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Let 𝑀𝑛(𝜃) be the configuration space of 𝑛-tuples of unit vectors in R3 such that all interior angles are 𝜃. The space 𝑀𝑛(𝜃) is an(𝑛 − 3)-dimensional space. This paper determines the topological type of𝑀𝑛(𝜃) for 𝑛 = 3, 4, and 5.

1. Introduction

Recently, starting in [1], the topology of the configuration
space of spatial polygons of arbitrary edge lengths has been
considered by many authors. In the equilateral case, the
definition is given as follows. For ℓ > 0, we set

𝑃𝑛 (ℓ) = {(𝑎1, . . . , 𝑎𝑛) ∈ (𝑆2)𝑛 | ∑𝑛𝑖=1 ℓ𝑎𝑖 = 0}𝑆𝑂 (3) . (1)

Here 𝑎𝑖 ∈ 𝑆2 denote the unit vectors in the directions of the
edges of a polygon; the group 𝑆𝑂(3) acts diagonally on (𝑎1,. . . , 𝑎𝑛).

Many topological properties of 𝑃𝑛(ℓ) are already known:
First, it is clear that there is a homeomorphism

𝑃𝑛 (ℓ) ≅ 𝑃𝑛 (1) ∀ℓ. (2)

Second, it is proved in [2] that 𝑃5(1) is homeomorphic to
del Pezzo surface of degree 5.

Third, when 𝑛 is odd, the integral cohomology ring𝐻∗(𝑃𝑛(1);Z) was determined in [3]. We refer to [4] for other
properties of 𝑃𝑛(1), which is an excellent survey of linkages.

In another direction, we consider the space of 𝑛-tuples of
equiangular unit vectors in R3. More precisely, we define the
following: We fix 𝜃 ∈ [0, 𝜋] and set

𝐴𝑛 (𝜃) = {(𝑎1, . . . , 𝑎𝑛) ∈ (𝑆2)𝑛 | ⟨𝑎𝑖, 𝑎𝑖+1⟩ = cos 𝜃 for

1 ≤ 𝑖 ≤ 𝑛 − 1, ⟨𝑎𝑛, 𝑎1⟩ = cos 𝜃} , (3)

where ⟨,⟩ denotes the standard inner product on R3. Using
(3), we define

𝑀𝑛 (𝜃) = 𝐴𝑛 (𝜃)𝑆𝑂 (3) . (4)

It is expected that the space𝑀𝑛(𝜃) is much more difficult
than 𝑃𝑛(ℓ). For example, the following trivial observation
shows that 𝑀𝑛(𝜃) does not admit a similar property to (2):
when 𝑛 is odd, we have𝑀𝑛(0) = {one point} but𝑀𝑛(𝜋) = ⌀.

We claim that𝑀𝑛(𝜃) is a hypersurface of the torus 𝑇𝑛−2.
In fact, if we forget the condition ⟨𝑎𝑛, 𝑎1⟩ = cos 𝜃 in (3), the
space corresponding to (4) is𝑇𝑛−2 as observed in [5, 6]. Hence
the claim follows.

We recall previous results on𝑀𝑛(𝜃). First, [7] considered
the case for 𝜃 = 𝜋/2. The main result is that, realizing𝑀𝑛(𝜋/2) as a homotopy colimit of a diagram involving 𝑀𝑛−2(𝜋/2)
and 𝑀𝑛−1(𝜋/2), we inductively computed 𝜒(𝑀𝑛(𝜋/2)). In
particular, we obtained a homeomorphism 𝑀5(𝜋/2) ≅ Σ5,
where Σ5 denotes a connected closed orientable surface of
genus 5.

Second, we set

𝑋𝑛 (𝜃) fl 𝑃𝑛 (1) ∩ 𝑀𝑛 (𝜃) . (5)

Note that 𝑋𝑛(𝜃) is the configuration space of equilateral and
equiangular 𝑛-gons. Crippen [8] studied the topological type
of 𝑋𝑛(𝜃) for 𝑛 = 3, 4, and 5. The result is that 𝑋𝑛(𝜃) is either⌀, one point, or two points depending on 𝜃. Later, O’Hara [9]
studied the topological type of𝑋6(𝜃). The result is that𝑋6(𝜃)
is disjoint union of a certain number of 𝑆1’s and points.
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Table 1: The topological type of𝑀3(𝜃).
𝜃 Topological type
2𝜋/3 < 𝜃 ≤ 𝜋 ⌀2𝜋/3 {one point}0 < 𝜃 < 2𝜋/3 {two points}0 {one point}

Table 2: The topological type of𝑀4(𝜃).
𝜃 Topological type
𝜋 {one point}𝜋/2 < 𝜃 < 𝜋 Figure 1(a)𝜋/2 Figure 1(b)0 < 𝜃 < 𝜋/2 Figure 1(a)0 {one point}

The purpose of this paper is to determine the topological
type of𝑀𝑛(𝜃) for 𝑛 = 3, 4, and 5. In contrast to the fact that at
most one-dimensional spaces appear in the results of [8, 9],
surfaces appear in our results.

