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A theoretical study of electromagnetic wave propagation in parallel plate chirowaveguide is presented.The waveguide is filled with
a chiral material having diagonal anisotropic constitutive parameters.The propagation characterization in this medium is based on
algebraic formulation ofMaxwell’s equations combined with the constitutive relations.Three propagation regions are identified: the
fast-fast-wave region, the fast-slow-wave region, and the slow-slow-wave region.This paper focuses completely on the propagation
in the first region, where the dispersion modal equations are obtained and solved.The cut-off frequencies calculation leads to three
cases of the plane wave propagation in anisotropic chiral medium.The particularity of these results is the possibility of controlling
the appropriate cut-off frequencies by choosing the adequate physical parameters values. The specificity of this study lies in the
bifurcation modes confirmation and the possible contribution to the design of optical devices such as high-pass filters, as well
as positive and negative propagation constants. This negative constant is an important feature of metamaterials which shows the
phenomena of backward waves. Original results of the biaxial anisotropic chiral metamaterial are obtained and discussed.

1. Introduction

Bianisotropic materials are special types of media where the
physical parameters properties (permittivity, permeability,
and magnetoelectric parameters) are tensors. They are char-
acterized by constitutive equations that present a coupling
between electric and magnetic fields [1]. These materi-
als exhibit interesting applications in electromagnetic wave
propagation [2–4].

Indeed, the chiral is a subset of bianisotropic medium
case. By definition, chirality is purely a geometrical notion,
which is due to the lack of bilateral symmetry of an object [2].
So, the chiral object is a three-dimensional body that cannot
be superposed on its mirror image by translation or rotation
[2]. Furthermore, chirality concept leads to left and right
waves notions where RCP (i.e., right circularly polarized)
and LCP (i.e., left circularly polarized) each has a different
refractive index and phase velocity. The two corresponding
refractive indices are 𝑛± = √𝜇𝑟𝜀𝑟 ± 𝜉 [5] (𝜇𝑟: relative
permeability, 𝜀𝑟: relative permittivity).

In fact, anisotropic chiral medium plays a crucial role
by having negative refractive index (left-handed) materials

that has opened new horizons in optics and becomes subject
of important scientific interests [6–9]. It was stated through
theoretical and experimental results that anisotropic chiral
media can have a negative refraction index like isotropic
media with both negative permittivity and permeability. The
negative refractive index can be reached by either increasing
the chirality parameter or operating near the electric and/or
magnetic resonance frequency zones, where the value of√𝜇𝑟𝜀𝑟 becomes smaller than the chirality parameter value 𝜉,
which becomes strong around the resonance frequencies, as
reported in [10, 11]. Generally, natural chiral materials, such
as quartz and sugar solution, have 𝜉 < 1 and √𝜇𝑟𝜀𝑟 > 1,
so negative refraction is not possible in these materials [12].
However, with artificial chiral metamaterials, macroscopic
parameters can be clearly identified. Moreover, the notion of
chiral nihility, when the values of 𝜇𝑟 and 𝜀𝑟 of the medium
are small and very close to zero, makes the refraction index
negative for one of the circular polarization modes, even
when 𝜉 is small [5, 13]. In addition, it is reported that it is
simpler to achieve and realize negative refraction in chiral
materials than with regular metamaterials [14].
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Figure 1: Parallel plate waveguide filled with anisotropic chiral
material.

In this work, a special interest is given to the wave prop-
agation study in chiral-core waveguide due to its different
physical parameters diversity. In this scope, wave propagation
in anisotropic chiral medium is modeled and studied where
tensors of chirality, permittivity, and permeability are diago-
nal. The A-formalism [15] related to the proposed structure
is used to facilitate the analytical calculation procedure
of Maxwell’s equations. Curves of normalized propagation
constants are plotted with respect to normalized frequency,
where positive and negative propagation constants are pre-
sented.

2. Formulation of the Problem

In this section, we analyze the parallel plate chirowaveguide
depicted in Figure 1 with infinite perfectly conducting planes
placed at 𝑥 = ±𝑎/2. The chirowaveguide propagation
direction is along 𝑧-axis, whereas the field quantities are all
independent of 𝑦-axis [2].

