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The work of this paper is backgrounded by prediction or evaluation and control of mechanical self-noise in sonar array cavity. The
vibratory power flow transmission analysis is applied to reveal the overall vibration level of the fluid-structural coupled system.
Through modal coupling analysis on the fluid-structural vibration of the fluid-filled enclosure with elastic boundaries, an efficient
computational method is deduced to determine the vibratory power flow generated by exterior excitations on the outside surface
of the elastic structure, including the total power flow entering into the fluid-structural coupled system and the net power flow
transmitted into the hydroacoustic field. Characteristics of the coupled natural frequencies and modals are investigated by a
numerical example of a rectangular water-filled cavity with five acoustic rigid walls and one elastic panel. Influential factors of
power flow transmission characteristics are further discussed with the purpose of overall evaluation and reduction of the cavity
water sound energy.

1. Introduction

1.1. Background. The work of this paper is backgrounded by
prediction or evaluation and control of mechanical self-noise
in sonar array cavity. The mechanical self-noise, which is
caused by structural vibration of sonar cavity’s wall, might
significantly weaken the detection performance of sonar at
lower frequencies [1, 2]. The sources of mechanical self-
noise might be multiple such as vibrating machines on the
ship which diffuse vibration energy or second excitation of
structure-borne sound. However, it is essential to compre-
hend the characteristics of interaction between the enclosed
water sound field and its elastic boundary structures for the
purpose of prediction, evaluation, and control of interior
hydroacoustic noise [3].

The subjects of cabin noise in various flight vehicles
and automobiles are more familiar in the investigation of
fluid-structural coupled vibration of acoustoelastic enclosure,
which mainly focus on characteristics of sound transmission
through the elastic wall into interior sound field resulting

from exterior air-borne sound [4]. In these cases, weak
coupling has been commonly assumed because of the low
density of air and high stiffness of cabin wall, which means
that the cavity’s interior sound pressure would have little
influence on the vibration of cavity wall, and modals of
interior sound field would also be affected very lightly [5]. In
contrast, a much stronger coupling might be present when a
water sound field takes place of the air [6].

The sound pressure is most commonly used to represent
the property of sound field in the study of acoustic-structural
coupling of acoustoelastic enclosure.The ratio of sound pres-
sure at the outside surface of the elastic cavity wallboard to
that at internal surface, which is defined as “noise reduction,”
is applied to evaluation of sound transmission characteristics
[4, 7]. Since the sound pressure would change greatly at
different points of the soundfield, the value of noise reduction
would also be very different, and a comprehensive measure,
for example, power flow, would be expected for an overall
evaluation of vibration level of the enclosed sound field.
The power flow has been validated and widely utilized as
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a comprehensive measure for evaluation of overall level of
vibration energy of vibration isolation systems mounted on
flexible foundations [8], which could also be explained as
average sound power when applied to sound field analy-
sis.

In this paper, through modal coupling analysis on the
fluid-structural vibration of the water-filled enclosure with
elastic boundaries, an efficient computational method is
deduced to determine the vibratory power flow generated
by exterior excitations on the outside surface of the elastic
structure, including the total power flow entering into the
fluid-structural coupled system and the net power flow
transmitted into the hydroacoustic field. Characteristics of
the coupled natural frequencies and modals are investigated
by a numerical example of a rectangular water-filled cavity
with five acoustic rigid walls and one elastic panel. Influential
factors of power flow transmission characteristics are further
discussed with the purpose of overall evaluation and reduc-
tion of the cavity water sound energy.

1.2. Theoretical Development. There has been a continuous
effort for decades on investigation of fluid-structural mech-
anism of closed sound field with flexible boundaries. It has
been recommended that the locally reactive acoustic normal
impedance was the earlier theory to understand the sound
absorption caused by the interaction between a reverberation
room and its surrounding walls [9]. Later attention was paid
to the modal coupling between the enclosed sound fields and
the flexible walls to reveal the more complicated mechanism
demonstrated by experimental results, which could not be
interpreted by the locally reactive theory [10, 11].

The modal responses of acoustoelastic enclosures were
first developed by Dowell et al. [12, 13] by applying Green’s
function to the inhomogeneous wave differential equation
of the enclosed sound field and applying the classical modal
and eigenvalue theorem to the simultaneous fluid-structural
differential equations to result in a resolution of coupling
modals. There are still other resolution methods for the same
acoustoelasticity equations which could be referred to, such
as Laplace transformation [14] and Ritz series [15]. In general,
Dowell’s method is based on the familiar uncoupled acoustic
enclosure modes and structural modes, could be more
easily implemented, and has been successfully applied to the
investigation of variety of fluid-structural interaction systems
[16, 17]. Beginning with the “modal coupling method,” Pan
and Bies gave an insight analysis of the weak-coupled and
well-coupled modals and their decay characteristics of a
rectangular panel-cavity coupled system [18, 19]; Davis put
forward a method for approximate estimation of the coupled
natural frequencies of acoustoelastic enclosures by “coupling
coefficient” [20].

Other important developments might lie in the field of
discrete numerical techniques, such as FEM/BEM, for fluid-
structural vibration analysis. However, these methods are
usually preferred in the investigation of irregularly shaped
cavities and targeting specific engineering problems.And that
would be beyond the discussion of this paper, which would
mainly focus on a general theoretical evaluation method for
the overall vibration level of a fluid-filled enclosure through

vibratory power flow calculation, especially based onDowell’s
modal coupling theory.

2. Theory

2.1. Equations of Fluid-Structural Coupled Vibration. Con-
sider that a fluid-filled enclosure occupies a volume 𝑉. Its
boundary 𝐷 = 𝐷𝑆 + 𝐷𝐹, where 𝐷𝐹 ̸= 0 represents the flexi-
ble area of the surrounding wall and 𝐷𝑆 (might be zero)
represents the acoustic rigid area.

The fluid inside the enclosure satisfied the wave equation
and associated boundary condition.

𝐾0∇2𝑝 (𝜎, 𝑡) − 𝜌0 𝜕2𝑝 (𝜎, 𝑡)𝜕𝑡2 = 0 (𝜎 ∈ 𝑉) (1)

𝜕𝑝 (𝜎, 𝑡)𝜕𝑛 = −𝜌0𝑎𝑛 (𝜎, 𝑡) (𝜎 ∈ 𝐷𝐹) (2)

𝜕𝑝 (𝜎, 𝑡)𝜕𝑛 = 0 (𝜎 ∈ 𝐷𝑆) , (3)

where 𝑝(𝜎, 𝑡) is the sound pressure at point 𝜎(𝑥, 𝑦, 𝑧) ∈ 𝑉;𝑎𝑛(𝜎, 𝑡) is the acceleration of the flexible wall in the normal
direction 𝑛 (positive outward); 𝜌0 and𝐾0 are the equilibrium
fluid density and fluid volume stiffness, respectively.

If𝐷𝐹 = 0, (1) hasmodal solutions𝐹𝐴𝑟(𝜎)⋅exp(𝑗𝜔𝐴𝑟𝑡), 𝑟 =0, 1, 2, . . ., where𝜔𝐴𝑟 is the 𝑟th acoustical natural frequency in
the condition of rigid boundary and𝐹𝐴𝑟(𝜎) is the correspond-
ing natural mode with orthogonality as follows:

∭
𝑉

𝐹𝐴𝑟 (𝜎) 𝐹𝐴𝑠 (𝜎)𝜌0𝑐20 dV = {{{
0 𝑟 ̸= 𝑠
𝑀𝐴𝑟 𝑟 = 𝑠,

∭
𝑉

[∇𝐹𝐴𝑟 (𝜎)]𝑇 ⋅ [∇𝐹𝐴𝑠 (𝜎)]𝜌0 dV = {{{
0 𝑟 ̸= 𝑠
𝜔2𝐴𝑟𝑀𝐴𝑟 𝑟 = 𝑠,

(4)

where 𝑐0 = √𝐾0/𝜌0 is the acoustic velocity of the fluid, 𝑀𝐴𝑟
is the 𝑟th acoustical modal mass in the condition of rigid
boundary, and ∇𝐹𝐴𝑟(𝜎) = [𝜕𝐹𝐴𝑟/𝜕𝑥, 𝜕𝐹𝐴𝑟/𝜕𝑦, 𝜕𝐹𝐴𝑟/𝜕𝑧]𝑇 is
the column gradient vector of modal function 𝐹𝐴𝑟(𝜎).

