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3D integration can greatly benefit future many-cores by enabling low-latency three-dimensional Network-on-Chip (3D-NoC)
topologies. However, due to high cost, low yield, and frequent failures of Through-Silicon Via (TSV), 3D-NoCs are most likely
to include only a few vertical connections, resulting in incomplete topologies that pose new challenges in terms of deadlock-
free routing and TSV assignment. The routers of such networks require a way to locate the nodes that have vertical connections,
commonly known as elevators, and select one of them in order to be able to reach other layers when necessary. In this paper, several
alternative TSV selection strategies requiring a constant amount of configurable bits per router are introduced. Each proposed
solution consists of a configuration algorithm, which provides each router with the necessary information to locate the elevators,
and a routing algorithm, which uses this information at runtime to route packets to an elevator. Our algorithms are compared by
simulation to highlight the advantages and disadvantages of each solution under various scenarios, and hardware synthesis results
demonstrate the scalability of the proposed approach and its suitability for cost-oriented designs.

1. Introduction

Networks-on-Chip (NoCs) [1] have proven to be a fast and
scalable replacement for buses in current and emerging
many-core systems. They are today widely adopted in Chip
Multiprocessors (CMPs), Multiprocessor Systems-on-Chip
(MPSoCs), and even Graphics Processing Units (GPUs)
[2, 3]. Moreover, the recent emergence of 3D integration
can further increase the viability of Networks-on-Chip as a
communication paradigm by enabling the stacking of several
silicon layers and allowing for inherently low-latency three-
dimensional NoC topologies (3D-NoCs) to be considered
[4, 5].

Through-Silicon Via (TSV) is one of the most promising
technologies that enable vertical communication between
different NoC layers [6]. However, due to the high cost and
low yield of TSVs [7], vertically partially connected NoCs,
in which only a subset of the nodes are vertically connected,
appear to be a reasonable compromise [8]. Moreover, TSVs
are very likely to suffer from reliability issues [9], rendering

some vertical connection unusable during runtime and fur-
ther reducing the number of vertical paths in the topology.

Because such partial topologies require adequate rout-
ing algorithms to ensure correct operation and deadlock-
freedom, several deadlock-free routing algorithms have
already been proposed [10–12]. Regardless of which routing
rules are applied, since only some of nodes are connected to
TSVs, routers need a reliable way to locate the nodes that are
vertically connected, commonly referred to as elevators. Both
the information regarding the elevators, which is set at config-
uration time, and theway this information is used by the rout-
ers during runtime play a decisive role in the chip’s perfor-
mance.

Due to its critical importance to both performance and
implementation cost, we dedicate this article to the explo-
ration of various algorithms for elevator selection. Using
Elevator-First [10] as a baseline routing algorithm, we pro-
pose a set of scalable, easy to implement elevator assignment
strategies, each featuring both the information to be stored
in each router and the algorithms used at configuration time
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and during runtime to select the best elevator. We test and
compare all of the proposed solutions in terms of perfor-
mance through cycle-accurate simulation and demonstrate
the scalability of our methods through hardware synthesis.

The remainder of this paper is structured as follows: A
brief survey of existing elevator selection methodologies is
presented in Section 2. In Section 3, the baseline NoC archi-
tecture is described. Two types of selection approaches are
then presented in Sections 4 and 5. The proposed algorithms
are evaluated through hardware synthesis and cycle-accurate
simulation in Section 6. Section 7 concludes this work.

2. Related Work

A variety of routing algorithms targeting vertically partially
connected 3D-NoCs have been proposed in the literature.
Many of these algorithms need to follow specific rules that
require TSVs to be placed in a specificmanner and often have
further constraints as to which TSVs can be selected during
runtime. In [13], the authors propose two routing algorithms
named SBSM (Source-Based ShortestManhattan) andDBSM
(Destination-Based Shortest Manhattan). SBSM selects the
vertical link that is the closest to the source node, whereas
DBSM selects the vertical link that is the closest to the
destination. To make this possible, each router has to know
the addresses of all the vertically connected nodes (elevators),
which implies a significant hardware overhead. In their more
recent works, the authors have introduced the Dynamic-
Quadrant Partitioning algorithm [14], which uses a constant
number of bits per router to select an elevator.This makes the
solution more interesting in terms of implementation cost.
However, the algorithm can only take an elevator located in
the northeast quadrant.

The East-then-West (ETW) algorithm [11, 14] is a routing
algorithm that requires that at least one TSV be placed in the
eastmost column in order to guarantee reachability. Due to
the routing rules, the set of elevators that can be selected is
constrained by the position of the destination. Each router
needs to know the location of 3 different elevators: 2 nearest
elevators in the east and west directions and 1 elevator in the
eastmost column, in order to select the correct elevator based
on the destination’s position. Consequently, each router stores
3 node addresses, which limits the scalability of the routing
logic.

By contrast with the aforementioned algorithms, Eleva-
tor-First [10] does not impose any constraints on the place-
ment or the selection of elevators. By using Elevator-First as
a baseline algorithm, we are therefore able to develop generic
selection strategies that are not limited by the TSV placement
strategy or any algorithm-specific constraints.

We identify two approaches to elevator selection for
Elevator-First in the literature.

The first approach was introduced as part of the original
Elevator-First proposal in [15].The authors propose selecting
an elevator for each router at configuration time (offline) and
storing its address in a register. When a packet reaches a
new layer, the current router prepends a new header to the
packet, containing the address of its selected elevator. This
mechanism has the major advantage of being generic and

compatible with many offline selection algorithms. However,
since complete node addresses need to be stored in the
routers, the size of configurable data grows with the network
size. In this paper, we want to show the different selection
strategies that are possible using a constant amount of bits
per router.

Similarly to our method, the second approach aims at
addressing the scalability issues of the original Elevator-First
and is part of the LBDR3D framework [16]. The authors use
a limited amount of configurable bits in each router, named
Vertical Bits, to point to the nearest elevator. The nearest
elevator is selected offline based on the Manhattan Distance,
and when several elevators with an equal distance from a
given router exist, ties are broken randomly. Unfortunately,
this specification suffers from a few issues that have not been
addressed. First, because different routersmay point to differ-
ent elevators, there can be cases where one router forwards a
packet in the direction of its own selected elevator and where
the next router forwards it to another direction towards its
own elevator, in such a way that the two directions form an
illegal turn, leading to potential deadlocks. In this work, when
we consider the Manhattan Distance for elevator selection
in Section 4, we provide offline and online solutions to this
critical problem. Second, in [16], no proof of reachability
was provided, and additional input signals were introduced
to prevent packets from entering livelocks. In this paper,
we provide a universal formal proof of reachability for all
Manhattan Distance-Based selection approaches, removing
the need for any additional signals to ensure reachability.

Neither Elevator-First nor LBDR3D can take the packets’
destination into account when selecting an elevator, as the
elevators are selected offline in both approaches. This can
heavily limit the level of adaptability of the routing solution
in some cases. In addition to the Manhattan Distance-
based algorithms, we also propose a method for selecting
an elevator online based on the destination, while still using
the exact same amount of information as the distance-driven
approaches.

