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Recently, we present a novel Mastrovito form of nonrecursive Karatsuba multiplier for all trinomials. Specifically, we found that
related Mastrovito matrix is very simple for equally spaced trinomial (EST) combined with classic Karatsuba algorithm (KA),
which leads to a highly efficient Karatsubamultiplier. In this paper, we consider a new special class of irreducible trinomial, namely,𝑥𝑚 + 𝑥𝑚/3 + 1. Based on a three-term KA and shifted polynomial basis (SPB), a novel bit-parallel multiplier is derived with better
space and time complexity. As a main contribution, the proposed multiplier costs about 2/3 circuit gates of the fastest multipliers,
while its time delay matches our former result. To the best of our knowledge, this is the first time that the space complexity bound
is reached without increasing the gate delay.

1. Introduction

Efficient hardware implementation of the finite field arith-
metic, especially for 𝐺𝐹(2𝑚), is frequently desired in coding
theory and public-key cryptosystems [1, 2]. Among these
arithmetic operations in𝐺𝐹(2𝑚), multiplication is of themost
importance, as other complicated field operations such as
exponentiation and inversion can be carried out by iterative
multiplications. Thus, it is necessary to design efficient mul-
tiplier.

The field elements are usually represented by a certain
basis such as polynomial basis (PB), normal basis (NB), and
dual basis (DB). In PB representation, the multiplication
consists of multiplying two polynomials and reducing the
result modulo an irreducible polynomial. The choice of such
an irreducible polynomial is critical to perform the reduction
operation efficiently. Irreducible trinomial is one of the most
common considerations [3, 4]. During recent years, many
bit-parallel multipliers using PB representation are proposed
for 𝐺𝐹(2𝑚) defined by irreducible trinomials, some of which
can be found in [3, 5–8]. The efficiency of the architecture is
always evaluated by space and time complexity. The former
one is expressed in terms of the number of logic gates (XOR
and AND) and the latter one is expressed in terms of the
sum of XOR and AND gates delay of the critical path. Among

thesemultipliers, the fastest bit-parallel multipliers nowadays
are proposed by Fan and Hasan [9] and Hariri and Reyhani-
Masoleh [10]. If𝐺𝐹(2𝑚) is defined by 𝑓(𝑥) = 𝑥𝑚+𝑥𝑘+1, 1 <𝑘 ≤ 𝑚/2, the corresponding multiplier requires𝑚2 AND and𝑚2 − 1 XOR gates with time delay 𝑇𝐴 + ⌈log2(2𝑚 − 𝑘)⌉𝑇𝑋
(for good fields, the time delay is 𝑇𝐴 + ⌈log2𝑚⌉𝑇𝑋), where 𝑇𝐴
and 𝑇𝑋 are the circuit delay of one AND gate and one XOR
gate, respectively. Except for these multipliers for general
trinomials, there are also several proposals for special types
of irreducible trinomials [11–13]. These multipliers usually
utilize the special form of the trinomial to obtain efficient
implementation.

The Karatsuba algorithm (KA) works recursively by
breaking down one big multiplication into two or more
submultiplications. It is a typical divide-and-conquer algo-
rithm. Please note that the classic KA starts with a way to
multiply two 2-term polynomials using three scalar multi-
plications. Some other variations are also investigated. More
details can be found in [14–16]. The KA can be adopted to
design subquadratic complexity multiplier [14, 17] or hybrid
multiplier [18, 19]. Specially, there is another type of hybrid
multiplier, namely, nonrecursive Karatsuba multiplier, which
only applies KA once in the polynomial multiplication [8,
20]. These multipliers regularly require 3/4 circuits gates
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compared to the fastest bit-parallel multipliers, while its time
delay increased by a small number of 𝑇𝑋. For example, Elia et
al. [8] costs at least two more 𝑇𝑋.

Recently, we proposed a novel nonrecursive Karatsuba
multiplier that is based on Mastrovito approach [21]. It
is shown that our multiplier only requires one more 𝑇𝑋
compared with the fastest multipliers [9, 10]. However, it
costs a few more logic gates than Elia’s result. Except for
the nonrecursive Karatsuba multiplier for general trinomials,
Shen and Jin [13] proposed a new Karatsuba multiplier that
fully exploited equally spaced trinomial and the classic KA
to simplify the modular reduction. Consequently, the space
complexity of their scheme matches Elia’s result. Meanwhile,
the time complexity is 𝑇𝐴 + (1 + ⌈log2(𝑚 − 1)⌉)𝑇𝑋, which is
roughly equal to the fastest results. Furthermore, we observe
that the special case 𝑚 = 2𝑘 of our multiplier coincides with
their scheme. (Here, the trinomial 𝑥𝑚 +𝑥𝑘 + 1 (𝑚 = 2𝑘) is an
equally spaced trinomial.)

