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We consider a stochastic partial differential equation (SPDE) driven by a Lévy white noise, with Lipschitz multiplicative term 𝜎. We
prove that, under some conditions, this equation has a unique random field solution.These conditions are verified by the stochastic
heat and wave equations. We introduce the basic elements of Malliavin calculus with respect to the compensated Poisson random
measure associated with the Lévy white noise. If 𝜎 is affine, we prove that the solution is Malliavin differentiable and its Malliavin
derivative satisfies a stochastic integral equation.

1. Introduction

In this article, we consider the stochastic partial differential
equation (SPDE):

L𝑢 (𝑡, 𝑥) = 𝜎 (𝑢 (𝑡, 𝑥)) 𝐿̇ (𝑡, 𝑥) , 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ R, (1)

with some deterministic initial conditions, where L is a
second-order differential operator on [0, 𝑇]×R, 𝐿̇ denotes the
formal derivative of the Lévy white noise 𝐿 (defined below),
and the function 𝜎 : R → R is Lipschitz continuous.

A process 𝑢 = {𝑢(𝑡, 𝑥); 𝑡 ∈ [0, 𝑇], 𝑥 ∈ R} is called
a (mild) solution of (1) if 𝑢 is predictable and satisfies the
following integral equation:

𝑢 (𝑡, 𝑥)
= 𝑤 (𝑡, 𝑥)

+ ∫𝑡

0
∫
R

𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝜎 (𝑢 (𝑠, 𝑦)) 𝐿 (𝑑𝑠, 𝑑𝑦) ,
(2)

where 𝑤 is the solution of the deterministic equation L𝑢 =0 with the same initial conditions as (1) and 𝐺 is the Green
function of the operatorL.

The study of SPDEs with Gaussian noise is a well-
developed area of stochastic analysis, and the behaviour of

random field solutions of such equations is well understood.
We refer the reader to [1] for the original lecture notes which
led to the development of this area and to [2, 3] for some
recent advances. In particular, the probability laws of these
solutions can be analyzed using techniques from Malliavin
calculus, as described in [4, 5].

On the other hand, there is a large literature dedicated
to the study of stochastic differential equations (SDE) with
Lévy noise, the monograph [6] containing a comprehensive
account on this topic. One can develop also a Malliavin
calculus for Lévy processes with finite variance, using an
analogue of the Wiener chaos representation with respect
to underlying Poisson random measure of the Lévy process.
This method was developed in [7] with the same purpose of
analyzing the probability law of the solution of an SDE driven
by a finite variance Lévy noise. More recently, Malliavin
calculus for Lévy processes with finite variance has been used
in financial mathematics, the monograph [8] being a very
readable introduction to this topic.

There are two approaches to SPDEs in the literature. One
is the randomfield approach which originates in JohnWalsh’s
lecture notes [1]. When using this approach, the solution is
viewed as a real-valued process which is indexed by time
and space. The other approach is the infinite-dimensional
approach, due to Da Prato and Zabczyk [9], according to
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which the solution is a process indexed by time only, which
takes values in an infinite-dimensional Hilbert space. It is not
always possible to compare the solutions obtained using the
two approaches (see [10] for several results in this direction).
SPDEs with Lévy noise were studied in the monograph
[11], using the infinite-dimensional approach. In the present
article, we use the random field approach for examining an
SPDE driven by the finite variance Lévy noise introduced in
[12], with the goal of studying the Malliavin differentiability
of the solution. As mentioned above, this study can be useful
for analyzing the probability law of the solution.We postpone
this problem for future work.

We begin by recalling from [12] the construction of the
Lévy white noise 𝐿 driving (1).We consider a Poisson random
measure (PRM)𝑁 on the space𝑈 = [0, 𝑇]×R×R0 of intensity𝜇(𝑑𝑡, 𝑑𝑥, 𝑑𝑧) = 𝑑𝑡𝑑𝑥](𝑑𝑧) defined on a complete probability
space (Ω,F, 𝑃), where ] is a Lévy measure on R0 = R \ {0};
that is, ] satisfies

∫
R0

(1 ∧ |𝑧|2) ] (𝑑𝑧) < ∞. (3)

In addition,we assume that ] satisfies the following condition:

V fl ∫
R0

𝑧2] (𝑑𝑧) < ∞. (4)

We denote by 𝑁̂ the compensated PRM defined by𝑁̂(𝐴) = 𝑁(𝐴) − 𝜇(𝐴) for any 𝐴 ∈ U with 𝜇(𝐴) < ∞, where
U is the class of Borel sets in 𝑈. We denote byF𝑡 the 𝜎-field
generated by 𝑁([0, 𝑠] × 𝐵 × Γ) for all 𝑠 ∈ [0, 𝑡], 𝐵 ∈ B𝑏(R),
and Γ ∈ B𝑏(R0). We denote by B𝑏(R) the class of bounded
Borel sets in R and by B𝑏(R0) the class of Borel sets in R0

which are bounded away from 0.
A Lévy white noisewith intensity measure ] is a collection𝐿 = {𝐿 𝑡(𝐵); 𝑡 ∈ [0, 𝑇], 𝐵 ∈ B𝑏(R)} of zero-mean square-

integrable random variables defined by

𝐿 𝑡 (𝐵) = ∫𝑡

0
∫
𝐵
∫
R0

𝑧𝑁̂ (𝑑𝑠, 𝑑𝑥, 𝑑𝑧) . (5)

These variables have the following properties:

(i) 𝐿0(𝐵) = 0 a.s. for all 𝐵 ∈ B𝑏(R).
(ii) 𝐿 𝑡(𝐵1), . . . , 𝐿 𝑡(𝐵𝑘) are independent for any 𝑡 > 0 and

for any disjoint sets 𝐵1, . . . , 𝐵𝑘 ∈ B𝑏(R).
(iii) For any 0 < 𝑠 ≤ 𝑡 and for any 𝐵 ∈ B𝑏(R), 𝐿 𝑡(𝐵) −𝐿 𝑠(𝐵) is independent of F𝑠 and has characteristic

function

𝐸 (𝑒𝑖𝑢(𝐿𝑡(𝐵)−𝐿𝑠(𝐵)))
= exp{(𝑡 − 𝑠) |𝐵| ∫

R0

(𝑒𝑖𝑢𝑧 − 1 − 𝑖𝑢𝑧) ] (𝑑𝑧)} ,
𝑢 ∈ R.

(6)

Wedenote byF𝐿
𝑡 the𝜎-field generated by𝐿(𝑠) for all 𝑠 ∈ [0, 𝑡].

For any ℎ ∈ 𝐿2([0, 𝑇] × R), we define the stochastic integral
of ℎ with respect to 𝐿:

𝐿 (ℎ) = ∫𝑇

0
∫
R

ℎ (𝑡, 𝑥) 𝐿 (𝑑𝑡, 𝑑𝑥)
= ∫𝑇

0
∫
R

∫
R0

ℎ (𝑡, 𝑥) 𝑧𝑁̂ (𝑑𝑡, 𝑑𝑥, 𝑑𝑧) .
(7)

Using the same method as in Itô’s classical theory, this
integral can be extended to random integrands, that is, to the
class of predictable processes 𝑋 = {𝑋(𝑡, 𝑥); 𝑡 ∈ [0, 𝑇], 𝑥 ∈
R}, such that 𝐸∫𝑇

0
∫
R
|𝑋(𝑡, 𝑥)|2𝑑𝑥 𝑑𝑡 < ∞. The integral has

the following isometry property:

𝐸 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑇

0
∫
R

𝑋 (𝑡, 𝑥) 𝐿 (𝑑𝑡, 𝑑𝑥)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

= V𝐸∫𝑇

0
∫
R
|𝑋 (𝑡, 𝑥)|2 𝑑𝑥 𝑑𝑡.