Consider the solution of (1) with𝐷𝐹 ̸= 0 being in the form
of modal superposition; that is,

𝑝 (𝜎, 𝑡) = ∞∑
𝑟=0

𝐹𝐴𝑟 (𝜎) 𝑃𝑟 (𝑡) = [F (𝜎)]𝑇 P (𝑡) (𝜎 ∈ 𝑉) , (5)

where F(𝜎) and P(𝑡) are column vectors of modal function𝐹𝑟(𝜎) and its corresponding modal coordinate 𝑃𝑟(𝑡), respec-
tively; that is, F(𝜎) = [𝐹𝐴0(𝜎), 𝐹𝐴1(𝜎), 𝐹𝐴2(𝜎), . . .]𝑇 and P(𝑡) =[𝑃0(𝑡), 𝑃1(𝑡), 𝑃2(𝑡), . . .]𝑇.

After substituting (5) into (1), multiply both sides of the
resultant equation with a left-multiplication matrix (vector)
F(𝜎) and finally integrating the equation over volume 𝑉, one
obtains

∭
𝑉
F (𝜎) [∇2𝑝 (𝜎, 𝑡)] dV
− 1𝑐20∭𝑉

{F (𝜎) [F (𝜎)]𝑇 P̈ (𝑡)} dV = 0. (6)
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By applying Green’s theorem to the first term of above
equation, one has

1𝑐20∭𝑉
{F (𝜎) [F (𝜎)]𝑇 P̈ (𝑡)} dV

+ ∭
𝑉
[∇F (𝜎)]𝑇 ∇F (𝜎)P (𝑡) dV

= ∯
𝐷
F (𝜎) 𝜕𝑝 (𝜎, 𝑡)𝜕𝑛 d𝐴,

(7)

where ∇F(𝜎) is the gradient matrix of modal function 𝐹𝑟(𝜎):∇F(𝜎) = [∇𝐹𝐴0(𝜎), ∇𝐹𝐴1(𝜎), ∇𝐹𝐴2(𝜎), . . .].
Now substitute the boundary condition equations (2)∼(3)

and orthogonality equation (5) into (7):

M𝐴 [P̈ (𝑡) +Ω2𝐴P (𝑡)] = −∯
𝐷
F (𝜎) 𝑎𝑛 (𝜎, 𝑡) d𝐴, (8)

whereM𝐴 andΩ𝐴 are diagonal matrices of acoustical modal
masses and natural frequencies, respectively; that is, M𝐴 =
diag[𝑀𝐴0,𝑀𝐴1,𝑀𝐴2, . . .] andΩ𝐴 = diag[𝜔𝐴0, 𝜔𝐴1, 𝜔𝐴2, . . .].

The flexible boundary of the cavity is assumed to be thin-
wall structures, where linear partial differential equations
would be adopted to fit the thin-wall structures’ vibration,
such that

𝑆𝑤 (𝜎, 𝑡) + 𝑚𝐵 𝜕2𝑤 (𝜎, 𝑡)𝜕𝑡2 = 𝑝𝐴 (𝜎, 𝑡) − 𝑝𝐵 (𝜎, 𝑡)
(𝜎 ∈ 𝐷𝐹) ,

(9)

where 𝑆 is a linear differential operator representing struc-
tural stiffness; 𝑚𝐵 is structural mass per unit area; 𝑝𝐴(𝜎, 𝑡)
and 𝑝𝐵(𝜎, 𝑡) are excitations on the surface of the thin-wall
structures due to the cavity acoustics and external dynamical
forces (intensity of pressure), respectively; 𝑤(𝜎, 𝑡) is the
displacement response of the thin-wall structures, which is
defined in the normal direction of 𝐷𝐹.

The solution of (9) could be expressed as

𝑤 (𝜎, 𝑡) = ∞∑
𝑗=1

𝑊𝐵𝑗 (𝜎) 𝐵𝑗 (𝑡) = [W (𝜎)]𝑇 B (𝑡)
(𝜎 ∈ 𝐷𝐹) ,

(10)

where𝑊𝐵𝑗(𝜎) is the 𝑗th modal function that is defined on𝐷𝐹
and concerned with the property of the thin-wall structures
in vacuo and 𝐵𝑗(𝑡) is the modal coordinate corresponding
to 𝑊𝐵𝑗(𝜎); W(𝜎) and B(𝑡) are column vectors of 𝑊𝐵𝑗(𝜎)
and 𝐵𝑗(𝑡), respectively; that is, W(𝜎) = [𝑊𝐵1(𝜎),𝑊𝐵2(𝜎),𝑊𝐵3(𝜎), . . .]𝑇 and B(𝑡) = [𝐵1(𝑡), 𝐵2(𝑡), 𝐵3(𝑡), . . .]𝑇.

By substituting (10) into (9) and using the orthogonality
of 𝑊𝐵𝑗(𝜎), there would be a modal differential function as
follows:

M𝐵 [B̈ (𝑡) +Ω2𝐵B (𝑡)] = Q𝐴 (𝑡) + Q𝐵 (𝑡) , (11)

where M𝐵 and Ω𝐵, expressed as M𝐵 = diag[𝑀𝐵1,𝑀𝐵2,𝑀𝐵3,. . .] and Ω𝐵 = diag[𝜔𝐵1, 𝜔𝐵2, 𝜔𝐵3, . . .], are diagonal matrices

of the modal masses and natural frequencies respectively,
and 𝜔𝐵𝑗 and 𝑀𝐵𝑗 = ∬

𝐷𝐹
𝑚𝐵[𝑊𝐵𝑗(𝜎)]2d𝐴 (𝑗 = 1, 2, 3, . . .)

represent the 𝑗th natural frequency and modal mass of the
thin-wall structures in vacuo, respectively. Q𝐴(𝑡) and Q𝐵(𝑡)
are column vectors of the general forces due to 𝑝𝐴(𝜎, 𝑡)
and 𝑝𝐵(𝜎, 𝑡) loaded on the thin-wall structures in vacuo,
respectively, and

Q𝐴 (𝑡) = ∬
𝐷𝐹

W (𝜎) 𝑝𝐴 (𝜎, 𝑡) d𝐴,
Q𝐵 (𝑡) = −∬

𝐷𝐹

W (𝜎) 𝑝𝐵 (𝜎, 𝑡) d𝐴.
(12)

The right-hand term of (8) and the first term Q𝐴(𝑡) on
the right hand of (11) are of the fluid-structural interaction
between the sound field inside the cavity and its flexible walls.
Substituting (10) into the right-hand term of (8) and taking
notice of 𝑎𝑛(𝜎, 𝑡) = 𝜕2𝑤(𝜎, 𝑡)/𝜕𝑡2 at 𝜎 ∈ 𝐷𝐹 and 𝑎𝑛(𝜎, 𝑡) = 0
at 𝜎 ∈ 𝐷𝑆, one could define a coupling matrix L as follows:

L = ∬
𝐷𝐹

F (𝜎) [W (𝜎)]𝑇 d𝐴 = [𝐿𝑟𝑗]
(𝑟 = 0, 1, 2, . . . ; 𝑗 = 1, 2, 3, . . .) ,

(13)

where 𝐿𝑟𝑗 denotes the element of the coupling matrix L at the𝑟th row and the 𝑗th column.
And (8) turns into

M𝐴 [P̈ (𝑡) +Ω2𝐴P (𝑡)] = −L ⋅ B̈ (𝑡) . (14)

Dealing with Q𝐴(𝑡), one could express 𝑝𝐴(𝜎, 𝑡) in (12)
with (5), and (11) would become

M𝐵 [B̈ (𝑡) +Ω2𝐵B (𝑡)] = L𝑇 ⋅ P (𝑡) + Q𝐵 (𝑡) . (15)