This paper is organized as follows. In Section 2, we state
our main results and in Section 3 we prove them.

2. Main Results

Theorem A. The topological type of𝑀3(𝜃) is given in Table 1.

Theorem B. (i) The topological type of 𝑀4(𝜃) is given in
Table 2.

(ii) As 𝜃 approaches 𝜋/2, point𝐴 in Figure 1(a) approaches
point 𝐵.
Theorem C. (i) The topological type of 𝑀5(𝜃) is given in
Table 3. LetΣ𝑔 be a connected closed orientable surface of genus𝑔.

(ii) (a) Let 𝜃 satisfy that 2𝜋/5 < 𝜃 < 2𝜋/3. We study the
situation where 𝜃 approaches 2𝜋/3. We identify the torus Σ1
with the Dupin cyclide, which we denote by 𝐷. (See Figure 2.)

Using this, we identify Σ5 with #5𝐷, where the connected
sum is formed by cutting a small circular hole away from the
narrow part of𝐷. As 𝜃 approaches 2𝜋/3, the center of each nar-
row part pinches to a point.Thus the five singular points appear.

(b) We consider the situation where 𝜃 increases from 2𝜋/3.
Then each pinched point of 𝑀5(2𝜋/3) separates. Thus we
obtain 𝑆2.

(c) Let 𝜃 satisfy that 2𝜋/5 < 𝜃 < 2𝜋/3. We consider the
situation where 𝜃 approaches 2𝜋/5. In contrast to (a), the
center of exactly one narrow part pinches to a point. Thus one
singular point appears.

CorollaryD. As a subspace of ((𝑆2)5×[0, 𝜋])/𝑆𝑂(3), we define
the space

𝑌 fl ⋃
0≤𝜃≤𝜋

𝑀5 (𝜃) . (6)

Then 𝑀5(0) is a singular point of 𝑌 and has a neighborhood𝐶Σ4, where 𝐶 denotes the cone.

Remark 1. Cone-type singularities appear inTheorems B and
C andCorollaryD.Wenote that singularities of configuration
spaces of mechanical linkages have been studied extensively
by Blanc and Shvalb [10].

3. Proofs of the Main Results

We fix 𝜃 ∈ [0, 𝜋] and set

𝑒1 = (1, 0, 0) ,
𝑝 = (cos 𝜃, sin 𝜃, 0) . (7)

Normalizing 𝑎1 and 𝑎2 to be 𝑒1 and 𝑝, respectively, we have
the following description:

𝑀𝑛 (𝜃) = {(𝑎1, . . . , 𝑎𝑛) ∈ (𝑆2)𝑛 | 𝑎1 = 𝑒1,
𝑎2 = 𝑝, ⟨𝑎𝑖, 𝑎𝑖+1⟩ = cos 𝜃 for 2 ≤ 𝑖 ≤
𝑛 − 1, ⟨𝑎𝑛, 𝑎1⟩ = cos 𝜃} .

(8)

Hereafter we use (8).
In order to prove our main results, we use the following

fact, whose proof is left to the reader.

Fact 2. Let (𝛼, 𝛽, 𝛾) ∈ (𝑆2)3 satisfy that
⟨𝛼, 𝛽⟩ = 0,
⟨𝛼, 𝛾⟩ = cos 𝜃. (9)

Then, there exists 𝜙 ∈ R such that

𝛾 = (cos 𝜃) 𝛼 + (sin 𝜃 cos𝜙) 𝛽 + (sin 𝜃 sin𝜙) (𝛼 × 𝛽) . (10)

Now we first consider the case 𝑛 = 5. Consider Fact 2 for𝛼 = 𝑝, 𝛽 = (− sin 𝜃, cos 𝜃, 0), and 𝛾 = 𝑎3. Then there exists𝑥 ∈ R such that

𝑎3 = (cos 𝜃) 𝑝 + (sin 𝜃 cos𝑥) (− sin 𝜃, cos 𝜃, 0)
+ (sin 𝜃 sin𝑥) (0, 0, 1) . (11)

Next, we consider Fact 2 for 𝛼 = 𝑒1, 𝛽 = (0, 1, 0), and𝛾 = 𝑎5. Then there exists 𝑧 ∈ R such that

𝑎5 = (cos 𝜃, sin 𝜃 cos 𝑧, sin 𝜃 sin 𝑧) . (12)

Finally, we consider Fact 2 for 𝛼 = 𝑎5 in (12),

𝛽 = (− sin 𝜃, cos 𝜃 cos 𝑧, cos 𝜃 sin 𝑧) , (13)

and 𝛾 = 𝑎4. Then there exists 𝑦 ∈ R such that

𝑎4 = (cos 𝜃) 𝛼 + (sin 𝜃 cos𝑦) 𝛽
+ (sin 𝜃 sin𝑦) (𝛼 × 𝛽) . (14)

Now we define the function 𝑓 : (R/2𝜋Z)3 × [0, 𝜋] → R

by

𝑓 (𝑥, 𝑦, 𝑧, 𝜃) fl ⟨(11) , (14)⟩ − cos 𝜃. (15)
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Figure 1: (a)𝑀4(𝜃) for 0 < 𝜃 < 𝜋/2 or 𝜋/2 < 𝜃 < 𝜋. (b)𝑀4(𝜋/2).

