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Three methods of temporal data upscaling, which may collectively be called the generalized k-nearest neighbor (GkNN) method,
are considered. The accuracy of the GkNN simulation of month by month yield is considered (where the term yield denotes the
dependent variable).The notion of an eventually well-distributed time series is introduced and on the basis of this assumption some
properties of the average annual yield and its variance for a GkNN simulation are computed.The total yield over a planning period
is determined and a general framework for considering the GkNN algorithm based on the notion of stochastically dependent time
series is described and it is shown that for a sufficiently large training set the GkNN simulation has the same statistical properties
as the training data. An example of the application of the methodology is given in the problem of simulating yield of a rainwater
tank given monthly climatic data.

1. Introduction

The 𝑘-nearest neighbor method has its origins in the work of
Mack [1], Yakowitz and Karlsson [2], and others, e.g., [3, 4].
In this work an estimate for 𝑌𝑖 given an independently and
identically distributed (i.i.d.) sequence (𝑋𝑗, 𝑌𝑗) of random
vectors with 𝑋𝑗 ∈ R𝑝 and 𝑌𝑗 ∈ R (where R denotes the set
of real numbers) on the basis of {(𝑋𝑗, 𝑌𝑗) : 𝑗 < 𝑖} is obtained
by taking the average of 𝑌𝑗 over the set {𝑌𝑗 : 𝑗 ∈ 𝐽}, where𝐽 is the set of indices of vectors 𝑋𝑗 which form the 𝑘 nearest
neighbors of 𝑋𝑖, in which 𝑘 > 1.

In later work by Lall and Sharma [5] and Rajagapolan and
Lall [6] a related method, also called the 𝑘-nearest neighbor
method, was used for simulating hydrological stochastic time
series (𝑋𝑖, 𝑌𝑖). In this method the next value in the simulated
time series is chosen randomly according to a probability
distribution over the set 𝐽 of indices 𝑗 of the 𝑘 nearest
neighbors𝑋𝑗 of 𝑋𝑖 in {𝑋𝑗 : 𝑗 < 𝑖}.

More recent work in the area has been carried out by Biau
et al. [7], Lee and Ourda [8], and Zhang [9].

In the present paper we derive some general results about
the 𝑘-nearest neighbor algorithm and related methods which
we group together as a general class of methods which we call
the generalized 𝑘-nearest neighbormethod (GkNNmethod).

We do not make the assumption that the time series are i.i.d.
[1], null-recurrent Markov [10], or Harris recurrent Markov
chains [11]. We introduce the natural notion of a time series
being eventually well distributed from which, if satisfied,
some properties of the GkNN algorithm can be deduced.

The generalized 𝑘 nearest neighbor (GkNN) algorithm is
described in Section 2. Section 3 investigates the problem of
predicting the month by month yield (where we use the term
“yield” to denote the value of the dependent variable 𝑌𝑖) while
Section 4 considers the computation of the average annual
yield. Section 5 computes the variance of the average annual
yield while Section 6 considers the behavior of the total
yield. Section 7 describes a general framework for viewing
the GkNN algorithm and conditions under which this frame-
work is applicable in practice.The eighth section of this paper
presents the particular example of the problem of simulating
rainwater tank yield. The paper concludes in Section 9.

2. The Generalized k Nearest
Neighbor (GkNN) Method

In the GkNN method we are given a time series {V𝑡 ∈ 𝑉 : 𝑡 =1, . . . , 𝑇} of predictor vectors which may be obtained from,
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for example, a stochastic simulation of climatic data. Here𝑉 denotes the space of predictor vectors. We are also given
training data {(𝑤𝑖, 𝑢𝑖) ∈ 𝑉 × [0,∞) : 𝑖 = 1, . . . , 𝑁}.

We want to assign yields 𝑦𝑡 for 𝑡 = 1, . . . , 𝑇 in a mean-
ingful way. We are given a metric 𝜇 : 𝑉 × 𝑉 󳨀→ [0,∞).
We are also given a probability distribution {𝑝1, . . . , 𝑝𝑁} on{1, . . . , 𝑁}. In the GkNNmethod the yield time series 𝑦𝑡 for t
= 1,..., T is computed as follows.

For each 𝑡 = 1, . . . , 𝑇,
(1) Compute the metric values 𝜇(V𝑡, 𝑤𝑖) for 𝑖 = 1, . . . , 𝑁

and sort from lowest to highest. Let𝜋𝑡 be the resulting
permutation of {1, . . . , 𝑁}.

(2) Randomly choose 𝑖 ∈ {1, . . . , 𝑁} according to the
distribution {𝑝1, . . . , 𝑝𝑁}. Denote it by i selected.

(3) Return 𝑦𝑡 = 𝑢𝜋𝑡(i selected) .
3. Prediction of the Month by
Month Yield by GkNN Simulation

We want to determine by either theoretical calculation or
computational experiment how well the GkNN method
predicts yields, or at least to find some sense in which it can
be said that the GkNNmethod is predicting yields accurately.
Suppose that we have a training set {(𝑤𝑖, 𝑢𝑖) : 𝑖 = 1, . . . , 𝑁}.
Let {V𝑡 : 𝑡 = 1, . . . , 𝑇} be a given climatic time series and{𝑧𝑡 : 𝑡 = 1, . . . , 𝑇} associated (unknown) yields. The GkNN
method is a stochastic method for generating a yield time
series. Suppose that we run it 𝑅 times resulting in a yield time
series {𝑦(𝑟)𝑡 : 𝑡 = 1, . . . , 𝑇} for run r, where 𝑟 ∈ {1, . . . , 𝑅}.