In this paper, we explore another special case of our for-
mer scheme to obtain evenmore efficient nonrecursiveKarat-
suba multipliers. Our main idea is analogous to Shen and Jin
[13], where a special type of trinomials and a KA variation are
utilized to simplify the structure of correspondingMastrovito
matrix. More explicitly, we consider the irreducible trinomial𝑥𝑚 + 𝑥𝑚/3 + 1 and a three-term Karatsuba algorithm. It
is demonstrated that the corresponding Mastrovito matrix
can be simplified further under this condition. The shifted
polynomial basis (SPB) [4] is also utilized to reduce the
critical path delay further. Consequently, we proposed a bit-
parallelmultiplier that costs approximately 2/3 circuit gates of
the fastest bit-parallelmultipliers.On the other hand, the time
complexity is𝑇𝐴+⌈log2(8𝑚/3)⌉𝑇𝑋, which almostmatches the
best known results.

The rest of this paper is organized as follows: In Section 2,
we briefly review the Mastrovito approach based on SPB
representation and some relevant notions.Thenwe introduce
a three-term KA formula and investigate the structure of
related Mastrovito matrix. A new bit-parallel multiplier
architecture is then proposed in Section 3. Section 4 presents
a comparison between the proposed multiplier and some
others. Finally, some conclusions are drawn.

2. Preliminary

In this section, we briefly review some related notations and
algorithms used throughout this paper. Consider the finite
field 𝐺𝐹(2𝑚) generated with an irreducible trinomial 𝑥𝑚 +𝑥𝑚/3 + 1. Let 𝑥 be a root of 𝑥𝑚 + 𝑥𝑚/3 + 1 and the set𝑀 = {𝑥𝑚−1, 𝑥𝑚−2, . . . , 𝑥, 1} constitute a polynomial basis
(PB). Therefore, every element of 𝐺𝐹(2𝑚) can be represented
as a polynomial over F2 of degree less than 𝑚. The shifted
polynomial basis (SPB) is a variation of the polynomial
basis, which is obtained by multiplying the set𝑀 by certain
exponentiation of 𝑥.
Definition 1 (see [4]). Let V be an integer and the ordered set𝑀 = {𝑥𝑚−1, . . . , 𝑥, 1} be a polynomial basis of 𝐺𝐹(2𝑚) over
F2. The ordered set 𝑥−V𝑀 fl {𝑥𝑖−V | 0 ≤ 𝑖 ≤ 𝑚 − 1} is called
the shifted polynomial basis with respect to𝑀.

Generally speaking, the optimal choice of V for irreducible
trinomial is equal to the middle term degree or it minus one
[4]. In this case, we have V = 𝑚/3 and use this denotation
thereafter. It follows that the field element𝐴 ∈ 𝐺𝐹(2𝑚) can be
expressed with respect to SPB as follows:

𝐴 = 𝑥−𝑚/3𝑚−1∑
𝑖=0

𝑎𝑖𝑥𝑖
= 𝑎𝑚−1𝑥2𝑚/3−1 + ⋅ ⋅ ⋅ + 𝑎1𝑥−𝑚/3+1 + 𝑎0𝑥−𝑚/3.

(1)

Given two elements of𝐺𝐹(2𝑚)under SPB representation, that
is, 𝐴(𝑥) = ∑𝑚−1𝑖=0 𝑎𝑖𝑥𝑖−𝑚/3, 𝐵(𝑥) = ∑𝑚−1𝑖=0 𝑏𝑖𝑥𝑖−𝑚/3, the field
multiplication can be performed as

𝐶 (𝑥) 𝑥−𝑚/3 = 𝐴 (𝑥) 𝑥−𝑚/3 ⋅ 𝐵 (𝑥) 𝑥−𝑚/3 mod 𝑓 (𝑥) . (2)

Obviously, the product𝐷 = 𝐴𝐵 is thus equal to

𝐷(𝑥) = 𝑥−2𝑚/3(𝑚−1∑
𝑖=0

𝑎𝑖𝑥𝑖)(𝑚−1∑
𝑖=0

𝑏𝑖𝑥𝑖) . (3)

Analogous to ordinary polynomial multiplication, this prod-
uct can be computed by a matrix-vector multiplication d =
A ⋅ b, where b, d express the coefficient vectors of 𝐵(𝑥) and𝐷(𝑥), and the matrix A is given by