3. Target Architecture

3.1. NoC Architecture. We consider a network comprised of
several 2D mesh layers connected vertically using TSV, as
shown in Figure 1. Only a subset of the routers is vertically
connected, and these routers are referred to as “elevators.”The
problem of finding the best placement of TSVs at different
layers has already been studied [17] and is beyond the scope
of this paper.The algorithms proposed throughout this paper
are compatible with any placement strategy. Moreover, the
TSV pillars need not be placed in the same positions across
all layers.

3.2. Routing. To provide a deadlock-free routing solution, we
rely on the routing rules of Elevator-First [10]. That is, the
network is virtually portioned into two virtual networks using
two separate input FIFOs (a.k.a. virtual channels) in each
planar port. Packets heading to an upper layer are injected in
the first virtual channel, whereas packets heading down are
routed in the second virtual channel. As per Elevator-First,
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Figure 1: Overview of the partially connected 3D-NoC Topology.

routing within each layer is performed using a deadlock-free
2D routing algorithm. For the sake of illustration, the 𝑋𝑌
algorithm is assumed throughout this article.

Despite using the same deadlock avoidance technique,
our routing methodology is different from the one described
in [10, 15]. In [10], each router stores the address of the nearest
elevator and every time the packet reaches a new layer, a
new header containing the elevator’s address is prepended
to the packet. For distributed operation and scalability, our
approach does not involve storing node addresses. Instead,
each router includes a fixed number of configurable bits
named Elevator Location Bits, which contain information
about the location of elevators.These bits can be reconfigured
at any time to reflect the new state of the network upon
the occurrence of TSV failures. The number of these bits is
independent of the size of the topology. In addition, these bits
are never inserted in the packet’s header but are used directly
by the route computation logic to guide packets towards
an elevator. The route computation logic can be generically
described as in Algorithm 1. As is the case for all conventional
router architectures, route computation starts by comparing
the router’s address to that of the destination. The result
is a vector of signal bits that we call compare bits. If the
destination is on the same layer, the simple logic of𝑋𝑌 is used
to determine the next output port. If the destination is on a
different layer and the current router is an elevator, then route
towards the destination layer (Line (12)). If the destination is
in a different layer and the current router is not an elevator,
then use the Elevator Location Bits and the compare bits to
route towards an elevator (Line (10)).

Our focus in the rest of the paper is to answer the follow-
ing questions: (i) What to put in the Elevator Location Bits?
(ii) How to use these bits online (Algorithm 1 , Line (10)).
Several approaches offering different levels of complexity and
performance are explored.

4. Manhattan Distance-Based
Elevator Selection

One possible solution to our problem simply consists in
choosing an elevator that is located as close as possible to the
current router. The idea behind this approach is to minimize
the time spent searching for an elevator and to quickly reach
the destination layer. This is the criterion of selection that
many other works have been adopting. In this section, we
present three efficient algorithms that exploit the properties
ofManhattanDistance tominimize the information required
for locating the nearest elevators, while still guaranteeing
reachability.

4.1. Elevator Location Bits. To reach one of the nearest TSV
pillars, only 8 bits of information per router are sufficient. Let
elevator be a 4-bit vector stored within a router and (Eleva-
tor.North, Elevator.East, Elevator.South, and Elevator.West)
its four configurable bits. This vector uses the same encoding
as the compare bits described previously. That is, each bit
is set so as to indicate whether the selected elevator is in
the given direction. For instance, if the offline configuration
algorithm selects an elevator located northeast to the current
router, elevator will be set to (1, 1, 0, 0). Each router needs
to store two such bit vectors, one for the upward elevator
and one for the downward elevator. This encoding allows
for the efficient routing algorithm implementation presented
in Algorithm 2. Here, elevator is set to either the upward or
downward elevator according to the destination.

4.2. Safe Selection Algorithm (MD-Safe). Given this encod-
ing, all that the configuration algorithm has to do is select
one elevator for each router. Here again, several approaches
are possible. One thing to take into consideration is the fact
that this encoding allows different routers to point to different
nearest elevators, and consequently one router that forwards a
packet in the direction of its nearest elevator cannot guarantee
that it will reach that same elevator after traversing the next
hops.The first approach that we propose is to set these bits in
such a way that all routers along one path point to the same
elevator. This can be achieved using Algorithm 3 for each
layer. Here, we iterate through each elevator in turn and check
if it is the nearest elevator to every node in the layer. Even if
the distance from some node to the new elevator is the same
as its previously assigned nearest elevator, the new elevator
is still preferred. This ensures that starting from any initial
node 𝐴, which is pointing to elevator node 𝐸, routing in the
direction of 𝐸 reaches another node 𝐵 that points to the same
nearest elevator 𝐸. If 𝐵 had a nearest elevator node 𝐹 different
from 𝐸, then according to Algorithm 3, 𝐹 would also be the
nearest elevator to 𝐴. Therefore, our algorithm inherently
guarantees that packets always reach their intended elevator.
This approach also has the advantage of being independent
of the planar routing algorithm; that is, this offline algorithm
is compatible with any online routing function. For instance,
in [18], we have used this selection approach in combination
with a routing algorithm that uses the adaptive Negative-First
[19] algorithm for intralayer routing.
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Input:
Elevator (Elevator location bits)

Output:
Direction (Output port)

(1) Variable: Compare (Comparison bits)
(2) 𝐶𝑜𝑚𝑝𝑎𝑟𝑒.𝐸𝑎𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑋 < 𝑑𝑒𝑠𝑡.𝑋
(3) 𝐶𝑜𝑚𝑝𝑎𝑟𝑒.𝑊𝑒𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑋 > 𝑑𝑒𝑠𝑡.𝑋
(4) 𝐶𝑜𝑚𝑝𝑎𝑟𝑒.𝑁𝑜𝑟𝑡ℎ = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑌 < 𝑑𝑒𝑠𝑡.𝑌
(5) 𝐶𝑜𝑚𝑝𝑎𝑟𝑒.𝑆𝑜𝑢𝑡ℎ = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑌 > 𝑑𝑒𝑠𝑡.𝑌
(6) if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑍 ̸= 𝑑𝑒𝑠𝑡.𝑍 then ⊳ different layer
(7) if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑖𝑠𝐸𝑙𝑒V𝑎𝑡𝑜𝑟 then
(8) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = (𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑍 < 𝑑𝑒𝑠𝑡.𝑍?𝑈𝑝 : 𝐷𝑛)
(9) else
(10) Use Elevator and Compare to find an elevator
(11) end if
(12) else ⊳ 𝑋𝑌 logic
(13) if Compare.East then
(14) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐸𝑎𝑠𝑡
(15) else if Compare.West then
(16) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑊𝑒𝑠𝑡
(17) else if Compare.North then
(18) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑁𝑜𝑟𝑡ℎ
(19) else if Compare.South then
(20) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑆𝑜𝑢𝑡ℎ
(21) else
(22) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑜𝑐𝑎𝑙
(23) end if
(24) end if

Algorithm 1: Route computation logic (generic).