We will first work out how well the GkNN predicted yield
approximates the actual yield for any givenmonth. Ameasure
of the error of the predicted yield compared to the actual yield
formonth 𝑡 and run 𝑟 is the square of the deviation, i.e. (𝑦(𝑟)𝑡 −𝑧𝑡)2. The expected error for the GkNN computation of the
yield for month 𝑡 is

𝐸𝑡 = lim
𝑅󳨀→∞

1𝑅 𝑅∑𝑟=1 (𝑦(𝑟)𝑡 − 𝑧𝑡)2 . (1)

Wewill show that this expected error exists and is positive.
Let ⟨𝑦𝑡⟩ denote the expected value of the GkNN prediction of
the yield for month 𝑡. We will show that ⟨𝑦𝑡⟩ exists. Let 𝛾(𝑡, 𝑟)
denote the index i selected chosen in Step (2) of the GkNN
algorithm for month 𝑡 and run 𝑟. By definition

⟨𝑦𝑡⟩ = lim
𝑅󳨀→∞

1𝑅 𝑅∑𝑟=1𝑦(𝑟)𝑡
= lim
𝑅󳨀→∞

1𝑅 𝑁∑𝑖=1𝑢𝜋𝑡(𝑖) 󵄨󵄨󵄨󵄨{𝑟 ∈ {1, . . . , 𝑅} : 𝛾 (𝑡, 𝑟) = 𝑖}󵄨󵄨󵄨󵄨
= 𝑁∑
𝑖=1

𝑢𝜋𝑡(𝑖) lim𝑅󳨀→∞ 1𝑅 󵄨󵄨󵄨󵄨{𝑟 ∈ {1, . . . , 𝑅} : 𝛾 (𝑡, 𝑟) = 𝑖}󵄨󵄨󵄨󵄨
= 𝑁∑
𝑖=1

𝑝𝑖𝑢𝜋𝑡(𝑖).
(2)

Thus ⟨𝑦𝑡⟩ exists. Now(𝑦(𝑟)𝑡 − 𝑧𝑡)2 = (𝑦(𝑟)𝑡 − ⟨𝑦𝑡⟩ + ⟨𝑦𝑡⟩ − 𝑧𝑡)2= (𝑦(𝑟)𝑡 − ⟨𝑦𝑡⟩)2 + (⟨𝑦𝑡⟩ − 𝑧𝑡)2+ 2 (𝑦(𝑟)𝑡 − ⟨𝑦𝑡⟩) (⟨𝑦𝑡⟩ − 𝑧𝑡)
(3)

Therefore

𝐸𝑡 = lim
𝑅󳨀→∞

1𝑅 𝑅∑𝑟=1 (𝑦(𝑟)𝑡 − ⟨𝑦𝑡⟩)2 + (⟨𝑦𝑡⟩ − 𝑧𝑡)2
= Var (𝑦𝑡) + (⟨𝑦𝑡⟩ − 𝑧𝑡)2 (4)

Now the variance Var(𝑦𝑡) is given by

Var (𝑦𝑡) = lim
𝑅󳨀→∞

1𝑅 𝑅∑𝑟=1 (𝑦(𝑟)𝑡 − ⟨𝑦𝑡⟩)2 = lim
𝑅󳨀→∞

1𝑅
⋅ 𝑁∑
𝑖=1

(𝑢𝜋𝑡(𝑖) − ⟨𝑦𝑡⟩)2 󵄨󵄨󵄨󵄨{𝑟 ∈ {1, . . . , 𝑅} : 𝛾 (𝑡, 𝑟) = 𝑖}󵄨󵄨󵄨󵄨
= 𝑁∑
𝑖=1

(𝑢𝜋𝑡(𝑖) − ⟨𝑦𝑡⟩)2 lim
𝑅󳨀→∞

1𝑅⋅ 󵄨󵄨󵄨󵄨{𝑟 ∈ {1, . . . , 𝑅} : 𝛾 (𝑡, 𝑟) = 𝑖}󵄨󵄨󵄨󵄨
= 𝑁∑
𝑖=1

𝑝𝑖 (𝑢𝜋𝑡(𝑖) − ⟨𝑦𝑡⟩)2

(5)

Thus

𝐸𝑡 = 𝑁∑
𝑖=1

𝑝𝑖 (𝑢𝜋𝑡(𝑖) − ⟨𝑦𝑡⟩)2 + (⟨𝑦𝑡⟩ − 𝑧𝑡)2 . (6)

The expected error is the sum of two nonnegative terms.
The first term can only be zero if all the points in the
neighborhood {(𝑤𝜋𝑡(𝑖), 𝑢𝜋𝑡(𝑖)) : 𝑖 = 1, . . . , 𝑁; 𝑝𝑖 > 0} have
associated yields equal to ⟨𝑦𝑡⟩ and this is seldom the case.
The greater the distribution of yields in the neighborhood the
greater the first term will be and hence, the greater 𝐸𝑡 will be.
Thus the expected error𝐸𝑡 is positive and the error in the pre-
diction of the yield during month 𝑡 for any given run is likely
to be positive.

A measure of the total error of the GkNN prediction of
yield over the total simulation period for run 𝑟 is

𝐸(𝑟) = 𝑇∑
𝑡=1

(𝑦(𝑟)𝑡 − 𝑧𝑡)2 , (7)

and its expected value is

𝐸 = lim
𝑅󳨀→∞

1𝑅 𝑅∑𝑟=1 𝑇∑𝑡=1 (𝑦(𝑟)𝑡 − 𝑧𝑡)2
= 𝑇∑
𝑡=1

lim
𝑅󳨀→∞

1𝑅 𝑅∑𝑟=1 (𝑦(𝑟)𝑡 − 𝑧𝑡)2 = 𝑇∑
𝑡=1

𝐸𝑡 > 0. (8)
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We may write

𝐸𝑡 = 𝑁∑
𝑖=1

𝑝𝑖 (𝑢𝜋𝑡(𝑖) − ⟨𝑦𝑡⟩)2 + (⟨𝑦𝑡⟩ − 𝑧𝑡)2 = 𝐸(𝑏)𝑡 + 𝐸(𝑝)𝑡 , (9)

where

𝐸(𝑏)𝑡 = 𝑁∑
𝑖=1

𝑝𝑖 (𝑢𝜋𝑡(𝑖) − ⟨𝑦𝑡⟩)2 , (10)

and 𝐸(𝑝)𝑡 = (⟨𝑦𝑡⟩ − 𝑧𝑡)2 . (11)

We have

𝐸(𝑏)𝑡 = 𝑁∑
𝑖=1

𝑝𝑖(𝑢𝜋𝑡(𝑖) − 𝑁∑
𝑗=1

𝑝𝑗𝑢𝜋𝑡(𝑗))2 . (12)