A =

−2𝑚3−2𝑚3 + 1
−2𝑚3 + 2

...𝑚3 − 2𝑚3 − 1𝑚3𝑚3 + 1

...
4𝑚3 − 3
4𝑚3 − 2

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

𝑎0 0 0 ⋅ ⋅ ⋅ 0 0
𝑎1 𝑎0 0 ⋅ ⋅ ⋅ 0 0
𝑎2 𝑎1 𝑎0 ⋅ ⋅ ⋅ 0 0
... ... ... d

... ...
𝑎𝑚−2 𝑎𝑚−3 𝑎𝑚−4 ⋅ ⋅ ⋅ 𝑎0 0
𝑎𝑚−1 𝑎𝑚−2 𝑎𝑚−3 ⋅ ⋅ ⋅ 𝑎1 𝑎0
0 𝑎𝑚−1 𝑎𝑚−2 ⋅ ⋅ ⋅ 𝑎2 𝑎1
0 0 𝑎𝑚−1 ⋅ ⋅ ⋅ 𝑎3 𝑎2... ... ... d

... ...
0 0 0 ⋅ ⋅ ⋅ 𝑎𝑚−1 𝑎𝑚−2
0 0 0 ⋅ ⋅ ⋅ 0 𝑎𝑚−1

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

. (4)

The difference between the above matrix and the usual PB
case [3] is simply the labels of the lines in left side, which
indicate the exponent of indeterminate 𝑥 for each line.

We then reduce the above matrix in view to obtain the
field product expressed in SPB representation. The reduced
matrix, denoted by M, is called Mastrovito matrix. Thus, the
SPB field multiplication is rewritten as

c = M ⋅ b, (5)
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where c denotes the coefficient vector of 𝐶(𝑥). The structure
of M relies onA and the modular reduction rule. In this case,
we should obey the following reduction rule:

𝑥𝑖 = 𝑥𝑖−2𝑚/3 + 𝑥𝑖−𝑚, for 2𝑚3 ≤ 𝑖 ≤ 4𝑚3 − 2,
𝑥𝑖 = 𝑥𝑚+𝑖 + 𝑥𝑚/3+𝑖, for − 2𝑚3 ≤ 𝑖 ≤ − (𝑚3 + 1) .

(6)

However, if we directly reduce the product matrix pre-
sented in (4) using the above formulae and perform matrix-
vector multiplication, there is no difference between this
computation and the general case. In the following section,
we will construct a new Mastrovito matrix using a three-
term Karatsuba algorithm and describe a highly efficient bit-
parallel multiplier.

Moreover, one can check that the irreducible trinomial in
the form of 𝑥𝑚 + 𝑥𝑚/3 + 1 exists when 𝑚 = 3 × 7𝑖 where𝑖 is a nonnegative integer [1]. Although the number of this
type of irreducible trinomials is not that abundant, there still
exist some trinomials in the range of interest for practical
application.

In the end, we also introduce some notations pertaining
tomatrices and vectors, which are already proposed in [21, 23]
and extensively used throughout this paper.

(i) Z(𝑖, :) represents the 𝑖th row vector in matrix Z;

(ii) Z(:, 𝑗) represents the 𝑗th column vector in matrix Z;

(iii) Z(𝑖, 𝑗) represents the entry with position (𝑖, 𝑗) in
matrix Z.

3. Mastrovito Multiplier Using a Three-Term
Karatsuba Algorithm

The Karatsuba algorithm [2] has been applied to improve
the efficiency of bit-parallel multiplier for 𝐺𝐹(2𝑚) gener-
ated by an AOP [20] and a trinomial [8, 13, 21]. It starts
with a way to multiply two two-term polynomials using
three scalar multiplications which can reduce the space
complexity of the multipliers by approximately a factor
of 3/4. Besides the classic algorithm, there exist several
generalizations with respect to the Karatsuba algorithm [14–
16]. Here, we are only focus on a simple Karatsuba algorithm
variation, three-term Karatsuba algorithm, which multiplies
two three-term polynomials using six scalar multiplications.
Given two three-term polynomials in F2[𝑥], one can check
that

(𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0) (𝑏2𝑥2 + 𝑏1𝑥 + 𝑏0)
= 𝑎2𝑏2 (𝑥4 + 𝑥3 + 𝑥2) + 𝑎1𝑏1 (𝑥3 + 𝑥2 + 𝑥)
+ 𝑎0𝑏0 (𝑥2 + 𝑥 + 1) + (𝑎2 + 𝑎1) (𝑏2 + 𝑏1) 𝑥3
+ (𝑎2 + 𝑎0) (𝑏2 + 𝑏0) 𝑥2 + (𝑎1 + 𝑎0) (𝑏1 + 𝑏0) 𝑥.

