically by

ΣBB,𝐸 (𝑘, 𝑘󸀠) = 𝑎𝐸Δ2𝐹 ∫𝑓𝑈𝑓𝐿 ∫𝑓𝑈𝑓𝐿 (
12 cos(2𝜋𝑘𝑓 − 𝑓𝐶Δ𝐹

)2 sin(2𝜋𝑘𝑓 − 𝑓𝐶Δ𝐹

))( 12 cos(2𝜋𝑘󸀠𝑓󸀠 − 𝑓𝐶Δ𝐹

)2 sin(2𝜋𝑘󸀠𝑓󸀠 − 𝑓𝐶Δ𝐹

))
𝑇

ΣBB (𝑓, 𝑓󸀠) 𝑑𝑓𝑑𝑓󸀠

= 𝑎𝐸Δ2𝐹 6𝜋2((
𝜋26 (−1)𝑘󸀠+1𝑘󸀠2 󳨀→0 𝑇(−1)𝑘+1𝑘2 𝛿𝑘,𝑘󸀠𝑘𝑘󸀠 0󳨀→0 0

𝛿𝑘,𝑘󸀠𝑘𝑘󸀠
)
)
=(Σ(𝐴𝐸,0, 𝐴𝐸,0) 󳨀→Σ𝑇 (𝐴𝐸,0, 𝐴𝐸,𝑘󸀠) 󳨀→0 𝑇󳨀→Σ (𝐴𝐸,𝑘, 𝐴𝐸,0) Σ (𝐴𝐸,𝑘, 𝐴𝐸,𝑘󸀠) 0󳨀→0 0 Σ (𝐵𝐸,𝑘, 𝐵𝐸,𝑘󸀠))

(43)

for all 𝑘, 𝑘󸀠 ≥ 1, and similarly ΣBB,𝑂(𝑘, 𝑘󸀠) follows. The
only finite off-diagonal elements occur for the absolute term
in connection with the higher order terms for the even
coefficients captured by the infinite-dimensional row and

column vectors󳨀→Σ(𝐴𝐸(𝑂),𝑘, 𝐴𝐸(𝑂),0) and󳨀→Σ𝑇(𝐴𝐸(𝑂),0, 𝐴𝐸(𝑂),𝑘󸀠),
respectively. This is caused by the condition that 𝑆𝐸(𝑂)
vanishes at the spectral boundaries where the sine vanishes
intrinsically for any 𝑘 but the cosine takes values either 1 or −1
for even and odd orders, respectively. Hence, the covariance
imposes the boundary condition.

For orders greater than 0, ΣBB,𝐸(𝑂)(𝑘, 𝑘󸀠) has no
off-diagonal elements due to the Kronecker delta 𝛿𝑘,𝑘󸀠 ,
meaning that these coefficients are independent on each
other. Furthermore, for the infinite-dimensional matrices
Σ(𝐴𝐸(𝑂),𝑘, 𝐴𝐸(𝑂),𝑘󸀠) = Σ(𝐵𝐸(𝑂),𝑘, 𝐵𝐸(𝑂),𝑘󸀠) = 𝛿𝑘,𝑘󸀠/(𝑘𝑘󸀠) holds,
and the amplitudes for even and odd coefficients drop
equally with the square of the order.

4.4. Square-Integrable Property. According to Parseval’s the-
orem (see (16)), 𝑙2𝑆 is evaluated by summing the squares of the
Fourier coefficients. Because the entries of the main diagonal
in the covariances ΣBB,𝐸(𝑘, 𝑘󸀠) and ΣBB,𝑂(𝑘, 𝑘󸀠) drop with the
order squared, the Brownian bridge process ensures square-
integrability of 𝑆𝐸 and 𝑆𝑂 as long as the scalings 𝑎𝐸 and 𝑎𝑂
remain finite.

4.5. Signal Envelope. For the even process, the signal level can
be estimated by the envelope 𝜎󸀠𝐷,𝐸(𝑥𝑘) in the data domain.
Starting point is the square root of the main diagonal of
ΣBB,𝐸(𝑘, 𝑘󸀠 = 𝑘). Since the argument of sinc𝑘± (see (14))
localises the even and odd Fourier coefficient at a fixed𝑘 = ±𝑥𝑘Δ𝐹/𝑐 in the same data domain, the even and odd
contributions of ΣBB,𝐸(𝑘, 𝑘󸀠 = 𝑘) must be added for 𝑘 ≥ 1.
As can be seen by (13), the mapping of the absolute term to
the data domain includes already the factor 2. In addition, the

mapping comprises the bandwidth Δ𝐹. In total, one finds the
envelope as

𝜎󸀠𝐷,𝐸 (𝑥𝑘) = ±2𝑎1/2𝐸

{{{{{{{
2: 𝑥𝑘 = 0121/2𝜋 𝑐󵄨󵄨󵄨󵄨𝑥𝑘󵄨󵄨󵄨󵄨 Δ𝐹

: 𝑥𝑘 ̸= 0. (44)

In the above equation, factor 2 in front of 𝑎𝐸 was chosen, so
that 𝜎󸀠𝐷,𝐸(𝑥𝑘) captures most of the signal. An approximation
might be convenient, because 121/2/𝜋 ≈ 1.

For the envelope 𝜎󸀠𝐷,𝑂(𝑥𝑘) of the odd process, the same
reasoning can be appliedwith onemodification.Themapping
demands that the contribution of the absolute term at the
spatial origin vanishes (see (13)). Hence, one finds

𝜎󸀠𝐷,𝑂 (𝑥𝑘) = ±2𝑎1/2𝑂

{{{{{{{
0: 𝑥𝑘 = 0121/2𝜋 𝑐󵄨󵄨󵄨󵄨𝑥𝑘󵄨󵄨󵄨󵄨 Δ𝐹

: 𝑥𝑘 ̸= 0. (45)

Both envelops drop with 1/|𝑥𝑘|, and, thus, most of the signal
associated with each process would in the data domain.

5. Example Application

5.1. Formulation of Model

5.1.1. Martin-Puplett Interferometer at JET. The Martin-
Puplett interferometer diagnostic [12] at the fusion device JET
(Culham, UK) probes the spectrum emitted by a broadband
source and performs the Fourier transform. The interfero-
gram data 󳨀→𝐷1 is acquired in terms of Volts dependent on
the optical path difference 𝑥. However, two different sources
are probed for 20 minutes subsequently to remove a class
of diagnostic imperfections not treated here any further. By
subtraction of the corresponding two interferograms, the
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Figure 3: (a) Difference interferogram 󳨀→𝐷 (black) versus optical path difference 𝑥. The data set includes𝑁𝐷 = 788 values, and the noise level
for each𝐷𝑖 reads 𝜎𝐷 = 132.29 𝜇V.The values of the spatial grid are determined by the standard model 𝑥𝑖 = (𝑖 − 1)Δ𝑥+𝑥0 with 𝑖 ∈ [1,𝑁𝐷], the
constant increment Δ𝑥 = 40𝜇m, and the origin 𝑥0. This origin is estimated as −5.118mm by a fit of a quadratic polynomial to the maximum
max(󳨀→𝐷) and its neighbouring values to either side. Clearly, 󳨀→𝐷 deviates from the baseline (red). (b) Difference quotient for different subsets of󳨀→𝐷. Since the zig-zag-pattern in the point-to-point variation appears only for the first case (black), the standard model 𝑥𝑖+1 −𝑥𝑖 = const. seems
to be inadequate. Instead, a model seems appropriate for which 𝑥2𝑖+1 − 𝑥2𝑖−1 = 𝑥2𝑖+2 − 𝑥2𝑖 = const. holds.
data becomes available in form of the difference interfero-
gram 𝐷(𝑥𝑖) = 𝐷2(𝑥𝑖) − 𝐷1(𝑥𝑖) acquired at the spatial grid
node 𝑥𝑖. Then, the abstract model for the Martin-Puplett
interferometer is stated by𝐷(𝑥𝑖) = 𝐴2 [2∫𝑓𝑈𝑓𝐿 (𝑆𝐸 cos(2𝜋𝑓𝑐 𝑥𝑖)+ 𝑆𝑂 sin(2𝜋𝑓𝑐 𝑥𝑖))𝑑𝑓 + 𝑉Off (𝑥𝑖)]+N𝑖 (0, 𝜎2𝐷) ,

(46)

using the total amplification 𝐴 of the detection system.
Furthermore, the offset𝑉Off marks a diagnostic imperfection
which varies with 𝑥𝑖. The Gaussian noise contributes to each
data sample described byN𝑖(0, 𝜎2𝐷). The unknown quantities
in the diagnostic model are the spatial grid 𝑥𝑖, the lower and
upper spectral boundaries𝑓𝐿 and𝑓𝑈 of the Fourier transform
integral, the even and odd functions 𝑆𝐸 and 𝑆𝑂 dependent on
frequency 𝑓, and the offset.

5.1.2. Interferometric Data. The data set 󳨀→𝐷, that is, the
difference interferogram consists of 𝑁𝐷 = 788 values (see
Figure 3(a)). Merely for graphical presentation a certain 𝑥
is chosen derived from the standard approach (see Sec-
tion 5.1.3). Globally, the data shows an upward trend with
respect to the zero baseline.

The components𝐷𝑖 are measured independently on each
other, and the noise level for each 𝐷𝑖 is captured by 𝜎𝐷 =
132.29 𝜇V, and, thus, the variance of the whole data vector is
stated by the matrix Σ𝐷 = 𝜎2𝐷𝛿𝑖𝑗.
5.1.3. Optical Path Difference. The diagnostic is set up, so that
the sampling of the interferogram is triggered ideally when
the optical path difference has changed by the incrementΔ𝑥=
40 𝜇m. Hence, the standard model 𝑥𝑖 = (𝑖 − 1)Δ𝑥 + 𝑥0 is
obvious with 𝑖 = 1, . . . , 𝑁𝐷, and the zero-path difference𝑥0 is a free parameter. However, this model is not accurate.
Applying the standard approach which fits a second-order
polynomial to the maximum max(󳨀→𝐷) and its two nearby
values, 𝑥0 = −127.95Δ𝑥 = −5.118mm, is inferred for the
data set shown in Figure 3(a). Furthermore, the difference
quotient evaluated by (𝐷𝑖+1 − 𝐷𝑖)/Δ𝑥 is presented versus the
optical path difference 𝑥 = (𝑥𝑖+1 + 𝑥𝑖)/2 in Figure 3(b).
The point-to-point variation of the quotient has a zig-zag
pattern which implies that the assumption Δ𝑥 = const.
is incorrect. Indeed, each of two the difference quotients(𝐷2𝑖+1 − 𝐷2𝑖−1)/(2Δ𝑥) and (𝐷2𝑖+2 − 𝐷2𝑖)/(2Δ𝑥) is smoother.
Hence, the model𝑥𝑖 = (𝑖 − 1) Δ𝑥 + 𝑥0 + {{{0: if 𝑖 is odd𝛿𝑥: if 𝑖 is even (47)

seems more appropriate, making use of two free parameters:
the zero-path difference 𝑥0 and a shift 𝛿𝑥 for every other grid
value. The priors 𝑝(𝑥0) and 𝑝(𝛿𝑥) are set to be uniform.
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5.1.4. Offset. Theupward trend of󳨀→𝐷 (see Figure 3(a)) is mod-
elled by the offset 𝑉Off (𝑥𝑖). Here, a second-order polynomial
is chosen to capture the offset by 𝑉Off (𝑥𝑖) = 𝑏0 + 𝑏1𝑥𝑖 + 𝑏2𝑥2𝑖
with the free parameters 𝑏0, 𝑏1, and 𝑏2 being summarised by
the vector

󳨀→𝑏 = (𝑏0, 𝑏1, 𝑏2)𝑇. The corresponding mapping to
the data domain can be expressed as

MOff
󳨀→𝑏 = 𝐴2 ((

1 𝑥1 𝑥211 𝑥2 𝑥22... ... ...1 𝑥𝑁𝐷 𝑥2𝑁𝐷
)
)
(𝑏0𝑏1𝑏2) (48)

with the𝑁𝐷 × 3 matrixMOff . The joint prior is expressed by
the factorisable multivariate normal distribution:

𝑝 (󳨀→𝑏 ) = 2∏
𝑖=0

N (0, 𝜎2𝑏𝑖 ,Pr) =N (0,Σ󳨀→
𝑏 ,Pr
) , (49)

where 𝜎𝑏𝑖 ,Pr are considered as hyperparameters to which a
uniform prior is assigned.