(8)

Recall that a process 𝑋 = {𝑋(𝑡, 𝑥); 𝑡 ≥ 0, 𝑥 ∈ R𝑑} is
predictable if it is measurable with respect to the predictable𝜎-field on Ω × R+ × R, that is, the 𝜎-field generated by
elementary processes of the form

𝑋(𝜔, 𝑡, 𝑥) = 𝑌 (𝜔) 1(𝑎,𝑏] (𝑡) 1𝐴 (𝑥) ,
𝜔 ∈ Ω, 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ R, (9)

where 0 < 𝑎 < 𝑏,𝑌 is a bounded andF𝐿
𝑎-measurable random

variable, and 𝐴 ∈ B𝑏(R).
This article is organized as follows. In Section 2, we

introduce the basic elements of Malliavin calculus with
respect to the compensated Poisson random measure 𝑁̂. In
Section 3, we prove that, under a certain hypothesis, (1) has
a unique solution. This hypothesis is verified in the case of
the wave and heat equations. In Section 4, we examine the
Malliavin differentiability of the solution, in the case when
the function 𝜎 is affine. Finally, in the Appendix, we include
a version of Gronwall’s lemma which is needed in the sequel.

2. Malliavin Calculus on the Poisson Space

In this section, we introduce the basic ingredients of Malli-
avin calculus with respect to 𝑁̂, following very closely the
approach presented in Chapters 10–12 of [8]. The difference
compared to [8] is that our parameter space 𝑈 has variables(𝑡, 𝑥, 𝑧) instead of (𝑡, 𝑧). For the sake of brevity, we do not
include the proofs of the results presented in this section.
These proofs can be found in Chapter 6 of the doctoral thesis
[13] of the second author.

We set H = 𝐿2(𝑈,U, 𝜇) and H⊗𝑛 = 𝐿2(𝑈𝑛,U𝑛, 𝜇𝑛). We
denote byH⊙ the set of all symmetric functions𝑓 ∈ H⊗𝑛.We
denote by HC,H⊗𝑛

C ,H⊙𝑛
C the analogous spaces of C-valued

functions.
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Let 𝑆𝑛 = {(𝑢1, . . . , 𝑢𝑛) ∈ 𝑈𝑛; 𝑢𝑖 = (𝑡𝑖, 𝑥𝑖, 𝑧𝑖) with 𝑡1 <⋅ ⋅ ⋅ < 𝑡𝑛}. For any measurable function 𝑓 : 𝑆𝑛 → R with

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(𝑆𝑛) fl ∫
𝑆𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑢1, . . . , 𝑢𝑛)󵄨󵄨󵄨󵄨2 𝑑𝜇𝑛 (𝑢1, . . . , 𝑢𝑛)
< ∞,

(10)

we define the 𝑛-fold iterated integral of 𝑓with respect to 𝑁̂ by

𝐽𝑛 (𝑓)
= ∫𝑇

0
∫
R

∫
R0

. . . (∫𝑡2−

0
∫
R

∫
R0

𝑓 (𝑢1, . . . , 𝑢𝑛) 𝑁̂ (𝑑𝑢1))
. . . 𝑁̂ (𝑑𝑢𝑛) ,

(11)

where 𝑢𝑖 = (𝑡𝑖, 𝑥𝑖, 𝑧𝑖). Then, 𝐸[𝐽𝑛(𝑓)𝐽𝑚(𝑔)] = 0 for all 𝑛 ̸= 𝑚
and 𝐸|𝐽𝑛(𝑓)|2 = ‖𝑓‖2𝐿2(𝑆𝑛).

For any 𝑓 ∈ H⊙𝑛, we defined the multiple integral of𝑓 with respect to 𝑁̂ by 𝐼𝑛(𝑓) = 𝑛!𝐽𝑛(𝑓). It follows that𝐸[𝐼𝑛(𝑓)𝐼𝑚(𝑔)] = 0 for all 𝑛 ̸= 𝑚 and

𝐸 󵄨󵄨󵄨󵄨𝐼𝑛 (𝑓)󵄨󵄨󵄨󵄨2 = 𝑛! 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2H⊗𝑛 ∀𝑓 ∈ H
⊙𝑛. (12)

If 𝑓 ∈ H⊙𝑛
C with 𝑓 = 𝑔 + 𝑖ℎ, we define 𝐼𝑛(𝑓) = 𝐼𝑛(𝑔) + 𝑖𝐼𝑛(ℎ).

Let 𝐿2
C(Ω) be the set of C-valued square-integrable

random variables defined on (Ω,F, 𝑃). ByTheorem 7 of [14],
any F𝐿

𝑇-measurable random variable 𝐹 ∈ 𝐿2
C(Ω) admits the

chaos expansion

𝐹 = ∑
𝑛≥0

𝐼𝑛 (𝑓𝑛) in 𝐿2
C (Ω) , (13)

where 𝑓𝑛 ∈ H⊙𝑛 for all 𝑛 ≥ 1 and 𝑓0 = 𝐸(𝐹).
The chaos expansion plays a crucial role in developing

the Malliavin calculus with respect to 𝑁̂. In particular, the
Skorohod integrals with respect to 𝑁̂ and 𝐿 are defined as
follows.

Definition 1. (a) Let 𝑋 = {𝑋(𝑢); 𝑢 ∈ 𝑈} be a square-
integrable process such that 𝑋(𝑢) is F𝐿

𝑇-measurable for any𝑢 ∈ 𝑈. For each 𝑢 ∈ 𝑈, let 𝑋(𝑢) = ∑𝑛≥0 𝐼𝑛(𝑓𝑛(⋅, 𝑢)) be the
chaos expansion of 𝑋(𝑢), with 𝑓𝑛(⋅, 𝑢) ∈ H⊙𝑛. One denotes
by 𝑓𝑛(𝑢1, . . . , 𝑢𝑛, 𝑢) the symmetrization of 𝑓𝑛 with respect to
all 𝑛+1 variables. One says that𝑋 is Skorohod integrablewith
respect to 𝑁̂ (and one writes𝑋 ∈ Dom(𝛿)) if

∑
𝑛≥0

𝐸 󵄨󵄨󵄨󵄨󵄨𝐼𝑛+1 (𝑓𝑛)󵄨󵄨󵄨󵄨󵄨2 = ∑
𝑛≥0

(𝑛 + 1)! 󵄩󵄩󵄩󵄩󵄩𝑓𝑛

󵄩󵄩󵄩󵄩󵄩2H⊙(𝑛+1) < ∞. (14)

In this case, one defines the Skorohod integral of 𝑋 with
respect to 𝑁̂ by

𝛿 (𝑋) = ∫𝑇

0
∫
R

∫
R0

𝑋 (𝑡, 𝑥, 𝑧) 𝑁̂ (𝛿𝑡, 𝛿𝑥, 𝛿𝑧)
fl ∑

𝑛≥0

𝐼𝑛+1 (𝑓𝑛) .
(15)

(b) Let 𝑌 = {𝑌(𝑡, 𝑥); 𝑡 ∈ [0, 𝑇], 𝑥 ∈ R} be a square-
integrable process such that 𝑌(𝑡, 𝑥) isF𝐿

𝑇-measurable for any𝑡 ∈ [0, 𝑇] and 𝑥 ∈ R. One says that 𝑌 is Skorohod integrable
with respect to 𝐿 (and one writes𝑌 ∈ Dom(𝛿𝐿)) if the process{𝑌(𝑡, 𝑥)𝑧; (𝑡, 𝑥, 𝑧) ∈ 𝑈} is Skorohod integrable with respect
to 𝑁̂. In this case, one defines the Skorohod integral of 𝑌 with
respect to 𝐿 by

𝛿𝐿 (𝑌) = ∫𝑇

0
∫
R

𝑌 (𝑡, 𝑥) 𝐿 (𝛿𝑡, 𝛿𝑥)
fl ∫𝑇

0
∫
R

∫
R0

𝑌 (𝑡, 𝑥) 𝑧𝑁̂ (𝛿𝑡, 𝛿𝑥, 𝛿𝑧) .
(16)

The following result shows that the Skorohod integral can
be viewed as an extension of the Itô integral.

