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Selective and sensitive detection of explosive materials through a simple approach is an attractive area of research having
implications on public safety and homeland security. Considering this implication in mind, a new Ni-anthracene complex
was designed and synthesized and has been demonstrated as an efficient fluorescence chemosensor for the selective and
sensitive detection of 2,4,6-trinitrophenol. Firstly, a fluorescent anthracene ligand (A) was synthesized by treating anthracene-
9-carboxaldehyde with 1,3-diaminopropane in presence of a weak acid. To achieve superior selectivity and great quenching
efficiency for 2,4,6-trinitrophenol (TNP), a Ni complex, namely, [Ni(𝜇

2
-L)(NO

3
)] (B), was synthesized via the reaction of A with

Ni(NO
3
)
2
⋅6H
2
O. Complex B showed strong emission peak (𝜆max) at 412 nm and exhibited high selectivity towards TNP among

other nitroaromatics and anions. 100 equivalents of TNP made 95% fluorescence quenching of B and its detection limit for TNP
was calculated as 2.8𝜇M.

1. Introduction

Nitroaromatic compounds are generally used in many indus-
tries for the preparation of dyes, pharmaceuticals, rubber
products, explosives, chemical fibres and pesticides, and
so forth [1]. These nitroaromatic compounds were released
into the environment as industrial wastage and are one of
the main reasons for the pollution. Moreover, due to their
poisonousness, carcinogenicity to living beings, and the risk
to homeland safety, they cause serious intimidations to our
lives [2]. 2,4,6-TNT; 2,4-DNT; 2,4-DNB; 2,6-DNT; and 2,4,6-
TNP are the key constituents of environmental pollutants
and explosive products [3]. Out of these compounds, TNP in
particular creates health hazards and chronic, skin, and eye
diseases and is used as a powerful explosive similar to TNT
[4]. Furthermore, TNP is a more potent explosive than the
more commonly used explosive TNT [5].

Various detection techniques such as electrochemical
sensing, cyclic voltammetry, Raman spectroscopy, Liquid

chromatography-mass spectrometry (LC-MS), photolumi-
nescence spectroscopy (PL), and several other techniques
have been used to detect different types of explosives includ-
ing TNP. Nevertheless, most of them are pretty sophisti-
cated, time taking, and/or difficult to operate [6, 7]. Among
these reported procedures, PL based method offers shorter
response time and improved sensitivity and is economically
worthwhile [7, 8]. Hence, with the above stated problems
from TNP and the benefits of PL, TNP sensing through
optical detection is highly needed.

Till now, many fluorescent sensors have been devel-
oped for the detection of nitroaromatic explosives [7–10].
Nitroaromatics are electron deficient in nature; due to this
reason some electron-rich fluorescent probes can always pro-
duce nonfluorescent Meisenheimer or 𝜋-stacking complexes
with nitroaromatics [11, 12]. Selective detection of TNP is very
difficult as it has strong electron affinity [13].Through donor-
acceptor electron transfer mechanism, TNP can quench the
fluorescence emission of various molecules such as metal
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Scheme 1: Synthetic route of nickel complex B.

complexes, conjugated polymers, organic molecules, and
metal-organic frameworks [14–17].

Among various fluorophores used for designing of
chemosensors, anthracene based compounds have been used
for the detection of several analytes, due to their high chemi-
cal stability, richness of 𝜋-electrons and strong fluorescence
[18, 19]. Mainly anthracene based compounds are widely
used for the sensing of anions and cations. Nevertheless,
there are very limited compounds reported for the detection
of explosives/nitroaromatics [20–22]. In consequence, by
considering the significance of the new photoluminescent
material for TNP sensing, in this work, we synthesized a new
anthracene based nickel complex with fluorescent activity for
the detection of TNP. Solution phase spectral studies confirm
the sensitivity of complex with TNP.