5.1.5. Spectral Quantities. The kernel of the spectral inte-
gration in (46) is finite only for frequencies 𝑓 ∈ ]𝑓𝐿, 𝑓𝑈[.
Thereby, 𝑓𝐿 and 𝑓𝑈 are free parameters. The spectral domain
is dicretised using the constant increment Δ𝑓 which is
considered as a free parameter as well. Then, the spectral
domain is represented by the set 𝑓𝑗 = 𝑓𝐿 + (𝑗 − 0.5)Δ𝑓 with𝑗 = 1, . . . , 𝑁𝑓, covering the band 𝑁𝑓Δ𝑓 = (𝑓𝑈 − 𝑓𝐿) = Δ𝐹

centred at 𝑓𝐶 = (𝑓𝑈 + 𝑓𝐿)/2. To be clear, since 𝑓𝐿, 𝑓𝑈, andΔ𝑓 are free parameters and will be inferred, the number 𝑁𝑓

is variable.This number determines the dimensionality of the
vectors 󳨀→𝑆 𝐸 and 󳨀→𝑆 𝑂 which represent the discretised functions𝑆𝐸(𝑓) and 𝑆𝑂(𝑓). The mapping of 󳨀→𝑆 𝐸 and 󳨀→𝑆 𝑂 to the data
domain in (46) is written as𝐴2 2∫𝑓𝑈𝑓𝐿 (𝑆𝐸 cos(2𝜋𝑓𝑐 𝑥𝑖) + 𝑆𝑂 sin(2𝜋𝑓𝑐 𝑥𝑖))𝑑𝑓≈ (M𝐸,M𝑂)(󳨀→𝑆 𝐸󳨀→𝑆 𝑂) (50)

with the two𝑁𝐷 × 𝑁𝑓 matrices

M𝐸

= 𝐴((
(

cos(2𝜋𝑓1𝑐 𝑥1) ⋅ ⋅ ⋅ cos(2𝜋𝑓𝑁𝑓𝑐 𝑥1)... d
...

cos(2𝜋𝑓1𝑐 𝑥𝑁𝐷) ⋅ ⋅ ⋅ cos(2𝜋𝑓𝑁𝑓𝑐 𝑥𝑁𝐷)
))
)
Δ𝑓,

M𝑂

= 𝐴((
(

sin(2𝜋𝑓1𝑐 𝑥1) ⋅ ⋅ ⋅ sin(2𝜋𝑓𝑁𝑓𝑐 𝑥1)... d
...

sin(2𝜋𝑓1𝑐 𝑥𝑁𝐷) ⋅ ⋅ ⋅ sin(2𝜋𝑓𝑁𝑓𝑐 𝑥𝑁𝐷)
))
)
Δ𝑓.
(51)

The joint prior for the two vectorial quantities 󳨀→𝑆 𝐸 and 󳨀→𝑆 𝑂 is
factorised, and each prior is chosen as a multivariate normal
distribution with vanishing mean. Since the Brownian bridge
covariance ΣBB (see Section 4) describes functions which
vanish at the boundaries𝑓𝐿 and𝑓𝑈 and are square-integrable,
and its signal envelope decays with the optical path difference
like the interferometric data at hand, the priors are chosen
by 𝑝 (󳨀→𝑆 𝐸(𝑂) | Δ𝑓, 𝑓𝐿, 𝑓𝑈, 𝑎𝐸(𝑂))=N (0, 𝑎𝐸(𝑂)ΣBB (Δ𝑓, 𝑓𝐿, 𝑓𝑈)) (52)

with the two hyperparameters 𝑎𝐸 and 𝑎𝑂 for scaling. For each
of these hyperparameters a uniform prior 𝑝(𝑎𝐸(𝑂)) = 1/Δ 𝑎𝐸(𝑂)

is applied.
Finally, the joint prior𝑝 (Δ𝑓, 𝑓𝐿, 𝑓𝑈) = 1𝐾Δ𝑓,𝑓𝐿,𝑓𝑈 (53)

should be constant, so that any combination of Δ𝑓, 𝑓𝐿, and𝑓𝑈 has the same probability. Furthermore, the conditions 0 ≤Δ𝑓 ≤ 𝑓𝑈 − 𝑓𝐿, 0 ≤ 𝑓𝐿 ≤ 𝑓𝑈, and 0 ≤ 𝑓𝑈 ≤ Δ𝑓𝑈
(global upper

limit) must be fulfilled. For example, the upper limit of 𝑓𝑈 is
set here to the Nyquist frequency Δ𝑓𝑈

= 𝑓Ny = 𝑐/(2Δ𝑥) =
3747.4GHz.

5.2. Bayes’ Theorem. In the following, the linear parameters
are summerised by the set

󳨀→𝑙 = (󳨀→𝑆 𝐸, 󳨀→𝑆 𝑂, 󳨀→𝑏 )𝑇, the nonlinear
parameters by 󳨀→𝑛 = (𝑓𝐿, 𝑓𝑈, 𝑥0, 𝛿𝑥)𝑇, and the hyperparame-
ters by

󳨀→ℎ = (𝑎𝐸, 𝑎𝑂, 𝜎𝑏0 ,Pr, 𝜎𝑏1 ,Pr, 𝜎𝑏2 ,Pr)𝑇.
The matrix M(󳨀→𝑛 , Δ𝑓) = (M𝐸,M𝑂,MOff ) maps the

parameters
󳨀→𝑙 to the data domain. Hence, the Gaussian

likelihood is written as𝑝 (󳨀→𝐷 | 󳨀→𝑙 , 󳨀→𝑛 , Δ𝑓)
= exp [− (1/2) (󳨀→𝐷 −M󳨀→𝑙 )𝑇 Σ−1𝐷 (󳨀→𝐷 −M󳨀→𝑙 )](2𝜋)𝑁𝐷/2 󵄨󵄨󵄨󵄨Σ𝐷󵄨󵄨󵄨󵄨1/2 . (54)
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The prior for the full problem takes the form𝑝 (󳨀→𝑙 , Δ𝑓, 󳨀→𝑛 , 󳨀→ℎ)= 𝑝 (󳨀→𝑙 | Δ𝑓, 𝑓𝐿, 𝑓𝑈, 𝑎𝐸, 𝑎𝑂, 𝜎𝑏0 ,Pr, 𝜎𝑏1 ,Pr, 𝜎𝑏2 ,Pr)⋅ 𝑝 (Δ𝑓, 𝑓𝐿, 𝑓𝑈) 𝑝 (𝑎𝐸) 𝑝 (𝑎𝑂) 𝑝 (𝑥0) 𝑝 (𝛿𝑥)⋅ 𝑝 (𝜎𝑏0 ,Pr) 𝑝 (𝜎𝑏1 ,Pr) 𝑝 (𝜎𝑏2 ,Pr)
(55)

with the multivariate normal prior𝑝 (󳨀→𝑙 | Δ𝑓, 𝑓𝐿, 𝑓𝑈, 𝑎𝐸, 𝑎𝑂, 𝜎󳨀→𝑏 ,Pr)
= exp [− (1/2) 󳨀→𝑙 𝑇Σ−1Pr󳨀→𝑙 ](2𝜋)(2𝑁𝑓+3)/2 󵄨󵄨󵄨󵄨ΣPr󵄨󵄨󵄨󵄨1/2 (56)

for
󳨀→𝑙 , using the (2𝑁𝑓+3)×(2𝑁𝑓+3) dimensional covariance

matrix

ΣPr = (𝑎𝐸ΣBB 0 00 𝑎𝑂ΣBB 00 0 Σ󳨀→
𝑏 ,Pr

). (57)

One gets the joint posterior𝑝 (󳨀→𝑙 , 󳨀→𝑛 , 󳨀→ℎ , Δ𝑓 | 󳨀→𝐷)= 𝑝 (󳨀→𝑙 | 󳨀→𝑛 , 󳨀→ℎ , Δ𝑓, 󳨀→𝐷)𝑝 (󳨀→𝑛 , 󳨀→ℎ , Δ𝑓 | 󳨀→𝐷) (58)

with the conditional amplitude posterior given by the multi-
variate normal𝑝 (󳨀→𝑙 | 󳨀→𝑛 , 󳨀→ℎ , Δ𝑓, 󳨀→𝐷)

= exp [− (1/2) (󳨀→𝑙 − 󳨀→𝑙 Po)𝑇 Σ−1Po (󳨀→𝑙 − 󳨀→𝑙 Po)](2𝜋)(2𝑁𝑓+3)/2 󵄨󵄨󵄨󵄨ΣPo󵄨󵄨󵄨󵄨1/2 , (59)

using the posterior covariance matrix ΣPo = (M𝑇
Σ
−1
𝐷 M +

Σ
−1
Pr )−1 and the mean

󳨀→𝑙 Po = ΣPoM𝑇
Σ
−1
𝐷

󳨀→𝐷. Furthermore, one
obtains the settings posterior𝑝 (󳨀→𝑛 , 󳨀→ℎ , Δ𝑓 | 󳨀→𝐷) = 𝑝×𝐾𝐾

= 󵄨󵄨󵄨󵄨ΣPo󵄨󵄨󵄨󵄨1/2󵄨󵄨󵄨󵄨ΣPr󵄨󵄨󵄨󵄨1/2 exp [(1/2)
󳨀→𝑙 𝑇PoΣ−1Po󳨀→𝑙 Po]𝐾 , (60)

where the constant𝐾 is unknown so far.

5.3. Investigation of Posterior

5.3.1. Conditional Amplitude Posterior for Chosen Settings.
To give some insight, the conditional posterior for the
amplitudes is evaluated given the specific set of values for 𝑥0,𝛿𝑥, 𝑓𝐿, 𝑓𝑈, Δ𝑓, 𝑎𝐸 and 𝑎𝑂, 𝜎𝑏0 ,Pr, 𝜎𝑏1 ,Pr, and 𝜎𝑏2 ,Pr.

The values for 𝑥0 = −127.95Δ𝑥 = −5.118mm and 𝛿𝑥 =0mm are chosen to form an optical path difference grid 𝑥𝑖
for which all subsequent nodes are separated by Δ𝑥. Then,|𝑥𝑖| ≤ 5.118mm identifies the double-sided domain (256 data
points), and the single-sided domain is marked by 5.118mm≤ 𝑥𝑖 ≤ 26.362mm (532 data points).

The spectral domain is covered from 𝑓𝐿 = 0GHz to
the Nyquist frequency 𝑓𝑈 = 𝑐/(2Δ𝑥) = 3747.4GHz (=Δ𝐹).
With the bandwidth and the optical path difference set, the
conversion 𝑘 = |𝑥|Δ𝐹/𝑐 (see Section 2.3.1) to the order of
Fourier coefficient follows. Thus, the double-sided and full
spatial domain coefficients up to the orders 64 and 330 are
located (see Figure 4(b)), respectively. Some examples of the
spatial basis functions associated with this set of Fourier
coefficients are shown in Figure 2.

To match the maximum order (330) of probed Fourier
coefficient, the discretisation is set to Δ𝑓 = 𝑐/(2Δ𝑥(256/2 +532)) ≈ 5.68GHz which reflects the classical increment.
Then, the spectral grid has𝑁𝑓 = 660 elements.