Input:
Elevator (Elevator location bits)

Output:
Direction (Output port)

(1) Variable: Compare (Comparison bits)
(2) 𝐶𝑜𝑚𝑝𝑎𝑟𝑒.𝐸𝑎𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑋 < 𝑑𝑒𝑠𝑡.𝑋
(3) 𝐶𝑜𝑚𝑝𝑎𝑟𝑒.𝑊𝑒𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑋 > 𝑑𝑒𝑠𝑡.𝑋
(4) 𝐶𝑜𝑚𝑝𝑎𝑟𝑒.𝑁𝑜𝑟𝑡ℎ = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑌 < 𝑑𝑒𝑠𝑡.𝑌
(5) 𝐶𝑜𝑚𝑝𝑎𝑟𝑒.𝑆𝑜𝑢𝑡ℎ = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑌 > 𝑑𝑒𝑠𝑡.𝑌
(6) if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑍 ̸= 𝑑𝑒𝑠𝑡.𝑍 then ⊳ seek elevator
(7) if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑖𝑠𝐸𝑙𝑒V𝑎𝑡𝑜𝑟 then
(8) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = (𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑍 < 𝑑𝑒𝑠𝑡.𝑍?𝑈𝑝 : 𝐷𝑛)
(9) else
(10) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑋𝑌(𝐸𝑙𝑒V𝑎𝑡𝑜𝑟)
(11) end if
(12) else
(13) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑋𝑌(𝐶𝑜𝑚𝑝𝑎𝑟𝑒)
(14) end if

Algorithm 2: Route computation with MD-based elevator selec-
tion.

4.3. Randomized Selection Algorithm (MD-Random). While
the safe selection algorithm has the interesting property of
achieving consensus among several routers about where the
nearest elevator is, itmay not offer the best load balancing and

elevator utilization, as many nodes will attempt to reach the
exact same elevator at once. Intuitively, better performance
can be achieved by selecting a random elevator among several
nearest elevators, as the load would be more uniformly
distributed among TSVs.

Figure 2 illustrates the difference when using both algo-
rithms. Notice how MD-safe forces consensus by making
several routers point to the same elevator, whereas MD-
random provides a better distribution.

One challenging aspect of such a randomized approach is
that it may cause packets to violate the routing rules, resulting
in deadlocks.

Consider the example shown in Figure 3, where a packet
originates at node 𝐴 and needs to take an elevator. In this
example, two elevators, 𝐸1 and 𝐸2, are available. They are as-
signed to nodes𝐴 and 𝐵, respectively. At router𝐴, the packet
takes the north direction to reach 𝐸1. However, at node
𝐵, it will take the west turn to reach 𝐸2 following the 𝑋𝑌
algorithm. By taking the west turn after the north turn, the
algorithm has already violated the rules of 𝑋𝑌. We propose
two methods to alleviate this issue.

The first approach consists in rewriting Algorithm 2 in
such a way that 𝑌 to 𝑋 turns cannot be made. The alter-
native routing algorithm is presented in Algorithm 4, where
input direction indicates the direction fromwhich the packet
has arrived. The idea behind this method is straightforward:
if a packet in search for an elevator is received at the north
(or south) port, then it forcibly has an elevator in the south
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Output:
Elevator[LayerNodes] (Elevator location bits)

(1) Variable: Dist[LayerNodes] (Distance to closest elevator)
(2) for all node 𝑖 do
(3) Initialize Dist[𝑖] to infinity
(4) Initialize Elevator[𝑖] to all zeros
(5) end for
(6) for all elevator (𝑥𝐸, 𝑦𝐸) do
(7) for all node 𝑖 of coord (𝑥, 𝑦) do
(8) if |𝑥𝐸 − 𝑥| + |𝑦𝐸 − 𝑦| ≤ 𝐷𝑖𝑠𝑡[𝑖] then
(9) 𝐷𝑖𝑠𝑡[𝑖] = |𝑥𝐸 − 𝑥| + |𝑦𝐸 − 𝑦|
(10) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝑁𝑜𝑟𝑡ℎ = (𝑦𝐸 > 𝑦)
(11) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝑆𝑜𝑢𝑡ℎ = (𝑦𝐸 < 𝑦)
(12) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝑊𝑒𝑠𝑡 = (𝑥𝐸 < 𝑥)
(13) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝐸𝑎𝑠𝑡 = (𝑥𝐸 > 𝑥)
(14) end if
(15) end for
(16) end for

Algorithm 3: Setting the elevator bits (safe).

MD-safe MD-random

E2

E1 E3

E2

E1 E3

Figure 2: Example TSV assignment when using MD-safe versus MD-random.

(or north) direction; otherwise the previous router would not
have forwarded it following the𝑌 dimension.Thismeans that
it is enough to make sure that packets traveling along the
𝑦-axis keep going in the same direction until an elevator is
eventually reached. While simple, the main drawback of this
approach is that it heavily depends on the𝑋𝑌 algorithm and
very hardly adapts to other algorithms. In fact, in the case
of an adaptive routing algorithm, it is not possible for the
current router to infer which elevator was intended for the
packet simply from the direction it has taken last, as it may
have been only one of the possible directions available at the
previous router.

A less rigid approach consists in maintaining the original
online routing algorithm and preventing deadlock scenarios
at the offline selection stage. We propose a method that
is compatible with 𝑋𝑌 as well as the three deadlock-free

adaptive turn models [19]. One property of all of these
algorithms is that they impose an order on the traversal of
physical channels. For instance, in theWest-First turnmodel,
the east, north, and south directions are taken last. In the
North-Last turn model, the north direction is taken last. In
the𝑋𝑌 algorithm, north and south are taken last. The idea is
to exploit this property during the elevator selection process,
by giving precedence to the elevators that can be reached
using only the last directions of the given routing algorithm.

Sincewe areworkingwith the𝑋𝑌 algorithm, the selection
algorithm can be written as in Algorithm 5. By prioritizing
the nearest elevators that are on the same column, we ensure
that a packet only takes east or west when there are no
closest elevators in the same column.Once the𝑌dimension is
taken, all subsequent routers will agree that there is a nearest
elevator on the same column as per Algorithm 5, and there
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E2 B

Illegal turn!

A

E1

Figure 3: Illustration of a potential deadlock scenario.