(7)

In general, theMastrovito multiplication utilizing the KA
will increase the time complexity. Our former result shows
that a Mastrovito multiplier using classic KA costs one more𝑇𝑋 than the fastest ones. However, some literature sources
[13] indicated that this result would be further improved for
some special cases, for example, the EST 𝑥𝑚 + 𝑥𝑚/2 + 1.
In the following, we will show that for the trinomial 𝑥𝑚 +𝑥𝑚/3 + 1, applying the three-term Karatsuba-like formula
will also simplify the reduction operation and lead to fast
implementation.

Let 𝑓(𝑥) = 𝑥𝑚 + 𝑥𝑚/3 + 1 be an irreducible trinomial
and 𝐴 = 𝑥−𝑚/3∑𝑚−1𝑖=0 𝑎𝑖𝑥𝑖, 𝐵 = 𝑥−𝑚/3∑𝑚−1𝑖=0 𝑏𝑖𝑥𝑖 be two
field elements in SPB representation. We partition 𝐴, 𝐵 into
three parts, with each part consisting of𝑚/3 bits. In order to
simplify related expressions, we denote𝑚/3 as 𝑘. Then,

𝐴 = 𝐴2𝑥𝑘 + 𝐴1 + 𝐴0𝑥−𝑘,
𝐵 = 𝐵2𝑥𝑘 + 𝐵1 + 𝐵0𝑥−𝑘,

(8)

where 𝐴 𝑖 = ∑𝑘−1𝑗=0 𝑎𝑗+𝑖𝑘𝑥𝑗, 𝐵𝑖 = ∑𝑘−1𝑗=0 𝑏𝑗+𝑖𝑘𝑥𝑗, for 𝑖 = 0, 1, 2.
Then we multiply 𝐴 and 𝐵 using the three-term Karatsuba-
like formula and do the following transformation:

𝐴𝐵 = (𝐴2𝑥𝑘 + 𝐴1 + 𝐴0𝑥−𝑘) ⋅ (𝐵2𝑥𝑘 + 𝐵1 + 𝐵0𝑥−𝑘)
= 𝐴2𝐵2 (𝑥2𝑘 + 𝑥𝑘 + 1) + 𝐴1𝐵1 (𝑥𝑘 + 1 + 𝑥−𝑘)
+ 𝐴0𝐵0 (1 + 𝑥−𝑘 + 𝑥−2𝑘) + 𝐶2𝐷2𝑥𝑘 + 𝐶1𝐷1
+ 𝐶0𝐷0𝑥−𝑘

= (𝐴2𝐵2𝑥𝑘 + 𝐴1𝐵1 + 𝐴0𝐵0𝑥−𝑘) (𝑥𝑘 + 1 + 𝑥−𝑘)
+ (𝐶2𝐷2𝑥𝑘 + 𝐶1𝐷1 + 𝐶0𝐷0𝑥−𝑘) ,

(9)

where 𝐶2 = 𝐴2 + 𝐴1, 𝐶1 = 𝐴2 + 𝐴0, 𝐶0 = 𝐴1 + 𝐴0, 𝐷2 =𝐵2 + 𝐵1, 𝐷1 = 𝐵2 + 𝐵0, 𝐷0 = 𝐵1 + 𝐵0. We divide (9) into two
parts,

𝑆1 = (𝐴2𝐵2𝑥𝑘 + 𝐴1𝐵1 + 𝐴0𝐵0𝑥−𝑘) (𝑥𝑘 + 1 + 𝑥−𝑘) ,
𝑆2 = (𝐶2𝐷2𝑥𝑘 + 𝐶1𝐷1 + 𝐶0𝐷0𝑥−𝑘) ,

(10)

and compute each part modulo 𝑓(𝑥) independently.
3.1. Computation of 𝑆1mod𝑓(𝑥). We first consider the com-
putation of 𝑆1 in detail. Note that 𝑆1 actually consists of three
different parts:𝐴0𝐵0,𝐴1𝐵1,𝐴2𝐵2 (others can be obtained by
shift of these parts). When 𝑆1 is rewritten as a matrix-vector
form, we have
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𝑆1 = A ⋅ b

=
[[[[[[[[[[[
[

A0,𝐿, 0𝑘×𝑘, 0𝑘×𝑘
A0,𝐿 + A0,𝐻, A1,𝐿, 0𝑘×𝑘
A0,𝐿 + A0,𝐻, A1,𝐿 + A1,𝐻, A2,𝐿

A0,𝐻, A1,𝐿 + A1,𝐻, A2,𝐿 + A2,𝐻
0𝑘×𝑘, A1,𝐻, A2,𝐿 + A2,𝐻
0𝑘×𝑘, 0𝑘×𝑘, A2,𝐻

]]]]]]]]]]]
]

⋅ [[
[
b0
b1
b2

]]
]
.