The hyperparameters are set to large values like 𝑎𝐸 =𝑎𝑂 = 10−8 V2 to prevent from a prior determined posterior.
This unwanted feature would be present, if one would choose𝑎𝐸(𝑂) too small, so that the signal envelops do not include the
measured data (see next paragraph).

With the chosen spectral priors, sample functions/vectors󳨀→𝑆 𝐸,Pr,Sa and 󳨀→𝑆 𝑂,Pr,Sa are drawn and shown in Figure 4(a).
The function values are of the order of 10−16 V/Hz decaying
towards the spectral boundaries.Themapping of the spectral
prior samples to the spatial domain via 󳨀→𝐷𝐸,Pr,Sa + 󳨀→𝐷𝑂,Pr,Sa =
M𝐸

󳨀→𝑆 𝐸,Pr,Sa + M𝑂

󳨀→S 𝑂,Pr,Sa shows that 󳨀→𝐷𝐸,Pr,Sa + 󳨀→𝐷𝑂,Pr,Sa can
be of the order of some Volts close to the spatial origin (see
Figure 4(b)) which exceeds the measured data by about two
orders ofmagnitude. Furthermore, the amplitude of󳨀→𝐷𝐸,Pr,Sa+󳨀→𝐷𝑂,Pr,Sa drops with the distance from the origin. All these
data samples are well bounded by the signal envelopes 𝜎𝐷,𝐸(𝑂)
obtained by 𝜎𝐷,𝐸(𝑂) = (𝐴/2)𝜎󸀠𝐷,𝐸(𝑂) which is the scaled
version of the expressions (44) and (45).

For
󳨀→𝑏 the prior covariance is determined by setting𝜎𝑏0 ,Pr = 1V, 𝜎𝑏1 ,Pr = 1V/m and 𝜎𝑏2 ,Pr = 1V/m2.

(a) Posterior Mean. For the above values, the mean
󳨀→𝑙 Po of the

amplitude posterior is given by
󳨀→𝑏 Po = (−61.41 nV, 5.75 𝜇V/m,

2.42 𝜇V/m2)𝑇, 󳨀→𝑆 𝐸,Po and 󳨀→𝑆 𝑂,Po as presented in Figure 5(a).
Clearly, 󳨀→𝑆 𝐸,Po peaks below 1000GHz with the maximum
of approximately 6 × 10−18 V/Hz around 400GHz. Further-
more, 󳨀→𝑆 𝑂,Po is much smaller than 󳨀→𝑆 𝐸,Po below 1000GHz.

The offset 󳨀→𝐷Off ,Po = MOff
󳨀→𝑏 Po contribution to the data

has an upwards trend but is small (see Figure 5(b)). The
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Figure 4: Examination of Gaussian prior for even and odd spectra
modelled by Brownian bridge process. The spectral discretisationΔ𝑓 = 5.68GHz is used, and the lower and upper spectral limits
are set to 𝑓𝐿 = 0GHz and 𝑓𝑈 = 3747.4GHz (Nyquist assumptions),
respectively. The scalings of the processes are chosen by 𝑎𝐸 =𝑎𝑂 = 10−8 V2. (a) Prior samples 󳨀→𝑆 𝐸,Pr,Sa and 󳨀→𝑆 𝑂,Pr,Sa for even and
odd spectra. The spectra vanish towards the spectral limits. (b)
Prior samples mapped to data domain to give even (odd) data-like
quantity 󳨀→𝐷𝐸(𝑂),Pr,Sa for optical path difference obtained for 𝑥0 =−5.118mm and 𝛿𝑥 = 0. With increasing distance to the origin, the
amplitude drops which is well bounded by the signal envelopes𝜎𝐷,𝐸 = 𝜎𝐷,𝑂 for the chosen bandwidth Δ𝐹 = 𝑓𝑈. Fourier coefficients
up to order 𝑘 = 64 and 330 settle in the double-sided domain (|𝑥| ≤|𝑥0|) and single-sided domain (𝑥 > |𝑥0|), respectively.
even and odd contributions 󳨀→𝐷𝐸(𝑂),Po = M𝐸(𝑂)

󳨀→𝑆 𝐸(𝑂),Po behave
differently in the double- and single-sided domains (see
Figure 5(b)). While in the double-sided domain 󳨀→𝐷𝐸,Po is
much larger than 󳨀→𝐷𝑂,Po,

󳨀→𝐷𝐸,Po and
󳨀→𝐷𝑂,Po equal each other in

the single-sided domain. This indicates an underestimation

(overestimation) of the Fourier coefficients above the order
64 for 𝑆𝐸,Po (𝑆𝑂,Po). The cause of this finding relies in the
choice 𝑎𝐸 = 𝑎𝑂 (𝜎𝐷,𝐸 = 𝜎𝐷,𝑂) which becomes more clear in
Section 5.3.3.

Since the quantity 󳨀→𝐷Po = 𝑀󳨀→𝑙 Po equals almost the data
set 󳨀→𝐷 (see residuals in Figure 5(c)), a nearly perfect match is
achieved. Hence, all noise contributions are captured by the
mean

󳨀→𝑙 Po, and an overfitting of the data is obvious.

(b) Posterior Covariance. The posterior covariance ΣPo is
not characterised in detail. From the elements of the main
diagonal of ΣPo, one finds the values 𝜎𝑏0 ,Po = 73.30 nV, 𝜎𝑏1 ,Po =
12.58 𝜇V/m, and 𝜎𝑏2 ,Po = 446.67 𝜇V/m2. These posterior
uncertainties are quite large when compared to the values
of the corresponding mean

󳨀→𝑏 Po, especially for the quadratic
coefficient.

For the spectral quantities, the square root of the main
diagonal elements of ΣPo is of the order of some 10−18 V/Hz
(for one sample function drawn from the conditional ampli-
tude posterior see Figure 5(a)). Hence, a considerable devia-
tion from the posterior mean is possible.

(c) Posterior Samples. 100 samples
󳨀→𝑙 Po,Sa = (󳨀→𝑆 𝐸,Po,Sa, 󳨀→𝑆 𝑂,Po,Sa,󳨀→𝑏 Po,Sa)𝑇 are drawn from the amplitude posterior andmapped

to the data domain (see Figure 5(b)). Thereby, the contri-
butions 󳨀→𝐷𝐸,Po,Sa = M𝐸

󳨀→𝑆 𝐸,Po,Sa, 󳨀→𝐷𝑂,Po,Sa = M𝑂

󳨀→𝑆 𝑂,Po,Sa, and󳨀→𝐷Off ,Po,Sa = MOff
󳨀→𝑏 Po,Sa are split to investigate their interplay.󳨀→𝐷Off ,Po,Sa has a noticeable width but remains in the vicinity of󳨀→𝐷Off ,Po for the whole spatial domain.

For the double-sided region 󳨀→𝐷𝐸,Po,Sa and 󳨀→𝐷𝑂,Po,Sa form
a narrow band around the corresponding posterior mean
quantities 󳨀→𝐷𝐸,Po and 󳨀→𝐷𝑂,Po. On the contrary, for the single-
sided region 󳨀→D𝐸,Po,Sa and

󳨀→𝐷𝑂,Po,Sa increase drastically but are
restricted by 𝜎𝐷,𝐸 and 𝜎𝐷,𝑂. The deviation is large between
the individual and the posterior mean quantities; though, the
sum 󳨀→𝐷Po,Sa = 󳨀→𝐷𝐸,Po,Sa + 󳨀→𝐷𝑂,Po,Sa + 󳨀→𝐷Off ,Po,Sa remains well
inside the 2-𝜎𝐷 band surrounding 󳨀→𝐷 (see Figures 5(c) and
5(d)). Hence, the posterior covariance ΣPo captures properly
the correlations.

With the specific values of the settings one gets the
number ln𝑝×𝐾 ≈ 1.0488 × 106.
5.3.2. Settings Posterior. As the problem is formulated, the
settings posterior is proportional to 𝑝×𝐾. Its optimisation,
that is, finding the globalmaximumof the settings posterior is
a 10-dimensional problem. Since large numbers are involved,
one has to investigate ln𝑝×𝐾. In general, if only one parameter
is changed, a well distinguishable peak in ln𝑝×𝐾 is found.
Hence, the optimisation is currently carried out by varying
each parameter separately (coordinate descent algorithm).
Thereby, ln𝑝×𝐾 increases when Δ𝑓 becomes smaller. This
implies an increase of the dimensionality of the involved
covariances ΣPr and ΣPo and, thus, a prolonging of the
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Figure 5: Investigation of conditional amplitude posterior 𝑝(󳨀→𝑙 | Δ𝑓, 𝑓𝐿, 𝑓𝑈, 𝑎𝐸, 𝑎𝑂, 𝑥0, 𝛿𝑥, 𝜎𝑏0 ,Pr, 𝜎𝑏1 ,Pr, 𝜎𝑏2 ,Pr, 󳨀→𝐷) for linear parameters
󳨀→𝑙 =(󳨀→𝑆 𝐸, 󳨀→𝑆 𝑂, 󳨀→𝑏 )𝑇. The posterior is obtained for the settings 𝑥0 = −5.118mm and 𝛿𝑥 = 0, 𝑓𝐿 = 0GHz, 𝑓𝑈 = 3747.4GHz, Δ𝑓 = 5.68GHz, 𝑎𝐸 = 𝑎𝑂 =10−8 V2, 𝜎𝑏0 ,Pr = 1V, 𝜎𝑏1 ,Pr = 1V/m, and 𝜎𝑏2 ,Pr = 1V/m2. (a) Spectral posterior means 󳨀→𝑆 𝐸(𝑂),Po and one posterior sample. Below 1000GHz, the

means show a finite amplitude. Each sample deviates strongly from its corresponding mean. (b) Posterior mean
󳨀→𝑙 Po and 100 samples

󳨀→𝑙 Po,Sa
mapped to give even, odd, and offset contributions in data domain. While in the double-sided region (|𝑥| ≤ |𝑥0|) most of the data described
by 󳨀→𝑆 𝐸,Po, 󳨀→𝑆 𝐸,Po and 󳨀→𝑆 𝑂,Po give same contributions in the single-sided region (𝑥 > |𝑥0|). In the single-sided region, the spread of the even
(odd) contributions for the posterior samples is large but bounded by the signal envelops 𝜎𝐷,𝐸(𝑂). (c) Residuals for󳨀→𝑙 Po (black) and one sample󳨀→𝑙 Po,Sa (red) both mapped to data domain. An almost perfect description of the noisy data is achieved by 𝑙Po, indicating an overfitting of the
data. (d) Measured data 󳨀→𝐷 and 100 samples of amplitude posterior mapped to data domain. The individual contributions have a much wider
spread (see (b)), but the total sum 󳨀→𝐷Po,Sa agrees well with

󳨀→𝐷 and its uncertainties. This is caused by the posterior covariance of
󳨀→𝑙 with suited

off-diagonal entries.
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Figure 6: Ten-dimensional quantity 𝑝×𝐾 scanned at different values for 𝑓𝑈, Δ𝑓, 𝑎𝐸, and 𝑎𝑂 while keeping 𝑓𝐿 = 0GHz, 𝑥0 = −5.118mm,𝛿𝑥 = 0mm, 𝜎𝑏0 ,Pr = 1V, 𝜎𝑏1 ,Pr = 1V/m, and 𝜎𝑏2 ,Pr = 1V/m2. (a) Rough scan in 𝑓𝑈 and Δ𝑓 at 𝑎𝐸 = 𝑎𝑂 = 10−8 V2. A peak for ln𝑝×𝑘 with the
amplitude of the order of 106 is found close to 𝑓𝑈 = 1000GHz. Small Δ𝑓 are in favour. (b) Scan in 𝑓𝑈 and Δ𝑓 close to peaking for two sets of𝑎𝐸 and 𝑎𝑂. The peak locates in the vicinity of 910GHz when 𝑎𝐸 and 𝑎𝑂 reduce by some orders of magnitude.