Input:
Elevator (Elevator location bits)

Output:
Direction (Output port)

(1) Variables: Compare (Comparison bits)
(2) 𝐶𝑜𝑚𝑝𝑎𝑟𝑒.𝐸𝑎𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑋 < 𝑑𝑒𝑠𝑡.𝑋
(3) 𝐶𝑜𝑚𝑝𝑎𝑟𝑒.𝑊𝑒𝑠𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑋 > 𝑑𝑒𝑠𝑡.𝑋
(4) 𝐶𝑜𝑚𝑝𝑎𝑟𝑒.𝑁𝑜𝑟𝑡ℎ = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑌 < 𝑑𝑒𝑠𝑡.𝑌
(5) 𝐶𝑜𝑚𝑝𝑎𝑟𝑒.𝑆𝑜𝑢𝑡ℎ = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑌 > 𝑑𝑒𝑠𝑡.𝑌
(6) if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑍 ̸= 𝑑𝑒𝑠𝑡.𝑍 then
(7) if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑖𝑠𝐸𝑙𝑒V𝑎𝑡𝑜𝑟 then
(8) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = (𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑍 < 𝑑𝑒𝑠𝑡.𝑍?𝑈𝑝 : 𝐷𝑛)
(9) else if 𝑖𝑛𝑝𝑢𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 == 𝑁𝑜𝑟𝑡ℎ then
(10) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑆𝑜𝑢𝑡ℎ
(11) else if 𝑖𝑛𝑝𝑢𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 == 𝑆𝑜𝑢𝑡ℎ then
(12) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑁𝑜𝑟𝑡ℎ
(13) else
(14) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑋𝑌(𝐸𝑙𝑒V𝑎𝑡𝑜𝑟)
(15) end if
(16) else
(17) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑋𝑌(𝐶𝑜𝑚𝑝𝑎𝑟𝑒)
(18) end if

Algorithm 4: Route computation for online deadlock-freedom
(random-online).

will therefore not be a need to take the 𝑋 dimension again.
This effectively removes any risk of deadlocks.

The algorithm operates as follows: For every node 𝑖 in a
given plane, elevators are sorted according to theirManhattan
Distance from 𝑖. Then only the nodes that are at minimum
distance are considered (Line (7)). The rest of the algorithm
breaks the ties between these minimum distance elevators
as described previously. First, the algorithm checks whether
there are elevators on the same column as the current node.
If there are no such elevators (Line (10)), then an elevator
is selected randomly from the set of minimum distance

Output:
Elevator[LayerNodes] (Elevator location bits)

(1) for all node 𝑖 do
(2) Initialize Elevator[𝑖] to all zeros
(3) end for
(4) for all node 𝑖 of coord (𝑥, 𝑦) do
(5) 𝐸 = List of all elevators
(6) Sort 𝐸 By distance from 𝑖
(7) 𝑀𝑖𝑛 = 𝑒 ∈ 𝐸/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒, 𝑖) == 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸[0], 𝑖)
(8) 𝑆𝑎𝑚𝑒𝐶𝑜𝑙 = (𝑥, 𝑦) ∈ 𝑀𝑖𝑛/𝑥 == 𝑥
(9) if SameCol is empty then
(10) (𝑥𝐸, 𝑦𝐸) = random elevator fromMin
(11) else
(12) (𝑥𝐸, 𝑦𝐸) = random elevator from SameCol
(13) end if
(14) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝑁𝑜𝑟𝑡ℎ = (𝑦𝐸 > 𝑦)
(15) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝑆𝑜𝑢𝑡ℎ = (𝑦𝐸 < 𝑦)
(16) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝑊𝑒𝑠𝑡 = (𝑥𝐸 < 𝑥)
(17) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝐸𝑎𝑠𝑡 = (𝑥𝐸 > 𝑥)
(18) end for

Algorithm 5: Setting the elevator bits for offline deadlock-freedom
(random-offline).

elevators. Otherwise (Line (12)), an elevator is selected
randomly from the set of minimum distance elevators on the
same column. The elevator bits are then set to point to the
chosen elevator (Lines (14) to (17)).

Amore general form of the algorithm, which is not tied to
a specific routing algorithm, is also presented in Algorithm 6.
This generic algorithm takes the set of the last directions
of the planar algorithm 𝐿𝑎𝑠𝑡𝐷𝑖𝑟𝑆𝑒𝑡 as an input. The last
direction set is defined as follows.

Definition 1 (last direction set). Let 𝐷 be the set of all
planar directions in a mesh network, such that 𝐷 =
{𝑊𝑒𝑠𝑡, 𝑆𝑜𝑢𝑡ℎ, 𝐸𝑎𝑠𝑡,𝑁𝑜𝑟𝑡ℎ}. A deadlock-free planar routing
algorithm can be defined as a list 𝐴 of subsets of 𝐷 [20]. Let
𝐴 = {𝐷0, 𝐷1, . . . , 𝐷𝑛}. The last direction set 𝐿 of algorithm 𝐴
is simply the last element (𝐷𝑛) of 𝐴.

For instance, the West-First routing algorithm can be
written as

𝐴 = [{𝑊𝑒𝑠𝑡} , {𝑁𝑜𝑟𝑡ℎ, 𝑆𝑜𝑢𝑡ℎ, 𝐸𝑎𝑠𝑡}] . (1)

The last direction set of theWest-First algorithm is there-
fore

𝐿 = {𝑁𝑜𝑟𝑡ℎ, 𝑆𝑜𝑢𝑡ℎ, 𝐸𝑎𝑠𝑡} . (2)

After obtaining the set of minimum distance elevators
(Line (7)), we first determine the set of directions that need
to be used to reach every elevator. For instance, if elevator 𝑒
is at the east of the current node, then the east direction is
added to the list of required directions 𝐷𝑖𝑟 (Lines (11)–(13)).
If the set of directions is part of the last direction set (defined
previously), then the elevator is added to a prioritized set
named 𝐿𝑎𝑠𝑡 (Lines (23)–(25)). Finally, the algorithm selects
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Input:
LastDirSet (The last directions set of the routing algorithm)

Output:
Elevator[LayerNodes] (Elevator location bits)

(1) for all node 𝑖 do
(2) Initialize Elevator[𝑖] to all zeros
(3) end for
(4) for all node 𝑖 of coord (𝑥, 𝑦) do
(5) 𝐸 = List of all elevators
(6) Sort 𝐸 By distance from 𝑖
(7) 𝑀𝑖𝑛 = 𝑒 ∈ 𝐸/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒, 𝑖) == 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸[0], 𝑖)
(8) 𝐿𝑎𝑠𝑡 = 0
(9) for all 𝑒(𝑥, 𝑦) ∈ 𝑀𝑖𝑛 do
(10) 𝐷𝑖𝑟 = 0
(11) if 𝑥 > 𝑥 then
(12) add East to𝐷𝑖𝑟
(13) end if
(14) if 𝑥 < 𝑥 then
(15) add West to𝐷𝑖𝑟
(16) end if
(17) if 𝑦 > 𝑦 then
(18) add North to𝐷𝑖𝑟
(19) end if
(20) if 𝑦 < 𝑦 then
(21) add South to𝐷𝑖𝑟
(22) end if
(23) if 𝐷𝑖𝑟 ⊂ 𝐿𝑎𝑠𝑡𝐷𝑖𝑟𝑆𝑒𝑡 then
(24) add 𝑒 to 𝐿𝑎𝑠𝑡
(25) end if
(26) end for
(27) if 𝐿𝑎𝑠𝑡 is empty then
(28) (𝑥𝐸, 𝑦𝐸) = random elevator fromMin
(29) else
(30) (𝑥𝐸, 𝑦𝐸) = random elevator from 𝐿𝑎𝑠𝑡
(31) end if
(32) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝑁𝑜𝑟𝑡ℎ = (𝑦𝐸 > 𝑦)
(33) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝑆𝑜𝑢𝑡ℎ = (𝑦𝐸 < 𝑦)
(34) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝑊𝑒𝑠𝑡 = (𝑥𝐸 < 𝑥)
(35) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝐸𝑎𝑠𝑡 = (𝑥𝐸 > 𝑥)
(36) end for

Algorithm 6: Generic algorithm for setting the elevator bits for offline deadlock-freedom.

one of the elevators in this prioritized set 𝐿𝑎𝑠𝑡, if any, or any
random elevator from the minimum distance set otherwise.