Figure 2: The Dupin cyclide.

We can understand 𝑀5(𝜃) as a level set. More precisely, we
define the function

ℎ : 𝑓−1 (0) → R (16)

by ℎ(𝑥, 𝑦, 𝑧, 𝜃) = 𝜃. Then we have

𝑀5 (𝜃) = ℎ−1 (𝜃) (17)

if 0 < 𝜃 ≤ 𝜋.
Remark 3. Since 𝑓(𝑥, 𝑦, 𝑧, 0) = 0 for all 𝑥, 𝑦, and 𝑧, we
have ℎ−1(0) = (R/2𝜋Z)3. On the other hand, it is clear that𝑀5(0) = {one point}. Hence (17) does not hold for 𝜃 = 0.
Apart from this point, there is an identification

𝑌 \𝑀5 (0) = 𝑓−1 (0) \ ℎ−1 (0) , (18)

where 𝑌 is defined in (6).

Lemma 4. We set

𝑆 fl {(𝑥, 𝑦, 𝑧, 𝜃) ∈ ( R2𝜋Z)
3 × (0, 𝜋] | 𝑓 (𝑥, 𝑦, 𝑧, 𝜃)

= 0,
(𝜕𝑓𝜕𝑥 (𝑥, 𝑦, 𝑧, 𝜃) , 𝜕𝑓𝜕𝑦 (𝑥, 𝑦, 𝑧, 𝜃) , 𝜕𝑓𝜕𝑧 (𝑥, 𝑦, 𝑧, 𝜃))
= (0, 0, 0)} .

(19)

Then 𝑆 is given in Table 4.

Proof. The lemma is proved by direct computations.

Proof ofTheoremC. Weconsider ℎ in (16) as aMorse function
on 𝑓−1(0). First, Table 4 and (17) show that 𝑀5(4𝜋/5) ={one point}.

Second, direct computation shows that

𝜕𝑓𝜕𝜃 (0, 0, 𝜋, 4𝜋5 ) = 52√ 5 − √52 . (20)

Since this is nonzero, the space 𝑓−1(0) is smooth at (0, 0,𝜋, 4𝜋/5). Actually, we can prove that the point is a nonde-
generate critical point of the function ℎ. HenceMorse lemma
shows that there is a homeomorphism𝑀5(𝜃) ≅ 𝑆2 for 2𝜋/3 <𝜃 < 4𝜋/5. But if we use [11, Corollary B], we need not check
that ℎ is nondegenerate at (0, 0, 𝜋, 4𝜋/5). For our reference,
we draw the figure of𝑀5(4𝜋/5 − 0.1) in Figure 3.

Third, the other parts of Table 3 follow from Table 4. This
completes the proof of Theorem C.

Proof of Corollary D. The corollary is an immediate conse-
quence of Theorem C.
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Figure 3:𝑀5(4𝜋/5 − 0.1).

Table 3: The topological type of𝑀5(𝜃).
𝜃 Topological type
4𝜋/5 < 𝜃 ≤ 𝜋 ⌀4𝜋/5 {one point}2𝜋/3 < 𝜃 < 4𝜋/5 𝑆22𝜋/3 Contains five singular points2𝜋/5 < 𝜃 < 2𝜋/3 Σ52𝜋/5 Contains one singular point0 < 𝜃 < 2𝜋/5 Σ40 {one point}

Table 4: The set 𝑆.
𝜃 (𝑥, 𝑦, 𝑧)
4𝜋/5 (0, 0, 𝜋)2𝜋/3 (𝜋, 0, 0), (0, 𝜋, 0), (0, 0, 𝜋), (𝜋, 0, 𝜋), (0, 𝜋, 𝜋)2𝜋/5 (0, 0, 𝜋)

Proof of Theorem B. We define 𝑎3 as in (11). We also define𝑎4 to be the right-hand side of (12). We define the function𝑓 : (R/2𝜋Z)2 × [0, 𝜋] → R by

𝑓 (𝑥, 𝑧, 𝜃) fl ⟨𝑎3, 𝑎4⟩ − cos 𝜃. (21)

Similarly to (17), we have 𝑀4(𝜃) = ℎ−1(𝜃). Since ℎ−1(𝜃) is
one-dimensional, it is easy to draw its figure. Thus Theorem
B follows.

Proof of Theorem A. We define the function 𝑓 : (R/2𝜋Z) ×[0, 𝜋] → Rby𝑓(𝑥, 𝜃) = ⟨𝑎3, 𝑒1⟩−cos 𝜃. Since𝑀3(𝜃) = ℎ−1(𝜃),
Theorem A follows.
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