In general, bianisotropic medium is characterized by the
following constitutive equations, as presented in [15]:

𝐵 = [𝜇]𝐻 + ([𝜒] + 𝑗 [𝜉])√𝜇0𝜀0𝐸,𝐷 = [𝜀] 𝐸 + ([𝜒] − 𝑗 [𝜉])√𝜇0𝜀0𝐻, (1)

where 𝐸, 𝐻, 𝐷, and 𝐵 are, respectively, the electric field, the
magnetic field, the electric flux density, and the magnetic flux
density. [𝜀] and [𝜇] are, respectively, the electric permittivity
and the magnetic permeability tensors. 𝜀0 and 𝜇0 are the
free space permittivity and permeability, respectively. [𝜒] is
the nonreciprocity (Tellegen) tensor and [𝜉] is the chirality
(Pasteur) tensor. In fact, this study is based on Pasteur
medium, which is a reciprocal anisotropic chiral, (i.e., [𝜒] = 0
and [𝜉] ̸= 0). Hence, (1) becomes

𝐵 = [𝜇]𝐻 + 𝑗 [𝜉]√𝜇0𝜀0𝐸,𝐷 = [𝜀] 𝐸 − 𝑗 [𝜉]√𝜇0𝜀0𝐻, (2)

and the permittivity, permeability, and chirality tensors of the
considered medium are

[𝜀] = [[[
𝜀𝑥 0 00 𝜀𝑦 00 0 𝜀𝑧

]]] ,

[𝜇] = [[[
𝜇𝑥 0 00 𝜇𝑦 00 0 𝜇𝑧

]]] ,

[𝜉] = [[[
𝜉𝑥 0 00 𝜉𝑦 00 0 𝜉𝑧

]]] .
(3)

After substantial algebraic manipulations of Maxwell’s equa-
tions, considering the constitutive equation, we obtain the
following set of coupled differential equations of the 𝑧-
components of the electric and magnetic fields:

𝜕2𝜕𝑥2 {{{
𝐸𝑧𝐻𝑧 + ((𝜔2𝜇𝑧𝜀𝑧 + 𝛽20𝜉2𝑧) − 𝛽2){{{

𝐸𝑧𝐻𝑧
∓ 𝑗2𝜔2√𝜇0𝜀0𝜉𝑧{{{

𝜇𝑧𝐻𝑧𝜀𝑧𝐸𝑧 = 0.
(4)

The examination of these two coupled equations shows that 𝜉𝑧
is the only coupling parameter which enables the appearance
of the bifurcated modes. The cancellation of this parameter
suppresses coupling even with the presence of the other
parameters of chirality 𝜉𝑥 and 𝜉𝑦.

Let

𝐻󸀠𝑧 = √𝜇𝑧𝜀𝑧𝐻𝑧,
(𝐸𝑧 + 𝑗𝐻󸀠𝑧) = 𝐴𝑧,
(𝐸𝑧 − 𝑗𝐻󸀠𝑧) = 𝐵𝑧.

(5)

The following decoupled equations are obtained:

𝜕2𝐴𝑧𝜕𝑥2 + (𝜅2+𝑧 − 𝛽2)𝐴𝑧 = 0,
𝜕2𝐵𝑧𝜕𝑥2 + (𝜅2−𝑧 − 𝛽2) 𝐵𝑧 = 0, (6)

where 𝜅+𝑖 = (𝜔√𝜇𝑖𝜀𝑖 − 𝛽0𝜉𝑖) = 𝛽0 (√𝜇𝑖𝜀𝑖 − 𝜉𝑖) = 𝛽0𝑛+𝑖,𝜅−𝑖 = (𝜔√𝜇𝑖𝜀𝑖 + 𝛽0𝜉𝑖) = 𝛽0 (√𝜇𝑖𝜀𝑖 + 𝜉𝑖) = 𝛽0𝑛−𝑖 (7)

with 𝜉𝑖 < 0, 𝑖 = 𝑥, 𝑦, and 𝑧.𝜅±𝑖 are the right and left wave numbers. 𝑛±𝑖 are the
refractive index of RCP and LCP plane wave. 𝛽0 and 𝛽 are the
free space and medium propagation constants, respectively.

Let us take

𝑈1 = √(𝜅2+𝑧 − 𝛽2),
𝑈2 = √(𝜅2−𝑧 − 𝛽2). (8)
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Table 1: Conditions and solutions for the chiral three regions.