The genericity of this algorithmmakes it compatible with
any routing solution.

Another challenging aspect of randomized elevator
assignment is to ensure that packets eventually reach an
elevator. In what follows, we provide an elaborate proof of
reachability and livelock-freedom by using the properties of
the Manhattan Distance.

4.4. Proof of Reachability for Manhattan Distance-Based
Approaches. Because packets needing to reach a different
layer may traverse routers that point to different elevators as
per our selection algorithms, it is necessary to make sure that
packets are always able to reach an elevator; that is, they are

never led to a dead end and are never able to fluctuate between
different nodes indefinitely.

While related works introduce extra signals to prevent
packet looping at runtime [9], we provide a formal proof
of reachability showing that packets are bound to reach an
elevator regardless of the criteria used to select one elevator
among the nearest ones. We further show that routing from
any node to the final elevator is always done following the
minimal distance.

Theorem 2 (elevator reachability). If each router forwards a
packet one hop closer to one of its nearest elevators, then the
packet will eventually reach an elevator.

Proof. Let (𝑋𝑐, 𝑌𝑐) be the coordinates of the current router 𝐶
in a given routing scenario. Let (𝑋𝑒𝑐, 𝑌𝑒𝑐) be the coordinates
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of the elevator 𝐸𝑐 selected by the offline algorithm for router
𝐶. The Manhattan Distance between node 𝐶 and its elevator
𝐸𝑐 is defined as follows: MD(𝐶, 𝐸𝑐) = |𝑋𝑐 − 𝑋𝑒𝑐| + |𝑌𝑐 − 𝑌𝑒𝑐|.

We know that the current router will forward packets to
a next node𝑁 (𝑋𝑛, 𝑌𝑛) so as to get closer to 𝐸𝑐.

By definition, we have

MD (𝑁, 𝐸𝑐) = MD (𝐶, 𝐸𝑐) − 1. (3)

That is, router𝑁 is closer to 𝐸𝑐 than𝐶. Now let 𝐸𝑛 denote
the elevator selected by the offline algorithm for 𝑁, and let
(𝑋𝑒𝑛, 𝑌𝑒𝑛) be its coordinates. Because 𝐸𝑐 was selected by the
offline algorithm as the elevator of𝐶, we know that𝐸𝑛 cannot
be closer to 𝐶 than 𝐸𝑐, as otherwise 𝐸𝑛 would have been
selected as the nearest elevator instead. This means that

MD (𝐶, 𝐸𝑐) ≤ MD (𝐶, 𝐸𝑛) . (4)

The same applies to the selection of 𝐸𝑛 for𝑁:

MD (𝑁, 𝐸𝑛) ≤ MD (𝑁, 𝐸𝑐) . (5)

By combining (3) and (5), we obtain

MD (𝑁, 𝐸𝑛) ≤ MD (𝐶, 𝐸𝑐) − 1. (6)

This is an important property, as it shows that the distance
between a node and its own selected elevator decreases at
every hop. By recurrence, this implies that the distance will
eventually reach 0, thereby proving that packets always reach
an elevator.

Theorem 3 (minimality). When seeking an elevator, the path
a packet takes from any node to the final elevator is a minimal
path.

Proof. First, we show the distance between a node and its own
elevator decreases by exactly 1 at every traversed hop.

Let us assume that there is a node𝐶, with elevator𝐸𝑐, that
forwards a packet to a next hop𝑁, with elevator 𝐸𝑛, such that

MD (𝑁, 𝐸𝑛) < MD (𝐶, 𝐸𝑐) − 1. (7)

We know that node 𝐶 is able to reach elevator 𝐸𝑛 in
MD(𝑁, 𝐸𝑛) hops, plus 1 hop from 𝐶 to 𝑁. And from (7), we
know that the distance from𝐶 to its own elevator𝐸𝑐 is greater
thanMD(𝑁, 𝐸𝑛)+1. In other words, 𝐸𝑛 is closer to𝐶 than 𝐸𝑐,
which contradicts with (4).

Consequently, we obtain the following equation from (6):

MD (𝑁, 𝐸𝑛) = MD (𝐶, 𝐸𝑐) − 1. (8)

Let 𝐹(𝑋𝑓, 𝑌𝑓) be the finally reached elevator in a given
routing scenario. Assuming nonminimal routing, the list of
visited nodes from the source to 𝐹must include two nodes 𝑃
and 𝑄, such that 𝑃 was visited before 𝑄 and routing from 𝑄
to 𝐹 was done following minimal distance and

MD (𝑃, 𝐹) = MD (𝑄, 𝐹) . (9)

Assuming𝐻 hops were visited between 𝑃 and𝑄, we have
from (8) that

MD (𝑃, 𝐸𝑝) = MD (𝑄, 𝐸𝑞) + 𝐻. (10)

Because routing from𝑄 to 𝐹was done followingminimal
distance, the number of hops from 𝑄 to 𝐹 is MD(𝑄, 𝐹); also,
from (8) we know that this also corresponds to MD(𝑄, 𝐸𝑞).
That is,

MD (𝑄, 𝐹) = MD (𝑄, 𝐸𝑞) . (11)

From (9), (10), and (11), we can write

MD (𝑃, 𝐸𝑝) = MD (𝑃, 𝐹) + 𝐻. (12)

This means that 𝐹 is closer to 𝑃 than 𝐸𝑝 which again
contradicts with our initial assumption that 𝐸𝑝 is the closest
elevator of 𝑃. Therefore, routing from a source node to the
final elevator is always done following the minimum dis-
tance.

4.5. Resilience to Runtime Failures. An important result of
the proof of reachability is that a packet reaches an elevator
regardless of which of the nearest elevators is assigned to each
node.This has amajor implication in terms of fault-tolerance.
If the system is able to detect a TSV failure and reconfigure the
elevator bits, in the routers that were pointing to the failing
elevator, to point to a different nearest elevator at runtime,
then no packets need to be rerouted.