(11)

For simplicity, we do not write the labels of the product
matrix here, which indicate the degree of 𝑥𝑖 in 𝑆1. Note that
these degrees are in the range [−2𝑘, 2𝑚 − 2𝑘 − 2]. In the
above expression, b0, b1, b2 represent the coefficient vectors
of 𝐵0, 𝐵1, 𝐵2, respectively. 0𝑘×𝑘 is a 𝑘 × 𝑘 zero matrix, A𝑖,𝐿
(𝑖 = 0, 1, 2) are 𝑘 × 𝑘 lower-triangular Toeplitz matrices,
and A𝑖,𝐻 (𝑖 = 0, 1, 2) are 𝑘 × 𝑘 upper-triangular Toeplitz
matrices. Please note that thematrix on the right side actually
contains 6𝑘 = 6 ⋅ 𝑚/3 = 2𝑚 rows and the product matrix
in fact contains 2𝑚 − 1 rows. However, the last row of the
above matrix is 0, which does not affect the result. These
submatrices have the following form:

A𝑖,𝐿 =
[[[[[[
[

𝑎𝑖𝑘+0 0 ⋅ ⋅ ⋅ 0
𝑎𝑖𝑘+1 𝑎𝑖𝑘+0 ⋅ ⋅ ⋅ 0
... ... d

...
𝑎𝑖𝑘+𝑘−1 𝑎𝑖𝑘+𝑘−2 ⋅ ⋅ ⋅ 𝑎𝑖𝑘+0

]]]]]]
]
,

A𝑖,𝐿 =
[[[[[[[[[
[

0 𝑎𝑖𝑘+𝑘−1 ⋅ ⋅ ⋅ 𝑎𝑖𝑘+2 𝑎𝑖𝑘+10 0 ⋅ ⋅ ⋅ 𝑎𝑖𝑘+3 𝑎𝑖𝑘+2... ... d
... ...

0 0 ⋅ ⋅ ⋅ 0 𝑎𝑖𝑘+𝑘−10 0 ⋅ ⋅ ⋅ 0 0

]]]]]]]]]
]

,

(12)

for 𝑖 = 0, 1, 2. It is easy to check that the products 𝑆1
contain the terms of degrees out of the range [−𝑘,𝑚 −𝑘 − 1]; we have to perform the reduction operation for the
product matrix in (21). According to Mastrovito scheme, the
reduction can be regarded as the construction of product
matrices from A using the reduction rule in (6). Denoted
by M𝐴, the Mastrovito matrix is related to 𝑆1. Then, we
investigate the construction details for this matrix M𝐴. We
have the following proposition.

Proposition 2. TheMastrovito matrixM𝐴 can be constructed
as

M𝐴 = M𝐴,1 +M𝐴,2, (13)

where

M𝐴,1 = [[
[
A0,𝐿 + A0,𝐻, A1,𝐿 + A1,𝐻, A2,𝐿 + A2,𝐻
A0,𝐿 + A0,𝐻, A1,𝐿 + A1,𝐻, A2,𝐿 + A2,𝐻
A0,𝐿 + A0,𝐻, A1,𝐿 + A1,𝐻, A2,𝐿 + A2,𝐻

]]
]
,

M𝐴,2 = [[
[
A0,𝐿, 0𝑘×𝑘, 0𝑘×𝑘
0𝑘×𝑘, A1,𝐻, A2,𝐿 + A2,𝐻
0𝑘×𝑘, 0𝑘×𝑘, A2,𝐻

]]
]
.

(14)

Proof. The proof is analogous with the proof of observation3.1 in [21]. Note that the product matrix A contains 2𝑚 − 1
nonzero rows (the last row A(2𝑚, :) is a zero vector), each
of which corresponds to the polynomial degree from −2𝑘 to2𝑚−2𝑘−2. It is easy to check that the first 𝑘 rows and the last𝑚 − 𝑘 − 1 rows correspond to the degrees that are out of the
range [−𝑘,𝑚 − 𝑘 − 1]. Thus, we need to reduce these rows.

According to the reduction rule in (6), we have to reduce{−2𝑘, −2𝑘 + 1, . . . , −𝑘 − 1} by adding them to the row{−𝑘, . . . , −1} and {𝑚 − 2𝑘, . . . , 𝑚 − 𝑘 − 1} and reduce the
rows {𝑚 − 𝑘, . . . , 2𝑚 − 2𝑘 − 2} by adding them to the row{0, . . . , 𝑚 − 𝑘 − 2} and {−𝑘, . . . , 𝑚 − 2𝑘 − 2}. Obviously, the
first 𝑘 row here is [A0,𝐿, 0𝑘×𝑘, 0𝑘×𝑘] and the last𝑚−𝑘−1 rows
constitute

[0𝑘×𝑘, A1,𝐻, A2,𝐿 + A2,𝐻
0𝑘×𝑘, 0𝑘×𝑘, A2,𝐻

] . (15)

We compare the line number and obtain the result immedi-
ately.