Table 1: Characterisation of maxima of 𝑝×𝐾 dependent on Δ𝑓. The maxima locate at similar nine-dimensional parameter sets. The odds are
evaluated by the ratio 𝑝×𝐾(Δ𝑓)/𝑝×𝐾(Δ𝑓 = 1/2GHz) and relate the maxima globally. Since the odds are rising, the global maximum locates
below Δ𝑓 = 1/2GHz.Δ𝑓 (GHz) ≈5.68 4 3 2 1 1/2𝑓𝐿,Po (GHz) 33.499 33.243 33.277 32.817 32.445 32.425𝑓𝑈,Po (GHz) 913.572 913.243 912.277 912.817 913.445 913.425𝑎𝐸,Po (×10−12 V2) 0.9152 1.0127 1.0623 1.1002 1.1224 1.1299𝑎𝑂,Po (×10−15 V2) 5.7381 5.7731 5.7776 5.797 5.8126 5.8145𝑥0,Po (mm) −5.115293 −5.115297 −5.115288 −5.115291 −5.115295 −5.115295𝛿𝑥Po (𝜇m) −4.814 −4.814 −4.814 −4.814 −4.814 −4.814𝜎𝑏0 ,Pr,Po (nV) 62.150 62.148 62.146 62.143 62.142 62.142𝜎𝑏1 ,Pr,Po (𝜇V/m) 6.031 6.003 6.003 6.000 5.998 5.998𝜎𝑏2 ,Pr,Po (𝜇V/m2) 11.541 9.884 9.913 9.725 9.575 9.573
ln𝑝×𝐾 1052035.05 1052037.54 1052038.52 1052039.15 1052039.48 1052039.55
Odds 0.011 0.134 0.357 0.668 0.929 1

optimisation procedure. To demonstrate this procedure, the
parameters𝑓𝐿 = 0GHz, 𝑎𝐸 = 𝑎𝑂 = 10−8 V2, 𝑥0 = −5.118mm,𝛿𝑥 = 0mm, 𝜎𝑏0 ,Pr = 1V, 𝜎𝑏1 ,Pr = 1V/m, and 𝜎𝑏2 ,Pr = 1V/m2

are set to the values used for the nonoptimised case (see
Section 5.3.1). Scanned roughly in 𝑓𝑈, ln𝑝×𝐾 shows a peak
close to 1000GHz (see Figure 6(a)). Furthermore, this peak
increases for Δ𝑓 ≤ 5GHz to ln𝑝×𝐾 ≈ 106. The peak is
localised at 860GHz which moves to about 910GHz for the
reduced values 𝑎𝐸 = 𝑎𝑂 = 10−11 V2 (see Figure 6(b)).

To ease the computational effort but still being able to
characterise ln𝑝×𝐾, its maximum is determined dependent
on Δ𝑓 which is scanned in the values 5.68, 4, 3, 2, 1,
and 1/2GHz. Each maximum is captured by the sets 𝑓𝐿,Po,

𝑓𝑈,Po, 𝑎𝐸,Po, 𝑎𝑂,Po, 𝑥0,Po, 𝛿𝑥Po, 𝜎𝑏0 ,Pr,Po, 𝜎𝑏1 ,Pr,Po, and 𝜎𝑏2 ,Pr,Po
summarised by Table 1. All maxima locate at very similar sets
which seem to converge as Δ𝑓 becomes smaller. Although,
in relative terms, the maximum for a smaller Δ𝑓 has higher
odds (see Figure 7). For example, the odds read 1 : 0.011
when the maxima at Δ𝑓 = 1/2GHz and 5.68GHz are related.
Furthermore, taking the values for the maximum at Δ𝑓 =
1/2GHz to evaluate ln𝑝×𝐾 atΔ𝑓 = 1/3GHz and 1/4GHz gives
the odds 1 : 1.013 : 1.018. Thus, the global maximum locates
somewhere in the range below Δ𝑓 ≤ 1/4GHz. But this
range cannot be investigated in more detail from numerical
point of view. However, the increase in ln𝑝×𝐾 when Δ𝑓 is
decreased below 1/2GHz is interpreted as confirmation that
a continuous spectrum is indeed probed.
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Table 2: Posterior standard deviations dependent onΔ𝑓 for spectral boundaries𝑓𝐿 and𝑓𝑈, scalings 𝑎𝐸 and 𝑎𝑂 of prior covariances, zero-path
difference 𝑥0, and shift 𝛿𝑥. The standard deviations are estimated from the inverse Hessian matrix at the corresponding maximum of 𝑝×𝐾.Δ𝑓 (GHz) ≈5.68 4 3 2 1 1/2𝜎𝑓𝐿,Po (GHz) 1.742 1.795 1.746 1.762 1.754 1.718𝜎𝑓𝑈,Po (GHz) 3.101 3.155 2.927 2.869 2.858 2.810𝜎𝑎𝐸 ,Po (×10−12 V2) 0.1064 0.1179 0.1242 0.1290 0.1316 0.1327𝜎𝑎𝑂,Po (×10−15 V2) 1.5912 1.6064 1.6112 1.6164 1.6199 1.6211𝜎𝑥0 ,Po (𝜇m) 1.207 1.207 1.207 1.206 1.205 1.205𝜎𝛿𝑥,Po (𝜇m) 0.170 0.170 0.170 0.170 0.170 0.170

1 2 3 4 5 60

Δf (GHz)
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0.2
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Figure 7: Odds formaxima of𝑝×𝐾 dependent on spectral incrementΔ𝑓. The maximum at Δ𝑓 = 1/2GHz is used as a reference (unity
odd). For Δ𝑓 = 1/3GHz and 1/4GHz, the maximising parameter
set (see Table 1) for Δ𝑓 = 1/2GHz is used to evaluate the associated
odds.The globalmaximumof𝑝×𝐾 is obtained for very small spectral
increments.

For Δ𝑓 = 5.68GHz, the odds read 1 : 10−1390 when the
associated maximum (ln𝑝×𝐾 ≈ 1.0520 × 106) is related to
the nonoptimised case (ln𝑝×𝐾 ≈ 1.0488 × 106) investigated
in Section 5.3.1. This is caused by having chosen some
parameters like 𝑎𝐸(𝑂) several orders of magnitude too large
with respect to the maximum settings values.

For Δ𝑓 = 1GHz, Figures 8(a)–8(f) summarise scans in
the parameter pairs (𝑎𝐸, 𝑎𝑂), (𝑓𝐿, 𝑓𝑈), (𝑥0, 𝛿𝑥), (𝜎𝑏0 ,Pr, 𝜎𝑏1 ,Pr),
(𝜎𝑏0 ,Pr, 𝜎𝑏2 ,Pr) and in 𝜎𝑏0 ,Pr while the remaining parameters
are held at the maximum values. In 𝜎𝑏0 ,Pr, 𝜎𝑏1 ,Pr, and 𝜎𝑏2 ,Pr, a
skewed distribution is found.The remaining six-dimensional
posterior distribution has a high probability in a narrow
region for a given Δ𝑓. This distribution is well approximated
by a multivariate normal. Its mean is given by the maximum
values listed in Table 1. The posterior covariance is estimated
from the inverse of the Hessian matrix evaluated numerically
via the second-order partial derivatives in the vicinity of the
maximum. The off-diagonal elements of this covariance are
negligible, so that one can factorise the posterior as a product
of individual Gaussians. The posterior standard deviations𝜎𝑓𝐿,Po, 𝜎𝑓𝑈,Po, 𝜎𝑎𝐸,Po, 𝜎𝑎𝑂,Po, 𝜎𝑥0 ,Po, and 𝜎𝛿𝑥,Po vary little whenΔ𝑓 is changed (see Table 2). The spectral boundaries are

well determined within an interval of some GHz. While the
uncertainty in the scaling 𝑎𝐸 is small compared to its posterior
mean value, 𝑎𝑂 is more uncertain. The uncertainty in the
zero-path difference is of the order of some 𝜇m, and the shift𝛿𝑥 is quite certain within some hundreds of nanometers.

5.3.3. Conditional Amplitude Posterior for Maximising Set-
tings. In the following, the amplitude posterior is investi-
gated for the maximising settings given Δ𝑓 = 1/2GHz (see
Table 1). For the listed settings, the double-sided domain
is identified by |𝑥| ≤ |𝑥0,Po| ≈ 5.115mm; the single-sided
domain is bounded by the lower limit 𝑥 > |𝑥0,Po| and
the upper limit of about 26.36mm, the centre frequency𝑓𝐶,Po, and the bandwidth Δ𝐹,Po of the spectral domain
read 472.925GHz and 881GHz, respectively. In addition,
the conversion of the spatial coordinate to the order of
the Fourier coefficients 𝑘 = |𝑥|Δ𝐹,Po/𝑐 reveals that the
double- and single-sided domain contain information up
to the 15th and 77th order (see Figures 9(c) and 9(d)),
respectively. From this follows that the interferometric part
of the 256/788 data values in the double-sided/full domain
are modelled best by 62/310 Fourier coefficients and their
associated basis functions dependent on 𝑓𝐶,Po, Δ𝐹,Po, and 𝑥.
The signal envelopes 𝜎𝐷,𝐸 and 𝜎𝐷,𝑂 are evaluated with 𝑎𝐸,Po
and 𝑎𝑂,Po.
(a) Posterior Mean. Given the boundaries and increment,
the spectral dimension reads 𝑁𝑓 = 1762, and, thus, the

amplitude posterior mean
󳨀→𝑙 Po = (󳨀→𝑆 𝐸,Po, 󳨀→𝑆 𝑂,Po, 󳨀→𝑏 Po)𝑇 is

3527-dimensional. The posterior mean values for the three
coefficients 𝑏0,Po = −62.142 nV, 𝑏1,Po = 5.997 𝜇V/m, and𝑏2,P𝑜 = −8.641 𝜇V/m2 have magnitudes which are close to the
corresponding prior standard deviations at the maximum of
the settings posterior (see Table 1). Furthermore, the absolute
and the linearmean values are similar to the ones obtained for
the nonoptimised case (see Section 5.3.1). The offset 󳨀→𝐷Off ,Po

which follows from mapping
󳨀→𝑏 Po is shown in Figures 9(b)

and 9(d).
The posterior means 󳨀→𝑆 𝐸,Po and 󳨀→𝑆 𝑂,Po presented in Fig-

ure 9(a) approach zero towards the spectral boundaries as
expected. Furthermore, 󳨀→𝑆 𝐸,Po is much larger in amplitude
than 󳨀→𝑆 𝑂,Po anticipated by the quite different posterior mean
scalings 𝑎𝐸,Po and 𝑎𝑂,Po. Hence, the even process describes
most of the interferometric data in the double-sided domain.