Now define 𝜋 : 𝑉 × {1, . . . , 𝑘} 󳨀→ {1, . . . , 𝑁} by𝜋 (V, 𝑖)= the index of the 𝑖th closest element of {𝑤𝑗 : 𝑗= 1, . . . , 𝑁} to V with respect to the metric 𝜇, (13)

and let, for V ∈ 𝑉, 𝑖 ∈ {1, . . . , 𝑘}, 𝜋V(𝑖) = 𝜋(V, 𝑖). Then

𝐸(𝑏)𝑡 = 𝐸 (V𝑡) , (14)

where 𝐸 : 𝑉 󳨀→ [0,∞) is defined by

𝐸 (V) = 𝑁∑
𝑖=1

𝑝𝑖(𝑢𝜋V(𝑖) − 𝑁∑
𝑗=1

𝑝𝑗𝑢𝜋V(𝑗))2 . (15)

𝐸 : 𝑉 󳨀→ [0,∞) may be called the base error map. We will
show that E is bounded over the predictor vector space as
follows:

𝐸 (V) ≤ 𝑁∑
𝑖=1

𝑝𝑖 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢𝜋V(𝑖) −
𝑁∑
𝑗=1

𝑝𝑗𝑢𝜋V(𝑗)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

≤ 𝑁∑
𝑖=1

𝑝𝑖(𝑢max + 𝑁∑
𝑗=1

𝑝𝑗𝑢max)2
≤ 𝑁(𝑢max + 𝑁𝑢max)2 = 𝑁 (1 + 𝑁)2 (𝑢max)2 ,

(16)

where 𝑢max = max{𝑢𝑖 : 𝑖 = 1, . . . ,𝑁}.
4. Prediction of the Annual Average
Yield by GkNN Simulation

Thus the GkNN method does not make accurate detailed
month by month predictions of the yield. We would like
to determine some way in which the GkNN method gives
useful information about the system behavior. We will show

that under certain assumptions the GkNN method gives
an accurate prediction of the average annual yield and the
accuracy of the prediction increases as the total time period
of the simulation increases.

Given a permutation 𝜋 : {1, . . . , 𝑁} 󳨀→ {1, . . . ,𝑁} let𝑉𝜋 = {V ∈ 𝑉 : 𝜋V = 𝜋}. LetΠdenote the set of all permutations
of {1, . . . , 𝑁}. Suppose that the simulation is carried out over𝑚 years, so 𝑇 = 12𝑚. The average annual yield for run 𝑟 is

𝑌(𝑟) = 1𝑚 12𝑚∑𝑡=1𝑦(𝑟)𝑡
= 1𝑚 ∑
𝜋∈Π

∑{𝑦(𝑟)𝑡 : V𝑡 ∈ 𝑉𝜋, 𝑡 ∈ {1, . . . , 12𝑚}} . (17)

Therefore the average of the average annual yield over 𝑅 runs
is given by

1𝑅 𝑅∑𝑟=1𝑌(𝑟) = 1𝑅
⋅ 𝑅∑
𝑟=1

1𝑚 ∑
𝜋∈Π

∑{𝑦(𝑟)𝑡 : V𝑡 ∈ 𝑉𝜋, 𝑡 ∈ {1, . . . , 12𝑚}}
= 1𝑚 ∑
𝜋∈Π

∑{1𝑅 𝑅∑𝑟=1𝑦(𝑟)𝑡 : V𝑡 ∈ 𝑉𝜋, 𝑡 ∈ {1, . . . , 12𝑚}}
󳨀→ 1𝑚
⋅ ∑
𝜋∈Π

∑{ 𝑁∑
𝑖=1

𝑝𝑖𝑢𝜋(𝑖) : V𝑡 ∈ 𝑉𝜋, 𝑡 ∈ {1, . . . , 12𝑚}} ,

(18)

as 𝑅 󳨀→ ∞. Therefore the expected value of the predicted
average annual yield is given by

⟨𝑌⟩
= 1𝑚 ∑
𝜋∈Π

{ 𝑁∑
𝑖=1

𝑝𝑖𝑢𝜋(𝑖) 󵄨󵄨󵄨󵄨{𝑡 ∈ {1, . . . , 12𝑚} : V𝑡 ∈ 𝑉𝜋}󵄨󵄨󵄨󵄨 . (19)

If𝑋 is a topological space and 𝑥 = {𝑥𝑡 : 𝑡 = 1, 2, . . .} is a time
series in𝑋 thenwewill say that𝑥 is eventuallywell distributed
if

lim
𝑇󳨀→∞

1𝑇 󵄨󵄨󵄨󵄨{𝑡 ∈ {1, . . . 𝑇} : 𝑥𝑡 ∈ 𝑈}󵄨󵄨󵄨󵄨
exists for all Borel sets 𝑈 ⊂ 𝑋. (20)

(Borel (𝑋) = {Borel sets in X} denotes the sigma algebra
generated by the set of open sets in 𝑋 [12].) This is a natural
property for a time series to have. If 𝑥 is eventually well
distributed define its distribution to be the mapping ] :
Borel(𝑋) 󳨀→ [0, 1] defined by
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] (𝑈) = lim
𝑇󳨀→∞

1𝑇 󵄨󵄨󵄨󵄨{𝑡 ∈ {1, . . . 𝑇} : 𝑥𝑡 ∈ 𝑈}󵄨󵄨󵄨󵄨 . (21)

It is straightforward to show that ] is finitely additive and
](𝑋) = 1.

If the climatic time series {V𝑡 : 𝑡 = 1, 2, . . .} is eventually
well distributed with distribution ] then the average annual
yield converges to a limit as the number of years 𝑚 in the
simulation increases given by

lim
𝑚󳨀→∞

⟨𝑌⟩ = 12∑
𝜋∈Π

] (𝑉𝜋)( 𝑁∑
𝑖=1

𝑝𝑖𝑢𝜋(𝑖)) . (22)

5. Variance of the Average Annual Yield
Predicted by GkNN Simulation

Wewill now compute the variance of the average annual yield
and show that it tends to zero as the number of years𝑚 in the
simulation increases. We have

Var (𝑌) = lim
𝑅󳨀→∞

1𝑅 𝑅∑𝑟=1 (𝑌(𝑟) − ⟨𝑌⟩)2
= lim
𝑅󳨀→∞

1𝑅 𝑅∑𝑟=1𝑌(𝑟)2 − ⟨𝑌⟩2 . (23)