Theorem 2. (a) If 𝑋 = {𝑋(𝑢); (𝑢) ∈ 𝑈} is a predictable
process such that 𝐸‖𝑋‖2𝑈 < ∞, then 𝑋 is Skorohod integrable
with respect to 𝑁̂ and

∫𝑇

0
∫
R

∫
R0

𝑋 (𝑡, 𝑥, 𝑧) 𝑁̂ (𝛿𝑡, 𝛿𝑥, 𝛿𝑧)
= ∫𝑇

0
∫
R

∫
R0

𝑋 (𝑡, 𝑥, 𝑧) 𝑁̂ (𝑑𝑡, 𝑑𝑥, 𝑑𝑧) .
(17)

(b) If 𝑌 = {𝑌(𝑡, 𝑥); 𝑡 ∈ [0, 𝑇], 𝑥 ∈ R} is a predictable
process such that 𝐸∫𝑇

0
∫
R
|𝑌(𝑡, 𝑥)|2𝑑𝑥 𝑑𝑡 < ∞, then 𝑌 is

Skorohod integrable with respect to 𝐿 and

∫𝑇

0
∫
R

𝑌 (𝑡, 𝑥) 𝐿 (𝛿𝑡, 𝛿𝑥) = ∫𝑇

0
∫
R

𝑌 (𝑡, 𝑥) 𝐿 (𝑑𝑡, 𝑑𝑥) . (18)

We now introduce the definition of the Malliavin deriva-
tive.

Definition 3. Let 𝐹 ∈ 𝐿2(Ω) be an F𝐿
𝑇-measurable random

variable with the chaos expansion 𝐹 = ∑𝑛≥0 𝐼𝑛(𝑓𝑛) with 𝑓𝑛 ∈
H⊙𝑛. One says that 𝐹 is Malliavin differentiable with respect
to 𝑁̂ if

∑
𝑛≥1

𝑛𝑛! 󵄩󵄩󵄩󵄩𝑓𝑛
󵄩󵄩󵄩󵄩2H⊗𝑛 < ∞. (19)

In this case, one defines the Malliavin derivative of 𝐹 with
respect to 𝑁̂ by

𝐷𝑢𝐹 = ∑
𝑛≥1

𝑛𝐼𝑛−1 (𝑓𝑛 (⋅, 𝑢)) , 𝑢 ∈ 𝑈. (20)

One denotes by D1,2 the space of Malliavin differentiable
random variables with respect to 𝑁̂.

Note that 𝐸‖𝐷𝐹‖2H = ∑𝑛≥1 𝑛𝑛!‖𝑓𝑛‖2H⊗𝑛 < ∞.

Theorem4 (closability ofMalliavin derivative). Let (𝐹𝑛)𝑛≥1 ⊂
D1,2 and 𝐹 ∈ 𝐿2(Ω) such that 𝐹𝑛 → 𝐹 in 𝐿2(Ω) and (𝐷𝐹𝑛)𝑛≥1
converges in 𝐿2(Ω;H). Then, 𝐹 ∈ D1,2 and 𝐷𝐹𝑛 → 𝐷𝐹 in𝐿2(Ω;H).
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Typical examples ofMalliavin differentiable random vari-
ables are exponentials of stochastic integrals: for any ℎ ∈𝐿2([0, 𝑇] ×R),

𝐷𝑡,𝑥,𝑧 (𝑒𝐿(ℎ)) = 𝑒𝐿(ℎ) (𝑒ℎ(𝑡,𝑥)𝑧 − 1) . (21)

Moreover, the set D1,2
E

of linear combinations of random
variables of the form 𝑒𝐿(ℎ) with ℎ ∈ 𝐿2([0, 𝑇] × R) is dense
in D1,2.

The following result shows that the Malliavin derivative
is a difference operator with respect to 𝑁̂, not a differential
operator.

Theorem 5 (chain rule). For any 𝐹 ∈ D1,2 and any continuous
function 𝑔 : R → R such that 𝑔(𝐹) ∈ 𝐿2(Ω) and 𝑔(𝐹 + 𝐷𝐹) −𝑔(𝐹) ∈ 𝐿2(Ω;H), 𝑔(𝐹) ∈ D1,2 and

𝐷𝑔 (𝐹) = 𝑔 (𝐹 + 𝐷𝐹) − 𝑔 (𝐹) in 𝐿2 (Ω;H) . (22)

Similar to the Gaussian case, we have the following
results.

Theorem 6 (duality formula). If 𝐹 ∈ D1,2 and 𝑋 ∈ Dom(𝛿),
then

𝐸[𝐹∫𝑇

0
∫
R

∫
R0

𝑋(𝑡, 𝑥, 𝑧) 𝑁̂ (𝛿𝑡, 𝛿𝑥, 𝛿𝑧)]
= 𝐸 [∫𝑇

0
∫
R

∫
R0

𝑋(𝑡, 𝑥, 𝑧)𝐷𝑡,𝑥,𝑧𝐹] (𝑑𝑧) 𝑑𝑥 𝑑𝑡] .
(23)

Theorem 7 (fundamental theorem of calculus). Let 𝑋 ={𝑋(𝑠, 𝑦, 𝜁); 𝑠 ∈ [0, 𝑇], 𝑦 ∈ R, 𝜁 ∈ R0} be a process which
satisfies the following conditions:

(i) 𝑋(𝑠, 𝑦, 𝜁) ∈ D1,2 for any (𝑠, 𝑦, 𝜁) ∈ 𝑈.
(ii) 𝐸∫𝑇

0
∫
R
∫
R0

|𝑋(𝑠, 𝑦, 𝜁)|2](𝑑𝑧)𝑑𝑦 𝑑𝑠 < ∞.

(iii) {𝐷𝑡,𝑥,𝑧𝑋(𝑠, 𝑦, 𝜁); (𝑠, 𝑦, 𝜁) ∈ 𝑈} ∈ Dom(𝛿) for any(𝑡, 𝑥, 𝑧) ∈ 𝑈.
(iv) {𝛿(𝐷𝑡,𝑥,𝑧𝑋); (𝑡, 𝑥, 𝑧) ∈ 𝑈} ∈ 𝐿2(Ω;H).
Then, 𝑋 ∈ Dom(𝛿), 𝛿(𝑋) ∈ D1,2 and 𝐷[𝛿(𝑋)] = 𝑋 +𝛿(𝐷𝑋); that is,

𝐷𝑡,𝑥,𝑧 (∫𝑇

0
∫
R

∫
R0

𝑋(𝑠, 𝑦, 𝜁) 𝑁̂ (𝛿𝑠, 𝛿𝑦, 𝛿𝜁))
= 𝑋 (𝑡, 𝑥, 𝑧)

+ ∫𝑇

0
∫
R

∫
R0

𝐷𝑡,𝑥,𝑧𝑋(𝑠, 𝑦, 𝜁) 𝑁̂ (𝛿𝑠, 𝛿𝑦, 𝛿𝜁)
in 𝐿2 (Ω;H) .

(24)

As an immediate consequence of the previous theorem,
we obtain the following result.

Theorem 8. Let 𝑌 = {𝑌(𝑠, 𝑦); 𝑠 ∈ [0, 𝑇], 𝑦 ∈ R} be a process
which satisfies the following conditions:

(i) 𝑌(𝑠, 𝑦) ∈ D1,2 for all 𝑠 ∈ [0, 𝑇] and 𝑦 ∈ R.

(ii) 𝐸∫𝑇

0
∫
R
|𝑌(𝑠, 𝑦)|2𝑑𝑦𝑑𝑠 < ∞.

(iii) {𝐷𝑡,𝑥,𝑧𝑌(𝑠, 𝑦); 𝑠 ∈ [0, 𝑇], 𝑦 ∈ R} ∈ Dom(𝛿𝐿) for any(𝑡, 𝑥, 𝑧) ∈ 𝑈.
(iv) 𝐸∫𝑇

0
∫
R
∫
R0

| ∫𝑇

0
∫
R
𝐷𝑡,𝑥,𝑧𝑌(𝑠, 𝑦)𝐿(𝛿𝑠, 𝛿𝑦)|2](𝑑𝑧)𝑑𝑥 𝑑𝑡< ∞.