18 International Journal of Spectroscopy

p
×
K

(Δ
f
=

1
G

H
z)

−5.115 −5.113−5.117

x0 (mm)

−5.2

−5.0

−4.8

−4.6

−4.4


x

(
m

)

(a)

104

p
×
K

(Δ
f
=

1
G

H
z)

102 103101

b0,０Ｌ
(nV)

(b)

p
×
K

(Δ
f
=

1
G

H
z)

28 32 36 4024

905

909

913

919

923

f
U

(G
H

z)

fL (GHz)

(c)

p
×
K

(Δ
f
=

1
G

H
z)

60 100 140 18020
b0,０Ｌ

(nV)

2

6

10

14

b 1

,０
Ｌ

(
V

/m
)

(d)

p
×
K

(Δ
f
=

1
G

H
z)

1.0 1.2 1.40.8

aE (×10−12 ６2)

2

4

6

8

10

a 0
(×

10
−
15

６
2
)

(e)

p
×
K

(Δ
f
=

1
G

H
z)

60 100 140 18020
b0,０Ｌ

(nV)

10

20

30

40

50


b 2

,０
Ｌ

(
V

/Ｇ
2
)

(f)

Figure 8: 𝑝×𝐾 scanned in individual nonlinear parameters and hyperparameters in vicinity of maximum of 𝑝×𝐾 for Δ𝑓 = 1GHz (see Table 1).
(a) Zero-path difference position 𝑥0 and shift 𝛿𝑥. (b) Prior standard deviation 𝜎𝑏0 ,Pr for absolute coefficient. (c) Lower and upper limits 𝑓𝐿
and 𝑓𝑈 of spectral domain. (d) 𝜎𝑏0 ,Pr and prior standard deviation 𝜎𝑏1 ,Pr for linear coefficient. (e) Scaling 𝑎𝐸 and scaling 𝑎𝑂 of Brownian bridge
priors for 󳨀→𝑆 𝐸 and 󳨀→𝑆 𝑂. (f) 𝜎𝑏0 ,Pr and prior standard deviation 𝜎𝑏2 ,Pr for quadratic coefficient.



International Journal of Spectroscopy 19

0

2

4

6

200 300 400 500 600 700 800 900100

f (GHz)

→ S
E
,０
Ｉ
,→ S

O
,０
Ｉ

(×
10

−
18

V
/H

z)

→
S E,０Ｉ ± 2→

S ,０Ｉ
→
S O,０Ｉ ± 2→

S,０Ｉ

(a)

−40

−20

0

20

40

60

80

0 1510 20 255−5

x (mm)

double-sided domain

single-sided domain

→ D
E
,０
Ｉ
,→ D

O
,０
Ｉ
,→ D

／
ff
,０
Ｉ

(×
10

−
3

V
)

→
DE,０Ｉ
→
DO,０Ｉ

→
D／ff,０Ｉ

(b)

10 706050403020100

k

−40

−20

0

20

40

60

80

0 5 10 15 20 25−5

x (mm)

D,E

→
DE,０Ｉ

(×
10

−
3

V
)

→ D
E
,０
Ｉ

(c)

k

(×
10

−
3

V
)

→ D
O
,０
Ｉ

10 706050403020100

−2

−1

0

1

2

155 10 20 250−5

x (mm)

D,O

D,E
→
DE,０Ｉ

→
DO,０Ｉ

→
D／ff,０Ｉ

(d)

4

(−1.7 × 10−4, 0.942)

0

0.1

0.2

0.3

0.4

0.5

H
ist

og
ra

m

−3 321−4 −1−2 0

(→D −
→
D０Ｉ)/D

(e)

−4

−3

−2

−1

0

1

2

3

0 5 10 15 20 25−5

x (mm)

(→ D
−
→ D

０
Ｉ
)/

D

(f)

Figure 9: (a) Posterior means 󳨀→𝑆 𝐸,Po and 󳨀→𝑆 𝑂,Po with associated 2-𝜎 uncertainty bands evaluated at maximum of settings posterior for Δ𝑓

= 1/2GHz (see Table 1). Most likely, the spectral quantities 󳨀→𝑆 𝐸,Po and 󳨀→𝑆 𝑂,Po are finite only for the domain between 𝑓𝐿,Po = 32.425GHz and𝑓𝑈,Po = 913.425GHz. This upper limit is approximately 4 smaller than the Nyquist frequency 𝑓Ny = 3747.4GHz. The dips in 󳨀→𝑆 𝐸,Po at 557 and
752GHz are caused by absorption due to atmospheric water vapour. (b)󳨀→𝐷𝐸,Po,

󳨀→𝐷𝑂,Po, and
󳨀→𝐷Off ,Po obtained bymapping posterior means󳨀→𝑆 𝐸,Po,󳨀→𝑆 𝑂,Po, 𝑏0,Po = −62.142 nV, 𝑏1,Po = 5.997 𝜇V/m, and 𝑏2,Po = −8.641 𝜇V/m2 to data domain. (c) Cosine transform 󳨀→𝐷𝐸,Po of

󳨀→𝑆 𝐸,Po dependent on
optical path difference 𝑥 and order 𝑘 = |𝑥|Δ𝐹,Po/𝑐 (bandwidth Δ 𝐹,Po = 𝑓𝑈,Po − 𝑓𝐿,Po) of Fourier coefficients. The envelope 𝜎𝐷,𝐸 ∝ 𝑎1/2𝐸,Po/𝑘,
incorporating the scaling 𝑎𝐸,Po = 1.1299 × 10−12 V2, bounds 󳨀→𝐷𝐸,Po best. (d) Zoom of (b) dependent on 𝑥 and 𝑘. Globally, the sine transform󳨀→𝐷𝑂,Po of

󳨀→𝑆 𝑂,Po is best summarised by the envelope 𝜎𝐷,𝑂 ∝ 𝑎1/2𝑂,Po/𝑘 with the scaling 𝑎𝑂,Po = 5.8145 × 10−15 V2. Since 𝜎𝐷,𝐸 ≫ 𝜎𝐷,𝑂 holds, the
single-sided domain is determined mainly by 󳨀→𝑆 𝐸,Po. (e) Histogram of residuals, that is, difference between measured data 󳨀→𝐷 and posterior
mean prediction 󳨀→𝐷Po = 󳨀→𝐷𝐸,Po + 󳨀→𝐷𝑂,Po + 󳨀→𝐷Off ,Po scaled by noise level 𝜎𝐷. The data is well described, because the mean −1.7 × 10−4 and the
variance 0.942 of the residuals are almost vanishing and close to unity, respectively. (f) Residuals versus optical path difference.
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This is seen by mapping both spectral means to the data
domain which gives the even and odd quantities 󳨀→𝐷𝐸,Po and󳨀→𝐷𝑂,Po (see Figures 9(b)–9(d)). In addition, the single-sided
domain is described mainly by 󳨀→𝑆 𝐸,Po, because in this domain
only the envelope 𝜎𝐷,𝐸 for the even process is of the order of
the interferometric data (see Figure 9(d)). This differs from
the findings for the nonoptimised case (𝑎𝐸 = 𝑎𝑂) for which󳨀→𝑆 𝐸,Po and 󳨀→𝑆 𝑂,Po determine the single-sided region almost
equally.

The histogram of the residuals (see Figure 9(e)) is
approximated very well by the normal distributionN(−1.7 ×10−4, 0.942). Since the mean vanishes almost, and the stan-
dard deviation is very close to unity, the data set is well
described by the model and the posterior means. Most likely,
the data point located at 𝑥 ≈ 7mm (see Figure 9(f)) is an
outlier, because its residual is outside the 3.5-𝜎𝐷 band.

(b) Posterior Covariance. For the linear parameters the poste-
rior covariance matrix is written like

ΣPo = (Σ󳨀→𝑆 𝐸,𝐸,Po Σ󳨀→𝑆 𝐸,𝑂,Po Σ󳨀→𝑆 𝐸,󳨀→𝑏 ,PoΣ
𝑇
󳨀→
𝑆 𝐸,𝑂,Po
Σ󳨀→
𝑆 𝑂,𝑂,Po
Σ󳨀→
𝑆 𝑂,

󳨀→
𝑏 ,Po

Σ
𝑇
󳨀→
𝑆 𝐸,

󳨀→
𝑏 ,Po
Σ
𝑇
󳨀→
𝑆 𝑂,

󳨀→
𝑏 ,Po
Σ󳨀→
𝑏 ,
󳨀→
𝑏 ,Po

), (61)

and taking the square root of an element of themain diagonal
gives the posterior standard deviation 𝜎𝑃𝑖 for the 𝑖th param-
eter. The correlation coefficient between two parameters 𝑃1
and 𝑃2 can be evaluated by 𝜌𝑃1,𝑃2 = Σ𝑃1,𝑃2,Po/(𝜎𝑃1𝜎𝑃2).

The standard deviations 𝜎𝑏0 ,Po = 0.501 nV, 𝜎𝑏1 ,Po =
0.093𝜇V/m, and 𝜎𝑏2 ,Po = 4.119 𝜇V/m2 of the three coefficients
are reduced by about two orders of magnitude with respect
to the uncertainties obtained for the nonoptimised case.
Though, the quadratic coefficient is inferred with small
confidence. Coefficients of neighbouring degree have the
highest correlation in magnitude and are anticorrelated. For
example, one finds 𝜌𝑏0 ,𝑏1 = −0.55 and 𝜌𝑏1 ,𝑏2 = −0.93, while𝜌𝑏0 ,𝑏2 = 0.29 remains small.

The covariances Σ󳨀→
𝑆 𝐸,𝐸,Po

(𝑓, 𝑓󸀠) and Σ󳨀→
𝑆 𝑂,𝑂,Po

(𝑓, 𝑓󸀠) and
their associated correlations 𝜌𝐸,𝐸(𝑓, 𝑓󸀠) and 𝜌𝑂,𝑂(𝑓, 𝑓󸀠)
resemble sinc functions centred along the line 𝑓 = 𝑓󸀠 plus a
tip at this condition (see Figures 10(a)–10(c) for cross section
at 𝑓󸀠 = 100.175GHz). Though, the FWHM widths of 1.5 GHz
and 10GHz are very different for the even and odd covari-
ances/correlations. Regarding the covariances, the tip heights
account for 1.3 × 10−38 V2/Hz2 and 4.4 × 10−40 V2/Hz2, and
towards the spectral boundaries the heights are approaching
zero which can be seen by the standard deviations 𝜎󳨀→

𝑆 𝐸,Po
=

Σ
1/2
󳨀→
𝑆 𝐸,𝐸,Po

(𝑓, 𝑓) and 𝜎󳨀→
𝑆 𝑂,Po

= Σ1/2󳨀→
𝑆 𝑂,𝑂,Po

(𝑓, 𝑓) (see Figure 10(d)).
At the condition 𝑓 = 𝑓󸀠, the covariance Σ󳨀→

𝑆 𝐸,𝑂,Po
and

the correlation 𝜌𝐸,𝑂 vanish and are asymmetrically close to
this line (see Figures 10(b) and 10(c) for cross section at 𝑓󸀠
= 100.175GHz). This means that at a given frequency 𝑓 the
amplitudes 󳨀→𝑆 𝐸 and 󳨀→𝑆 𝑂 are independent but have a finite and

opposite correlation with the neighbouring spectral domains
to either side.

The correlations 𝜌
𝐸,
󳨀→
𝑏
and 𝜌

𝑂,
󳨀→
𝑏
are oscillatory and rise

towards the spectral origin (see Figures 10(e) and 10(f)).

(c) Posterior Samples. From the conditional amplitude pos-
terior samples 󳨀→𝑆 𝐸,Po,Sa, 󳨀→𝑆 𝑂,Po,Sa and 󳨀→𝑏 Po,Sa are drawn. While
Figure 11(a) shows one sample for each of the even and odd
spectral functions, Figure 11(b) presents 100 samples. The
samples form a band around the corresponding posterior
mean 󳨀→𝑆 𝐸(𝑂),Po with the width of about twice the standard
deviation 𝜎󳨀→

𝑆 𝐸(𝑂),Po
as shown in Figure 10(d). Hence, the band

for the odd function is much smaller.
The samples mapped to the data domain give 󳨀→𝐷𝐸,Po,Sa,󳨀→𝐷𝑂,Po,Sa, and

󳨀→𝐷Off ,Po,Sa (see Figure 11(c)) which form much
more narrow bands when compared to the nonoptimised
case (see Figure 5(b)). In particular, the transition from the
double- to the single-sided domain is smooth. This is a
consequence of having used the most likely scalings 𝑎𝐸,Po and𝑎𝑂,Po and the associated but quite different signal envelops
inferred from the data. Furthermore, this explains why the
band for 󳨀→𝐷𝑂,Po,Sa is much smaller than the one for 󳨀→𝐷𝐸,Po,Sa.