Cases Conditions and
velocities

Types of solutions

Fast-fast-wave region 𝑈1,2 = √(𝜅2±𝑧 − 𝛽2) 𝛽 < 𝜅−𝑧 < 𝜅+𝑧
V𝑝 > VRCP > VLCP

𝐴𝑧 = 𝐺1 cos(𝑈1𝑥) + 𝐺2 sin(𝑈1𝑥)𝐵𝑧 = 𝑀1 cos(𝑈2𝑥) + 𝑀2 sin(𝑈2𝑥)
Fast-slow-wave region

𝑈1 = √(𝜅2+𝑧 − 𝛽2)𝑈2 = √(𝛽2 − 𝜅2−𝑧) 𝜅−𝑧 < 𝛽 < 𝜅+𝑧
VLCP > V𝑝 > VRCP

𝐴𝑧 = 𝐺1 cos(𝑈1𝑥) + 𝐺2 sin(𝑈1𝑥)𝐵𝑧 = 𝑀1 cosh(𝑈2𝑥) + 𝑀2 sinh(𝑈2𝑥)
Slow-slow-wave region 𝑈1,2 = √(𝛽2 − 𝜅2±𝑧) 𝜅−𝑧 < 𝜅+𝑧 < 𝛽

VLCP > VRCP > V𝑝

𝐴𝑧 = 𝐺1 cosh (𝑈1𝑥) + 𝐺2 sinh (𝑈1𝑥)𝐵𝑧 = 𝑀1 cosh (𝑈2𝑥) + 𝑀2 sinh (𝑈2𝑥)
V𝑝 is the waveguide phase velocity; VLCP and VRCP are the LCP and RCP velocities, respectively, along 𝑧-axis. 𝐺1, 𝐺2,𝑀1, and𝑀2 are constants.

The solutions of the differential equations (6) are given in
Table 1, taking into account the three cases: fast-fast-wave,
fast-slow-wave, and slow-slow-wave regions imposed by the
chiral medium [2].

In this work, we deal only with the first case (fast-fast-
wave region):

𝐴𝑧 = 𝐺1 cos (𝑈1𝑥) + 𝐺2 sin (𝑈1𝑥) ,𝐵𝑧 = 𝑀1 cos (𝑈2𝑥) + 𝑀2 sin (𝑈2𝑥) . (9)

The longitudinal 𝐸𝑧 and transversal 𝐸𝑦 components can be
expressed as follows:

𝐸𝑧 = 12 (𝐴𝑧 + 𝐵𝑧)
= 𝐺12 cos (𝑈1𝑥) + 𝐺22 sin (𝑈1𝑥) + 𝑀12 cos (𝑈2𝑥)

+ 𝑀22 sin (𝑈2𝑥) ,
𝐸𝑦 = −12𝑐1 ⋅ 𝐺1 sin (𝑈1𝑥) + 12𝑐1 ⋅ 𝐺2 cos (𝑈1𝑥) + 12𝑐2

⋅ 𝑀1 sin (𝑈2𝑥) − 12𝑐2 ⋅ 𝑀2 cos (𝑈2𝑥)

(10)

with

𝑐1 = 𝜅+𝑥𝑈1(𝜅+𝑥𝜅+𝑦 − 𝛽2) ,
𝑐2 = 𝜅−𝑥𝑈2(𝜅−𝑥𝜅−𝑦 − 𝛽2) .

(11)

The propagation constant is supposed to be a real-valued
quantity. The boundary conditions imposed by the adopted
structure [2, 16, 17] are

𝐸𝑧 = 0 󳨀→
𝑥 = ±𝑎2 ,

𝐸𝑦 = 0 󳨀→
𝑥 = ±𝑎2 ,

(12)

where 𝑎 is the chiral material thickness.
The enforcement of these conditions leads to the follow-

ing 4 × 4 matrix system equation:

[[[[[[[[[[[[[[[[[

cos(𝑈1𝑎2 ) sin(𝑈1𝑎2 ) cos(𝑈2𝑎2 ) sin(𝑈2𝑎2 )
cos(𝑈1𝑎2 ) − sin(𝑈1𝑎2 ) cos(𝑈2𝑎2 ) − sin(𝑈2𝑎2 )