Based on Proposition 2, we can compute 𝑆1 as follows:
𝑆1mod𝑓 (𝑥) = M𝐴 ⋅ b = M𝐴,1 ⋅ b +M𝐴,2 ⋅ b. (16)

By swapping and combining some overlapped entries,
expression (16) now can be rewritten as

𝑆1 = M󸀠𝐴,1 ⋅ b +M󸀠𝐴,2 ⋅ b

= [[
[
A0,𝐻, A1,𝐿, A2,𝐻
A0,𝐻, A1,𝐿, 0𝑘×𝑘
A0,𝐻, A1,𝐿, 0𝑘×𝑘

]]
]
⋅ [[
[
b0
b1
b2

]]
]

+ [[
[
0𝑘×𝑘, A1,𝐻, A2,𝐿
A0,𝐿, 0𝑘×𝑘, 0𝑘×𝑘
A0,𝐿, A1,𝐻, A2,𝐿

]]
]
⋅ [[
[
b0
b1
b2

]]
]
.

(17)

We just compute two submatrix-vector multiplications and
add them up to obtain 𝑆1. Some tricks can apply to save
more logic gates.Wemainly utilized the computation strategy
presented in [7] and fully considered the overlapped parts of
the two above matrices.The computation can be divided into
two steps:
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Table 1: Space and time complexities of 𝑆1mod𝑓(𝑥).
Operation #AND #XOR Time delay
Inner products in (18) 3𝑘2 - 𝑇𝐴
Partial addition in (19) - 3𝑘2 − 4𝑘 + 1 ⌈log2𝑘⌉𝑇𝑋𝑆1mod𝑓(𝑥) - 4𝑘 − 1 2𝑇𝑋

(i) Perform row-vector products:

A0,𝐿 ∗ b0,
A0,𝐻 ∗ b0,
A1,𝐿 ∗ b1,
A1,𝐻 ∗ b2,
A2,𝐿 ∗ b2,
A2,𝐻 ∗ b1,

(18)

in parallel.The symbol “∗” represents only row-vector
product related toA𝑖,𝐿 (orA𝑖,𝐻) and b𝑖, 𝑖 = 0, 1, 2. For
example, A0,𝐻 ∗ b0 represents computing the inner
product [A0,𝐻(𝑖, 1) ⋅ 𝑏0, . . . ,A0,𝐻(𝑖, 𝑘) ⋅ 𝑏𝑘−1], for 𝑖 =1, 2, . . . , 𝑘 in parallel.

(ii) Sum up all the 2𝑚 entries of each row using binary
XOR tree. Specially, consider some products of each
row are zero; we compute the following summations:

A0,𝐻 ⋅ b0 + A1,𝐿 ⋅ b1,
A2,𝐻 ⋅ b3,

A1,𝐻 ⋅ b1 + A2,𝐿 ⋅ b2,
A0,𝐿 ⋅ b0

(19)

using binary XOR tree firstly and then add these
results together.

Remarks 3. It is easy to see that the row-vector products
(18) contain all the possible row-vector products in (17). In
addition,A0,𝐻,A1,𝐿,A1,𝐻, andA2,𝐿 are all triangularmatrices;
one can easily check that each row of both [A0,𝐻,A1,𝐿] and[A1,𝐻,A2,𝐿] consists of at most 𝑘 nonzero entries. After the
computation of (18) and (19), certain number of XOR gates
is required to obtain the final result. Table 1 summarizes the
space and time complexity of 𝑆1 for all the steps.
3.2. Computation of 𝑆2mod𝑓(𝑥). Then we consider the com-
putation of 𝑆2mod𝑓(𝑥) in detail. Since 𝑆2 = (𝐶2𝐷2𝑥𝑘+𝐶1𝐷1+𝐶0𝐷0𝑥−𝑘) and 𝐶𝑖, 𝐷𝑖(𝑖 = 0, 1, 2) consist of 𝑘 bits, we can
follow similar line as the computation of 𝑆1 to obtain the
result. More explicitly, we rewrite 𝑆2 in matrix-vector form:

𝑆2 =
[[[[[
[

C0,𝐿, 0𝑘×𝑘 0𝑘×𝑘
C0,𝐻, C1,𝐿 0𝑘×𝑘
0𝑘×𝑘, C1,𝐻, C2,𝐿
0𝑘×𝑘, 0𝑘×𝑘, C2,𝐻

]]]]]
]
⋅ [[
[
d0
d1
d2

]]
]
. (20)