For each sample, the sum 󳨀→𝐷Po,Sa = 󳨀→𝐷𝐸,Po,Sa + 󳨀→𝐷𝑂,Po,Sa +󳨀→𝐷Off ,Po,Sa complies with the measured data 󳨀→𝐷 and the noise
level (see Figure 11(d)).

With the samples 󳨀→𝑆 𝐸,Po,Sa and 󳨀→𝑆 𝑂,Po,Sa at hand, 󳨀→𝐷𝐸,Po,Sa

and 󳨀→𝐷𝑂,Po,Sa are predicted outside the probed spatial domain.
Up to the optical path difference of 70mm, Figures 11(e)
and 11(f) show 󳨀→𝐷𝐸,Po,Sa and

󳨀→𝐷𝑂,Po,Sa for one sample and 100
samples, respectively. No difference is obvious in 󳨀→𝐷𝐸,Po,Sa

and 󳨀→𝐷𝑂,Po,Sa for an individual prediction in the probed and
nonprobed domain. However, many samples take values
between𝜎𝐷,𝐸(𝑂) outside the probed region. Since the spread in
the probed domain is smaller than in the nonprobed domain,
themain uncertainty in󳨀→𝑆 𝐸,Po and󳨀→𝑆 𝑂,Po originates in Fourier
coefficients not probed rather than the noise on measured
data.

5.3.4. Marginal Amplitude Posterior. Since only the marginal
posterior 𝑝(󳨀→𝑆 𝐸, 󳨀→𝑆 𝑂 | Δ𝑓, 󳨀→𝐷) of the spectral functions is
of interest for this specific Fourier spectroscopy problem,
formally the marginalisation𝑝 (󳨀→𝑆 𝐸, 󳨀→𝑆 𝑂 | Δ𝑓, 󳨀→𝐷)= ∫𝑝 (󳨀→𝑆 𝐸, 󳨀→𝑆 𝑂, 󳨀→𝑏 | 󳨀→𝑛 , 󳨀→ℎ , Δ𝑓, 󳨀→𝐷)⋅ 𝑝 (󳨀→𝑛 , 󳨀→ℎ | Δ𝑓, 󳨀→𝐷) d󳨀→𝑏 d󳨀→𝑛 d󳨀→ℎ (62)

needs to be carried out. In general, the pdf 𝑝(󳨀→𝑆 𝐸, 󳨀→𝑆 𝑂 |Δ𝑓, 󳨀→𝐷) is not Gaussian but can be approximated by a
multivariate normal. Performing the marginalisation, that is,
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Figure 10: Characterisation of posterior covariance for amplitude parameters obtained at maximum of settings posterior for Δ𝑓 = 1/2GHz
(see Table 1). (a) Cross section of covariances Σ󳨀→

𝑆 𝐸,𝐸,Po
and Σ󳨀→

𝑆𝑂,𝑂,Po
for even and odd function. Each covariance is similar to a sinc function

centred at 𝑓 = 𝑓󸀠, where a tip is added on top. (b) Cross section of covariances Σ󳨀→
𝑆𝑂,𝑂,Po

and Σ󳨀→
𝑆 𝐸,𝑂,Po

. At a fixed frequency, 󳨀→𝑆 𝐸 and 󳨀→𝑆 𝑂 are
independent, because Σ󳨀→

𝑆 𝐸,𝑂,Po
= 0. But finite correlation remains with the neighbouring spectral domain. (c) Correlation. The even (odd)

parameters are correlated (𝜌𝐸(𝑂),𝐸(𝑂) > 0.5) over the spectral scale of about 1.5 GHz (10GHz), while the correlation between even and odd
parameters is small and asymmetric with respect to 𝑓 = 𝑓󸀠. (d) Standard deviations 𝜎󳨀→

𝑆 𝐸,Po
and 𝜎󳨀→

𝑆𝑂,Po
. At the spectral limits the uncertainties

approach zero. (e) and (f) Correlations of 󳨀→𝑆 𝐸(𝑂) and 󳨀→𝑏 . The correlations are oscillating and decrease generally with the frequency.
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Figure 11: (a) Individual posterior sample functions 󳨀→𝑆 𝐸,Po,Sa and 󳨀→𝑆 𝑂,P𝑜,Sa. (b) 100 posterior sample functions 󳨀→𝑆 𝐸,Po,Sa and 󳨀→𝑆 𝑂,Po,Sa. The
uncertainty at a given frequency is larger for the even function, because for the associated scalings of the two processes 𝑎𝐸,Po ≫ 𝑎𝑂,Po holds.
(c) 100 spectral samples and 100 offset coefficients mapped to probed data domain. Unlike for the nonoptimised case (see Figure 5(b)), the
spread is much smaller, and the quantities connect smoothly at the transition between double- and single-sided regions. (d) 100 samples󳨀→𝐷Po,Sa and measured data 󳨀→𝐷. The samples are in agreement with the uncertainty of the measurements. (e) One sample 󳨀→𝐷𝐸,Po,Sa and

󳨀→𝐷𝑂,Po,Sa
evaluated inside probed domain (𝑥 < 26.36mm) and outside. With respect to the envelopes 𝜎𝐷,𝐸(𝑂), the contributions behave similarly in
both domains. (f) 100 samples 󳨀→𝐷𝐸,Po,Sa and

󳨀→𝐷𝑂,Po,Sa evaluated inside the probed domain and outside. Outside the probed domain, the area
between the envelops 𝜎𝐷,𝐸(𝑂) is filled by󳨀→𝐷𝐸,Po,Sa and

󳨀→𝐷𝑂,Po,Sa. Because the spread in the nonprobed domain is wider than the one in the probed
domain, the main uncertainty in the even and odd spectra originates in nonprobed Fourier coefficients.
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Figure 12: (a) Means 󳨀→𝑆 𝐸,Po (blue) and 󳨀→𝑆 𝑂,Po (red) obtained for 1000 samples of settings posterior at Δ𝑓 = 1/2GHz. Only at the spectral
limits the means deviate from the most likely mean 󳨀→𝑆 𝐸,Po (cyan) evaluated at the maximum of the settings posterior. The uncertainty in the
zero-path difference 𝑥0 causes a considerable deviation from the most likely mean 󳨀→𝑆 𝑂,Po (black). (b) Means 󳨀→𝑆 𝐸,Po,Ma (cyan) and

󳨀→𝑆 𝑂,Po,Ma
(black) after performing numerical marginalisation of settings parameters at Δ𝑓 = 1/2GHz.Themarginalised means are similar to the means󳨀→𝑆 𝐸,Po and 󳨀→𝑆 𝑂,Po (see (a)) at the maximum of the settings posterior except for minor differences towards the spectral boundaries. Having the
marginalised covariance at hand, 100 samples 󳨀→𝑆 𝐸,Po,Ma,Sa (blue) and

󳨀→𝑆 𝑂,Po,Ma,Sa (red) are drawn from the marginalised amplitude posterior.
Only in the centre of the spectral domain the spread of 󳨀→𝑆 𝑂,Po,Ma,Sa increases to capture the uncertainty in 𝑥0 as well (see (a)).
the uncertainty propagation, is analytically not possible but
achievable numerically described below for Δ𝑓 = 1/2GHz.

To reduce the numerical efforts, only the most important
parameters 𝑓𝐿, 𝑓𝑈, 𝑥0, 𝛿𝑥, 𝑎𝐸, and 𝑎𝑂 are taken into con-
sideration for the marginalisation, and the remaining three
parameters 𝜎𝑏0 ,Pr, 𝜎𝑏1 ,Pr, and 𝜎𝑏2 ,Pr are held at the maximum
values listed in Table 1. The remaining pdf, labeled by𝑝󸀠(󳨀→𝑛 , 󳨀→ℎ | Δ𝑓, 󳨀→𝐷) in the following, is well approximated by a
factorisable multivariate normal, because the corresponding
covariances are negligible (see Section 5.3.2). The posterior
mean values and standard deviations are listed in Tables 1 and
2, respectively.

From the six-dimensional Gaussian posterior 𝑝󸀠(󳨀→𝑛 , 󳨀→ℎ |Δ𝑓, 󳨀→𝐷), 1000 samples are drawn. For each sample, mean
and covariance for the conditional amplitude posterior are
evaluated. Thereby, a difficulty arises due to the lower and
upper spectral limits 𝑓𝐿 and 𝑓𝑈. For given increment Δ𝑓,𝑓𝐿 and 𝑓𝑈 determine the spectral grid. To keep this grid
fixed, the spectral grid obtained for 𝑓𝐿,Po = 32.425GHz
and 𝑓𝑈,Po = 913.425GHz is extended by some tens of GHz
on either side. Furthermore, the posterior samples for 𝑓𝐿
and 𝑓𝑈 are compared with the extended but fixed spectral
grid points and changed to the closest grid point. With the
modified boundaries and the remaining samples unchanged,
a conditional amplitude posterior follows. For example,

Figure 12(a) shows the mean functions 󳨀→𝑆 𝐸,Po and 󳨀→𝑆 𝑂,Po
for the 1000 posterior samples of the settings. While 󳨀→𝑆 𝐸,Po
changes little butmost at the spectral boundaries,󳨀→𝑆 𝑂,Po varies
considerably, mostly in the centre of the spectral domain
covered.This is causedmainly by the posterior uncertainty of
the zero-path difference𝑥0. However, the spread is symmetric
around the most likely mean.

For each settings sample, 100 samples are drawn from𝑝(󳨀→𝑆 𝐸, 󳨀→𝑆 𝑂, 󳨀→𝑏 | 󳨀→𝑛 , 󳨀→ℎ , Δ𝑓, 󳨀→𝐷). Overall, 100000 samples are

available for
󳨀→𝑏 , 󳨀→𝑆 𝐸, and 󳨀→𝑆 𝑂 at each spectral grid point.

From this large sample set, the marginalised means 󳨀→𝑆 𝐸,Po,Ma,󳨀→𝑆 𝑂,Po,Ma and covarianceΣ󳨀→𝑆 ,Po,Ma are evaluated which capture

the first and second moments of the pdf 𝑝(󳨀→𝑆 𝐸, 󳨀→𝑆 𝑂 | Δ𝑓, 󳨀→𝐷).
In doing so, the marginalisation with respect to

󳨀→𝑏 is achieved
implicitly.

(a) Posterior Mean. The means 󳨀→𝑆 𝐸,Po,Ma and 󳨀→𝑆 𝑂,Po,Ma (see
Figure 12(b)) look similar to 󳨀→𝑆 𝐸,Po, 󳨀→𝑆 𝑂,Po at the maximum
of the settings posterior. However, 󳨀→𝑆 𝐸,Po,Ma and 󳨀→𝑆 𝑂,Po,Ma
approach zero some GHz below and above 𝑓𝐿,Po and 𝑓𝑈,Po,
respectively.
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Figure 13: Characterisation of posterior covariance Σ󳨀→
𝑆 ,Po,Ma numerically marginalised with respect to settings parameters. Σ󳨀→

𝑆 ,Po,Ma is
decomposed, so that Σ󳨀→

𝑆 𝐸(𝑂),𝐸(𝑂) ,Po,Ma captures the covariance of the even (odd) spectral quantities. (a) Cross section at frequency 𝑓󸀠 =
100.175GHz. Apart from the extension in the spectral domain,Σ󳨀→

𝑆 𝐸,𝐸,Po,Ma is similar to the covarianceΣ󳨀→
𝑆 𝐸,𝐸,Po

evaluated at themaximumof the
settings posterior (see Figure 10(a)). Σ󳨀→

𝑆𝑂,𝑂,Po,Ma shows a significant deviation from Σ󳨀→
𝑆𝑂,𝑂,Po

(see also (b)). (b) Cross sections of Σ󳨀→
𝑆𝑂,𝑂,Po,Ma at

frequencies 𝑓󸀠 = 100.175GHz, 400.175GHz, and 850.175GHz. Towards the spectral limits Σ󳨀→
𝑆𝑂,𝑂,Po,Ma behaves like Σ󳨀→𝑆𝑂,𝑂,Po. But in the central

region a broadband additive contribution is evident originating in the posterior uncertainty of the zero-path difference 𝑥0. (c) Standard
deviations evaluated frommain diagonal of marginalised covariance Σ󳨀→

𝑆 ,Po,Ma (red) and covariance Σ󳨀→𝑆 ,Po (black, see Figure 10(d)) evaluated at
maximum of settings posterior.The odd quantity increases by a factor of three in the central region after the marginalisation. (d) Correlation𝜌𝑂,𝑂,Ma at three frequencies. Compared to 𝜌𝑂,𝑂 (see Figure 10(c)), a broadband (several 100sGHz) elevation of 𝜌𝑂,𝑂,Ma up to 0.8 follows from
the uncertainty in 𝑥0 for the central domain.