Then, 𝑌 ∈ Dom(𝛿𝐿), 𝛿𝐿(𝑌) ∈ D1,2 and the following relation
holds in 𝐿2(Ω;H):

𝐷𝑡,𝑥,𝑧 (𝛿𝐿 (𝑌))
= 𝑌 (𝑡, 𝑥) 𝑧 + ∫𝑇

0
∫
R

∫
R0

𝐷𝑡,𝑥,𝑧𝑌 (𝑠, 𝑦) 𝐿 (𝛿𝑠, 𝛿𝑦) . (25)

3. Existence of Solution

In this section, we show that (1) has a unique solution.
We recall that 𝑤 is the solution of the homogeneous

equationL𝑢 = 0 with the same initial conditions as (1), and𝐺 is the Green function of the operator L on R+ × R. We
assume that, for any 𝑡 ∈ [0, 𝑇], 𝐺(𝑡, ⋅) ∈ 𝐿1(R) and we denote
byF𝐺(𝑡, ⋅) its Fourier transform:

F𝐺 (𝑡, ⋅) (𝜉) = ∫
R

𝑒−𝑖𝜉𝑥𝐺 (𝑡, 𝑥) 𝑑𝑥. (26)

We suppose that the following hypotheses hold.

Hypothesis H1. 𝑤 is continuous and uniformly bounded on[0, 𝑇] ×R.

Hypothesis H2. (a) ∫𝑇

0
∫
R
𝐺2(𝑡, 𝑥)𝑑𝑥 𝑑𝑡 < ∞; (b) the function

𝑡 󳨃→ F𝐺(𝑡, ⋅)(𝜉) is continuous on [0, 𝑇], for any 𝜉 ∈ R𝑑; (c)
there exist 𝜀 > 0 and a nonnegative function 𝑘𝑡(⋅) such that

󵄨󵄨󵄨󵄨F𝐺 (𝑡 + ℎ, ⋅) (𝜉) −F𝐺 (𝑡, ⋅) (𝜉)󵄨󵄨󵄨󵄨 ≤ 𝑘𝑡 (𝜉) (27)

for any 𝑡 ∈ [0, 𝑇] and ℎ ∈ [0, 𝜀], and ∫𝑇

0
∫
R
|𝑘𝑡(𝜉)|2𝑑𝜉 𝑑𝑡 < ∞.

Since 𝜎 is a Lipschitz continuous function, there exists a
constant 𝐶𝜎 > 0 such that, for any 𝑥, 𝑦 ∈ R,

󵄨󵄨󵄨󵄨𝜎 (𝑥) − 𝜎 (𝑦)󵄨󵄨󵄨󵄨 ≤ 𝐶𝜎
󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 . (28)

In particular, for any 𝑥 ∈ R,

|𝜎 (𝑥)| ≤ 𝐷𝜎 (1 + |𝑥|) , (29)

where𝐷𝜎 = max{𝐶𝜎, |𝜎(0)|}.
The following theorem is an extension ofTheorem 1.1.(a)

of [15] to an arbitrary operatorL.

Theorem 9. Equation (1) has a unique solution 𝑢 = {𝑢(𝑡, 𝑥);𝑡 ∈ [0, 𝑇], 𝑥 ∈ R} which is 𝐿2(Ω)-continuous and satisfies
sup

(𝑡,𝑥)∈[0,𝑇]×R

𝐸 |𝑢 (𝑡, 𝑥)|2 < ∞. (30)
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Proof.

Existence. We use the same argument as in the proof of
Theorem 13 of [16]. We denote by (𝑢𝑛)𝑛≥0 the sequence of
Picard iterations defined by 𝑢0(𝑡, 𝑥) = 𝑤(𝑡, 𝑥) and
𝑢𝑛+1 (𝑡, 𝑥)

= 𝑤 (𝑡, 𝑥)
+ ∫𝑡

0
∫
R

𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝜎 (𝑢𝑛 (𝑠, 𝑦)) 𝐿 (𝑑𝑠, 𝑑𝑦) ,
𝑛 ≥ 0.

(31)

By induction on 𝑛, it can be proved that the following
properties hold:

(P)

(i) 𝑢𝑛(𝑡, 𝑥) is well defined for any (𝑡, 𝑥) ∈ [0, 𝑇]×R.
(ii) 𝐾𝑛 fl sup(𝑡,𝑥)∈[0,𝑇]×R𝐸|𝑢𝑛(𝑡, 𝑥)|2 < ∞.
(iii) (𝑡, 𝑥) 󳨃→ 𝑢𝑛(𝑡, 𝑥) is 𝐿2(Ω)-continuous on [0, 𝑇]×

R.
(iv) 𝑢𝑛(𝑡, 𝑥) isF𝑡-measurable for any 𝑡 ∈ [0, 𝑇] and𝑥 ∈ R.

Hypotheses (H1) and (H2) are needed for the proof of
property (iii). From properties (iii) and (iv), it follows that𝑢𝑛 has a predictable modification, denoted also by 𝑢𝑛. This
modification is used in definition (31) of 𝑢𝑛+1(𝑡, 𝑥). Using the
isometry property (8) of the stochastic integral and (28), we
have

𝐸 󵄨󵄨󵄨󵄨𝑢𝑛+1 (𝑡, 𝑥) − 𝑢𝑛 (𝑡, 𝑥)󵄨󵄨󵄨󵄨2 = V𝐸∫𝑡

0
∫
R

𝐺2 (𝑡 − 𝑠, 𝑥 − 𝑦)
⋅ 󵄨󵄨󵄨󵄨𝜎 (𝑢𝑛 (𝑠, 𝑦)) − 𝜎 (𝑢𝑛−1 (𝑠, 𝑦))󵄨󵄨󵄨󵄨2 𝑑𝑦𝑑𝑠
≤ V𝐶2

𝜎 ∫𝑡

0
∫
R

𝐺2 (𝑡 − 𝑠, 𝑥 − 𝑦)
⋅ 𝐸 󵄨󵄨󵄨󵄨𝑢𝑛 (𝑠, 𝑦) − 𝑢𝑛−1 (𝑠, 𝑦)󵄨󵄨󵄨󵄨2 𝑑𝑦𝑑𝑠
≤ V𝐶2

𝜎 ∫𝑡

0
𝐻𝑛 (𝑠) (∫

R

𝐺2 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝑑𝑦) 𝑑𝑠,

(32)

where 𝐻𝑛(𝑡) = sup𝑥∈R𝐸|𝑢𝑛(𝑡, 𝑥) − 𝑢𝑛−1(𝑡, 𝑥)|2. For any 𝑡 ∈[0, 𝑇], we denote
𝐽 (𝑡) = ∫

R

𝐺2 (𝑡, 𝑥) 𝑑𝑥. (33)

Taking the supremum over 𝑥 ∈ R in the previous inequality,
we obtain that

𝐻𝑛+1 (𝑡) ≤ V𝐶2
𝜎 ∫𝑡

0
𝐻𝑛 (𝑠) 𝐽 (𝑡 − 𝑠) 𝑑𝑠, (34)

for any 𝑡 ∈ [0, 𝑇] and 𝑛 ≥ 0. By applying Lemma A.1 (the
Appendix) with 𝐶𝑛 = 0 and 𝑝 = 2, we infer that

∑
𝑛≥0

sup
𝑡∈[0,𝑇]

𝐻𝑛 (𝑡)1/2 < ∞. (35)

This shows that the sequence (𝑢𝑛)𝑛≥0 converges in 𝐿2(Ω) to a
random variable 𝑢(𝑡, 𝑥), uniformly in [0, 𝑇] ×R; that is,

sup
(𝑡,𝑥)∈[0,𝑇]×R

𝐸 󵄨󵄨󵄨󵄨𝑢𝑛 (𝑡, 𝑥) − 𝑢 (𝑡, 𝑥)󵄨󵄨󵄨󵄨2 󳨀→ 0. (36)

To see that 𝑢 is a solution of (1), we take the limit in 𝐿2(Ω) as𝑛 → ∞ in (31). In particular, this argument shows that

𝐾 fl sup
𝑛≥1

sup
(𝑡,𝑥)∈[0,𝑇]×R

𝐸 󵄨󵄨󵄨󵄨𝑢𝑛 (𝑡, 𝑥)󵄨󵄨󵄨󵄨2 < ∞. (37)

Uniqueness. Let 𝐻(𝑡) = sup𝑥∈R𝐸|𝑢(𝑡, 𝑥) − 𝑢󸀠(𝑡, 𝑥)|2, where 𝑢
and 𝑢󸀠 are two solutions of (1). A similar argument as above
shows that