2.2. Modal Analysis. In order to carry out a modal analysis
about the fluid-structural vibration system governed by (14)
and (15), letQ𝐵(𝑡) = 0, and suppose that there exist vibration
solutions as follows:

P (𝑡) = (√M𝐴)−1 ⋅ 𝜒𝐴 ⋅ exp (𝑗𝜔𝑡) ,
B (𝑡) = (Ω𝐵√M𝐵)−1 ⋅ 𝜒𝐵 ⋅ exp (𝑗𝜔𝑡) ,

(16)

where √M𝐴 = diag⌊√𝑀𝐴0, √𝑀𝐴1, √𝑀𝐴2, . . .⌋ and √M𝐵 =
diag⌊√𝑀𝐵1, √𝑀𝐵2, √𝑀𝐵3, . . .⌋ are square roots of the diago-
nal acoustical modal matrix M𝐴 and the diagonal structural
modal matrixM𝐵, respectively. 𝜒𝐴 = [𝜒𝐴0, 𝜒𝐴1, 𝜒𝐴2, . . .]𝑇 and
𝜒𝐵 = [𝜒𝐵1, 𝜒𝐵2, . . .]𝑇 are column vectors of fluid-structural
coupled modal shape coefficients related to the cavity sound
field and the flexible boundary structures, respectively.

Substituting (16) into (14) and (15), an eigenvalue problem
could be obtained as

A𝜒 = [A11 A12
A21 A22

][𝜒𝐴
𝜒𝐵

] = 𝜔2 [𝜒𝐴
𝜒𝐵

] = 𝜔2𝜒, (17)
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where 𝜒 could be named as vector of fluid-structural coupled
modal shape coefficients and A is a symmetric characteristic
matrix, and A’s partitioned matrices could be calculated by
A11 = Ω2𝐴 + (√M𝐴)−1LM−1𝐵 L𝑇(√M𝐴)−1, A12 = A𝑇21 =−(√M𝐴)−1LΩ𝐵(√M𝐵)−1, and A22 = Ω2𝐵.

Equation (17) would give eigenvalues of matrix A, that is,𝜔𝐶𝑘2 = Ω𝐶𝑘2(1 + 𝑗𝜂𝐶𝑘), and the accompanying eigenvectors[𝜒(𝑘)]𝑇 = [{𝜒𝐴(𝑘)}𝑇, {𝜒𝐵(𝑘)}𝑇] = [𝜒𝐴0(𝑘), 𝜒𝐴1(𝑘), 𝜒𝐴2(𝑘), . . . ,𝜒𝐵1(𝑘), 𝜒𝐵2(𝑘), 𝜒𝐵3(𝑘), . . .], 𝑘 = 0, 1, 2, . . ., where Ω𝐶𝑘 corre-
sponds to the 𝑘th fluid-structural natural frequency. 𝜂𝐶𝑘
is the loss factor associated with the 𝑘th damped normal
mode, which might be resulting from the introduction of
a complex stiffness of the flexible boundary or a complex
volume stiffness 𝐾0 of the fluid in consideration of the
damping properties of the fluid-structural system. It should
also be noticed that [𝜒(𝑘)] might be complex vectors when𝜔𝐶𝑘2 are complex numbers.

The fluid-structural coupled modal functions of the
cavity’s sound field and the flexible boundaries would be
expressed as

𝐹𝐶𝑘 (𝜎) = [F (𝜎)]𝑇 (√M𝐴)−1 𝜒(𝑘)𝐴 (𝜎 ∈ 𝑉) ,
𝑊𝐶𝑘 (𝜎) = [W (𝜎)]𝑇 (Ω𝐵√M𝐵)−1 𝜒(𝑘)𝐵 (𝜎 ∈ 𝐷𝐹) .

(18)

2.3. Vibratory Power FlowTransmission. In the condition that
the flexible boundary structures of the cavity are subjected
to a harmonic exterior excitation, that is, 𝑝𝐵(𝜎, 𝑡) = 𝑃𝐵(𝜎) ⋅
exp(𝑗𝜔𝑡), letP𝐵 = −∬

𝐷𝐹
W(𝜎)⋅𝑃𝐵(𝜎)d𝐴;P𝐵 indicates that the

amplitudes of general forces belong to the uncoupled flexible
structures. The steady responses of the fluid-structural cou-
pling cavity would be

𝑝 (𝜎, 𝑡) = [F (𝜎)]𝑇 (√M𝐴)−1 Χ𝐴HTP𝐵 exp (𝑗𝜔𝑡)
= 𝑃 (𝜎, 𝜔) ⋅ exp (𝑗𝜔𝑡) (𝜎 ∈ 𝑉)

(19)

𝑤 (𝜎, 𝑡) = [W (𝜎)]𝑇 (Ω𝐵√M𝐵)−1 Χ𝐵HTP𝐵 exp (𝑗𝜔𝑡)
= 𝑊 (𝜎, 𝜔) ⋅ exp (𝑗𝜔𝑡) (𝜎 ∈ 𝐷𝐹) ,

(20)

where 𝑃(𝜎, 𝜔) and 𝑊(𝜎, 𝜔) denote the amplitudes of the
harmonic sound pressure in the cavity and harmonic dis-
placement of the thin-wall structures.Χ𝐴 andΧ𝐵 arematrices
composed of arrays of eigenvectors of the characteristic
matrix A; that is, Χ𝐴 = [𝜒𝐴(0),𝜒𝐴(1),𝜒𝐴(2), . . .] and Χ𝐵 =[𝜒𝐵(0),𝜒𝐵(1),𝜒𝐵(2), . . .]. And

H (𝜔) = (−𝜔2M𝐶 +Ω𝐶2 ⋅ M𝐶)−1 (21)

T = −X𝐻𝐴 (√M𝐴)−1 LM−1𝐵 + X𝐻𝐵Ω𝐵 (√M𝐵)−1 , (22)

whereH could be named as the complex frequency response
matrix of the fluid-structural coupled cavity and T is a

transformation matrix to transform the general force P𝐵
into its fluid-structural expression (the derivation of the
matrices H and T has been explained via (A.5)∼(A.8) in
Appendix A.2). M𝐶 = X𝐻𝐴 ⋅ Χ𝐴 + X𝐻𝐵 ⋅ Χ𝐵 is a diagonal
matrix of the fluid-structural coupled modal masses, and
Ω𝐶 = diag[𝜔𝐶0, 𝜔𝐶1, 𝜔𝐶2, . . .] is a diagonalmatrix of the fluid-
structural coupled natural frequencies. The superscript “𝐻”
denotes Hermitian transposition of matrices.

The power flow (density) inputted by exterior excitation𝑝𝐵(𝜎, 𝑡) into the fluid-structural system is

𝑝in (𝜎, 𝜔) = 𝜔2𝜋 ∫𝜔/2𝜋
0

Re {𝑝𝐵 (𝜎, 𝑡)}
⋅ Re{−𝜕𝑤 (𝜎, 𝑡)𝜕𝑡 } d𝑡

= −𝜔2 Re {𝑗𝑊 (𝜎, 𝜔) ⋅ 𝑃∗𝐵 (𝜎)} (𝜎 ∈ 𝐷𝐹) .
(23)

The total power flow input is

𝑃in (𝜔) = ∬
𝐷𝐹

𝑝in (𝜎, 𝑡) d𝐴 = −𝜔2 Re{𝑗P𝑇𝐵T𝑇H (𝜔)
⋅ X𝑇𝐵 (Ω𝐵√M𝐵)−1∬

𝐷𝐹

W (𝜎) ⋅ 𝑃∗𝐵 (𝜎) d𝐴} = 𝜔2
⋅ Re{𝑗P𝑇𝐵T𝑇H (𝜔) ⋅ X𝑇𝐵 (Ω𝐵√M𝐵)−1 P∗𝐵} ,

(24)

where the superscript “∗” denotes conjugation of complex
numbers.