Table 2: Space and time complexities of 𝑆2mod𝑓(𝑥).
Operation #AND #XOR Time delay𝐶0, 𝐶1, 𝐶2 - 3𝑘 𝑇𝑋𝐷0, 𝐷1, 𝐷2 - 3𝑘
Inner products in (22) 3𝑘2 - 𝑇𝐴
Partial addition in (23) - 3𝑘2 − 4𝑘 + 1 ⌈log2𝑘⌉𝑇𝑋𝑆2mod𝑓(𝑥) - 2𝑘 − 2 𝑇𝑋

Here, C𝑖,𝐿 (𝑖 = 0, 1, 2) are 𝑘 × 𝑘 lower-triangular Toeplitz
matrices and C𝑖,𝐻 (𝑖 = 0, 1, 2) are 𝑘 × 𝑘 upper-triangular
Toeplitzmatrices, which are constructed from the coefficients
of 𝐶0, 𝐶1, 𝐶2 and are similar to A𝑖,𝐿 and A𝑖,𝐻. Vectors
d0, d1, d2 represent the coefficient vectors of𝐷0, 𝐷1, 𝐷2.

The reduction of 𝑆2 modulo 𝑓(𝑥) is relatively simpler: we
only need to eliminate the last 𝑘 rows by adding them to the
lines labeledwith {−𝑘, . . . , −2} and {0, . . . , 𝑘−1}.Thus,we have

𝑆2mod𝑓 (𝑥) = [[
[
C0,𝐿, 0𝑘×𝑘 C2,𝐻
C0,𝐻, C1,𝐿 C2,𝐻
0𝑘×𝑘, C1,𝐻, C2,𝐿

]]
]
⋅ [[
[
d0
d1
d2

]]
]
. (21)

Analogous with the computation of 𝑆1mod𝑓(𝑥), we first
perform row-vector products:

C0,𝐿 ∗ d0,
C0,𝐻 ∗ d0,
C1,𝐿 ∗ d1,
C1,𝐻 ∗ d2,
C2,𝐿 ∗ d2,
C2,𝐻 ∗ d1,

(22)

in parallel. Then, we compute the following summations:

C0,𝐿 ⋅ d0,
C0,𝐻 ⋅ d0 + C1,𝐿 ⋅ d1,
C1,𝐻 ⋅ d1 + C2,𝐿 ⋅ d2,

C2,𝐻 ⋅ d2,
(23)

using binary XOR tree firstly, and then add related results
together. Please note that each row of [C0,𝐻 ∗ d0,C1,𝐿 ∗ d1]
and [C1,𝐻∗d1,C2,𝐿∗d2] consists of atmost 𝑘 nonzero entries.
We can calculate C0,𝐻 ⋅ d0 + C1,𝐿 ⋅ d1 and C1,𝐻 ⋅ d1 + C2,𝐿 ⋅ d2
in ⌈log 𝑘⌉𝑇𝑋. Finally, we have to add all these summations
to obtain the result. It costs 2𝑘 − 2 more XOR gates with
one 𝑇𝑋 delay. Related space and time complexities for the
computation of 𝑆2mod𝑓(𝑥) are summarized in Table 2.

From Tables 1 and 2, it is clear that the computations of𝑆1, 𝑆2 modulo 𝑓(𝑥) have the same time delay. So they can
be implemented in parallel. Finally, another𝑚 XOR gates are
needed to add the two results together, which also requires
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Table 3: Comparison of bit-parallel multipliers for 𝐺𝐹(2𝑚) generated with 𝑥𝑚 + 𝑥𝑚/3 + 1.
Multiplier #AND #XOR Time delay
Sunar and Koç [3] 𝑚2 𝑚2 − 1 𝑇𝐴 + (2 + ⌈log2𝑚⌉)𝑇𝑋
Wu [5] 𝑚2 𝑚2 − 1 𝑇𝐴 + (2 + ⌈log2𝑚⌉)𝑇𝑋
Wu [6] 𝑚2 𝑚2 − 1 𝑇𝐴 + (2 + ⌈log2𝑚⌉)𝑇𝑋
Fan and Dai [4] 𝑚2 𝑚2 − 1 𝑇𝐴 + ⌈log2 5𝑚3 ⌉𝑇𝑋
Elia et al. [8] 3𝑚24 3𝑚24 + 13𝑚3 − 234 𝑇𝐴 + (3 + ⌈log2𝑚⌉)𝑇𝑋
Negre [7] 𝑚2 23𝑚218 − 3𝑚2 𝑇𝐴 + ⌈log2 5𝑚3 ⌉𝑇𝑋
Fan [22] Type-A 𝑚2 − 𝑚3 𝑚2 − 𝑚3 𝑇𝐴 + ⌈log2 (max (2𝑚 − 1, 4𝑚3 + 2V))⌉𝑇𝑋
Fan [22] Type-B 𝑚2 − 𝑚3 𝑚2 − 2𝑚3 + 𝑚3 ⋅ 𝑊(𝑚3 ) 𝑇𝐴 + ⌈log2 (2𝑚 − 1)⌉ 𝑇𝑋
Li et al. [21] 3𝑚2 + 2𝑚 − 14 3𝑚24 + 𝑚2 + 𝑂 (𝑚log2𝑚) 𝑇𝐴 + (1 + ⌈log2 5𝑚3 ⌉)𝑇𝑋
This paper 2𝑚23 2𝑚23 + 7𝑚3 − 1 𝑇𝐴 + ⌈log2 8𝑚3 ⌉𝑇𝑋
Note. 2V−1 < 𝑚/3 ≤ 2V and𝑊(∗) is the hamming weight of the number.