𝐻(𝑡) ≤ V𝐶2
𝜎 ∫𝑡

0
𝐻(𝑠) 𝐽 (𝑡 − 𝑠) 𝑑𝑠, (38)

for any 𝑡 ∈ [0, 𝑇]. By Gronwall’s lemma, 𝐻(𝑡) = 0 for all 𝑡 ∈[0, 𝑇].
Example 10 (wave equation). If L𝑢 = 𝜕𝑢/𝜕2𝑡 − 𝜕𝑢/𝜕𝑥2 for𝑡 ∈ [0, 𝑇] and 𝑥 ∈ R, then 𝐺(𝑡, 𝑥) = (1/2)1{|𝑥|≤𝑡}. Hypothesis
(H2) holds since

F𝐺 (𝑡, ⋅) (𝜉) = sin (𝑡 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨)󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 . (39)

Example 11 (heat equation). If L𝑢 = 𝜕𝑢/𝜕𝑡 − (1/2)(𝜕𝑢/𝜕𝑥2)
for 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ R, then 𝐺(𝑡, 𝑥) = (2𝜋𝑡)−1/2 exp(−|𝑥|2/2𝑡). Hypothesis (H2) holds since

F𝐺 (𝑡, ⋅) (𝜉) = exp(−𝑡 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨22 ) . (40)

4. Malliavin Differentiability of the Solution

In this section, we show that the solution of (1) is Malliavin
differentiable and its Malliavin derivative satisfies a certain
integral equation. For this, we assume that the function 𝜎 is
affine.

Our first result shows that the sequence of Picard iter-
ations is Malliavin differentiable with respect to 𝑁̂ and the
corresponding sequence ofMalliavin derivatives is uniformly
bounded in 𝐿2(Ω;H).
Lemma 12. Assume that 𝜎 is an arbitrary Lipschitz function.
Let (𝑢𝑛)𝑛≥0 be the sequence of Picard iterations defined by (31).
Then, 𝑢𝑛(𝑡, 𝑥) ∈ D1,2 for any (𝑡, 𝑥) ∈ [0, 𝑇] ×R and 𝑛 ≥ 0, and

𝐴 fl sup
𝑛≥0

sup
(𝑡,𝑥)∈[0,𝑇]×R

𝐸 󵄩󵄩󵄩󵄩𝐷𝑢𝑛 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2H < ∞. (41)

Proof.

Step 1. We prove that the following property holds for any 𝑛 ≥0:
𝑢𝑛 (𝑡, 𝑥) ∈ D

1,2 for any (𝑡, 𝑥) ∈ [0, 𝑇] ×R,
𝐴𝑛 fl sup

(𝑡,𝑥)∈[0,𝑇]×R

𝐸 󵄩󵄩󵄩󵄩𝐷𝑢𝑛 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2H < ∞. (Q)
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For this, we use an induction argument on 𝑛. Property (Q) is
clear for 𝑛 = 0. We assume that it holds for 𝑛 and we prove
that it holds for 𝑛 + 1.

By the definition of 𝑢𝑛+1 and the fact that the Itô integral
coincides with the Skorohod integral if the integrand is
predictable, it follows that, for any (𝑡, 𝑥) ∈ [0, 𝑇] ×R,

𝑢𝑛+1 (𝑡, 𝑥)
= 𝑤 (𝑡, 𝑥)

+ ∫𝑡

0
∫
R

𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝜎 (𝑢𝑛 (𝑠, 𝑦)) 𝐿 (𝛿𝑠, 𝛿𝑦) .
(42)

We fix (𝑡, 𝑥) ∈ [0, 𝑇] × R. We apply the fundamental
theorem of calculus for the Skorohod integral with respect to𝐿 (Theorem 8) to the process:

𝑌 (𝑠, 𝑦) = 𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝜎 (𝑢𝑛 (𝑠, 𝑦)) 1[0,𝑡] (𝑠) ,
𝑠 ∈ [0, 𝑇] , 𝑦 ∈ R. (43)

We need to check that 𝑌 satisfies the hypotheses of this
theorem. To check that 𝑌 satisfies (i), we apply the chain rule
(Theorem 5) to 𝐹 = 𝑢𝑛(𝑠, 𝑦) and 𝑔 = 𝜎. Note that, for any(𝑠, 𝑦) ∈ [0, 𝑇] ×R,

𝐸 󵄨󵄨󵄨󵄨𝜎 (𝑢𝑛 (𝑠, 𝑦))󵄨󵄨󵄨󵄨2 ≤ 2𝐷2
𝜎 (1 + 𝐸 󵄨󵄨󵄨󵄨𝑢𝑛 (𝑠, 𝑦)󵄨󵄨󵄨󵄨2) ≤ 2𝐷2

𝜎 (1 + 𝐾𝑛)
< ∞, (44)

𝐸∫𝑇

0
∫
R

∫
R0

󵄨󵄨󵄨󵄨󵄨𝜎 (𝑢𝑛 (𝑠, 𝑦) + 𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑠, 𝑦)) − 𝜎 (𝑢𝑛 (𝑠, 𝑦))󵄨󵄨󵄨󵄨󵄨2

⋅ ] (𝑑𝑧) 𝑑𝜉 𝑑𝑟 ≤ 𝐶2
𝜎𝐸∫𝑇

0
∫
R

∫
R0

󵄨󵄨󵄨󵄨󵄨𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑠, 𝑦)󵄨󵄨󵄨󵄨󵄨2
⋅ ] (𝑑𝑧) 𝑑𝜉 𝑑𝑟 ≤ 𝐶2

𝜎𝐴𝑛 < ∞,
(45)

by the induction hypothesis. We conclude that 𝑌(𝑠, 𝑦) ∈ D1,2

and

𝐷𝑟,𝜉,𝑧𝑌 (𝑠, 𝑦) = 𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦)
⋅ [𝜎 (𝑢𝑛 (𝑠, 𝑦) + 𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑠, 𝑦)) − 𝜎 (𝑢𝑛 (𝑠, 𝑦))]
⋅ 1[0,𝑡] (𝑠) .

(46)

We note that 𝑌 satisfies hypothesis (ii) since, by (44),

𝐸∫𝑇

0
∫
R

󵄨󵄨󵄨󵄨𝑌 (𝑠, 𝑦)󵄨󵄨󵄨󵄨2 𝑑𝑦𝑑𝑠
≤ 2𝐷2

𝜎 (1 + 𝐾𝑛) ∫𝑡

0
∫
R

𝐺2 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝑑𝑦 𝑑𝑠
< ∞.

(47)

To check that 𝑌 satisfies hypothesis (iii), i.e., the process{𝐷𝑟,𝜉,𝑧𝑌(𝑠, 𝑦); 𝑠 ∈ [0, 𝑇], 𝑦 ∈ R} is Skorohod integrable
with respect to 𝐿 for any (𝑟, 𝜉, 𝑧) ∈ 𝑈, it suffices to show
that this process is Itô integrable with respect to 𝐿. Note that𝐷𝑟,𝜉,𝑧𝑢𝑛(𝑠, 𝑦) = 0 if 𝑟 > 𝑠 and it is F𝑠-measurable if 𝑟 ≤ 𝑠.

Hence, the process {𝐷𝑟,𝜉,𝑧𝑌(𝑠, 𝑦); 𝑠 ∈ [0, 𝑇], 𝑦 ∈ R} is
predictable. By (46) and (28),

𝐸∫𝑇

0
∫
R

󵄨󵄨󵄨󵄨󵄨𝐷𝑟,𝜉,𝑧𝑌 (𝑠, 𝑦)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑦𝑑𝑠
≤ 𝐶2

𝜎𝐸∫𝑡

0
∫
R

𝐺2 (𝑡 − 𝑠, 𝑥 − 𝑦) 󵄨󵄨󵄨󵄨󵄨𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑠, 𝑦)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑦𝑑𝑠,
(48)

and, hence,

∫𝑇

0
∫
R

∫
R0

(𝐸∫𝑇

0
∫
R

󵄨󵄨󵄨󵄨󵄨𝐷𝑟,𝜉,𝑧𝑌 (𝑠, 𝑦)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑦𝑑𝑠)
⋅ ] (𝑑𝑧) 𝑑𝜉 𝑑𝑟 ≤ 𝐶2

𝜎 ∫𝑡

0
∫
R

𝐺2 (𝑡 − 𝑠, 𝑥 − 𝑦)
⋅ 𝐸 󵄩󵄩󵄩󵄩𝐷𝑢𝑛 (𝑠, 𝑦)󵄩󵄩󵄩󵄩2H 𝑑𝑦𝑑𝑠
≤ 𝐶2

𝜎𝐴𝑛 ∫𝑡

0
∫
R

𝐺2 (𝑡 − 𝑠, 𝑥 − 𝑦) 𝑑𝑦 𝑑𝑠 < ∞.