5. Optimistic Elevator Selection

The goal of the MD-based selection algorithms presented in
the previous section was to minimize the distance between
a source node and the selected elevator. While this is a
reasonable option most of the time, it can perform poorly in
various scenarios. The main reason is that the position of the
final destination of the packets is never taken into account
while routing a packet towards its elevator. As an example, let
us consider the example shown in Figure 4. Here, the packet
has originated at node 𝑆 and is destined for node 𝐷 located
in a different layer. Using the previously defined algorithms,
the packet is routed to the nearest elevator E1, drifting away
from the destination, before reaching the destination layer.
The total hop count from source to destination could have
been greatly reduced had the packet taken elevator E2.

In this section, we introduce another type of selection
calledOptimistic Elevator Selection. In this approach, routers
attempt to reduce the distance to an elevator and to the final
destination simultaneously.

5.1. Elevator Location Bits. The exact same amount of config-
uration bits is required for the optimistic selection approach
as the MD-based approach, thereby maintaining scalability.
Here again, each router stores two 4-bit vectors (north, east,
south, and west). However, the meaning of these bits differs
from the previous specification. Instead of pointing to a
specific elevator location, these bits act as a compass that
vaguely indicates the presence of any elevators in the given
directions. The north and south bits are set if there is at least
one elevator in the same column to the north or to the south,
respectively. The east and west, on the other hand, are used
to indicate the existence of any elevator in the east or west
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Selected route
Better route
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D

Figure 4: Example of an inefficient route when using MD-based
algorithms.

Output:
Elevator[LayerNodes] (Elevator location bits)

(1) for all node 𝑖 do
(2) Initialize Elevator[𝑖] to all zeros
(3) end for
(4) for all elevator (𝑥𝐸, 𝑦𝐸) do
(5) for all node 𝑖 of coord (𝑥, 𝑦) do
(6) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝑁𝑜𝑟𝑡ℎ | = (𝑦𝐸 > 𝑦&&𝑥𝐸 == 𝑥)
(7) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝑆𝑜𝑢𝑡ℎ | = (𝑦𝐸 < 𝑦&&𝑥𝐸 == 𝑥)
(8) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝑊𝑒𝑠𝑡 | = (𝑥𝐸 < 𝑥)
(9) 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟[𝑖].𝐸𝑎𝑠𝑡 | = (𝑥𝐸 > 𝑥)
(10) end for
(11) end for

Algorithm 7: Setting the elevator bits (optimistic).

directions, not necessarily on the same row as the current
router. That is, east is set if at least one elevator exists in the
east, northeast, or southeast directions. The algorithm used
to set these bits is described in Algorithm 7.

As illustrated in Figure 5, unlike the MD-based selection
approaches, here the nodes are not assigned a particular
elevator. Node 𝐴 only knows that elevators exist at both east
and west of it and that no elevators are present on its column.
It does not know the location of the elevators. Node 𝐵 has
two elevators on the same column and also elevators in the
east and west. Note that elevators on the east and west need
not be on the same row.

5.2. Routing Algorithm (Optimistic). Because the selection
of an elevator now accounts for the destination’s position,
most of the selection complexity must be transferred to the
online route computation algorithm, that is, the hardware. Of
course, Algorithm 2 can no longer be used. Insteadwe replace
it by Algorithm 8. It should be noted that input direction
is assumed to be a generation variable; therefore, the test
on the input direction is not performed at runtime but is
processed at generation time. This means that in hardware
each input port will include a different combinational logic

E2

E1

E4

A

B1 1

1

1

1 1

0

0

Optimistic

E3

Figure 5: Elevator Location Bits for the optimistic selection algo-
rithm.

for this algorithm. As can be seen, the logic is still quite
simple.

The routing process can be described as follows. First
route along the𝑋 dimension while trying to get closer to the
destination as long as possible. If the column of the destina-
tionwas reached, route along the𝑌 dimensionwhile trying to
get closer to the destination. If the destination was exceeded
following the𝑋 dimension, keep going in the same direction
until a columnhaving an elevator is reached. If the destination
is exceeded in the 𝑌 dimension, then keep going in the same
direction until an elevator is reached.

A few examples are presented in Figure 6 to illustrate the
operation of the optimistic algorithm. In the first scenario,
node 𝑆1wants to send amessage to node𝐷1. If theMD-based
approach were used, then 𝑆1would transmit the packet to the
elevator located to its east, as it is the nearest one. However,
in the case of optimistic selection, packets are routed closer
to the destination whenever possible, so it is forwarded west.
Once the same column as the destination is reached, the
packet takes an elevator on this column. Note that this path is
aminimal one. If the closest elevator were selected, the packet
would make two extra hops to reach the destination. This
is the ideal case for optimistic selection, wherein elevators
are located between the source and the destination. In the
case of 𝑆2 and 𝐷2, the destination is already located on the
same column, but no elevators are present on this column.
In this case the packet goes in search for an elevator further
from the destination.Here, elevators were available in the east
direction, so an east move was made.

The last scenario (𝑆3 to𝐷3) shows a case where optimistic
selection does not offer the best route. This is often the case
when few elevators are available. Even though an elevator was
available on 𝑆3’s column,Algorithm 8 requires that the packet
moves towards the destination to the west, since elevators
are available to the west. However, when the destination’s
column is reached, no elevators are available. In this case, the
packet continues going in the same direction (west), until the
column containing the elevators is found.
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Input:
Elevator (Elevator location bits)
Cmp (Comparison bits)

Output:
Direction (Output port)