We may compute

1𝑅 𝑅∑𝑟=1𝑌(𝑟)2 = 1𝑅 𝑅∑𝑟=1 1𝑚2 (∑
𝜋∈Π

∑{𝑦(𝑟)𝑡 : V𝑡 ∈ 𝑉𝜋, 𝑡 ∈ {1, . . . , 12𝑚}})2
= 1𝑅 𝑅∑𝑟=1( 1𝑚2 ( ∑

𝜋1∈Π

∑{𝑦(𝑟)𝑡 : V𝑡 ∈ 𝑉𝜋1 , 𝑡 ∈ {1, . . . , 12𝑚}})
( ∑
𝜋2∈Π

∑{𝑦(𝑟)𝑠 : V𝑠 ∈ 𝑉𝜋2 , 𝑠 ∈ {1, . . . , 12𝑚}}))
= 1𝑚2 ∑

𝜋1,𝜋2∈Π

∑{1𝑅 𝑅∑𝑟=1𝑦(𝑟)𝑡 𝑦(𝑟)𝑠 : V𝑡 ∈ 𝑉𝜋1 , V𝑠 ∈ 𝑉𝜋2 , 𝑡, 𝑠 ∈ {1, . . . , 12𝑚}}
= 1𝑚2 ∑

𝜋1,𝜋2∈Π

∑{1𝑅 𝑅∑𝑟=1𝑦(𝑟)𝑡 𝑦(𝑟)𝑠 : V𝑡 ∈ 𝑉𝜋1 , V𝑠 ∈ 𝑉𝜋2 , 𝑡, 𝑠 ∈ {1, . . . , 12𝑚} , 𝑠 ̸= 𝑡}
+ 1𝑚2 ∑
𝜋∈Π

∑{ 1𝑅 𝑅∑𝑟=1𝑦(𝑟)2𝑡 : V𝑡 ∈ 𝑉𝜋, 𝑡 ∈ {1, . . . , 12𝑚}} .

(24)

Now for 𝑠, 𝑡 ∈ {1, . . . , 12𝑚}, 𝑠 ̸= 𝑡, V𝑡 ∈ 𝑉𝜋1 , V𝑠 ∈ 𝑉𝜋2 ,1𝑅 𝑅∑𝑟=1𝑦(𝑟)𝑡 𝑦(𝑟)𝑠 = 1𝑅 ∑{𝑢𝜋1(𝑖)𝑢𝜋2(𝑗) : 𝛾 (𝑡, 𝑟) = 𝑖, 𝛾 (𝑠, 𝑟)
= 𝑗; 𝑖, 𝑗 ∈ {1, . . . , 𝑁} , 𝑟 ∈ {1, . . . , 𝑅}} = 1𝑅
⋅ 𝑁∑
𝑖,𝑗=1

𝑢𝜋1(𝑖)𝑢𝜋2(𝑗) 󵄨󵄨󵄨󵄨{𝑟 ∈ {1, . . . , 𝑅} : 𝛾 (𝑡, 𝑟) = 𝑖, 𝛾 (𝑠, 𝑟)
= 𝑗}󵄨󵄨󵄨󵄨 = 𝑁∑

𝑖,𝑗=1

𝑢𝜋1(𝑖)𝑢𝜋2(𝑗) 1𝑅 󵄨󵄨󵄨󵄨{𝑟 ∈ {1, . . . 𝑅} : 𝛾 (𝑡, 𝑟)
= 𝑖}󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨{𝑟 ∈ {1, . . . , 𝑅} : 𝛾 (𝑡, 𝑟) = 𝑖, 𝛾 (𝑠, 𝑟) = 𝑗}󵄨󵄨󵄨󵄨−1 󵄨󵄨󵄨󵄨{𝑟∈ {1, . . . , 𝑅} : 𝛾 (𝑡, 𝑟) = 𝑖, 𝛾 (𝑠, 𝑟) = 𝑗}󵄨󵄨󵄨󵄨
󳨀→ 𝑁∑
𝑖,𝑗=1

𝑝𝑖𝑝𝑗𝑢𝜋1(𝑖)𝑢𝜋2(𝑗),

(25)

as 𝑅 󳨀→ ∞ (assuming that the index selection at Step (3) of
the GkNN algorithm at time 𝑡 is independent of its selection
at time 𝑠). Therefore

lim
𝑅󳨀→∞

1𝑅 𝑅∑𝑟=1𝑌(𝑟)2 = 1𝑚2 ∑
𝜋1 ,𝜋2∈Π

( 𝑁∑
𝑖,𝑗=1

𝑝𝑖𝑝𝑗𝑢𝜋1(𝑖)𝑢𝜋2(𝑗))
⋅ 󵄨󵄨󵄨󵄨󵄨{(𝑠, 𝑡) ∈ {1, . . . , 12𝑚}2 : V𝑡 ∈ 𝑉𝜋1 , V𝑠 ∈ 𝑉𝜋2 , 𝑠 ̸= 𝑡}󵄨󵄨󵄨󵄨󵄨+ 1𝑚2 ∑
𝜋∈Π

⟨𝑦𝑡⟩2 󵄨󵄨󵄨󵄨{𝑡 ∈ {1, . . . , 12𝑚} : V𝑡 ∈ 𝑉𝜋}󵄨󵄨󵄨󵄨 .
(26)

Also we compute

⟨𝑌⟩2 = 1𝑚2 (∑
𝜋∈Π

𝑁∑
𝑖=1

𝑝𝑖𝑢𝜋(𝑖)
⋅ 󵄨󵄨󵄨󵄨{𝑡 ∈ 1, . . . , 12𝑚} : V𝑡 ∈ 𝑉𝜋�󵄨󵄨󵄨󵄨)2 = 1𝑚2
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⋅ ∑
𝜋1,𝜋2∈Π

𝑁∑
𝑖,𝑗=1

𝑝𝑖𝑝𝑗𝑢𝜋1(𝑖)𝑢𝜋2(𝑗)
⋅ 󵄨󵄨󵄨󵄨󵄨{(𝑠, 𝑡) ∈ {1, . . . , 12𝑚}2 : V𝑡 ∈ 𝑉𝜋1 , V𝑠 ∈ 𝑉𝜋2}󵄨󵄨󵄨󵄨󵄨 .