The power flow (density) transmitted through the fluid-
structural interaction boundary of the cavity into the
enclosed sound field is

𝑝tr (𝜎, 𝜔) = 𝜔2𝜋 ∫𝜔/2𝜋
0

Re {𝑝 (𝜎, 𝑡)󵄨󵄨󵄨󵄨𝜎∈𝐷𝐹}
⋅ Re{−𝜕𝑤 (𝜎, 𝑡)𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜎∈𝐷𝐹} d𝑡
= 𝜔2 Re {𝑗𝑊∗ (𝜎, 𝜔) ⋅ 𝑃 (𝜎, 𝜔)|𝜎∈𝐷𝐹} .

(25)

The total transmission power flow is

𝑃tr (𝜔) = ∬
𝐷𝐹

𝑝tr (𝜎, 𝜔) d𝐴
= 𝜔2 Re{∬

𝐷𝐹

[F (𝜎)]𝑇 ⋅ Λ (𝜔) ⋅ W (𝜎) d𝐴}

= 𝜔2 Re
{{{
∞∑
𝑟=0

∞∑
𝑗=1

𝐿𝑟𝑗 ⋅ 𝜆𝑟𝑗 (𝜔)}}}
,

(26)

where Λ(𝜔) = 𝑗(√M𝐴)−1X𝐴H(𝜔) ⋅
TP𝐵P𝐻𝐵 T

𝐻[H(𝜔)]∗X𝐻𝐵 (Ω∗𝐵√M𝐵)−1 = [𝜆𝑟𝑗(𝜔)] might be
named as a power transmission matrix and 𝜆𝑟𝑗(𝜔) denotes
the element of matrix Λ(𝜔) at the 𝑟th row and the 𝑗th
column.
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Figure 1: A panel-cavity coupled system.

3. Numerical Simulation and Analysis

3.1. Simulation Model. A panel-cavity coupled system shown
in Figure 1 consists of a rectangularwater-filled roomwith five
rigid walls and one simply supported plate subject to exterior
harmonic distributed force (pressure) 𝑝𝐸(𝜎, 𝑡).

In discussion of the distribution shape of exterior exci-
tation, the plane harmonic wave incident is a common
assumption. Suppose that𝑝𝐸(𝜎, 𝑡) = 𝑃𝐸⋅exp[𝑗(𝜔𝑡−𝑘󸀠𝑥 sin 𝜃)],
where 𝑃𝐸 is the amplitude, 𝑘󸀠 is the wave number, and 𝜃
is the incident angle (𝑝𝐸 is uniform along the 𝑦 direction);𝑝𝐸 has a perpendicular component 𝑝𝐵(𝜎, 𝑡) = 𝑃𝐸 cos 𝜃 ⋅
exp(−𝑗𝑘󸀠𝑥 sin 𝜃) ⋅ exp(𝑗𝜔𝑡) = 𝑃𝐵(𝜎) ⋅ exp(𝑗𝜔𝑡). Generally,𝑃𝐵(𝜎) would be a complex function and have infinite variety
of distribution shapes when the wave frequency, velocity,
and incident angle changed. Figure 2 shows one example of
distribution shape of 𝑃𝐵(𝜎) with wave frequency 𝑓 = 500Hz,
velocity 𝑐 = 344m/s, and incident angle 𝜃 = 𝜋/3. It is
true that the modal coupling method is valid in dealing with
those variant distribution shapes of 𝑃𝐵(𝜎). However, some
specific analysis on the special case with 𝜃 = 0, that is, a
uniform𝑃𝐵 over the plate surface, would also give indications
of general significance. The uniform excitation had been
adopted by other authors previously [7, 15]. And, moreover,
taking sonar array cavities as examples, they are regularly
mounted on related ship structures through rubber blankets;
the uniform structural excitation assumption would be a
basic consideration.

For the water-filled rectangular room, the natural fre-
quencies and modal functions of the sound field with rigid
boundaries are determined by

𝜔2𝐴𝑟 = 𝐾0𝜌0 [(𝑚𝐴𝑟𝜋𝐿𝑥 )2 + (𝑛𝐴𝑟𝜋𝐿𝑦 )2 + (𝑙𝐴𝑟𝜋𝐿𝑧 )2] (27)

𝐹𝐴𝑟 (𝑥, 𝑦, 𝑧)
= cos(𝑚𝐴𝑟𝜋𝑥𝐿𝑥 ) cos(𝑛𝐴𝑟𝜋𝑦𝐿𝑦 ) cos(𝑙𝐴𝑟𝜋𝑧𝐿𝑧 ) , (28)

where ∀(𝑚𝐴𝑟, 𝑛𝐴𝑟, 𝑙𝐴𝑟) ∈ 𝑁3, 𝑟 ∈ 𝑁, and let 𝜔𝐴𝑟 arrange in a
sequence |𝜔𝐴02| < |𝜔𝐴12| < |𝜔𝐴22| < ⋅ ⋅ ⋅ .

For a simply supported plate, its natural frequencies and
modal functions are determined by

𝜔2𝐵𝑗 = 𝜋4𝐸ℎ212𝜌 (1 − 𝜇2) (𝑚2𝐵𝑗𝐿2𝑥 + 𝑛2𝐵𝑗𝐿2𝑦 )
2

(29)

𝑊𝐵𝑗 (𝑥, 𝑦, 0) = sin(𝑚𝐵𝑗𝜋𝑥
𝐿𝑥 ) sin(𝑛𝐵𝑗𝜋𝑦𝐿𝑦 ) , (30)

where 𝐸, 𝜌, ℎ, and 𝜇 are Young’s modulus, mass density,
thickness, and Poisson’s ratio of the plate, respectively;∀(𝑚𝐵𝑗, 𝑛𝐵𝑗) ∈ 𝑁2, 𝑗 ∈ 𝑁+, let 𝜔𝐵𝑗 arrange in a sequence|𝜔𝐵12| < |𝜔𝐵22| < |𝜔𝐵32| < ⋅ ⋅ ⋅ .

The geometrical and material properties adopted for
numerical computation are as follows: 𝐿𝑥 = 0.4m, 𝐿𝑦 =0.6m, 𝐿𝑧 = 0.7m, and ℎ = 0.005m; 𝜌0 = 1000 kg/m3 and𝐾0 = 2.25×109 Pa×(1+10−4 j);𝐸 = 2.0×1011 Pa×(1+10−3 j),𝜌 = 7.8 × 103 kg/m3, and 𝜇 = 0.28 (steel).
3.2. Modal Analysis. There is a convergence investigation
about the fluid-structural coupled natural frequencies result-
ing from (17) at first. In Table 1, with a fixed number of plate
modals involved in calculation, the convergence of coupled
natural frequencies could be observed by increasing the
number of water sound modals involved. The convergence
could also be observed by increasing the number of plate
modals involved in Table 2. It could be suggested that the
modal coupling method could achieve good convergence in
solving the fluid-structural coupled problem described here.
And it could also be observed that the convergence at lower
frequencies is more rapid than that at higher frequencies,
and the solution precision would be more dependent on
accounting for more water sound modals. However, there is
no need to carry out a high accuracy calculation here for a
theoretical qualitative analysis, and in the later part of this
paper, 50 plate modals and 500 water sound field modals
are taken into consideration, by which totally 550 coupled
modals could be revealed. And also, because there is no need
to list all 550 modes here, only partial data (the first several
modes) are listed in Tables 1 and 2

Figure 3 gives a comparison of sound pressure solutions
between the modal coupling approach and FEM (by the
software of LMS Virtual.Lab Acoustics) as a theoretical val-
idation verification. The differences between the two results
in Figure 3(a) are due to modal truncation; more modes are
involved in the FEM/BEM software.

The fluid-structural coupled natural frequencies resulting
from (17) are compared with those of sound field with rigid
boundaries obtained by (27) and simply supported steel plate
obtained by (29), which are listed in Table 3. As mentioned
above, 550 coupled modals have been obtained by involving
50 plate modals and 500 water sound field modals in modal
coupling calculation, but only the first 11 coupled modal
frequencies are presented.

As a whole, it could be concluded that the fluid-structural
frequencies are very different from those of the water sound
field (with rigid boundaries) and the flexible boundary plate
(in vacuo), which means that there would be a strong
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Table 1: Coupled natural frequencies with different number of water sound modals involved.