(b) Posterior Covariance. The posterior covariance after
marginalisation with respect to the setting parameters is
decomposed like

Σ󳨀→
𝑆 ,Po,Ma = (Σ󳨀→𝑆 𝐸,𝐸,Po,Ma Σ󳨀→𝑆 𝐸,𝑂,Po,Ma

Σ
𝑇
󳨀→
𝑆 𝐸,𝑂,Po,Ma

Σ󳨀→
𝑆 𝑂,𝑂,Po,Ma

) . (63)

Σ󳨀→
𝑆 𝐸,𝐸,Po,Ma (see Figure 13(a) for cross section at 𝑓󸀠 =

100.175GHz) and is very similar to Σ󳨀→
𝑆 𝐸,𝐸,Po

evaluated at the
maximum of the settings posterior (see Section 5.3.3). The
same holds for Σ󳨀→

𝑆 𝐸,𝑂,Po,Ma and Σ󳨀→𝑆 𝐸,𝑂,Po. However, a significant
change is found for Σ󳨀→

𝑆 𝑂,𝑂,Po,Ma (see Figures 13(a) and 13(b) for
some cross sections) when compared to Σ󳨀→

𝑆 𝑂,𝑂,Po
. Due to the
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posterior uncertainty in 𝑥0, a broadband additive contribu-
tion increases Σ󳨀→

𝑆 𝑂,𝑂,Po,Ma up to about one order of magnitude
in the centre of the spectral domain. Comparing the standard
deviations 𝜎󳨀→

𝑆 𝐸,Po,Ma with 𝜎󳨀→
𝑆 𝐸,Po

, and 𝜎󳨀→
𝑆 𝑂,Po,Ma with 𝜎󳨀→

𝑆 𝑂,Po
(see Figure 13(c)) shows that towards the spectral limits the
propagation of the settings posterior uncertainties has little
effect. Furthermore, the correlation 𝜌𝑂,𝑂,Ma is high for a broad
spectral range in the central region (see Figure 13(d)).

(c) Posterior Samples. From the marginalised Gaussian pos-
terior 𝑝(󳨀→𝑆 𝐸, 󳨀→𝑆 𝑂 | Δ𝑓, 󳨀→𝐷) 100 samples (󳨀→𝑆 𝐸,Po,Ma,Sa and󳨀→𝑆 𝑂,Po,Ma,Sa) are drawn and shown in Figure 12(b). As
expected, the spread of 󳨀→𝑆 𝐸,Po,Ma,Sa around the mean 󳨀→𝑆 𝐸,Po,Ma

is almost equal to the one for 󳨀→𝑆 𝐸,Po,Sa around the mean 󳨀→𝑆 𝐸,Po
(see Figure 11(b)).The samples󳨀→𝑆 𝑂,Po,Ma,Sa have awider spread
in the centre of the spectral domain than 󳨀→𝑆 𝑂,Po,Sa mainly
caused by the uncertainty in the zero-path difference.

5.4. Figure of Merit for Real-World Interferometer. For the
ideal Martin-Puplett interferometer, the odd spectral func-
tion, and, hence, the odd process must vanish from theo-
retical point of view. However, imperfections of a real-world
interferometer leave the odd contribution finite in general.
This imperfection is captured by the scaling 𝑎𝑂 and in terms
of signal by the envelope 𝜎𝐷,𝑂 ∝ 𝑎1/2𝑂 . By relating the square
root of the scalings like𝐹𝑆 = 𝑎1/2𝐸𝑎1/2𝐸 + 𝑎1/2𝑂

, (64)

one can define the figure of merit 𝐹𝑆 which expresses by
a number the signal deviation of a real-world instrument
from the ideal case. For an ideal interferometer, 𝐹𝑆 = 1 holds
(𝑎𝑂 = 0). For the interferometer investigated here, the settings
posterior (see Section 5.3.2) carries the information to state
the mean as 𝐹𝑆 = 0.933 with the uncertainty of about 0.01.
Hence, about 7%of the signal is converted from the ideal even
process to the odd process by the real-world diagnostic.

6. Discussion

6.1. Choice of Spectral Priors or Model Plausibility. The results
obtained in the previous section rely on the model 𝑀BB
presented here with the assumption that the even and odd
spectral functions can be described each by a Brownian
bridge process and its associated prior covariance. An alter-
native model, let us say𝑀𝐴, with certain assumptions on the
spectral functions, leads to different prior covariances and
to a different posterior. In addition, the model𝑀𝐴 might be
more or less plausible when compared to the model𝑀BB.

In principle, the plausibility of a model relative to an
alternative can be investigated within the Bayesian frame-
work by rising the abstraction level. Starting from (36), a
further factorisation needs to be carried out with respect
to the used models 𝑀BB or 𝑀𝐴. Basically, one can assign
the model posterior by 𝑝(𝑀BB | 󳨀→𝐷) ∝ 𝐾󸀠BB𝑝(𝑀BB) and

𝑝(𝑀𝐴 | 󳨀→𝐷) ∝ 𝐾󸀠𝐴𝑝(𝑀𝐴) with the model priors 𝑝(𝑀𝐴)
and 𝑝(𝑀BB). The dimensionless constants 𝐾󸀠BB and 𝐾󸀠𝐴 may
be obtained by marginalising over all linear and nonlinear
parameters and hyperparameters. Then, the model plausibil-
ity is captured by the ratio 𝑝(𝑀BB | 󳨀→𝐷)/𝑝(𝑀𝐴 | 󳨀→𝐷). This
ratio becomes 𝐾󸀠BB/𝐾󸀠𝐴, if no model is preferred a priori for
which one sets 𝑝(𝑀𝐴) = 𝑝(𝑀BB) = 1/2. Such a model
plausibility study was not carried out, because it demands an
investigation on its own alongside with a costly numerical
treatment. However, some aspects of a plausibility study will
be discussed below.

The signal envelope, corresponding to the used prior
covariance for the even and odd spectral functions, is
expected to be an indicator for a competitive model. This
envelope should be able to resemble the global trend of
the interferometric data (see Figure 3(a)). The investigated
model 𝑀BB seems to have these desired characteristics (see
Figure 9).

For the even and odd spectral functions, an alternative
prior choice could be Σ𝐴(𝑓, 𝑓󸀠) = 𝑔(𝑓)𝛿(𝑓 − 𝑓󸀠) which
assigns no correlation. For example, if the function 𝑔(𝑓)
is chosen to remain constant or as a triangular function,
centred at 𝑓𝐶 and approaching 0 towards the spectral limits,
then the corresponding covariance Σ𝐴(𝑘, 𝑘󸀠) for the Fourier
coefficients has a constant value along the main diagonal
for all orders. This can be shown analytically by performing
the operation stated in (43) on Σ𝐴(𝑓, 𝑓󸀠). As a consequence,
no decay is imposed on the Fourier coefficients with ris-
ing order which is incompatible with square-integrability.
Furthermore, the alternative signal envelop is constant in
the optical path difference domain, opposing the fall-off in
the interferometric data (see Figure 3(a)). Thus, the data
should not be described better by either of the two suggested
alternative models.

A competitive model could use a prior covarianceΣ𝐶(𝑘, 𝑘󸀠) for the Fourier coefficients which has a dropping
amplitude when the order of the coefficients rises. For
instance, the main diagonal of Σ𝐶(𝑘, 𝑘󸀠) could be chosen
like 1/(𝑘𝑘󸀠)𝑒, and a transformation back to the spectral
domain would allow further investigations of the properties
of Σ𝐶(𝑓, 𝑓󸀠). For different but positive exponents 𝑒, themodel
plausibility could be examined.

6.2. Comparison with Standard Model. The standard analysis
approach for the interferometer investigated here relies on
a different model 𝑀𝑆 which is set up hierarchically [12],
and no covariances of the parameters involved are available.
Basically, the quantity of interest, that is, the spectrum, is
determined conditionally on the inferred voltage offset 𝑉Off ,
the zero-path difference 𝑥0, while setting the shift 𝛿𝑥 = 0
and the phase. Furthermore, spatial window functions are
multiplied to the data to retrieve the phase and spectrum,
using discrete fast Fourier transformation (DFFT) routines,
for the Nyquist assumptions. A consideration of nonprobed
Fourier coefficients, locating outside the experimentally
accessible spatial domain, is missing completely as well as the
influence of the measurement noise. Hence, a comparison
of the standard model 𝑀𝑆 with the Bayesian model 𝑀BB
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Table 3: Comparison of standard model𝑀𝑆 and Bayesian model𝑀BB for spectral increment Δ𝑓 = 3.66GHz.𝑀𝑆 (second column) is well
approximated by 𝑀BB when the settings of the third column are chosen. However, an aliasing feature is present in the spectral domain
3000–3500GHz (see Figure 14(a)).This feature disappearswhen the spatial settings are changed (fourth column) to the values at themaximum
of the settings posterior of𝑀BB (fifth column).The maximum of the settings posterior reveals that the Nyquist assumptions (𝑓𝐿 = 0GHz and𝑓𝑈 = 3747.4GHz) are not plausible, because an overfitting of the data is made.

Model 𝑀𝑆 𝑀BB 𝑀BB 𝑀BB𝑓𝐿 (GHz) 0 0 0 33.614𝑓𝑈 (GHz) 3747.4 3747.4 3747.4 911.912𝑎𝐸 (×10−12 V2) N/A 19.8182 19.8182 1.0304𝑎𝑂 (×10−15 V2) N/A 129.8670 129.8670 5.7641𝑥0 (mm) −5.118 −5.118 −5.115285 −5.115285𝛿𝑥 (𝜇m) 0 0 −4.814 −4.814𝜎𝑏0 ,Pr (nV) N/A 61.735 61.735 62.146𝜎𝑏1 ,Pr (𝜇V/m) N/A 5.822 5.822 6.007𝜎𝑏2 ,Pr (𝜇V/m2) N/A 0.000087 0.000087 10.102
ln𝑝×𝐾 N/A 1051396.55 1051400.41 1052037.88
Odds N/A 10−278.53 10−276.84 1
Aliasing feature Yes Yes No No
Overfitting data Yes Yes Yes No

is not straightforward. In order to perform a reasonable
comparison, the spectral grid with the increment Δ𝑓 =
3.66GHz, which follows from the use of DFFT by 𝑀𝑆, and
the limits 𝑓𝐿 = 0GHz, 𝑓𝑈 = 3747.4GHz are the same for
both models. In addition, settings are determined for 𝑀BB
which come close to the settings for𝑀𝑆 (see second column
of Table 3) to resemble the standard model. Given these
settings, the even and odd spectra are compared. Then, the
plausibility of these settings can be obtained with respect to
the maximum of the settings posterior for𝑀BB by evaluating
ln𝑝×𝐾 and the corresponding odds.