(27)

It follows that

Var (𝑌) = 1𝑚2⋅ ∑
𝜋∈Π

(⟨𝑦2𝑡 ⟩ − ⟨𝑦𝑡⟩2) 󵄨󵄨󵄨󵄨{𝑡 ∈ {1, . . . , 12𝑚} : V𝑡 ∈ 𝑉𝜋}󵄨󵄨󵄨󵄨
= 1𝑚2 ∑

𝜋∈Π

Var (𝑦𝑡) 󵄨󵄨󵄨󵄨{𝑡 ∈ {1, . . . , 12𝑚} : V𝑡 ∈ 𝑉𝜋}󵄨󵄨󵄨󵄨
= 1𝑚2 ∑𝜋∈Π 𝑁∑𝑖=1𝑝𝑖(𝑢𝜋(𝑖) − 𝑁∑

𝑗=1

𝑝𝑗𝑢𝜋(𝑗))2
⋅ 󵄨󵄨󵄨󵄨{𝑡 ∈ {1, . . . , 12𝑚} : V𝑡 ∈ 𝑉𝜋}󵄨󵄨󵄨󵄨 .

(28)

Therefore

Var (𝑌) ≤ 𝐶𝑚, (29)

where

𝐶 = 12∑
𝜋∈Π

𝑁∑
𝑖=1

𝑝𝑖(𝑢𝜋(𝑖) − 𝑁∑
𝑗=1

𝑝𝑗𝑢𝜋(𝑗))2 , (30)

and so the variance of the predicted annual average annual
yield as computed by the GkNN method tends to zero as the
total number of years 𝑚 in the simulation increases. If the
time series {V𝑡 : 𝑡 = 1, 2, . . .} is eventually well distributed
with distribution ] then

lim
𝑚󳨀→∞

(𝑚Var (𝑌))
= ∑
𝜋∈Π

] (𝑉𝜋) 𝑁∑
𝑖=1

𝑝𝑖(𝑢𝜋(𝑖) − 𝑁∑
𝑗=1

𝑝𝑗𝑢𝜋(𝑗))2 . (31)

6. Prediction of the Total Yield by
GkNN Simulation

Thus the computation of average annual yield using GkNN
seems to be well behaved. However it is perhaps of greater
interest to consider the total yield at any month starting from
the beginning of the simulation period. The total yield 𝑌tot
over a simulation period of𝑚 years is given by

𝑌tot = 𝑚𝑌, (32)

where𝑌 is the average annual yield.Therefore the variance of
the total yield is given by

Var (𝑌tot) = 𝑚2Var (𝑌)
= ∑
𝜋∈Π

𝑁∑
𝑖=1

𝑝𝑖(𝑢𝜋(𝑖) − 𝑁∑
𝑗=1

𝑝𝑗𝑢𝜋(𝑗))2
⋅ 󵄨󵄨󵄨󵄨{𝑡 ∈ {1, . . . , 12𝑚} : V𝑡 ∈ 𝑉𝜋}󵄨󵄨󵄨󵄨 .

(33)

If the time series {V𝑡 : 𝑡 = 1, 2, . . .} is eventually well
distributed with distribution ] then Var(𝑌tot) = 𝑚𝑓(𝑚),
where

𝑓 (𝑚) = 𝑚−1(∑
𝜋∈Π

𝑁∑
𝑖=1

𝑝𝑖(𝑢𝜋(𝑖) − 𝑁∑
𝑗=1

𝑝𝑗𝑢𝜋(𝑗))2

⋅ 󵄨󵄨󵄨󵄨{𝑡 ∈ {1, . . . , 12𝑚} : V𝑡 ∈ V𝜋}󵄨󵄨󵄨󵄨)
󳨀→ ∑
𝜋∈Π

] (𝑉𝜋) 𝑁∑
𝑖=1

𝑝𝑖(𝑢𝜋(𝑖) − 𝑁∑
𝑗=1

𝑝𝑗𝑢𝜋(𝑗))2 ,
(34)

as 𝑚 󳨀→ ∞. This limit will be positive for practical appli-
cations. Thus, in this case, the variance of 𝑌tot becomes
unbounded as𝑚 󳨀→ ∞.

7. A General Framework for GkNN

Let {V𝑡 : 𝑡 = 1, 2, . . .} ⊂ 𝑉 be a time series which may be a
realization of some stochastic process and let 𝑍 be a topolog-
ical space. A stochastic process 𝑦 = {𝑦𝑡 : 𝑡 = 1, 2, . . .} ⊂ 𝑍will
be said to be stochastically dependent on {V𝑡 : 𝑡 = 1, 2, . . .} if
there exists a continuous kernel 𝐾 : 𝑉 × Borel(𝑍) 󳨀→ [0, 1]
such that

Pr (𝑦𝑡 ∈ Γ) = 𝐾 (V𝑡, Γ) , ∀𝑡 = 1, 2, . . . (35)

The condition that 𝐾 is a continuous kernel means that for
all V ∈ 𝑉 the mapping taking Γ ∈ Borel(𝑍) to 𝐾(V, Γ) is a
probability measure and for all Γ ∈ Borel(𝑍) the mapping
taking V ∈ 𝑉 to 𝐾(V, Γ) is continuous. Equation (35) means
that if {𝑦(𝑟)𝑡 : 𝑡 = 1, 2, . . .} for 𝑟 = 1, 2, . . . are a collection of
runs (replicates) of the stochastic process {𝑦𝑡 : 𝑡 = 1, 2, . . .}
then

lim
𝑅󳨀→∞

1𝑅 󵄨󵄨󵄨󵄨󵄨{𝑟 ∈ {1, . . . , 𝑅} : 𝑦(𝑟)𝑡 ∈ Γ}󵄨󵄨󵄨󵄨󵄨 = 𝐾 (V𝑡, Γ) . (36)

Consider the GkNN process defined by training data{(𝑤𝑖, 𝑢𝑖) : 𝑖 = 1, . . . , 𝑁} ⊂ 𝑉×[0,∞). In this case the space𝑍 is
the space [0,∞). We will show that the process {𝑦1, 𝑦2, . . .} is
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stochastically dependent on the time series {V𝑡 : 𝑡 = 1, 2, . . .}.
In fact we have