−𝑐1 sin(𝑈1𝑎2 ) 𝑐1 cos(𝑈1𝑎2 ) +𝑐2 sin(𝑈2𝑎2 ) −𝑐2 cos(𝑈2𝑎2 )
𝑐1 sin(𝑈1𝑎2 ) 𝑐1 cos(𝑈1𝑎2 ) −𝑐2 sin(𝑈2𝑎2 ) −𝑐2 cos(𝑈2𝑎2 )

]]]]]]]]]]]]]]]]]

[[[[[[

𝐺1𝐺2𝑀1𝑀2
]]]]]]

= 0. (13)
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This system has a nontrivial solution only if the following
equations are satisfied:

Δ 1,2 = ( 1𝑐1 + 1𝑐2) sin(𝑈1𝑎2 + 𝑈2𝑎2 )
± ( 1𝑐1 − 1𝑐2) sin(𝑈1𝑎2 − 𝑈2𝑎2 ) = 0. (14)

The solutions of the above equations lead to two modes: RCP
and LCP.

3. Results and Discussions

In order to investigate the propagation characteristics in
the anisotropic chiral medium, different types of chiral
medium are chosen considering various values of the physical
parameters.

3.1. Bi-Isotropic Case. In bi-isotropic case, the chirality
parameter 𝜉, permeability 𝜇, and permittivity 𝜀 are scalars;
the dispersion equation (14) becomes

Δ 1,2 = (√𝜅2+ − 𝛽2𝜅+ + √𝜅2− − 𝛽2𝜅− )
⋅ sin(√𝜅2+ − 𝛽2𝑎2 + √𝜅2− − 𝛽2𝑎2 )
± (√𝜅2+ − 𝛽2𝜅+ − √𝜅2− − 𝛽2𝜅− )
⋅ sin(√𝜅2+ − 𝛽2𝑎2 − √𝜅2− − 𝛽2𝑎2 ) = 0.

(15)

The cut-off frequencies are

𝑓𝑐 = 𝑛2𝑎 ⋅ √𝜀𝜇 (16)

and we obtain exactly the same dispersion equation and cut-
off frequencies as reported in [2], where Ω = 𝜔 ⋅ 𝑎√𝜀0𝜇0 ⇒Ω/2𝜋 = 𝑓 ⋅ 𝑎√𝜀0𝜇0 is the normalized frequency.

Our results for the simple case (chiral isotropic medium)
shown in Figure 2 are in good agreement with those pre-
sented in [2]; this confirms our calculations. The bifurcated
modes (LCP and RCP) are well distinguished and start from
the same cut-off frequencies; this is an essential feature of
chiral material.

As illustrated in Figure 3, the effect of the chirality on the
RCP and LCP modes of the first mode is quite different. For
the first one (Figure 3(a)), the RCP mode decreases keeping
the same shape until the condition √𝜇𝑟𝜀𝑟 > |𝜉| is no more
satisfied for 𝜉 ≥ 3 ∗ 𝜉𝑝 where the mode becomes evanescent
(𝛼RCP = 𝑗𝛽RCP), whereas, in the second mode (Figure 3(b)),
the LCP one becomes quasi-constant with the increase of 𝜉
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Figure 2: RCP and LCP propagation constants in a parallel plate
chirowaveguide in fast-fast-wave region with 𝜀 = 𝜀0, 𝜇 = 𝜇0, and𝜉 = −0.337.
Table 2: Three cases of cut-off frequencies values according to
conditions on physical parameters.