The only window function applied here in the standard
analysis weighs the single-sided data domain twice as large
as the double-sided domain. Furthermore, the settings of the
standard approach 𝑥0 = −5.118mm and vanishing 𝛿𝑥 are
transferred to the model 𝑀BB, and the remaining settings
of 𝑀BB are optimised (see third column of Table 3). The
even and odd quantities 󳨀→𝑆 𝐸,𝑆 and 󳨀→𝑆 𝑂,𝑆 are inferred with𝑀𝑆,
and the means 󳨀→𝑆 𝐸,Po and 󳨀→𝑆 𝑂,Po of the conditional amplitude
posterior of the model 𝑀BB are evaluated. Figure 14(a)
shows the results which are similar in amplitude. For both
models, an aliasing feature can be found for the odd spectral
quantity in the spectral domain from 3000GHz to 3500GHz.
This feature originates in the assumed uniform optical path
difference grid (𝛿𝑥 = 0). The differences 󳨀→𝑆 𝐸,𝑆 − 󳨀→𝑆 𝐸,Po and󳨀→𝑆 𝑂,𝑆−󳨀→𝑆 𝑂,Po settle mostly in the range ±0.1×10−18 V/Hz (see
Figure 14(b)).

Keeping fixed all settings in𝑀BB but choosing 𝑥0 and 𝛿𝑥
which are present at the maximum of the settings posterior
for Δ𝑓 = 3.66GHz (see forth column of Table 3), the aliasing
feature vanishes completely, because the nonuniformity in the
optical path difference grid is taken into account properly.
This small change in the spatial settings would make the
conditional amplitude posterior about 47 times more likely.

The odds 1 : 10−278.53 for the values at themaximum of the
settings posterior (see fifth column of Table 3) with respect
to the settings for the model 𝑀BB which mimics 𝑀𝑆 mark
theNyquist assumptionsmade by the standard approach very
unlikely. This is explained when the corresponding residuals
are investigated which show an overfitting of the data if the
Nyquist assumptions are used (similar to Figure 5(c)).

6.3. Computational Time. The algorithms for the model𝑀BB
and the standard model𝑀𝑆 are implemented in Scilab [13].
To obtain the even and odd spectra with 𝑀𝑆 via DFFT
routines, a computational time of about 4ms is measured.
This fast analysis time is exceeded by several orders of mag-
nitude, when the problem is investigated with the Bayesian
model.

For the model𝑀BB, the number𝑁𝑙 = 2(𝑓𝑈 − 𝑓𝐿)/Δ𝑓 + 3
of linear parameters, dependent on the spectral domain and
increment, gives the dimension of the prior and posterior
covariance matrices. Hence, 𝑁𝑙 determines the computa-
tional times 𝑡𝑙, to evaluate the mean and covariance of the
conditional amplitude posterior, and 𝑡ln𝑝×𝐾, to investigate the
settings posterior at one point in the parameter space. For the
implemented algorithm and the maximising settings listed
in Table 1 with decreasing Δ𝑓 (𝑁𝑙 increases by about one
order of magnitude), 𝑡𝑙 and 𝑡ln𝑝×𝐾 measured increase at least
quadratically with 𝑁𝑙 (see Table 4). This is caused mainly by
the need to invert numerically prior and posterior covariance
matrices.

The characterisation of the settings posterior (see Sec-
tion 5.3.2) requires a duration of 103𝑡ln𝑝×𝐾 at least which adds
up to hours for smallΔ𝑓 (large𝑁𝑙) and tomuch less than one
hour for Δ𝑓 = 4GHz.

The numerical marginalisation described in Section 5.3.4
takes about half a day for Δ𝑓 = 1/2GHz.
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Figure 14: Comparison of even and odd spectral quantities inferred from standard model𝑀𝑆 and Bayesian model𝑀BB.𝑀𝑆 exploits discrete
fast Fourier transformation routines to evaluate the even and odd spectra󳨀→𝑆 𝐸,𝑆 and󳨀→𝑆 𝑂,𝑆 conditionally on the spectral limits𝑓𝐿 = 0GHz and𝑓𝑈
= 3747.4GHz (Nyquist assumptions), the spectral incrementΔ𝑓 = 3.66GHz, vanishing shift 𝛿𝑥, and the zero-path difference 𝑥0 = −5.118mm.
Conditional on these settings, the model𝑀BB obtains the means 󳨀→𝑆 𝐸,Po and 󳨀→𝑆 𝑂,Po of the conditional amplitude posterior when the remaining
settings are taken at their maximum values (see third column of Table 3). (a) Even and odd spectra. Similar results follow from both models.
The elevated amplitude in the odd spectra between 3000GHz and 3500GHz is caused by aliasing due to the assumption that the optical path
difference grid is uniform. (b) Absolute differences of spectral quantities inferred by both models. Except in the vicinity of the water vapour
absorption line at 557GHz, the difference is small in absolute terms.

Table 4:Measured computational times 𝑡𝑙 and 𝑡ln𝑝×𝐾 of used algorithm for Bayesianmodel𝑀BB dependent on number𝑁𝑙 of linear parameters
and discretisation increment Δ𝑓 for maximising settings listed in Table 1. 𝑡𝑙 and 𝑡ln𝑝×𝐾 rise approximately with𝑁2

𝑙 . The investigation of the
settings posterior demands a time of 𝑡ln𝑝×𝐾 multiplied with a factor of at least 103 which becomes hours for Δ𝑓 = 1/2GHz.Δ𝑓 (GHz) ≈5.68 4 3 2 1 1/2𝑁𝑙 313 443 589 883 1765 3527𝑡𝑙 (s) 0.072 0.097 0.180 0.421 2.084 11.231𝑡ln𝑝×𝐾 (s) 0.079 0.108 0.200 0.471 2.406 13.648

7. Conclusions

The Fourier transform is the heart of Fourier spectroscopy
applications. Thereby, the interferometric data has a linear
dependence on the even and odd continuous spectra to
be inferred. Standard analysis techniques lack appropriate
handling of fundamental aspects like noisy measurements,
the influence of nonprobed spatial domains linked to Fourier
coefficients above a certain order, the estimation of spectral
limits, and the propagation of uncertainties of additional
parameters like the zero-path difference onto the inferred
spectra. For instance, the Nyquist assumption implies the
fundamental misconception that the upper spectral limit
of spectra to be inferred would depend on the spatial
sampling. In addition, a broad spectral bandwidth would
follow which increases artificially the number of Fourier
coefficients necessary to describe the data. On the contrary,
it can be shown analytically that a band-limitation causes
spatially extended basis functions (modulated sinc functions)

assigned to the Fourier coefficients in the data domain.Thus,
several nearby data points are captured sufficiently by less
coefficients. This example demonstrates that interferometric
data contains more information than usually extracted.

As an alternative to the standard analysis techniques, a
probabilistic ansatz, relying on Bayes’ theorem, was proposed
which is able to capture the fundamental aspects listed above.
In general, Bayes’ theorem relates the posterior probability
density function of model parameters to the product of the
likelihood and the prior probability density function for
these parameters.The ansatz presented here usesmultivariate
normal distributions for the likelihood and the prior for
parameters which map linearly to the data domain. This
gives straightforwardly an analytical solution for the pos-
terior of these linear parameters in form of a multivariate
normal. Though, this amplitude posterior is conditional on
the settings parameters, summarising all nonlinear model
parameters and hyperparameters. After the trivial marginal-
isation over the linear parameters, the remaining quantity
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can be scanned in the settings parameters to investigate
their joint posterior. This can be understood as a means of
applying Ockham’s razor for the linear problem. With the
settings posterior at hand, the marginalisation projects the
uncertainties in the settings onto the linear parameters.

The example application for the Bayesian approach infers
even and odd spectra, which qualify as linear parameters,
in the microwave and far-infrared spectral domain and
several settings parameters, like the spectral discretisation
increment, the spectral limits, the scalings of the even and
odd processes, the zero-path difference, and a shift correction
to the spatial sampling, given a measured interferometric
data set. Each spectrum is modelled by a scaled Brownian
bridge process which is able to capture a band-limitation,
and the associated covariance is used in the Gaussian prior.
This covariance assigns a broadband correlation, but its
transform to the domain of Fourier coefficients reveals no
correlation (vanishing off-diagonal elements except in con-
nection with the zeroth-order term) between the coefficients.
Furthermore, the diagonal elements drop with the square of
the order of the coefficients. Hence, the prior information
stated by the Brownian bridge covariance considers functions
which are square-integrable and, thus, converge globally in
the limit when the discretisation increment approaches zero
and the order of the Fourier coefficients tends to infinity.
In addition, these functions vanish smoothly at the lower
and upper spectral boundaries. In the data domain, a signal
envelope follows from the Brownian bridge process. This
envelope decays with the optical path difference and the
spectral bandwidth.

For the linear parameters like the even and odd spectra, a
conditional amplitude posteriorwas briefly examined, relying
on the Nyquist assumptions. Due to the large upper spectral
limit, all noise contributions to the interferometric data are
captured by the posterior mean of the linear parameters.
This implies an overfitting. Because large and equal values
are taken for the two Brownian bridge scalings (large sig-
nal envelops), the mapped posterior means of the spectra
describe the even and odd parts of the interferometric data
to equal parts in the single-sided domain, while the even part
dominates in the double-sided domain. This is an indicator
that the Fourier coefficients located in the single-sided
domain are underestimated and overestimated for the even
and odd spectra, respectively. The posterior samples for both
spectra show large deviations from the means, and the even
and odd contributions, obtained by mapping the samples,
form much wider bands than the measurement uncertainty,
especially in the single-sided domain. This indicates an
unnecessary expanded solution space for the problem. Only
by the posterior covariance of the linear parameters, the
sum of the mapped samples complies with the data and its
uncertainty band. The listed features mark a very unlikely
conditional amplitude posterior which is revealed by the
settings posterior.

The settings posterior for the most important settings
is well approximated by the product of individual normal
distributions, because no significant correlations could be
found. The corresponding posterior means and standard
deviations take reasonable values. These values are affected

little by the discretisation increment which tends to be
small, confirming the proposition that continuous spectral
quantities are probed. The upper spectral limit is about a
factor four smaller than the Nyquist frequency, and the
lower limit is well separated from zero. This reduction of
the bandwidth implies that the interferometric data can be
described by a number of Fourier coefficients with associated
spatial basis functions which is about one-quarter of the
amount of data points. The scaling of the even process
exceeds the one for the odd process by about two orders of
magnitude.

For values corresponding to the maximum of the settings
posterior at a small discretisation increment, the conditional
amplitude posterior was investigated. By the discretisation,
the number of the linear parameters exceeds the one of
the Fourier coefficients, which is mandatory to describe the
data points within the measurement uncertainty, by one
order of magnitude. However, the Ockham’s razor principle
implemented by the settings posterior limits the solution
space, so that the posterior means and samples for the
linear spectral parameters, mapped to the data domain,
have a smooth transition between the double- and single-
sided regions. Due to the much larger scaling with respect
to the odd process, the even process and, thus, the even
spectrum describe most of the single-sided and double-
sided interferogram region.While the probed interferometric
data is well described within the uncertainty by the means
and samples, the nonprobed data domain, corresponding to
Fourier coefficients above a certain order, is filled broadly
by these mapped samples. This filling decays with increasing
optical path difference and is limited by the signal envelopes
which follow from the estimated scalings of the Brownian
bridge processes and the bandwidth. Because the spread
of the mapped samples in the nonprobed domain exceeds
the one in the probed region, the main uncertainties for
the even and odd spectra originates in nonprobed Fourier
coefficients.

The numerically costly marginalisation over some of
the settings shows that the zero-path difference changes
the covariance for the odd spectral parameters significantly.
Basically, a broad increase of the posterior uncertainties and
correlation was found.

A figure of merit was introduced which states the devia-
tion of a real-world interferometer from an ideal diagnostic.
By relating the scalings of the even and odd processes, the
used interferometer is characterised as being close to the ideal
case for which the odd process must vanish.
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