2. Materials and Methods

2.1. Materials. Anthracene-9-carboxaldehyde, 1,3-diamino-
propane, nickel nitrate, tetra butyl ammonium salts of anions,
Nitroaromatic compounds and other chemicals are pur-
chased from Sigma-Aldrich, India and used without further
purification.

2.2. Synthesis of A. Anthracene-9-carboxaldehyde (0.2 g,
0.97mM) was dissolved in 10mL of methanol. 1,3-Diamino-
propane (0.036 g, 0.485mM) and acetic acid (27.8 𝜇L,
0.485mM) are added to the above solutionwhile stirring.The
yellow colored solution mixture was refluxed for 12 h. Upon
cooling the yellow precipitate, (7E,19E)-N-((anthracen-10-
yl)methylene)-𝑁󸀠-((anthracen-9-yl)methylene)propane-1,3-
diamine, A, was separated by filtration under reduced
pressure and then washed with excess methanol.The product
was recrystallized from methanol. Yield: 85.32%. 1H NMR
(500MHz, CDCl

3
, Me
4
Si) 𝛿 2.57–2.54 (t, 2H); 𝛿 4.23–4.21

(m, 4H); 𝛿 7.51–7.48 (m, 8H); 𝛿 8.04–8.02 (d, 4H); 𝛿 8.51 (s,
2H); 𝛿 8.58–8.56 (d, 4H); 𝛿 9.56 (s, 2H) (see supplementary
Figure S1); 13C NMR (CDCl

3
): 𝛿 160.74, 131.32, 130.05,

129.31, 128.88, 128.24, 126.71, 125.25, 124.80, 60.89, 32.48 (see
supplementary Figure S2); HR-MS Data: [M + 1]+ = 450.86.

2.3. Synthesis of B. To the solution of A (100mg, 0.22mM in
THF), nickel nitrate [Ni(NO

3
)
2
⋅6H
2
O, 0.56 g, 1.93mM] was

added and stirred for two hours at room temperature. The
yellowish green precipitate was separated out under reduced
pressure. Yield: 83.96%. HR-MS [M + 1]+ found 1082.34.

2.4. Characterizations. The 1H and 13C NMR spectra of
the A have been recorded on a Bruker 400MHz NMR

instrument. Mass spectra of the B have been recorded on
Kratos PC Axima HR-Mass spectrometer in linear mode.
The fluorescence quenching measurements were performed
using Cary Eclipse Fluorescence spectrophotometer. The
excitation and emission slit widths (each 10 nm) and scan rate
(500 nmmin−1) were kept constant for all the measurements.
The optical absorption spectral measurements were recorded
using a Shimadzu UV-2450 spectrophotometer with a quartz
cuvette (path length, 1 cm). Energy dispersive X-ray spectra
(EDAX) were obtained using scanning electron microscope
(SEM), FEI Nova Nano SEM-450.

3. Results and Discussion

Condensation of 1,3-diaminoprone 2 with anthracene-9-
carboxaldehyde 1 produced a fluorescent ligand A, which
gave a nickel complexBwith the addition of Ni(NO

3
)
2
⋅6H
2
O

at RT (Scheme 1).The as-synthesized complex was character-
ized by mass spectrometry, where the parent ion (𝑚/𝑧) peak
appeared at 1082 corresponding to the species [2A⋅Ni(NO

3
)
2
]

(see supplementary Figure S3). The presence of all the
elements in complex B is confirmed through elemental
analysis (see supplementary Figure S4). As we are developing
a chemosensor for TNP, the main motivation behind the
synthesis of compound A is that it was expected to become
a nonfluorescent moiety as photoinduced electron transfer
(PET) process can take place due to presence of imino
nitrogen atom [23]. The binding of nickel ions to the imino
nitrogen of compound A will prevent the PET process and
it eventually results in the perseverance of fluorescence.
Consequently, TNP can perhaps quench the fluorescence
emission of B with electron transfer or energy transfer
mechanism and could be sensed [24].