Pr (𝑦𝑡 ∈ Γ) = lim
𝑅󳨀→∞

1𝑅 󵄨󵄨󵄨󵄨󵄨{𝑟 ∈ {1, . . . , 𝑅} : 𝑦(𝑟)𝑡 ∈ Γ}󵄨󵄨󵄨󵄨󵄨
= lim
𝑅󳨀→∞

1𝑅 𝑁∑𝑖=1𝛿𝑢𝜋𝑡(𝑖) (Γ) 󵄨󵄨󵄨󵄨󵄨{𝑟 ∈ {1, . . . , 𝑅} : 𝑦(𝑟)𝑡 = 𝑢𝜋𝑡(𝑖)}󵄨󵄨󵄨󵄨󵄨
= 𝑁∑
𝑖=1

𝛿𝑢𝜋𝑡(𝑖) (Γ) lim
𝑅󳨀→∞

1𝑅 󵄨󵄨󵄨󵄨󵄨{𝑟 ∈ {1, . . . , 𝑅} : 𝑦(𝑟)𝑡 = 𝑢𝜋𝑡(𝑖)}󵄨󵄨󵄨󵄨󵄨
= 𝑁∑
𝑖=1

𝑝𝑖𝛿𝑢𝜋𝑡(𝑖) (Γ) ,
(37)

where for 𝑎 ∈ 𝑍, 𝛿𝑎 : Borel(𝑍) 󳨀→ [0,∞) denotes the Dirac
measure concentrated on 𝑎 defined by

𝛿𝑎 (Γ) = {{{
1 if 𝑎 ∈ Γ0 otherwise. (38)

It follows that the GkNN process is stochastically dependent
on {V𝑡 : 𝑡 = 1, 2, . . .} with kernel 𝐾 defined by

𝐾 (V, Γ) = 𝑁∑
𝑖=1

𝑝𝑖𝛿𝑢𝜋V(𝑖) (Γ) . (39)

Now suppose that {V𝑡 : 𝑡 = 1, 2, . . .} ⊂ 𝑉 is a time series and{𝑦𝑡 : 𝑡 = 1, 2, . . .} ⊂ [0,∞) is a stochastic process which is
stochastically dependent on {V𝑡 : 𝑡 = 1, 2, . . .} with kernel𝐾 where 𝐾 is defined by a continuous functional kernel 𝜙 :𝑉 × [0,∞) 󳨀→ [0,∞), i.e.,

𝐾(V, Γ) = ∫
Γ
𝜙 (V, 𝜉) 𝑑𝜉. (40)

Let {𝑧𝑡 : 𝑡 = 1, 2, . . .} be a realization (replicate) of {𝑦𝑡 : 𝑡 =1, 2, . . .} and let 𝐾𝑁 be the kernel associated with the GkNN
process with training set 𝑊𝑁 = {(V𝑖, 𝑧𝑖) : 𝑖 = 1, . . . , 𝑁} and
probabilities

𝑝𝑖 = {{{
1𝑘𝑁 for 𝑖 = 1, . . . , 𝑘𝑁0 otherwise, (41)

for which 𝑘𝑁 󳨀→ ∞ as 𝑁 󳨀→ ∞ but 𝑘𝑁/𝑁 󳨀→ 0 as 𝑁 󳨀→∞. An example of a sequence 𝑘𝑁 satisfying this is 𝑘𝑁 = √𝑁.𝐾𝑁 is given by

𝐾𝑁 (V, Γ) = 1𝑘𝑁 𝑘𝑁∑𝑖=1𝛿𝑧𝜋V(𝑖) (Γ)
= 1𝑘𝑁 󵄨󵄨󵄨󵄨󵄨{𝑖 ∈ {1, . . . , 𝑘𝑁} : 𝑧𝜋V(𝑖) ∈ Γ)}󵄨󵄨󵄨󵄨󵄨 .

(42)

Therefore for an interval (𝑎, 𝑏)𝐾𝑁 (V, (𝑎, 𝑏))
= 1𝑘𝑁 󵄨󵄨󵄨󵄨󵄨{𝑖 ∈ {1, . . . , 𝑘𝑁} : 𝑧𝜋V(𝑖) ∈ (𝑎, 𝑏)}󵄨󵄨󵄨󵄨󵄨 . (43)

Now let 𝜓 : 𝑉 × [0,∞] 󳨀→ [0, 1] be defined by

𝜓 (V, 𝜉) = ∫𝜉
0
𝜙 (V, 𝜁) 𝑑𝜁. (44)

Let {𝜌𝑡} be defined by 𝜌𝑡 = 𝜓(V𝑡, 𝑧𝑡) for 𝑡 = 1, 2, . . .. Then {𝜌𝑡}
is a uniformly distributed sequence of random numbers and𝑧𝑡 = (𝜓(V𝑡, .))−1(𝜌𝑡). Thus

𝐾𝑁 (V, (𝑎, 𝑏)) = 1𝑘𝑁 󵄨󵄨󵄨󵄨󵄨󵄨{𝑖
∈ {1, . . . , 𝑘𝑁} : (𝜓 (V𝜋V(𝑖), ⋅))−1 (𝜌𝜋V(𝑖)) ∈ (𝑎, 𝑏)}󵄨󵄨󵄨󵄨󵄨󵄨= 1𝑘𝑁 󵄨󵄨󵄨󵄨󵄨{𝑖 ∈ {1, . . . , 𝑘𝑁} : (𝜓 (V, ⋅))−1 (𝜌𝜋V(𝑖))
∈ (𝑎, 𝑏)}󵄨󵄨󵄨󵄨󵄨 = 1𝑘𝑁 󵄨󵄨󵄨󵄨󵄨{𝑖 ∈ {1, . . . , 𝑘𝑁} : 𝜌𝜋V(𝑖)
∈ (𝜓 (V, 𝑎) , 𝜓 (V, 𝑏))}󵄨󵄨󵄨󵄨󵄨 󳨀→ 𝜓 (V, 𝑏) − 𝜓 (V, 𝑎)= 𝐾 (V, (𝑎, 𝑏)) ,

(45)

as 𝑁 󳨀→ ∞, assuming that 𝜇(V𝜋V(𝑖), V) is small for all 𝑖 = 1,. . . , 𝑘𝑁 for𝑁 large enough (this will follow, if {V𝑡} is eventually
well distributed with positive distribution, given that {𝜌𝜋V(𝑖)}
is a uniformly distributed sequence).

Thus the GkNN kernel equals the kernel of the dependent
process in the sense defined above as long as the training set
for the GkNN process is large enough.

8. Example of Temporal Upscaling of
(Rainwater) Tank Data

We would like to estimate the month by month yield of a
rainwater tank (RWT) given monthly climatic data. This is
not straightforward because amonthly time step is too coarse
for theRWTsimulationmodel. To obtain reasonably accurate
results a daily time stepmust be used for the RWT simulation
[13, 14].