(1) if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑍 ̸= 𝑑𝑒𝑠𝑡.𝑍 then
(2) if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑖𝑠𝐸𝑙𝑒V𝑎𝑡𝑜𝑟 then
(3) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = (𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑍 < 𝑑𝑒𝑠𝑡.𝑍?𝑈𝑝 : 𝐷𝑛)
(4) else
(5) if 𝑖𝑛𝑝𝑢𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 == 𝐸𝑎𝑠𝑡 then
(6) if 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟.𝑊𝑒𝑠𝑡&𝐶𝑚𝑝.𝑊𝑒𝑠𝑡 then
(7) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑊𝑒𝑠𝑡
(8) else if 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟.𝑁𝑜𝑟𝑡ℎ&𝐶𝑚𝑝.𝑁𝑜𝑟𝑡ℎ then
(9) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑁𝑜𝑟𝑡ℎ
(10) else if 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟.𝑆𝑜𝑢𝑡ℎ&𝐶𝑚𝑝.𝑆𝑜𝑢𝑡ℎ then
(11) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑆𝑜𝑢𝑡ℎ
(12) else if 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟.𝑁𝑜𝑟𝑡ℎ then
(13) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑁𝑜𝑟𝑡ℎ
(14) else if 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟.𝑆𝑜𝑢𝑡ℎ then
(15) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑆𝑜𝑢𝑡ℎ
(16) else ⊳ the elevator is West
(17) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑊𝑒𝑠𝑡
(18) end if
(19) else if 𝑖𝑛𝑝𝑢𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 == 𝑊𝑒𝑠𝑡 then
(20) Same as East (replace West by East)
(21) else if 𝑖𝑛𝑝𝑢𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 == 𝑁𝑜𝑟𝑡ℎ then
(22) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑆𝑜𝑢𝑡ℎ
(23) else if 𝑖𝑛𝑝𝑢𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 == 𝑆𝑜𝑢𝑡ℎ then
(24) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑁𝑜𝑟𝑡ℎ
(25) else ⊳ have not engaged in direction yet
(26) if 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟.𝑊𝑒𝑠𝑡&𝐶𝑚𝑝.𝑊𝑒𝑠𝑡 then
(27) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑊𝑒𝑠𝑡
(28) else if 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟.𝐸𝑎𝑠𝑡&𝐶𝑚𝑝.𝐸𝑎𝑠𝑡 then
(29) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐸𝑎𝑠𝑡
(30) else if 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟.𝑁𝑜𝑟𝑡ℎ&𝐶𝑚𝑝.𝑁𝑜𝑟𝑡ℎ then
(31) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑁𝑜𝑟𝑡ℎ
(32) else if 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟.𝑆𝑜𝑢𝑡ℎ&𝐶𝑚𝑝.𝑆𝑜𝑢𝑡ℎ then
(33) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑆𝑜𝑢𝑡ℎ
(34) else if 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟.𝑁𝑜𝑟𝑡ℎ then
(35) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑁𝑜𝑟𝑡ℎ
(36) else if 𝐸𝑙𝑒V𝑎𝑡𝑜𝑟.𝑆𝑜𝑢𝑡ℎ then
(37) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑆𝑜𝑢𝑡ℎ
(38) else if 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.𝑊𝑒𝑠𝑡 then
(39) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑊𝑒𝑠𝑡
(40) else
(41) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐸𝑎𝑠𝑡
(42) end if
(43) end if
(44) end if
(45) else
(46) 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑋𝑌(𝐶𝑚𝑝)
(47) end if

Algorithm 8: Route computation (optimistic).
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Figure 6: Routing scenarios for the optimistic selection approach.

Because routing is still performed following the𝑋𝑌 rules,
our algorithm has no impact on deadlock-freedom. More-
over, because the routing algorithm never selects a direction
unless the configuration bits indicate the presence of an eleva-
tor, we also guarantee that the algorithm is always capable of
finding an elevator.

6. Experimental Results

After exploring various strategies for elevator selection, we
are now going to evaluate and compare them to have a clear
idea of the scenarios under which each solution is the most
appropriate. Two aspects of our algorithms are evaluated:
hardware implementation cost and network performance.

6.1. Hardware Synthesis Results. To estimate the area and
power costs of the proposed solutions, we have implemented
a 3D router’s Route Computation Unit (RCU) in SystemVer-
ilog. The RCU takes as an input the flits coming from all the
router’s input channels and outputs the route computation
result, that is, next output port, for each input channel. It is
worth reminding that a 3D router includes one local port
(packets coming from the tile), two vertical ports (up and
down), and 4 planar ports (east, west, south, and north), such
that each planar port includes 2 virtual channels.

For new packets, that is, when a head flit is read from an
input channel at a given cycle, a new route is computed and
stored in a register.The body and tail flits of the same packets
will simply be routed to the same port.

We have implemented both theMD-based (Algorithm 4)
and optimistic (Algorithm 8) routing algorithms described
in this paper. As a reference, we have also implemented the
RCU of the original Elevator-First algorithm, as described
in [15]. It differs from our architecture in that the local and
vertical ports generate a temporary header that includes the
address of the selected elevator. The logic used to create and
output this temporary header followed by the original flits

was implemented in the RCU. However, the logic used to
remove this header is performed on the output side, so the
RCU simply computes a signal that indicates whether this
header should be written or not.

The RCU also stores the configurable information
required for locating the elevator nodes, that is, the elevator
bits for our algorithms and the full coordinates of the selected
elevator for Elevator-First.

The RCU is synthesized using Synopsys Design Compiler
tool with the NanGate Open Cell 45 nm Library [21] and a
power supply of 1 V. We performed two syntheses in order
to evaluate first the minimum area and then the maximum
operating frequency. In the first synthesis, we set the same
operating frequency for all designs to 1 GHz and configure
the parameters to achieve the minimum area overall and
power consumption. For the second synthesis, we set up the
tool to achieve the maximum operating frequency based on
the critical path delay. The results for both syntheses are
summarized in Table 1 for different network sizes.

First, it is interesting to compare the three algorithms
for a layer size of 4 × 4, because these dimensions require
4 bits to address each elevator, which means that the size
of configurable data in both Elevator-First and the proposed
algorithms is identical. Here, it can be seen that the area
of Elevator-First is slightly larger than the MD-based pro-
posed algorithm, mainly due to the temporary header logic.
However, note that the optimistic algorithm is more complex
than Elevator-First. This is because although Elevator-First
requires extra logic in the local and vertical ports, the
presence of a temporary header actually simplifies the routing
logic in the planar input channels. By contrast, the optimistic
algorithm uses a more complex routing logic at the east
and west ports. This is reflected by the 0.7% decrease in the
maximum operating frequency.

When the network size increases, all the algorithms
grow in size, as the destination and current addresses are
getting larger. However, what is interesting to see is that the
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Table 1: Hardware synthesis results.

Size Area1 (𝜇m2) Power1 (𝜇W) Max. freq (MHz)
(𝑥, 𝑦, 𝑧) Elevator-First MD-based Optimistic Elevator-First MD-based Optimistic Elevator-First MD-based Optimistic
4 × 4 × 4 975 955 1115 299 277 338 3709 3709 3684
8 × 8 × 4 1173 1091 1230 346 312 367 3709 3709 3684
16 × 16 × 4 1350 1170 1324 397 335 394 3708 3701 3684
24 × 24 × 4 1562 1302 1450 445 363 424 3668 3701 3684
1An operating frequency of 1 GHz was used to obtain the area and the power consumption.

Table 2: Simulation parameters.

Parameters Value(s)
Buffers/VC 4
Flits/packet 5
Traffic pattern Uniform, complement, shuffle
TSV density 75%, 50%, 25%, 12.5%
Sim. duration 100000 cycles
Iterations 50
2D routing 𝑋𝑌

size of Elevator-First grows much faster than the proposed
approaches, because in addition to the compare logic the
amount of configurable data, which consists of full elevator
addresses, also increases. We can see that the size of Elevator-
First increases by 60% when going from 4 × 4 to 24 × 24
layer size, whereas the area increase for the MD-based and
optimistic algorithms is of 36.33% and 30%, respectively. In
addition, we can see that the operating frequency of Elevator-
First decreases by 1.2%while the other two algorithms remain
almost unaffected. This shows a better scalability of the
proposed approaches to large tier sizes.