Fluid-structural coupled natural frequency 𝑓𝐶𝑘 (Hz)
Number of water sound modals involved 50 200 500 1000 2000
Number of plate modals involved 50 50 50 50 50
𝑘

0 0 0 0 0 0
1 106.8 103.1 101.5 100.9 100.3
2 218.5 208.4 206.0 203.9 202.5
3 234.4 222.7 217.6 215.5 213.4
4 291.1 270.9 264.7 262.2 259.7
5 447.6 415.1 404.7 400.2 395.9
6 455.4 420.7 409.1 404.5 399.8
7 476.1 457.3 451.8 447.1 443.9
8 561.9 543.1 537.2 533.4 530.5
9 626.7 581.5 566.2 559.0 552.3
10 682.5 617.7 599.4 592.1 584.7

Table 2: Coupled natural frequencies with different number of plate modals involved.

Fluid-structural coupled natural frequencies 𝑓𝐶𝑘 (Hz)
Number of water sound modals involved 500 500 500 500 500
Number of plate modals involved 25 50 100 200 500
𝑘

0 0 0 0 0 0
1 101.5 103.1 101.5 101.5 101.5
2 206.1 208.4 206.0 206.0 206.0
3 217.6 222.7 217.5 217.5 217.5
4 264.7 270.9 264.7 264.7 264.7
5 404.7 415.1 404.6 404.6 404.6
6 409.2 420.7 409.1 409.1 409.1
7 451.8 457.3 451.6 451.6 451.6
8 537.2 543.1 537.1 537.1 537.1
9 566.2 581.5 566.0 566.0 566.0
10 599.5 617.7 599.3 599.3 599.3

Table 3: Natural frequencies of the water sound field, plate, and fluid-structural coupled cavity.

Natural frequencies of water sound field Natural frequencies of plate Fluid-structural coupled
natural frequencies

𝑟 (𝑚𝐴𝑟, 𝑛𝐴𝑟, 𝑙𝐴𝑟) 𝑓𝐴𝑟 (Hz) 𝑗 (𝑚𝐵𝑗, 𝑛𝐵𝑗) 𝑓𝐵𝑗 (Hz) 𝑘 𝑓𝐶𝑘 (Hz)
0 (0, 0, 0) 0 0 0
1 (0, 0, 1) 1071.4 1 (1, 1) 108.0 1 101.5
2 (0, 1, 0) 1250.0 2 (1, 2) 207.6 2 206.0
3 (0, 1, 1) 1646.3 3 (2, 1) 332.2 3 217.6
4 (1, 0, 0) 1875.0 4 (1, 3) 373.7 4 264.7
5 (0, 0, 2) 2142.9 5 (2, 2) 431.9 5 404.7
6 (1, 0, 1) 2159.5 6 (2, 3) 598.0 6 409.1
7 (1, 1, 0) 2253.5 7 (1, 4) 606.3 7 451.8
8 (0, 1, 2) 2480.8 8 (3, 1) 705.9 8 537.2
9 (1, 1, 1) 2495.2 9 (3, 2) 805.6 9 566.2
10 (0, 2, 0) 2500.0 10 (2, 4) 830.5 10 599.4
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Figure 2: One example of nonuniform distribution shape of 𝑃𝐵(𝜎) (wave frequency 𝑓 = 500Hz, velocity 𝑐 = 344m/s, and incident angle𝜃 = 𝜋/3).
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Figure 3: Comparison of sound pressure solutions between the modal coupling approach and FEM.

coupling between the enclosed water sound field and its
elastic surrounding structures. If the fluid in the cavity was
air (𝜌0 ≈ 1.29 kg/m3; 𝑐0 ≈ 344m/s), it could be found that
the coupled natural frequencies 𝑓𝐶𝑘 would approximately be
equal to either someuncoupled structural natural frequencies𝑓𝐵𝑗 or some uncoupled cavity acoustical natural frequencies𝑓𝐴𝑟, and that is a situation of weak coupling. The motion
of each subsystem in a weakly coupled system will not be
essentially different from that of the uncoupled systems.
However, if the density of the medium in the cavity is much
denser than air, such as water, the coupling may turn out to
be strong, and big deformation of the resulting modes from
the uncoupled panel and the cavity modes may be expected
[18]. In this sense, the strong coupling could be judged by any

unneglectable departure of coupled natural frequencies from
every natural frequency of the uncoupled flexible structures
and cavity.

Except 𝑓𝐴0 = 0, the natural frequencies of the water
sound field are much higher than those of the simply
supported plate, and the fluid-structural coupled natural
frequencies are inclined to come to be rather lower. It
seemed that one might carry out a comparison between
the coupled natural frequencies and those of plate, and the
change regulation of differences of adjacent fluid-structural
natural frequencies𝑓𝐶(𝑘+1)−𝑓𝐶𝑘 is similar to those𝑓𝐵𝑗−𝑓𝐵(𝑗−1)
of the plate. However, the frequency distribution of coupled
natural frequencieswould turn to be lower andmore crowded
as the order 𝑘 increased.
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Figure 4: Some uncoupled plate modals.

In order to reveal modal coupling characteristics, Figures
4 and 5 show several uncoupled plate modals 𝑊𝐵𝑗(𝜎) which
are expressed by (30) and fluid-structural coupled plate
modals𝑊𝐶𝑘(𝜎)which are determined by (29) throughmodal
coupling calculation.The figure shows that𝑊𝐶0 is almost the
same as 𝑊𝐵1, while it is true according to 𝑊𝐶0’s expression
and that is just an example of weak-coupledmodal. It seemed
that the coupledmodal shape𝑊𝐶3 is similar to the uncoupled
modal shape 𝑊𝐵4; however, they are quite different in fact
according to the expression of 𝑊𝐶3, and that is a strong
coupled modal. Phenomena of strong modal coupling are
obvious when inspecting 𝑊𝐶7 and 𝑊𝐶8 shown in Figure 5.

The similar couplings have also happened to the acous-
tical cavity modals. And, moreover, except that the coupled
acoustical modal 𝐹𝐶0 is practically equal to 𝐹𝐴0, that is, the
rigid body modal of the uncoupled cavity sound field, all
other fluid-structural coupled acoustical cavity modals are
composed in a strong couplingmanner; that is, they are linear
combinations of several𝐹𝐴𝑟, the uncoupled acousticalmodals
of the rigid wall cavity. As 𝐹𝐶𝑟(𝜎) is defined in three-dimen-
sional space and it is inconvenient to plot it by a planar figure,
Figure 6(a) illustrates one coupled acoustical modal shape in

the plane 𝑧 = 𝐿𝑧/2, and Figure 6(b) illustrates the appur-
tenant participant coefficients of the uncoupled acoustical
cavity modals in the constitution of coupled acoustical cavity
modal.

3.3. Power Flow Transmission. In the simulation model of
Figure 1, the vibratory power flow inputted by exterior
excitation into the whole fluid-structural coupled system and
the enclosed water sound field, that is, 𝑃in calculated by (24)
and 𝑃tr calculated by (26), is dissipated by system damping.
And thus the higher or lower power flow level would be a
comprehensive indicator to measure the vibration level or
energy level of the panel-cavity coupled system and water
sound field.

Figure 7 shows the spectrum of input power flow 𝑃in and
transmitted power flow𝑃tr, inwhich the drop between𝑃in and𝑃tr is the dissipation power of the plate’s damping. Because the
exterior excitation is symmetric (uniform 𝑃𝐵 as mentioned
in Section 3.1), only symmetric modals are present, and the
spectrumpeaks at 0Hz, 217.6Hz, 451.8Hz, and 537.2Hz could
be associated with the modals shown in Figures 5 and 6.
There is some similarity between 𝑃in or 𝑃tr and the water
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Figure 5: Some coupled plate modals.
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sound pressure at the center of the plate’s interior surface,
that is, 𝑃((𝐿𝑥/2, 𝐿𝑦/2, 0), 𝜔) (refer to (21)), which is shown in
Figure 8. However, the power flow is of evaluation of sound
power.