(49)

This proves that 𝐸∫𝑇

0
∫
R
|𝐷𝑟,𝜉,𝑧𝑌(𝑠, 𝑦)|2𝑑𝑦𝑑𝑠 < ∞ for almost

all (𝑟, 𝜉, 𝑧) ∈ [0, 𝑇] × R × R0. By Theorem 2 (b), {𝐷𝑟,𝜉,𝑧𝑌(𝑠,𝑦); 𝑠 ∈ [0, 𝑇], 𝑦 ∈ R} is Skorohod integrable with respect to𝐿 and

∫𝑇

0
∫
R

𝐷𝑟,𝜉,𝑧𝑌 (𝑠, 𝑦) 𝐿 (𝛿𝑠, 𝛿𝑦)
= ∫𝑇

0
∫
R

𝐷𝑟,𝜉,𝑧𝑌 (𝑠, 𝑦) 𝐿 (𝑑𝑠, 𝑑𝑦) .
(50)

Finally, 𝑌 satisfies hypothesis (iv) since, by (50) and the
isometry properties (8) and (49), we have

𝐸∫𝑇

0
∫
R

∫
R0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑇

0
∫
R

∫
R0

𝐷𝑟,𝜉,𝑧𝑌 (𝑠, 𝑦) 𝐿 (𝛿𝑠, 𝛿𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

⋅ ] (𝑑𝑧) 𝑑𝜉 𝑑𝑟
= 𝐸∫𝑇

0
∫
R

∫
R0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑇

0
∫
R

∫
R0

𝐷𝑟,𝜉,𝑧𝑌 (𝑠, 𝑦) 𝐿 (𝑑𝑠, 𝑑𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

⋅ ] (𝑑𝑧) 𝑑𝜉 𝑑𝑟
= V∫𝑇

0
∫
R

∫
R0

(𝐸∫𝑇

0
∫
R

∫
R0

󵄨󵄨󵄨󵄨󵄨𝐷𝑟,𝜉,𝑧𝑌 (𝑠, 𝑦)󵄨󵄨󵄨󵄨󵄨2 𝑑y 𝑑𝑠)
⋅ ] (𝑑𝑧) 𝑑𝜉 𝑑𝑟 < ∞.

(51)

By Theorem 8, we infer that 𝑌 ∈ Dom(𝛿𝐿), 𝛿𝐿(𝑌) ∈ D1,2,
and

𝐷𝑟,𝜉,𝑧 (𝛿𝐿 (𝑌)) = 𝑌 (𝑟, 𝜉) 𝑧
+ ∫𝑡

0
∫
R

𝐷𝑟,𝜉,𝑧𝑌 (𝑠, 𝑦) 𝐿 (𝛿𝑠, 𝛿𝑦) . (52)
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Since 𝑢𝑛+1(𝑡, 𝑥) = 𝑤(𝑡, 𝑥)+𝛿𝐿(𝑌), this means that 𝑢𝑛+1(𝑡, 𝑥) ∈
D1,2. Using (50) and (46), we can rewrite relation (52) as
follows:

𝐷𝑟,𝜉,𝑧𝑢𝑛+1 (𝑡, 𝑥) = 𝐺 (𝑡 − 𝑟, 𝑥 − 𝜉) 𝜎 (𝑢𝑛 (𝑟, 𝜉)) 𝑧
+ ∫𝑡

0
∫
R

𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦)
⋅ [𝜎 (𝑢𝑛 (𝑠, 𝑦) + 𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑠, 𝑦)) − 𝜎 (𝑢𝑛 (𝑠, 𝑦))]
⋅ 𝐿 (𝑑𝑠, 𝑑𝑦) .

(53)

It remains to prove that

𝐴𝑛+1 = sup
(𝑡,𝑥)∈[0,𝑇]×R

𝐸 󵄩󵄩󵄩󵄩𝐷𝑢𝑛+1 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2H < ∞. (54)

Using (53), the isometry property (8), relation (44), and the
fact that 𝜎 is Lipschitz, we see that

𝐸 󵄨󵄨󵄨󵄨󵄨𝐷𝑟,𝜉,𝑧𝑢𝑛+1 (𝑡, 𝑥)󵄨󵄨󵄨󵄨󵄨2 ≤ 2𝑧2𝐺2 (𝑡 − 𝑟, 𝑥 − 𝜉)
⋅ 𝐸 󵄨󵄨󵄨󵄨𝜎 (𝑢𝑛 (𝑟, 𝜉))󵄨󵄨󵄨󵄨2 + 2V𝐸∫𝑡

0
∫
R

𝐺2 (𝑡 − 𝑠, 𝑥 − 𝑦)
⋅ 󵄨󵄨󵄨󵄨󵄨𝜎 (𝑢𝑛 (𝑠, 𝑦) + 𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑠, 𝑦))
− 𝜎 (𝑢𝑛 (𝑠, 𝑦))󵄨󵄨󵄨󵄨󵄨2 𝑑𝑦𝑑𝑠 ≤ 4𝑧2𝐷2

𝜎 (1
+ 𝐾𝑛) 𝐺2 (𝑡 − 𝑟, 𝑥 − 𝜉)
+ 2V𝐶2

𝜎𝐸∫𝑡

0
∫
R

𝐺2 (𝑡 − 𝑠, 𝑥 − 𝑦)
⋅ 󵄨󵄨󵄨󵄨󵄨𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑠, 𝑦)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑦𝑑𝑠.

(55)

We perform integration with respect to 𝑑𝑟𝑑𝜉](𝑑𝑧) on [0, 𝑇]×
R ×R0. We denote

]𝑡 = ∫𝑡

0
∫
R

𝐺2 (𝑠, 𝑦) 𝑑𝑦 𝑑𝑠. (56)

We obtain

𝐸 󵄩󵄩󵄩󵄩𝐷𝑢𝑛+1 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2H ≤ 4V𝐷2
𝜎 (1 + 𝐾𝑛) ]𝑡

+ 2V𝐶2
𝜎 ∫𝑡

0
∫
R

𝐺2 (𝑡 − 𝑠, 𝑥 − 𝑦)
⋅ 𝐸 󵄩󵄩󵄩󵄩𝐷𝑢𝑛 (𝑠, 𝑦)󵄩󵄩󵄩󵄩2H 𝑑𝑦𝑑𝑠 ≤ 4V𝐷2

𝜎 (1 + 𝐾𝑛) ]𝑡
+ 2V𝐶2

𝜎𝐴𝑛]𝑡.

(57)

Relation (54) follows taking the supremum over (𝑡, 𝑥) ∈[0, 𝑇] ×R.

Step 2.We prove that sup𝑛≥1𝐴𝑛 < ∞. By (57), we have

𝐸 󵄩󵄩󵄩󵄩𝐷𝑢𝑛+1 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2H ≤ 4V𝐷2
𝜎 (1 + 𝐾𝑛) ]𝑡

+ 2V𝐶2
𝜎 ∫𝑡

0
𝑉𝑛 (𝑠) 𝐽 (𝑡 − 𝑠) 𝑑𝑠, (58)

where𝑉𝑛(𝑡) = sup𝑥∈R𝐸‖𝐷𝑢𝑛(𝑡, 𝑥)‖2H and 𝐽(𝑡) is given by (33).
This shows that

𝑉𝑛+1 (𝑡) ≤ 4V𝐷2
𝜎]𝑇 (1 + 𝐾)

+ 2V𝐶2
𝜎 ∫𝑡

0
𝑉𝑛 (𝑠) 𝐽 (𝑡 − 𝑠) 𝑑𝑠, (59)

where 𝐾 is given by (37). By Lemma 15 of [16],
sup𝑛≥1sup𝑡∈[0,𝑇]𝑉𝑛(𝑡) < ∞.

We are now ready to state the main result of the present
article.