one 𝑇𝑋 delay. As a consequence, the total space and time
complexity of proposed architecture are

#AND = 6𝑘2 = 2𝑚23 ,
#XOR = 6𝑘2 + 4𝑘 − 1 + 𝑚 = 2𝑚23 + 7𝑚3 − 1,

Time delay = 𝑇𝐴 + (3 + ⌈log2𝑘⌉) 𝑇𝑋
= 𝑇𝐴 + ⌈log2 8𝑚3 ⌉𝑇𝑋.

(24)

Furthermore, if 𝑚 = 2𝑛 + 𝑐 where 𝑐 is smaller relatively to2𝑛−1, we have ⌈log2(8𝑚/3)⌉ = 1 + ⌈log2𝑚⌉. In this case, the
time delay of our architecture becomes 𝑇𝐴+(1+⌈log2𝑚⌉𝑇𝑋),
which is almost equal to the delay of the fastest bit-parallel
multipliers [9].

4. Theoretic Comparison

Table 3 gives a comparison of different implementation
methods of bit-parallel multipliers in the fields generated by
trinomials 𝑥𝑚 + 𝑥𝑚/3 + 1. From Table 3, we can see that
our multiplier requires about 2/3 circuit gates compared with
the previous architectures without using divide-and-conquer
algorithm. On the other hand, the time complexity of the
proposed multiplier is 𝑇𝐴 + ⌈log2(8𝑚/3)⌉𝑇𝑋, which is very
close to the fastest result. In fact, we have checked this type
of trinomials with degree 𝑚 = 3 ⋅ 7𝑖, 𝑖 = 1, 2, . . . , 1000, and
found that there are 585 such trinomials reaching the bound𝑇𝐴 + (1 + ⌈log2𝑚⌉𝑇𝑋) (others require only one more 𝑇𝑋).

In Table 4, we give a small example of field 𝐺𝐹(2147)
defined by 𝑥147 + 𝑥49 + 1. It shows that, compared with
other approaches, our architecture may be the best choice
if the space and time complexity are both considered. In
addition, compared with the fastest Karatsuba multiplier for
general trinomials [21], it is argued that the space and time

Table 4: Complexity for practical field 𝐺𝐹(2147).
Basis #AND #XOR Time
PB [3, 5] 21609 21608 𝑇𝐴 + 10𝑇𝑋
PB [8] 16280 16838 𝑇𝐴 + 11𝑇𝑋
SPB [4] 21609 21608 𝑇𝐴 + 9𝑇𝑋
SPB [9] 21609 21608 𝑇𝐴 + 8𝑇𝑋
SPB [7] 21609 27391 𝑇𝐴 + 8𝑇𝑋
PB-CRT Type A [22] 21560 21560 𝑇𝐴 + 9𝑇𝑋
PB-CRT Type B [22] 21560 21658 𝑇𝐴 + 9𝑇𝑋
SPB [21] 16280 17394 𝑇𝐴 + 9𝑇𝑋
SPB (this paper) 14406 14748 𝑇𝐴 + 9𝑇𝑋
complexities can be reduced even further if special KA and
irreducible polynomial are combined together.

5. Conclusion

In this paper, a new Mastrovito multiplier architecture for
trinomial of the form 𝑥𝑚 + 𝑥𝑚/3 + 1 is proposed. We show
that the space and time complexity of our formerMastrovito-
Karatsuba multiplier can be further reduced for special form
of trinomial combined with a KA variation. This multiplier
can be used in some area-critical occasions because it has low
space complexity but maintains a relatively low time delay. To
find more polynomials which can use the proposed strategy
will be the future work.
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