As a theoretical investigation, hypothesize that the mate-
rial property parameters of the plate, that is, Young’s modulus𝐸, mass density 𝜌, Poisson’s ratio 𝜇, and damping loss factor,
could be altered independently. In Figure 9(a), transmitted
power flows are compared under different Young’s modulus
of the elastic plate, where the value of 7.24 × 1010 Pa is by
reference to aluminium. When the plate’s elasticity modulus
decreases, the plate’s natural frequencies would decrease
simultaneously, and thiswouldmove the fluid-structural cou-
pled natural frequencies into lower frequency ranges, which

has been predicted by Table 3.Thus the alteration of elasticity
modulus of plate would lead to a phenomenon of “frequency
shifting.”The𝑃tr spectrumwith smaller plate’s elasticitymod-
ulus could be regarded as a contraction of that with greater
elasticity modulus toward lower frequencies, and the peaks
of 𝑃tr would occur at relatively lower frequencies and become
more crowded. However, since the variation range of Young’s
modulus would be limited in practice, its influence on power
flow transmissionmight not be very serious, and it could also
be observed that reduction of Young’s modulus might bring
about a benefit of slight reduction of 𝑃tr’s peak valleys.

In order to make an inspection of the alteration of differ-
ences between 𝑃in and 𝑃tr with different plate elasticity mod-
ulus, Figure 9(b) shows the spectra of power flow ratio PR =10 log(𝑃in/𝑃tr). The peaks of PR would always appear around
the resonance frequencies except at𝑓𝐶0, which could be easily
explained by the fact that the plate’s damping consumes more
energy when system resonances take place. In the lowest
frequency range around 𝑓𝐶0 = 0, the plate consumes little
energy, and therefore𝑃tr ≈ 𝑃in and PR ≈ 0. It should be noted
that greater PRs might not imply lower levels of transmitted
power flow 𝑃tr; the fact is probably just the opposite because
the power flow input 𝑃in might be in much higher levels at
the same time. In this sense, minority of PR peak numbers
would be a good design for noise isolation, which requires a
greater plate elasticity modulus. And, instead, high PR values
between adjacent resonance peaks of the PR spectra would be
of real benefit for the purpose of 𝑃tr attenuation, which could
be discovered through a synthesized analysis of the figures
shown.

In Figure 10(a), different mass density values were given
to the elastic plate, in which the value of 2770 kg/m3 is by
reference to aluminium. A significant feature of the spectra in
the figure is that changes in plate’s mass density would appar-
ently change the average level of transmitted power flow 𝑃tr.
According to (29), the increase of plate’s mass density would
cause decreasing of plate’s natural frequencies and “frequency
shifting” of fluid-structural coupled modals, as shown in Fig-
ure 10(a), similar to the situation of decreasing Young’s mod-
ulus in Figure 9. However, the increase of plate’s mass density
would increase its modal masses at the same time. And
that is the reason why 𝑃tr’s average level is cut down even
though more resonance modals would come into being in
the relative lower frequency band. It could also be explained
by the fact that a heavier vibrating mass would generate
a greater reduction in dynamic force (or pressure) trans-
mission. Figure 10(b) is about the power flow ratio PR. PR
could not effectively reveal the apparent 𝑃tr reduction at
nonresonance frequencies, such as 800Hz∼1200Hz, because
the transmitted power flow 𝑃tr is very close to the power flow
input 𝑃in at those frequencies.

Another important influential factor that should be paid
attention is the damping loss factor of the plate. Figure 11(a)
demonstrates a conflictive situation where smaller damping
loss factor would increase the peaks of transmitted power
flow at resonance frequencies, while at the broadband non-
resonance frequencies smaller damping would be beneficial
to reduction of transmitted power flow. To explain this result,
one might make an analogy with the vibration isolation
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Figure 9: Effect of plate’s elasticity modulus on power flow transmission.
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Figure 10: Effect of plate’s mass density on power flow transmission.

theory. If the elastic plate was considered as some kind of
elastic isolator which was specially designed to attenuate the
transmission of exterior excitation energy into the water-
filled cavity, the damping would increase the power trans-
mission and would not be expected except for attenuation
of resonance peak. Through illustration of power flow ratio
PR as that in Figure 11(b), it could be confirmed that greater
damping could be used to obstruct energy transmission
at resonance frequencies, whereas smaller damping would

be favorable in the nonresonance frequency ranges, which
would not be counted in power flow ratio.

Poisson’s ratio 𝜇would affect the power flow transmission
the same way Young’s modulus does as shown in Figure 9.
Referring to (29), increasingYoung’smodulus could be equiv-
alent to increasing Poisson’s ratio. However, the variation
scope of Poisson’s ratio is much smaller than that of Young’s
modulus, and the power flow transmission would be affected
more byYoung’smodulus than byPoisson’s ratio. And, for this
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Figure 11: Effect of damping loss factor of plate on power flow transmission.

reason, no additional repetitive figures would be put forward
here.

4. Conclusions

Backgrounded by evaluation or control of mechanical self-
noise in sonar array cavity, transmitted power flow or sound
power input calculation is carried out by modal coupling
analysis on the fluid-structural vibration of the fluid-filled
enclosure with elastic boundaries. Power flow transmission
analysis is presented through a numerical simulation exam-
ple of water-filled rectangular panel-cavity coupled system.
Detailed discussion is carried out about power flow transmis-
sion characteristics affected by variation of material property
parameters of cavity’s elastic boundary structure, aiming at
reduction of water sound level inside the cavity. From the
results, one could draw the following conclusions.

(1) Power flow or sound power transmission analysis
could be a valuable method for evaluation or prediction of
water sound level in dealing with strong coupled vibration
problems of water-filled acoustoelastic enclosure systems.

(2) The fluid-structural coupled natural frequencies of a
water-filled acoustoelastic enclosurewould be greatly affected
by interaction between the hydroacoustic field and its sur-
rounding elastic boundaries. There would be a tendency that
the fluid-structural coupled natural frequencies turn to be
smaller in value and more crowded in frequency distribution
than those of elastic boundary structures and inner water
sound field in rigid boundary condition.

(3) Decreasing elasticity modulus or Poison’s ratio of
water sound cavity’s thin-wall structures would cause the
frequency distribution of system modals to contract toward
lower frequency ranges and result in more power flow
transmission peaks in the lower frequency band, while slight

reduction of peak valleys of transmitted power flowcould also
be expected on the other hand.

(4) Denser material could be beneficial to an apparent
attenuation of average level of power flow transmission
into the water-filled enclosure, even though it would be
accompanied with a decrease of system natural frequencies.

(5) Smaller inner damping of enclosure’s thin-wall struc-
tures, which were distinguished from that specially designed
for sound absorption destination and only for the purpose
of suppression of resonance peaks, might be proposed to
attenuate the average level of power flow transmission.

Appendix

A. Derivation Procedures of Related
Matrices Equations

A.1. Eigenvalue Problem. Equations (14) and (15) could be
easily verified to be equivalent to the following simultaneous
modal differential equations, which are fundamental inDow-
ell’s modal coupling method:

𝑀𝐴𝑟𝑃̈𝑟 + 𝑀𝐴𝑟𝜔2𝐴𝑟𝑃𝑟 = −∞∑
𝑗=1

𝐿𝑟𝑗𝐵̈𝑗 (𝑟 = 0, 1, 2, . . .)