Theorem 13. Assume that 𝜎 is an affine function; that is,𝜎(𝑥) = 𝑎𝑥 + 𝑏 for some 𝑎, 𝑏 ∈ R. If 𝑢 is the solution of (1),
then, for any 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ R,

𝑢 (𝑡, 𝑥) ∈ D
1,2 (60)

and the following relation holds in 𝐿2(Ω;H) (and hence,
almost surely, for 𝜇-almost all (𝑟, 𝜉, 𝑧) ∈ 𝑈):

𝐷𝑟,𝜉,𝑧𝑢 (𝑡, 𝑥) = 𝐺 (𝑡 − 𝑟, 𝑥 − 𝜉) 𝜎 (𝑢 (𝑟, 𝜉)) 𝑧
+ ∫𝑡

0
∫
R

𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦)
⋅ [𝜎 (𝑢 (𝑠, 𝑦) + 𝐷𝑟,𝜉,𝑧𝑢 (𝑠, 𝑦)) − 𝜎 (𝑢 (𝑠, 𝑦))]
⋅ 𝐿 (𝑑𝑠, 𝑑𝑦) .

(61)

Proof.

Step 1. For any 𝑡 ∈ [0, 𝑇] and 𝑛 ≥ 0, let
𝑀𝑛 (𝑡) = sup

𝑥∈R
𝐸 󵄩󵄩󵄩󵄩𝐷𝑢𝑛 (𝑡, 𝑥) − 𝐷𝑢𝑛−1 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2H . (62)

Note that, by Lemma 12,𝑢𝑛(𝑡, 𝑥) ∈ D1,2 for any (𝑡, 𝑥) ∈ [0, 𝑇]×
R and 𝑛 ≥ 0.

Fix (𝑟, 𝜉, 𝑧) ∈ 𝑈. We write relation (53) for𝐷𝑟,𝜉,𝑧𝑢𝑛+1(𝑡, 𝑥)
and 𝐷𝑟,𝜉,𝑧𝑢𝑛(𝑡, 𝑥). We take the difference between these two
equations. We obtain

𝐷𝑟,𝜉,𝑧𝑢𝑛+1 (𝑡, 𝑥) − 𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑡, 𝑥) = 𝐺 (𝑡 − 𝑟, 𝑥 − 𝜉)
⋅ [𝜎 (𝑢𝑛 (𝑟, 𝜉)) − 𝜎 (𝑢𝑛−1 (𝑟, 𝜉))] 𝑧 + ∫𝑡

0
∫
R

𝐺 (𝑡 − 𝑠, 𝑥
− 𝑦) {[𝜎 (𝑢𝑛 (𝑠, 𝑦) + 𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑠, 𝑦)) − 𝜎 (𝑢𝑛 (𝑠, 𝑦))]
− [𝜎 (𝑢𝑛−1 (𝑠, 𝑦) + 𝐷𝑟,𝜉,𝑧𝑢𝑛−1 (𝑠, 𝑦)) − 𝜎 (𝑢𝑛−1 (𝑠, 𝑦))]}
⋅ 𝐿 (𝑑𝑠, 𝑑𝑦) .

(63)

At this point, we use the assumption that 𝜎 is the affine
function𝜎(𝑥) = 𝑎𝑥+𝑏. (An explanation of why this argument
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does not work in the general case is given in Remark 14.) In
this case, relation (63) has the following simplified expression:

𝐷𝑟,𝜉,𝑧𝑢𝑛+1 (𝑡, 𝑥) − 𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑡, 𝑥) = 𝑎𝐺 (𝑡 − 𝑟, 𝑥 − 𝜉)
⋅ [𝑢𝑛 (𝑟, 𝜉) − 𝑢𝑛−1 (𝑟, 𝜉)] 𝑧
+ 𝑎∫𝑡

0
∫
R

𝐺 (𝑡 − 𝑠, 𝑥 − 𝑦)
⋅ [𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑠, 𝑦) − 𝐷𝑟,𝜉,𝑧𝑢𝑛−1 (𝑠, 𝑦)] 𝐿 (𝑑𝑠, 𝑑𝑦) .

(64)

Using Itô’s isometry and the inequality (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2),
we obtain

𝐸 󵄨󵄨󵄨󵄨󵄨𝐷𝑟,𝜉,𝑧𝑢𝑛+1 (𝑡, 𝑥) − 𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑡, 𝑥)󵄨󵄨󵄨󵄨󵄨2 ≤ 2𝑎2𝑧2𝐺2 (𝑡
− 𝑟, 𝑥 − 𝜉) 𝑏2𝑛 + 2𝑎2V𝐸∫𝑡

0
∫
R

𝐺2 (𝑡 − 𝑠, 𝑥 − 𝑦)
⋅ 󵄨󵄨󵄨󵄨󵄨𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑠, 𝑦) − 𝐷𝑟,𝜉,𝑧𝑢𝑛−1 (𝑠, 𝑦)󵄨󵄨󵄨󵄨󵄨2 𝑑𝑦𝑑𝑠,

(65)

where 𝑏2𝑛 = sup(𝑠,𝑦)∈[0,𝑇]×R𝐸|𝑢𝑛(𝑠, 𝑦) − 𝑢𝑛−1(𝑠, 𝑦)|2. Note that
both sides of the previous inequality are zero if 𝑟 > 𝑡. Taking
the integral with respect to 𝑑𝑟𝑑𝜉](𝑑𝑧) on [0, 𝑇] ×R ×R0, we
obtain

𝐸 󵄩󵄩󵄩󵄩𝐷𝑢𝑛+1 (𝑡, 𝑥) − 𝐷𝑢𝑛 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2H ≤ 2𝑎2V]𝑡𝑏2𝑛
+ 2𝑎2V𝐸∫𝑡

0
∫
R

𝐺2 (𝑡 − 𝑠, 𝑥 − 𝑦)
⋅ 𝐸 󵄩󵄩󵄩󵄩𝐷𝑢𝑛 (𝑠, 𝑦) − 𝐷𝑢𝑛−1 (𝑠, 𝑦)󵄩󵄩󵄩󵄩2H 𝑑𝑦𝑑𝑠,

(66)

where ]𝑡 is given by (56). Recalling the definition of 𝑀𝑛(𝑡),
we infer that

𝑀𝑛+1 (𝑡) ≤ 𝐶𝑛 + 2𝑎2V∫𝑡

0
𝑀𝑛 (𝑠) 𝐽 (𝑡 − 𝑠) 𝑑𝑠, (67)

where 𝐶𝑛 = 2𝑎2V]𝑡𝑏2𝑛 and the function 𝐽 is given by (33). By
relation (35), we know that ∑𝑛≥1 𝑏𝑛 < ∞, which means that∑𝑛≥1 𝐶1/2

𝑛 < ∞. By Lemma A.1 (the Appendix), we conclude
that

∑
𝑛≥1

sup
𝑡≤𝑇

𝑀𝑛 (𝑡)1/2 < ∞. (68)

Hence, the sequence {𝐷𝑢𝑛(𝑡, 𝑥)}𝑛≥1 converges in 𝐿2(Ω;H) to
a variable 𝑈(𝑡, 𝑥), uniformly in (𝑡, 𝑥) ∈ [0, 𝑇] ×R; that is,

sup
(𝑡,𝑥)∈[0,𝑇]×R

𝐸 󵄩󵄩󵄩󵄩𝐷𝑢𝑛 (𝑡, 𝑥) − 𝑈 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2H 󳨀→ 0. (69)

Step 2. We fix (𝑡, 𝑥) ∈ [0, 𝑇] × R. By (36), 𝑢𝑛(𝑡, 𝑥) → 𝑢(𝑡, 𝑥)
in 𝐿2(Ω). By Step 1, {𝐷𝑢𝑛(𝑡, 𝑥)}𝑛≥1 converges in 𝐿2(Ω;H).We
applyTheorem4 to the variables𝐹𝑛 = 𝑢𝑛(𝑡, 𝑥) and𝐹 = 𝑢(𝑡, 𝑥).
We infer that 𝑢(𝑡, 𝑥) ∈ D1,2 and 𝐷𝑢𝑛(𝑡, 𝑥) → 𝐷𝑢(𝑡, 𝑥) in𝐿2(Ω;H). Combining this with (69), we obtain

sup
(𝑡,𝑥)∈[0,𝑇]×R

𝐸 󵄩󵄩󵄩󵄩𝐷𝑢𝑛 (𝑡, 𝑥) − 𝐷𝑢 (𝑡, 𝑥)󵄩󵄩󵄩󵄩2H 󳨀→ 0. (70)

Relation (61) follows by taking the limit in 𝐿2(Ω;H) as 𝑛 →∞ in (53).