Complex B (1 𝜇M) showed reasonably good emission
intensity of anthracene monomeric species at 412 nm in
THF :HEPES (9.5 : 0.5) when excited at 𝜆ex = 365 nm [25].
On addition of TNP (150 𝜇M) to the solution of B (1 𝜇M) in
THF :HEPES (9.5 : 0.5), the emission band shows quenching
of emission band (Figure 1). To observe the selectivity of B
towardsTNP,we carried out the fluorescence titration exper-
iments with similar amount of 150𝜇Mother nitroderivatives,
namely, nitrotoluene (NT), 2,4-dinitrotoluene (2,4 DNT),
and 1,4-dinitrobenzene (1,4 DNB) and anions (F−, Cl−, Br−,
I−, OH−, HSO3

−, CN−, NO3
−, CH

3
COO−, ClO4

−, and PO4
−)

with tetrabutyl ammonium as counter ion, and observed no
significant change in the emission spectrum of B depicting
the selectivity of B (Figure 2). Detection limit (DL) was
calculated using the equation: DL = 3𝛼/𝐾, where 𝛼 is the
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Figure 1: Change in emission spectrum of B (1𝜇M) on addition of
TNP (150 𝜇M) in THF :HEPES (9.5 : 0.5) (]/]).
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Figure 2: Fluorescence response of B (1 𝜇M) in THF :HEPES
(9.5 : 0.5) (]/]) among various nitroaromatics and anions. All ana-
lytes are tested in the same molar ratio to B.

standard deviation calculated by measuring the fluorescence
intensity of complex B for more than 15 times and 𝐾
presents the slope of fitting curve between variation of the
fluorescence intensity (𝐼

0
− 𝐼) and the added amount of TNP

at low concentration. According to the linear fitting curve
(Figure S5 shown in supporting information), the detection
limit of complex B for sensing of TNP was found to be
2.857 𝜇M [26]. The complex B DL in sensing of TNP is
as comparable with the existing materials (see Table S1 in
supporting information).

We also examined the meddling of other anions and
nitroaromatics towards the sensing of TNP (Figure 3) and
it was confirmed that the B was detecting TNP even in the
presence of other potential analytes. The emission plot of B
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Figure 3: Fluorescence quenching in B with the addition of TNP
alone and TNP in the presence of other analytes. The molar ratio to
B used in each case is 100 equivalents.
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Figure 4: Change in absorption spectra of 4 (1 𝜇M) with the
addition of TNP in a mixed aqueous medium of THF :HEPES
(9.5 : 0.5) (]/]).

in the presence of TNP was studied using Stern-Volmer rela-
tionship. Stern-Volmer plot seemed like a hyperbolic curve
(see supplementary Figure S6) which may be accredited to
the combination of static and dynamic (collision) quenching
[27].

We have also detected these variations with the assistance
of UV-vis analysis. Nickel complex B (1 𝜇M) in THF :HEPES
(9.5 : 0.5) showed an absorbance band at 260 nm (Figure 4).
On addition of TNP (120 𝜇M) along with the formation of
band at 340 nm corresponding to TNP (Figure 4), there was
subsequent increase in the band at 260 nm presenting that
there is some photochemical process happening between B
and TNP. To have a deep insight into the mechanism, we
made plot between the absorbance spectrum of TNP and
emission spectrum of B (Figure 5). The overlap between
the two plots suggests an energy transfer mechanism from
photoexcited 𝜋-electron-rich derivative B to ground state
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Figure 5: Spectral overlap of the absorption of TNP (red line) with
the emission spectrum of B (blue line).

electron-deficient TNP. Thus, the changes occurring in the
optical properties of B on addition of TNP are attributed to
the energy transfer process.

4. Conclusions

In conclusion, we have designed and synthesized a new pho-
toluminescent Ni-anthracene complex. The luminescence
behaviour of the complex was assessed towards different
nitroaromatics and other analytes. The synthesized Ni-
anthracene complex shows selective and sensitive detection
of TNP and could be a helpful tool for the people working in
forensic sciences.
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