Cases Conditions on physical
parameters Cut-off frequency value

First
case

𝜉𝑧√𝜇𝑟𝑦𝜀𝑟𝑦 = 𝜉𝑦√𝜇𝑟𝑧𝜀𝑟𝑧√𝜇𝑟𝑧𝜀𝑟𝑧 ̸= |𝜉𝑧| 𝑓𝑐 = 𝑛2√𝜇𝑧𝜀𝑧𝑎
Second
case

√𝜇𝑟𝑦𝜀𝑟𝑦√𝜇𝑟𝑧𝜀𝑧 = 𝜉𝑧𝜉𝑦√𝜇𝑟𝑧𝜀𝑟𝑧 ̸= |𝜉𝑧| 𝑓𝑐 = 𝑛2√𝜀0𝜇0𝜉𝑧𝑎
Third
case

𝜉𝑧√𝜇𝑟𝑦𝜀𝑟𝑦 ̸= 𝜉𝑦√𝜇𝑟𝑧𝜀𝑧√𝜇𝑟𝑦𝜀𝑟𝑦√𝜇𝑟𝑧𝜀𝑧 ̸= 𝜉𝑧𝜉𝑦√𝜇𝑟𝑧𝜀𝑟𝑧 ̸= 󵄨󵄨󵄨󵄨𝜉𝑧󵄨󵄨󵄨󵄨

𝑓𝑐 = 𝑛2√𝜇𝑧𝜀𝑧𝑎 =
𝑛󸀠2√𝜀0𝜇0𝜉𝑧𝑎 with𝑛𝑛󸀠 = √𝜇𝑟𝑧𝜀𝑟𝑧𝜉𝑧

and changes the sign (𝛽LCP < 0) for 𝜉 ≥ 3 ∗ 𝜉𝑝. This can be
explained by the curve and sign of 𝜅+ and 𝜅− shown in Figures
3(c) and 3(d).

It is worth noting that for high values of 𝜉 and for this
condition√𝜇𝑟𝜀𝑟 < |𝜉|, the chiral medium behaves as a
metamaterial for which the first mode becomes evanescent
and the second becomes a backward wave.

3.2. Bianisotropic Case. Thechirality parameter 𝜉, permeabil-
ity 𝜇, and permittivity 𝜀 in this case are tensors. Original
results concerning the expressions of cut-off frequencies
have been achieved. The particularity of these results is the
possibility of controlling the specific cut-off frequencies by
the choice of the adequate physical parameters. For each case,
the specific cut-off frequency as function of the constitutive
parameters is clearly shown in Table 2.
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Figure 3: Propagation constants and wave numbers (𝜅+, 𝜅−) in a parallel plate chirowaveguide in fast-fast-wave region with 𝜀 = 𝜀0, 𝜇 = 𝜇0,
and 𝜉 varies. (a) RCP plane waves, (b) LCP plane waves, (c) positive wave number (𝜅+), and (d) negative wave number (𝜅−).

Our cut-off frequency calculation of the first case results
in an expression function of the optic axes components 𝜀𝑧
and 𝜇𝑧, which coincides with the conventional bi-isotropic
formula [2], and it is obtained from bianisotropic one, when𝜉𝑧√𝜇𝑟𝑦𝜀𝑟𝑦 = 𝜉𝑦√𝜇𝑟𝑧𝜀𝑟𝑧 and √𝜇𝑟𝑧𝜀𝑟𝑧 ̸= |𝜉𝑧|. The second
case results in a new and interesting expression of cut-
off frequency function only of the chirality parameter 𝜉𝑧,
this latter cancels the direct effect of the two parameters
(permeability 𝜇𝑧 and permittivity 𝜀𝑧) on the cut-off frequency
value. The chiral parameter remains the only influencing
factor. Therefore, it is easier to have much higher cut-off
frequencies with low chiral parameter, leading to important

and interesting results that can be used in designing optical
devices such as high-pass filters. The third case is a combina-
tion of the other two cases.

Considering the conventional cut-off frequency formula
obtained in the bianisotropic case (row 1 of Table 2), the effect
of chirality on the propagation constant in the fast-fast-wave
region is being treated through the three following exam-
ples.