Remark 14. Unfortunately, we were not able to extend The-
orem 13 to an arbitrary Lipschitz function 𝜎. To see where
the difficulty comes from, recall that we need to prove that{𝐷𝑢𝑛(𝑡, 𝑥)}𝑛≥1 converges in 𝐿2(Ω;H), and the difference𝐷𝑟,𝜉,𝑧𝑢𝑛+1(𝑡, 𝑥)−𝐷𝑟,𝜉,𝑧𝑢𝑛(𝑡, 𝑥) is given by (63). For an arbitrary
Lipschitz function 𝜎, by relation (28), we have

󵄨󵄨󵄨󵄨󵄨𝜎 (𝑢𝑛 (𝑠, 𝑦) + 𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑠, 𝑦))
− 𝜎 (𝑢𝑛−1 (𝑠, 𝑦) + 𝐷𝑟,𝜉,𝑧𝑢𝑛−1 (𝑠, 𝑦))󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝜎

󵄨󵄨󵄨󵄨󵄨(𝑢𝑛 (𝑠, 𝑦) + 𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑠, 𝑦))
− (𝑢𝑛−1 (𝑠, 𝑦) + 𝐷𝑟,𝜉,𝑧𝑢𝑛−1 (𝑠, 𝑦))󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝜎 {󵄨󵄨󵄨󵄨𝑢𝑛 (𝑠, 𝑦) − 𝑢𝑛−1 (𝑠, 𝑦)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑠, 𝑦) − 𝐷𝑟,𝜉,𝑧𝑢𝑛−1 (𝑠, 𝑦)󵄨󵄨󵄨󵄨󵄨} .

(71)

Using (63), the isometry property (8), the inequality (𝑎 +𝑏)2 ≤ 2(𝑎2 + 𝑏2), and the previous inequality, we have

𝐸 󵄨󵄨󵄨󵄨󵄨𝐷𝑟,𝜉,𝑧𝑢𝑛+1 (𝑡, 𝑥) − 𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑡, 𝑥)󵄨󵄨󵄨󵄨󵄨2 ≤ 2𝑧2𝐶2
𝜎𝐺2 (𝑡

− 𝑟, 𝑥 − 𝜉) 𝐸 󵄨󵄨󵄨󵄨𝑢𝑛 (𝑟, 𝜉) − 𝑢𝑛−1 (𝑟, 𝜉)󵄨󵄨󵄨󵄨2
+ 4V𝐶2

𝜎 ∫𝑡

0
∫
R

𝐺2 (𝑡 − 𝑠, 𝑥 − 𝑦)
⋅ 𝐸 󵄨󵄨󵄨󵄨𝑢𝑛 (𝑠, 𝑦) − 𝑢𝑛−1 (𝑠, 𝑦)󵄨󵄨󵄨󵄨2 𝑑𝑦𝑑𝑠
+ 4V𝐶2

𝜎 ∫𝑡

0
∫
R

𝐺2 (𝑡 − 𝑠, 𝑥 − 𝑦)
⋅ 𝐸 󵄨󵄨󵄨󵄨󵄨𝐷𝑟,𝜉,𝑧𝑢𝑛 (𝑠, 𝑦) − 𝐷𝑟,𝜉,𝑧𝑢𝑛−1 (𝑠, 𝑦)󵄨󵄨󵄨󵄨󵄨 𝑑𝑦 𝑑𝑠.

(72)

The problem is that the second term on the right-hand side of
the inequality above does not depend on (𝑟, 𝜉, 𝑧) and hence its
integral with respect to 𝑑𝑟𝑑𝜉](𝑑𝑧) on [0, 𝑇] ×R×R0 is equal
to∞.

Appendix

A Variant of Gronwall’s Lemma

The following result is a variant of Lemma 15 of [16], which
is used in the proof of Theorem 13.

Lemma A.1. Let (𝑓𝑛)𝑛≥0 be a sequence of nonnegative func-
tions defined on [0, 𝑇] such that 𝑀 = sup𝑡∈[0,𝑇]𝑓0(𝑡) < ∞
and, for any 𝑡 ∈ [0, 𝑇] and 𝑛 ≥ 0,

𝑓𝑛+1 (𝑡) ≤ 𝐶𝑛 + ∫𝑡

0
𝑓𝑛 (𝑠) 𝑔 (𝑡 − 𝑠) 𝑑𝑠, (A.1)

where 𝑔 is a nonnegative function on [0, 𝑇] with ∫𝑇

0
𝑔(𝑡)𝑑𝑡 <∞ and (𝐶𝑛)𝑛≥0 is a sequence of nonnegative constants. Then,

there exists a sequence (𝑎𝑛)𝑛≥0 of nonnegative constants which
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satisfy ∑𝑛≥0 𝑎1/𝑝
𝑛 < ∞ for any 𝑝 > 1, such that, for any 𝑡 ∈[0, 𝑇] and 𝑛 ≥ 0,
𝑓𝑛 (𝑡) ≤ 𝐶𝑛 + 𝑛−1∑

𝑗=1

𝐶𝑗𝑎𝑛−𝑗 + 𝐶0𝑎𝑛𝑀. (A.2)

In particular, if ∑𝑛≥1 𝐶1/𝑝
𝑛 < ∞ for some 𝑝 > 1, then

∑
𝑛≥1

sup
𝑡∈[0,𝑇]

𝑓𝑛 (𝑡)1/𝑝 < ∞. (A.3)

Proof. Let 𝐺(𝑇) = ∫𝑇

0
𝑔(𝑡)𝑑𝑡, (𝑋𝑖)𝑖≥1 be a sequence of i.i.d.

random variables on [0, 𝑇] with density function 𝑔(𝑡)/𝐺(𝑇),
and 𝑆𝑛 = ∑𝑛

𝑖=1 𝑋𝑖. Following exactly the same argument as in
the proof of Lemma 15 of [16], we have

𝑓𝑛 (𝑡) ≤ 𝐶𝑛 + 𝐶𝑛−1𝐺 (𝑇) 𝑃 (𝑆1 ≤ 𝑡) + ⋅ ⋅ ⋅
+ 𝐶1𝐺 (𝑇)𝑛−1 𝑃 (𝑆𝑛−1 ≤ 𝑡)
+ 𝐶0𝐺 (𝑇)𝑛 𝐸 [1{𝑆𝑛≤𝑡}𝑓0 (𝑡 − 𝑆𝑛)] .

(A.4)

Relation (A.2) follows with 𝑎𝑛 = 𝐺(𝑇)𝑛𝑃(𝑆𝑛 ≤ 𝑇) for 𝑛 ≥ 1.
The fact that ∑𝑛≥1 𝑎1/𝑝

𝑛 < ∞ for all 𝑝 ≥ 1 was shown in the
proof of Lemma 17 of [16].

To prove the last statement, we let 𝑎0 = 1 and 𝑀1 =
max(𝑀, 1). Then, 𝑓𝑛(𝑡) ≤ 𝑀1 ∑𝑛

𝑗=0 𝐶𝑗𝑎𝑛−𝑗 and, hence,
sup𝑡≤𝑇𝑓𝑛(𝑡)1/𝑝 ≤ 𝑀1/𝑝

1 ∑𝑛
𝑗=0 𝐶1/𝑝

𝑗 𝑎1/𝑝
𝑛−𝑗. We conclude that

𝑛∑
𝑘=0

sup
𝑡≤𝑇

𝑓𝑘 (𝑡)1/𝑝 ≤ 𝑀1/𝑝
1

𝑛∑
𝑗=0

𝐶1/𝑝
𝑗

𝑛∑
𝑘=𝑗

𝑎1/𝑝

𝑘−𝑗

≤ 𝑀1/𝑝
1 ∑

𝑗≥0

𝐶1/𝑝
𝑗 ∑

𝑘≥0

𝑎1/𝑝
𝑘 fl 𝐶 < ∞.

(A.5)
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