The monthly climatic data arises from the water supply
headworks (WSH) model [15] and is usually stochastically
generated with a very large time span (e.g., 1,000,000 years).
The problem of temporal scaling up would not arise if the
climatic data for the WSH model had a daily time step (and
also if the RWT simulation algorithm could be executed
sufficiently fast).

Temporal downscaling has been used extensively in
studying the short term effects of long-term climate models
such as models of climate change [16–19]. However in the
present paper we are considering the problem of upscaling
relatively short records of daily data to generate long term
records of monthly data.

Three methods of temporal upscaling are the nearest
neighbor (NN) method of Coombes et al. [20], Kuczera’s
bootstrap method [21] and the 𝑘-nearest neighbor (kNN)
method [5, 6, 16].

In each of these methods the RWT month by month
yield associated with a WSH climatic time series is estimated
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using a comparatively short (e.g., 140 years) historical record
of daily climatic data. In each case the RWT simulation
model or,more generally, theAllotmentWater Balancemodel
described in [20] is run on this daily historical record for
various RWT parameter settings. In order to do this it
is necessary to have a demand model which is either a
simulation or, as is unlikely, a historical record. The demand
simulation will take into account the climatic variables, in
particular, the temperature.

The upscaling methods can be described in terms of
the following general format. Each of the upscaling meth-
ods aggregates the daily RWT yields and climatic variables
obtained from running the RWT simulation on the historical
record into monthly time steps. They then generate a list{𝑟𝑅𝑗 : 𝑗 = 1, . . . ,𝑁} of records of the form

𝑟𝑅𝑗 = (month label𝑅𝑗 , climatic variable 1𝑅𝑗 , . . . ,
climatic variable n𝑅𝑗 ,RWT yield𝑅𝑗 ) , (46)

where 𝑁 is the number of months in the historical record.
The month label is a number in {1, . . . , 12} determined from
the month corresponding to the record. For the method
described in [20], 𝑛 = 3 and

climatic variable 1 = average temperature,

climatic variable 2 = number of rainfall days,

climatic variable 3 = rainfall depth.

For Kuczera’s bootstrap method and the kNN method
as currently implemented 𝑛 = 1 and climatic variable 1 =
rainfall depth.

Now for all three upscaling methods we are given a
sequence 𝑐𝐻1 , 𝑐𝐻2 , . . . of monthly records coming from the
WSHmodel where

𝑐𝐻𝑖 = (month label𝐻𝑖 , climatic variable 1𝐻𝑖 , . . . ,
climatic variable n𝐻𝑖 ) . (47)

For each 𝑖we want to select a RWT yield to associate with𝑐𝐻𝑖 . The NN method does this by finding the record in {𝑟𝑅𝑗 :𝑗 = 1, . . . ,𝑁,month label𝑅𝑗 = month label𝐻𝑖 } which is closest
to 𝑐𝐻𝑖 as measured by the metric (a variant of the Manhattan
metric) given by

𝜇𝑁𝑁 (𝑟𝑅𝑗 , 𝑐𝐶𝑖 ) = 𝑑∑
𝑝=2

𝑤𝑝 󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑟𝑅𝑗 )𝑝 − (𝑐𝐻𝑖 )𝑝󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (48)

where𝑑 = 𝑛+1 is the record length (e.g. 2) and𝑤1, . . . , 𝑤𝑛 are
weights which were chosen to be 1 in [20].TheNNmethod is
deterministic.

The kNN method is a stochastic method in which the
following steps are carried out.

(1) Evaluate the distance from each record 𝑟𝑅𝑗 to 𝑐𝐻𝑖
using the following metric (a variant of the Euclidean
metric):

𝜇𝑁𝑁 (𝑟𝑅𝑗 , 𝑐𝐻𝑖 ) = ( 𝑑∑
𝑝=1

[[[
((𝑟𝑅𝑗 )𝑝 − (𝑐𝐻𝑖 )𝑝)𝑠𝑝 ]]]

2)
1/2

, (49)

where 𝑠𝑝 is the standard deviation of {(𝑟𝑅𝑗 )𝑝 : 𝑗 =1, . . . , 𝑁}.
(2) Sort the metric values
(3) Choose the top (closest) 𝑘 values 𝑟𝑅𝑗1 ,..., 𝑟𝑅𝑗𝑘
(4) Assign a probability to each of the 𝑘 selected values

proportional to 1/𝑡 for 𝑡 = 1, . . . , 𝑘
(5) Randomly select an index 𝑡 according to the assigned

probabilities and return the RWT yield𝑅𝑗𝑡 as the RWT
yield corresponding to 𝑐𝐻𝑖

The bootstrap method is a stochastic method in which a
scatter plot of {(rainfall𝑅𝑗 ,RWT yield𝑅𝑗 ) : 𝑗 = 1, . . . , 𝑁} is
created. The domain of the plot is divided up into bands of
50 samples per band. Then, given a WSH climatic record𝑐𝐻𝑖 the corresponding RWT yield is obtained by finding the
band containing rainfall𝐻𝑖 , randomly choosing a sample in
that band and then returning its RWT yield value.

The bootstrap method of Kuczera can be modified by
taking the set of samples associated with any given rainfall
value to be the set of samples whose rainfall values are the
50 closest values to the given rainfall value rather than using
predefined bands of 50 rainfall values. It can be argued that
the modified bootstrap method is superior to the bootstrap
method because the closest values are the most appropriate
values to use and, for example, if the given rainfall value falls
near the boundary of one of the predefined bands then the
predicted yield using the bootstrap method will be biased
towards the values near the centre of the band.

The modified bootstrap method, the Coombes method,
and the kNNmethod are all examples of the GkNNmethod.
For the modified bootstrap method the predictor vectors
have one component, the rainfall. For the Coombes method
the predictor vectors have three components, the average
temperature, the number of rainfall days, and the rainfall
depth. For the kNN method the predictor vectors have two
components, the month label (an integer in {1, . . . , 12}) and
the rainfall depth. The training data is obtained by running
the RWT simulation model using a daily time step over
a relatively short period of time (e.g., 100 years) and then
upscaling to a monthly time step by aggregation. The GkNN
metric 𝜇 : 𝑉 × 𝑉 󳨀→ [0,∞)may be the modified Manhattan
metric of the Coombes method or the modified Euclidean
metric of the kNNmethod.