𝑀𝐵𝑗𝐵̈𝑗 + 𝑀𝐵𝑗𝜔2𝐵𝑗𝐵𝑗 = ∞∑
𝑟=0

𝐿𝑟𝑗𝑃𝑟 + 𝑄𝐵𝑗
(𝑗 = 1, 2, . . .) ,

(A.1)

where 𝐿𝑟𝑗 = ∬
𝐷𝐹

𝐹𝐴𝑟𝑊𝐵𝑗d𝐴, 𝑄𝐵𝑗 = −∬
𝐷𝐹

𝑊𝐵𝑗𝑝𝐵d𝐴, and all
other symbols have been mentioned previously.
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Through some simple algebraic algorithm, (14) and (15)
could be grouped together and written as

[P̈
B̈
] + [Ω2𝐴 + M−1𝐴 LM

−1
𝐵 L
𝑇 −M−1𝐴 LΩ2𝐵

−M−1𝐵 L𝑇 Ω2𝐵

][P
B
]

= [−M−1𝐴 LM−1𝐵 Q𝐵
M−1𝐵 Q𝐵

] .
(A.2)

While carrying out a modal analysis, one could simply let
P = 𝜒󸀠𝐴 ⋅ exp(𝑗𝜔𝑡), B = 𝜒󸀠𝐵 ⋅ exp(𝑗𝜔𝑡), andQ𝐵 = 0; thus

𝜔2 [𝜒󸀠𝐴
𝜒󸀠𝐵

] = [Ω2𝐴 + M−1𝐴 LM
−1
𝐵 L
𝑇 −M−1𝐴 LΩ2𝐵

−M−1𝐵 L𝑇 Ω2𝐵

][𝜒󸀠𝐴
𝜒󸀠𝐵

]

= A󸀠 [𝜒󸀠𝐴
𝜒󸀠𝐵

] .
(A.3)

The above equation raises an eigenvalue problem, but it
is nonstandard because the matrix A󸀠 is asymmetric. The
transformation expressed by (16) would result in a standard
eigenvalue problem, which has been expressed by (17), where
the matrix A is symmetric. And, moreover, one could prove
that

A = [(√M𝐴)−1 L (√M𝐵)−1 Ω𝐴−Ω𝐵 O
][(√M𝐵)−1 L𝑇 (√M𝐴)−1 −Ω𝐵

Ω𝐴 O
]

= [(√M𝐴)−1 L (√M𝐵)−1 Ω𝐴−Ω𝐵 O
][(√M𝐴)−1 L (√M𝐵)−1 Ω𝐴−Ω𝐵 O

]𝑇 ,
(A.4)

whereO denotes a zero matrix with proper dimension rank.
Before any damping factors are introduced, (A.4) proves

that the matrix A is positive semidefinite; that is, all its
eigenvalues would be nonnegative. That would provide a
mathematical guarantee that the eigenvalue calculation of
matrixAwould not fail at any occurrences of negative square
natural frequencies.

By substituting any 𝑘th eigenvalue of matrix A and its
accompanying eigenvector, which have been symbolled with𝜔𝐶𝑘2 and [𝜒(𝑘)]𝑇 = [{𝜒𝐴(𝑘)}𝑇, {𝜒𝐵(𝑘)}𝑇], respectively, into (16)
(i.e., let 𝜔 = 𝜔𝐶𝑘 and 𝜒𝐴 = 𝜒𝐴(𝑘) and 𝜒𝐵 = 𝜒𝐵(𝑘)), the 𝑘th
fluid-structural coupled modal of the cavity sound field and
its flexible boundary structures, which have been symbolled
with 𝐹𝐶𝑘 and𝑊𝐶𝑘, respectively, are obtained by taking out the
time-independent part of P(𝑡) and B(𝑡), that is, (18).
A.2. Harmonic Solution. In the situation of forced vibration,
that is, Q𝐵 ̸= 0, there is a standard decoupling procedure
for (A.2) by applying an eigenmatrix X𝐻 = [X𝐴𝐻,X𝐵𝐻]
which is composed of the series of A’s eigenvectors, where
the detailed definitions of X𝐴 and X𝐵 have been mentioned
previously in Section 2.2 after (19) and (20), and note that
Hermitian transposition of matrices has been employed here
in consideration of the introduction of damping loss factors.
Replacing the real elasticity modulus of the flexible bound-
ary structures or real volume stiffness of the cavity sound
field with a complex elasticity modulus or complex volume
stiffness is a regular method when damping factors are to be
involved in analysis, which has been declared in Sections 2.2,
3.1, and 3.3; the method has also been adopted by many other
authors.

Now let

[P (𝑡)
B (𝑡)] = [

[
(√M𝐴)−1 O

O (Ω𝐵√M𝐵)−1
]
]

[X𝐴
X𝐵

]𝛼 (𝑡)

= T0 ⋅ X ⋅ 𝛼 (𝑡) ,
(A.5)

where 𝛼(𝑡) is a column vector variable to take place of P(𝑡)
and B(𝑡).

After substituting the above equation into (A.2), multiply
both sides of the resultant equation with a left-multiplication
matrix X𝐻T−10 ; one has

X𝐻T−10 T0X ⋅ 𝛼̈ + X𝐻T−10 A
󸀠T0X ⋅ 𝛼

= X𝐻T−10 [−M−1𝐴 LM−1𝐵 Q𝐵
M−1𝐵 Q𝐵

] . (A.6)

Take notice that T−10 A
󸀠T0 = A, and X𝐻X and X𝐻AX are

all diagonalmatrices according to the theory of orthogonality
of eigenvectors. In fact, the diagonal elements of matrix
M𝐶 = X𝐻X are just the modal masses of the fluid-structural
coupled modals, and the diagonal elements of matrix Ω2𝐶 =
M−1𝐶 (X𝐻AX) are the complex fluid-structural coupled natural
frequencies; these two matrices have already been defined in
Section 2.2 after (20). With this knowledge, (A.2) or (A.6) is
turned into its decoupled expression:

𝛼̈ +Ω2𝐶𝛼 = M−1𝐶 X
𝐻T−10 [−M−1𝐴 LM−1𝐵 Q𝐵

M−1𝐵 Q𝐵
] . (A.7)

Obviously, the transient or steady solution of the above
equation under arbitrary deterministic Q𝐵(𝑡) could be
obtained by the method of convolution integral. Only har-
monic solution is concerned here. Referring to (12), when𝑝𝐵(𝜎, 𝑡) is harmonic, Q𝐵(𝑡) is harmonic, too. And suppose
that Q𝐵(𝑡) = P𝐵 ⋅ exp(𝑗𝜔𝑡) and 𝛼(𝑡) = 𝛼 exp(𝑗𝜔𝑡); by sub-
stituting them into (A.7), the time-dependent part exp(𝑗𝜔𝑡)
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would be eliminated, and the time-independent part of 𝛼(𝑡)
is obtained; that is,

𝛼 = (−𝜔2I +Ω2𝐶)−1M−1𝐶 X𝐻T−10 [−M−1𝐴 LM−1𝐵 P𝐵
M−1𝐵 P𝐵

]
= (−𝜔2M𝐶 +Ω2𝐶M𝐶)−1

⋅ [X𝐻𝐴 X𝐻𝐵 ] [√M𝐴 O

O Ω𝐵√M𝐵
][−M−1𝐴 LM−1𝐵 P𝐵

M−1𝐵 P𝐵
]

= H (𝜔)
⋅ [−X𝐻𝐴 (√M𝐴)−1 LM−1𝐵 + X𝐻𝐵Ω𝐵 (√M𝐵)−1]P𝐵
= H (𝜔) ⋅ T ⋅ P𝐵,

(A.8)

where I is a unit matrix of proper dimension rank.

A.3. Power Flow Formulation. The basic formulation for
power flow computation is

𝑃𝐹𝑉 = 𝜔2𝜋 ∫2𝜋/𝜔
0

𝐹 cos𝜔𝑡 ⋅ 𝑉 cos (𝜔𝑡 + 𝜑) d𝑡
= 𝜔2𝜋 ∫2𝜋/𝜔

0
Re {𝐹 exp (𝑗𝜔𝑡)}

⋅ Re {𝑉 exp (𝑗𝜔𝑡 + 𝑗𝜑)} d𝑡 = 12𝐹𝑉 cos𝜑
= 12Re {[𝐹 exp (𝑗𝜔𝑡)]∗ [𝑉 exp (𝑗𝜔𝑡 + 𝑗𝜑)]}
= 12Re {[𝐹 exp (𝑗𝜔𝑡)] [𝑉 exp (𝑗𝜔𝑡 + 𝑗𝜑)]∗} ,

(A.9)

where 𝐹 cos𝜔𝑡 or 𝐹 exp(𝑗𝜔𝑡) is a harmonic excitation force,𝑉 cos𝜔𝑡 or𝑉 exp(𝑗𝜔𝑡+𝑗𝜑) is the harmonic velocity response
at the action point of the excitation force, and 𝜑 is the phase
difference between the excitation force and velocity response.