6.2. Performance Evaluation. We are now going to test the
proposed algorithms by simulation to understand how they
perform with respect to each other. To this end, we use a
custom cycle-accurate parallel Network-on-Chip simulator
written in CUDA C [22]. The router microarchitecture,
including all the proposed routing algorithms, is modeled in
great detail and the network is consistently tested for incor-
rect behavior or potential deadlocks.The network parameters
used for simulations are summarized in Table 2. TSV density
corresponds to the proportion of elevators in each layer. All
layers are supposed to have the same density; however, the
placement of TSVs is different from one layer to the other.
TSVs are placed randomly at each iteration.

The performancemetric we consider is the average packet
latency, which is the average elapsed time between the
queuing of a packet in the network interface and the reception
of its tail flit at the destination network interface. Simulations
are performed on two network sizes: a 128-node networkwith
two 8× 8 layers and a 256-node networkwith four 8× 8 layers.
The goal is to evaluate the impact of the layer count on various
algorithms. We present the results in Figures 7 and 8.

We first examine the latency in a network with two layers
(Figure 7). The first observation that can be made is that

with the optimistic algorithm the network saturates much
slower than the other algorithms in most scenarios. The only
case where it saturates quicker than the other algorithms is
when the number of available elevators is very small, which
reduces the chances of finding an elevator on the way to the
destination. The effect of low TSV density on the optimistic
algorithm is even more severe under complement traffic, in
which all the nodes send the packets to another layer.

In shuffle traffic, where many nodes communicate within
the same layer, we see that the optimistic algorithmmaintains
a better performance than other approaches even if only
12.5% of the nodes are vertically connected. If the system
is designed in such a way that vertical communications are
minimal, the optimistic routing algorithm is clearly the best
option to adopt. Among the MD-based approaches, we can
see that MD-random-online consistently delivers the best
performance. This was expected because selection between
several nearest elevators offline is performed in a fully ran-
domized manner, whereas MD-safe andMD-random-offline
both pose some deterministic constraints on the selection.

Notice that the zero load latency for all the approaches
is almost the same, which indicates that the performance
improvement observed for the optimistic algorithm ismainly
due to the better load distribution among elevators.

We now consider the performance under a 4-layer net-
work (Figure 8). While the optimistic algorithm still per-
forms better under uniform and shuffle traffic, it now yields
very poor performance under complement traffic (heavy
interlayer communication), even under high TSV densities.
This is due to the fact that when packets fail to find an optimal
elevator in the first layer, they will also be penalized in
subsequent layers as well. In other words, even if packets are
likely to find an elevator on their path to the destination in
their original layer, they are less likely to also find one in every
layer along the path. This suggests that a hybrid solution,
in which optimistic routing is performed only one layer
away from the destination layer, can be a better compromise
in scenarios where nodes often need to communicate with
farther tiers.

7. Conclusions

Targeting 3D-NoCswith partial vertical connections, we have
introduced a framework that routing algorithms can use to
locate and select elevators using only a constant number of
bits per router. Different ways of configuring these bits and
using them during the routing process were explored.
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Figure 7: Average packet latency for an 8 × 8 × 2 NoC.

The first type of selection is based on the Manhattan
Distance (MD). Here, the elevator bits are set to point to
the direction of one of the elevators located at minimum
Manhattan Distance from the current router. Although MD-
based selection is already adopted in the literature, we
have solved many concerns to which no satisfactory and
general solutions were provided. First, we have provided
a proof that shows that selection algorithms based on the

Manhattan Distance guarantee reachability. That is, even if
a packet traverses routers that point to different elevators,
it is guaranteed to eventually reach an elevator, without
any alteration to the original routing algorithm. This is
an important proof, as it not only removes the need to
explicitly address dead-ends at runtime, but also increases the
freedomof choice between several nearest elevators, resulting
in higher resilience to runtime failures. Second, we have



14 VLSI Design

Uniform, 25% density

0.0035

Uniform, 75% density

0.0095

Bit complement, 75% density

0.0050

Bit complement, 25% density

0.0005

Shuffle, 25% density

0.0030

Shuffle, 75% density

0.0050

Uniform, 50% density

0.0060

Uniform, 12.5% density

0.0010

Bit complement, 12.5% density

0.0005

Bit complement, 50% density

0.0025

Shuffle, 50% density

0.0040
Injection rate (packet/node/cycle)

Shuffle, 12.5% density

0.0010

0.0108 0.01470.01340.0121

0.0057 0.00780.00710.0064

0.0066 0.01140.00980.0082

0.0067 0.00880.00810.0074

0.0031 0.00490.00430.0037

0.0051 0.00840.00730.0062 0.0016 0.00340.00280.0022

0.0009 0.00210.00170.0013

0.0016 0.00340.00280.0022

0.0037 0.00580.00510.0044

0.0012 0.00330.00260.0019

0.0041 0.00590.00530.0047

400
350
300
250
200
150

0
100

50

MD-random-offline
Optimistic
MD-random-online

MD-safe
MD-random-offline

Optimistic
MD-random-online

MD-safe

400
350
300
250
200
150

0
100

50

400
350
300
250
200
150

0
100

50

400
350
300
250
200
150

0
100

50

400
350
300
250
200
150

0
100

50

400
350
300
250
200
150

0
100

50

400
350
300
250
200
150

0
100

50

400
350
300
250
200
150

0
100

50

400
350
300
250
200
150

0
100

50

400
350
300
250
200
150

0
100

50

400
350
300
250
200
150

0
100

50

400
350
300
250
200
150

0
100

50

Av
g.

 la
te

nc
y 

(c
yc

le
s)

Figure 8: Average packet latency for an 8 × 8 × 4 NoC.

shown that the distributed selection of elevators was not
inherently deadlock-free. We have subsequently presented
three selection strategies that alleviate this issue. MD-safe
sets the Elevator Location Bits in such a way that routers
along any given path have the same vision of the nearest
elevator’s location.The algorithm is simple but fails to achieve
any sort of load balancing among TSVs. MD-random-offline
selects among the nearest elevators randomly so as to better

balance the load. However, it gives priority to elevators in a
given set of directions depending on the routing algorithm
in use, such that deadlock situations cannot be reached.
MD-safe and MD-random-offline solve deadlocks fully at
the configuration stage and require no specific modification
to the hardware, making them compatible with any planar
routing algorithm. To provide an even better load balancing
across elevators, we have proposed MD-random-online. It
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selects an elevator offline in a fully randomized manner, but
the routing algorithm is modified to ensure that routing rules
are not violated.We have shown that this algorithm performs
better than the two offline approaches, but its implementation
is heavily dependent on the routing algorithm.

The second type of selection that we have introduced
improves upon the existing solutions by taking the desti-
nation into account. Here, instead of pointing to a specific
elevator, the bits are set to indicate the existence of elevators
in a given direction. The final elevator is determined online
according to the destination. Although it uses a slightly more
complex routing logic than the MD-based algorithms, it dra-
matically improves performance in various situations. All the
algorithms that we proposed require 8 bits per router, regard-
less of the network size, making them highly scalable, as we
have shown through the hardware synthesis results.
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