For the bootstrap method the probability distribution on
the set of nearest neighbors is given by

𝑝𝑖 = {{{
150 for 𝑖 = 1, . . . 500 otherwise. (50)
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For the kNNmethod the distribution is given by

𝑝𝑖 = ]−1
{{{

1𝑖 for 𝑖 = 1, . . . 𝑘0 otherwise, (51)

where

] = 𝑘∑
𝑖=1

1𝑖 . (52)

9. Conclusion

Ageneralization of threemethods of temporal data upscaling,
which we have called the generalized k-nearest neighbor
(GkNN) method, has been considered. The accuracy of
the GkNN simulation of month by month yield has been
considered. The notion of an eventually well distributed time
series is introduced and on the basis of this assumption some
properties of the average annual yield and its variance for a
GkNN simulation are computed. The behavior of the total
yield over a planning period has been described. A general
framework for considering the GkNN algorithm based on
the notion of stochastically dependent time series has been
described and it is shown that for a sufficiently large training
set the GkNN simulation has the same statistical properties
as the training data. An example of the application of the
methodology has been given in the problem of simulating the
yield of a rainwater tank given monthly climatic data.
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The work of the paper is a theoretical study. The author did
not implement any code or generate any data relating to the
work. Therefore no data were used to support this study.

Conflicts of Interest

The author declare that they have no conflicts of interest.

Acknowledgments

Thework described in this paper was partially funded by the
Commonwealth Scientific and Industrial Research Organisa-
tion (CSIRO, Australia). Also the author would like to thank
Fareed Mirza, Shiroma Maheepala, and Yong Song for very
helpful discussions.

References

[1] Y. P. Mack, “Local properties of 𝑘-NN regression estimates,” So-
ciety for Industrial and Applied Mathematics. Journal on Alge-
braic and Discrete Methods, vol. 2, no. 3, pp. 311–323, 1981.

[2] S. Yakowitz and M. Karlsson, “Nearest neighbour methods for
time series, with application to rainfall/runoff prediction,” in
Stochastic Hydrology, J. B. Macneill and G. J. Umphrey, Eds., pp.
149–160, Reidel Publishing Company, 1987.

[3] T. Cover and P. E. Hart, “Nearest neighbour pattern classifica-
tion,” IEEE Transactions on Information Theory, vol. 13, no. 1, p.
21, 1967.

[4] L. Devroye, “On the almost everywhere convergence of non-
parametric regression function estimates,”The Annals of Statis-
tics, vol. 9, no. 6, pp. 1310–1319, 1981.

[5] U. Lall and A. Sharma, “A nearest neighbor bootstrap for re-
sampling hydrologic time series,”Water Resources Research, vol.
32, no. 3, pp. 679–693, 1996.

[6] B. Rajagopalan and U. Lall, “A k-nearest-neighbor simulator
for daily precipitation and other weather variables,” Water Re-
sources Research, vol. 35, no. 10, pp. 3089–3101, 1999.

[7] G. Biau, L. Devroye, V. Dujmovic, and A. Krzyak, “An affine
invariant k-nearest neighbour regression estimate,” Journal of
Multivariate Analysis, vol. 112, pp. 24–34, 2012.

[8] T. Lee andT. B.M. J. Ouarda, “Identification of model order and
number of neighbors for k-nearest neighbor resampling,” Jour-
nal of Hydrology, vol. 404, no. 3-4, pp. 136–145, 2011.

[9] S. Zhang, “Nearest neighbor selection for iteratively kNN
imputation,”The Journal of Systems and Software, vol. 85, no. 11,
pp. 2541–2552, 2012.

[10] S. Yakowitz, “Nearest neighbor regression estimation for null-
recurrent Markov time series,” Stochastic Processes and Their
Applications, vol. 48, no. 2, pp. 311–318, 1993.

[11] A. Sancetta, “Nearest neighbor conditional estimation for Har-
ris recurrent Markov chains,” Journal of Multivariate Analysis,
vol. 100, no. 10, pp. 2224–2236, 2009.

[12] P. R. Halmos, Measure Theory, Springer, New York, NY, USA,
1974.

[13] J. Mashford and S. Maheepala, “A general model for the exact
computation of yield froma rainwater tank,”AppliedMathemat-
icalModelling: Simulation and Computation for Engineering and
Environmental Systems, vol. 39, no. 7, pp. 1929–1940, 2015.

[14] J. Mashford, S. Maheepala, L. Neumann, and E. Coultas, “Com-
putation of the expected value and variance of the average an-
nual yield for a stochastic simulation of rainwater tank clusters,”
in Proceedings of the 2011 International Conference on Modeling,
Simulation and Visualization Methods, pp. 303–309, Las Vegas,
Nev, USA, 2011.

[15] L.-J. Cui andG. Kuczera, “Optimizing urbanwater supply head-
works using probabilistic searchmethods,” Journal of Water Re-
sources Planning and Management, vol. 129, no. 5, pp. 380–387,
2003.

[16] S. Gangopadhyay, M. Clark, and B. Rajagopalan, “Statistical
downscaling using K-nearest neighbors,” Water Resources Re-
search, vol. 41, no. 2, 2005.

[17] H. J. Fowler, S. Blenkinsop, and C. Tebaldi, “Linking climate
change modelling to impacts studies: recent advances in down-
scaling techniques for hydrological modelling,” International
Journal of Climatology, vol. 27, no. 12, pp. 1547–1578, 2007.

[18] D.Maraun,F.Wetterhall,A.M. Ireson et al., “Precipitation down-
scaling under climate change: Recent developments to bridge
the gap between dynamical models and the end user,” Reviews
of Geophysics, vol. 48, no. 3, pp. 1–34, 2010.

[19] R. J. Erhardt, L. E. Band, R. L. Smith, and B. J. Lopes, “Statistical
downscaling of precipitation on a spatially dependent net-
work using a regional climatemodel,” Stochastic Environmental
Research and Risk Assessment, vol. 29, no. 7, pp. 1835–1849, 2015.

[20] P. J. Coombes, G. Kuczera, J. D. Kalma, and J. R. Argue, “An
evaluation of the benefits of source control measures at the
regional scale,” Urban Water Journal, vol. 4, no. 4, pp. 307–320,
2002.

[21] G. Kuczera, “Urban water supply drought security: a compar-
ative analysis of complimentary centralised and decentralised
storage systems,” in Proceedings of the Water Down Under 2008,
pp. 1532–1543, 2008.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/