By applying the above formulation, (23) would be appar-
ent. And because 𝑃𝐵(𝜎) is of 𝜎-dependent distribution over𝐷𝐹, 𝑝in(𝜎, 𝜔) in (23) is of distribution of power flow density.
Equation (25) is an integral of 𝑝in over 𝐷𝐹 to count up the
total power flow.The integral is initiated by quotation of (22)
and (23) as follows:

𝑃in (𝜔) = −∬
𝐷𝐹

𝜔2 Re {𝑗𝑊 (𝜎, 𝜔) ⋅ 𝑃𝐵 (𝜎)} d𝐴
= −∬

𝐷𝐹

𝜔2 Re {𝑗 [𝑊 (𝜎, 𝜔)]𝑇 ⋅ 𝑃∗𝐵 (𝜎)} d𝐴
= −𝜔2 Re{∬

𝐷𝐹

𝑗𝑇𝐵T𝑇 [H (𝜔)]𝑇

⋅ X𝑇𝐵 [(Ω𝐵√M𝐵)−1]𝑇W (𝜎) ⋅ 𝑃∗𝐵 (𝜎) d𝐴} .
(A.10)

Note that in the last expression of the right hand of
the above equation, the matrices P𝐵, T, H(𝜔), X𝐵, Ω𝐵, and
M𝐵 are all 𝜎-independent; only W(𝜎) ⋅ 𝑃∗𝐵 (𝜎) would join in
the integral in (A.10). The integral would result in (P𝐵)∗, in
which P𝐵 has been defined in the beginning paragraph of
Section 2.3, and the superscript “∗” denotes conjugation of
complex numbers. Other matters need attention; H(𝜔), Ω𝐵,
andM𝐵 are all diagonalmatrices; that is, [H(𝜔)]𝑇 = H(𝜔) and[(Ω𝐵√M𝐵)−1]𝑇 = (Ω𝐵√M𝐵)−1. After taking into account all
above factors, (24) is realized.

The obtainment of (25) is similar to that of (23), in which
the cavity sound pressure at the interior surface of the thin-
wall structures takes place of the exterior excitation. And also
the integral of𝑝tr(𝜎, 𝜔) is processed similar to that of𝑝in(𝜎, 𝜔)
at the beginning by quotation of (22) and (25).

𝑃tr (𝜔) = ∬
𝐷𝐹

𝜔2 Re {𝑗𝑊∗ (𝜎, 𝜔) ⋅ 𝑃 (𝜎, 𝜔)|𝜎∈𝐷𝐹} d𝐴
= ∬
𝐷𝐹

𝜔2 Re {𝑗𝑃 (𝜎, 𝜔)
⋅ [𝑊 (𝜎, 𝜔)]𝐻󵄨󵄨󵄨󵄨󵄨𝜎∈𝐷𝐹} d𝐴 = 𝜔2
⋅ Re{∬

𝐷𝐹

𝑗 [F (𝜎)]𝑇 (√M𝐴)−1

⋅ Χ𝐴HTP𝐵P
𝐻
𝐵 T
𝐻H𝐻X𝐻𝐵 [(Ω𝐵√M𝐵)−1]𝐻

⋅ W (𝜎) d𝐴} = 𝜔2 Re{∬
𝐷𝐹

[F (𝜎)]𝑇

⋅ [𝑗 (√M𝐴)−1

⋅ Χ𝐴HTP𝐵P
𝐻
𝐵 T
𝐻H∗X𝐻𝐵 (Ω∗𝐵√M𝐵)−1]

⋅ W (𝜎) d𝐴} .

(A.11)

The basis of the above transformation includes the fol-
lowing: W(𝜎) is real, H and Ω𝐵 are diagonal, and M𝐵 is real
and diagonal. It could be examined that the product of the
matrices between [F(𝜎)]𝑇 andW(𝜎) in the last expression of
the right hand of the above equation, which has been defined
as Λ(𝜔) in (26), is 𝜎-independent. And the expansion of the
product [F(𝜎)]𝑇Λ(𝜔)W(𝜎) is

F𝑇ΛW = [𝐹𝐴0 (𝜎) 𝐹𝐴1 (𝜎) 𝐹𝐴2 (𝜎) ⋅ ⋅ ⋅] [[
[
𝜆11 (𝜔) 𝜆12 (𝜔) ⋅ ⋅ ⋅𝜆21 (𝜔) 𝜆22 (𝜔) ⋅ ⋅ ⋅... ... d

]]
]

[[
[
𝑊𝐵1 (𝜎)𝑊𝐵2 (𝜎)...

]]
]

= ∞∑
𝑟=0

∞∑
𝑗=1

𝜆𝑟𝑗 (𝜔) ⋅ 𝐹𝐴𝑟 (𝜎) ⋅ 𝑊𝐵𝑗 (𝜎) . (A.12)
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Table 4: Dimension ranks of related matrices with R cavity acoustical modals and N thin-wall structural modals.

Matrices Dimension rank Matrices Dimension rank Matrices Dimension rank∇𝐹𝐴𝑟 3 × 1 F 𝑅 × 1 P 𝑅 × 1∇F 3 × 𝑅 M𝐴 𝑅 × 𝑅 Ω𝐴 𝑅 × 𝑅
W 𝑁 × 1 B 𝑁 × 1 M𝐵 𝑁 × 𝑁
Ω𝐵 𝑁 × 𝑁 Q𝐴 𝑁 × 1 Q𝐵 𝑁 × 1
L 𝑅 × 𝑁 𝜒𝐴,𝜒𝐴(𝑘),𝜒󸀠𝐴 𝑅 × 1 𝜒𝐵,𝜒𝐵(𝑘),𝜒󸀠𝐵 𝑁 × 1
𝜒,𝜒(𝑘) (𝑅 + 𝑁) × 1 A,A󸀠 (𝑅 + 𝑁) × (𝑅 + 𝑁) A11 𝑅 × 𝑅
A12 𝑅 × 𝑁 A21 𝑁 × 𝑅 A22 𝑁 × 𝑁
X𝐴 𝑅 × (𝑅 + 𝑁) X𝐵 𝑁 × (𝑅 + 𝑁) X (𝑅 + 𝑁) × (𝑅 + 𝑁)
S (𝑅 + 𝑁) × 1 H (𝑅 + 𝑁) × (𝑅 + 𝑁) T (𝑅 + 𝑁) × 𝑁
S𝑄 𝑁 × 1 M𝐶 (𝑅 + 𝑁) × (𝑅 + 𝑁) Ω𝐶 (𝑅 + 𝑁) × (𝑅 + 𝑁)
P𝐵 𝑁 × 1 Λ 𝑅 × 𝑁 T0 (𝑅 + 𝑁) × (𝑅 + 𝑁)
𝛼,𝛼 (𝑅 + 𝑁) × 1

Since 𝜆𝑟𝑗(𝜔) is 𝜎-independent, when the integral of[F(𝜎)]𝑇Λ(𝜔)W(𝜎) over𝐷𝐹 is proceeding, only 𝐹𝐴𝑟(𝜎)𝑊𝐵𝑗(𝜎)
is involved, and that would result in 𝐿𝑟𝑗, which has been
defined in (13) or (A.1). And, at last, 𝑃tr(𝜔) is formulated by
(26).

B. Dimension Ranks of Related Matrices under
Modal Truncation

Modal truncation has to be implemented in the application
of modal coupling method, because there are no numerical
techniques that could provide a computation in infinity
manner by now.And because of themodal convergence prop-
erty, modal truncation errors could be controlled properly.
Suppose that there are totally 𝑅 cavity acoustical modals and𝑁 thin-wall structural modals to be accounted for the fluid-
structural modal coupling; dimension ranks of associated
matrices mentioned in this paper are listed in Table 4.
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