(a) First Example. Taking [𝜀𝑟] = diag[1, 2, 2], [𝜇𝑟] =
diag[1, 1, 1] and [𝜉] = diag[−0.11, −0.11, −0.11], the condi-
tion√𝜇𝑟𝑧𝜀𝑟𝑧 > |𝜉𝑧| is always satisfied.
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Figure 4: RCP and LCP propagation constants in the chirowaveguide. 𝜀𝑟𝑥 = 1, 𝜀𝑟𝑦 = 𝜀𝑟𝑧 = 2, 𝜇𝑟𝑥 = 𝜇𝑟𝑦 = 𝜇𝑟𝑧 = 1, and 𝜉𝑥 = 𝜉𝑦 = 𝜉𝑧 = −0.11.
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Figure 5: (a) RCP and LCP propagation constants in the chirowaveguide. (b) Zoom part of (a). 𝜀𝑟𝑥 = 1, 𝜀𝑟𝑦 = 0.015, 𝜀𝑟𝑧 = 0.15, 𝜇𝑟𝑥 = 1,𝜇𝑟𝑦 = 0.015, 𝜇𝑟𝑧 = 0.15, 𝜉𝑥 = 𝜉𝑦 = −0.15, and 𝜉𝑧 = −1.5.
(b) Second Example. Taking [𝜀𝑟] = diag[1, 0.15/10, 0.15],[𝜇𝑟] = diag[1, 0.15/10, 0.15], and [𝜉] = diag[−0.15, −0.15,−10 ∗ 0.15], we have √𝜇𝑟𝑧𝜀𝑟𝑧 < |𝜉𝑧| so that √𝜇𝑟𝑦𝜀𝑟𝑦 < |𝜉𝑦|,
because 𝜉𝑧√𝜇𝑟𝑦𝜀𝑟𝑦 = 𝜉𝑦√𝜇𝑟𝑧𝜀𝑟𝑧.
(c) Third Example. Taking [𝜀𝑟] = diag[0.15, 1, 1], [𝜇𝑟] =
diag[0.15, 1, 1], and [𝜉] = diag[−1.5, −0.15, −0.15], with√𝜇𝑟𝑥𝜀𝑟𝑥 < |𝜉𝑥|, the condition √𝜇𝑟𝑧𝜀𝑟𝑧 > |𝜉𝑧| is always
satisfied.

Figure 4 shows a curve of conventional RCP and LCP
propagation constants even with different values of physical
parameters tensors. In Figure 5, we notice that both modes

behave differently even for this case. The LCP appears earlier
as a backward mode (𝛽LCP < 0) with RCP as an evanescent
mode (𝛼RCP ̸= 0, 𝛽RCP = 0, and 𝛼RCP represent the losses);
then, the latter turns itself into a backward mode (𝛼RCP → 0
and 𝛽RCP < 0). So the phase velocities of both backward
modes (RCP and LCP) are negative (i.e., 𝜔/𝛽LCP < 0 and𝜔/𝛽RCP < 0). This means that backward wave propagation
or a negative refraction index (metamaterial medium) can be
achieved using bianisotropic chiral medium with √𝜇𝑟𝑧𝜀𝑟𝑧 <|𝜉𝑧|. We notice that this result goes with the result of isotropic
case presented in [18]. Figure 6 confirms that the condition√𝜇𝑟𝑥𝜀𝑟𝑥 < |𝜉𝑥| has no impact on the propagation nature
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Figure 6: RCP and LCP propagation constants in the chirowaveg-
uide. 𝜀𝑟𝑥 = 0.15, 𝜀𝑟𝑦 = 𝜀𝑟𝑧 = 1, 𝜇𝑟𝑥 = 0.15, 𝜇𝑟𝑦 = 𝜇𝑟𝑧 = 1, 𝜉𝑥 = −1.5,
and 𝜉𝑦 = 𝜉𝑧 = −0.15.
(appearance of the backward modes). Consequently, 𝜉𝑧 is
the only influencing parameter on the nature of propagating
modes that allows switching from anisotropic chiral medium
to metamaterial.

4. Conclusion

This study deals with different cases of wave propagation
in parallel plate waveguide filled with anisotropic chiral
medium, where three cases of study are considered using spe-
cific physical parameters. Original results of these cases have
been obtained from the examination of cut-off frequencies.
The first originality of this research work is the consideration
of the three constitutive biaxial tensors parameters. This case
of anisotropy has led to original and interesting results, where
it is possible to control the specific cut-off frequencies by
the choice of the adequate physical parameters. The second
originality is the new calculated expression of the cut-off
frequency versus the chirality in some special case.This result
will undoubtedly contribute to the design of optical devices
such as high-pass filters, since the effect of the chirality
cancels the direct effect of the electric permittivity and
magnetic permeability on the cut-off frequency expression.
The third originality is the possibility of switching from
the conventional anisotropic chiral medium to left-handed
medium by a simple choice of the physical parameters
satisfying the conditions√𝜇𝑟𝑧𝜀𝑟𝑧 < |𝜉𝑧|, and 𝜉𝑧 is the
only influencing parameter on the nature of propagating
modes, the coupling parameter, and allows the switch to
metamaterial.
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