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Introduction. Tendons are specialised, heterogeneous connective tissues, which represent a significant healthcare challenge after
injury. Primary surgical repair is the gold standard modality of care; however, it is highly dependent on the extent of injuries. Tissue
engineering represents an alternative solution for good tissue integration and regeneration. In this review, we look at the advanced
biomaterial composites employed to improve cellular growth while providing appropriate mechanical properties for tendon and
ligament repair. Methodology. Comprehensive literature searches focused on advanced composite biomaterials for tendon and
ligament tissue engineering. Studies were categorised depending on the application. Results. In the literature, a range of natural
and/or synthetic materials have been combined to produce composite scaffolds tendon and ligament tissue engineering. In vitro
and in vivo assessment demonstrate promising cellular integration with sufficient mechanical strength. The biological properties
were improved with the addition of growth factors within the composite materials. Most in vivo studies were completed in small-
scale animal models. Conclusions. Advanced composite materials represent a promising solution to the challenges associated with
tendon and ligament tissue engineering. Nevertheless, these approaches still demonstrate limitations, including the necessity of
larger-scale animal models to ease future clinical translation and comprehensive assessment of tissue response after implantation.

1. Introduction

Traumatic tendon and ligamentous injuries represent sig-
nificant healthcare and economic challenges for the future.
Notably, these injuries are estimated to affect 110 million
people in the United States [1], and incomplete repair is
associated with variable disabilities and chronic sequelae [2,
3].

Tendon represents a specialised connective tissue in
which collagen type I accounts for ∼80% of the net dry
weight. In combination with proteoglycans and elastin, col-
lagen permits high mechanical strength in tendons [4, 5].
Furthermore, tendons display a unique structural hierarchy
where collagen molecules produce collagen fibrils, which
group together to form collagen fibres. The multicomposite

tendon units are composed of several collagen fibres, known
as tropocollagen (Figure 1) [3, 4, 6].

Ligaments are another form of viscoelastic connective
tissue, with a highly organised composition where collagens
(types I, III, and V) constitute the bulk. Proteoglycans and
chondroitin sulfate are also expressed, allowing the ligament
tissue to swell in aqueous environments [7]. In the body,
the attachment of tendons and ligaments to bone involves a
transition zone with unmineralised andmineralised fibrocar-
tilage [3, 8]. Tendons can further attach to muscles through
fascia [4]. Defining the structural organisation of tendons
and ligaments has improved understanding of the way these
heterogeneous tissues function in synergy [9].

Surgical repair of tendons and ligaments via primary
suture or autologous transfer techniques are considered
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Figure 1: Complex structural hierarchy of tendon. Unique struc-
tural hierarchy in which collagen molecules represent the simplest
forming structure of tendon with complex arrangement up to
tendon fascicles producing the final tendon tissue.

the gold standard modality of care. However, these solu-
tions are often associated with challenges including reduced
mechanical strength due to scar tissue formation, infections,
donor site morbidity, and limited availability of autografts
[10]. Furthermore, specialised physiotherapy protocols are
required to improve the repair-site properties and limit scar
tissue formation [11].

To overcome this clinical issue, additional therapeutic
options involving the use of synthetic prosthesis or tissue
engineered biomaterial constructs have been investigated in
the literature [12]. Ranges of synthetic prosthetic devices
have been described as tendon and ligament tissue substi-
tutes. Nonabsorbable and biocompatible polyester polyethy-
lene terephthalate (PET) was investigated as a potential
tendon and ligament tissue prosthesis material with suit-
able mechanical and tissue integrative properties [13, 14].
Other materials like polytetrafluoroethylene (PTFE) were
also investigated as ligament tissue substitutes or in ten-
don augmentation grafts, for their biologically inert and
strong mechanical characteristics [15, 16]. However, limi-
tations such as graft failure, poor durability, poor tissue
integration, and foreign body synovitis were observed with
these materials [17]. Tissue engineering represents an alter-
native option with potential for proper tissue integration of
implants.

Different synthetic or naturally derived materials have
been investigated as scaffolds, which permit cell integration
and subsequent matrix deposition. Among the naturally
derived materials, collagen and chitosan have been exten-
sively investigated for scaffold development due to their
optimum biocompatibility and tissue integration potential
[18]. Nevertheless, these materials exhibit limitations such
as low mechanical strength, batch variability, and difficult
processing with latent immunogenicity [19].

Synthetic materials, including polylactic acid (PLA), pol-
yglycolic acid (PGA), and polylactic-co-glycolic acid (PLGA)
have been extensively investigated for tendon and ligament
repair [20]. Synthetics exhibit several advantages linked
to large-scale manufacturing, limited disease transmission,
controlled degradation, and better host tissue integration.
There are also limitations associated with synthetic biomate-
rials; cell integration is challenging without further material
treatment, degradation-related products can be cytotoxic,
and the materials are mechanically weaker than healthy
musculoskeletal tissues [18, 21].

Novel tissue engineering approaches using composite
materials have also been described to mimic the complex,
nonhomogenous environments in tendons and ligaments. In
these composite materials, specialised cells have been com-
bined with biomaterials to produce complex, heterogeneous
scaffolds with controlled mechanical properties [1, 9]. This
review will present an overview of the different approaches
described to address the use of composite scaffolds for tendon
and ligament tissue engineering. An in-depth critique of
the mechanical properties, cell/ tissue integration, success
criteria, and limitations is discussed in detail.

2. Materials and Methodology

Comprehensive literature searches were conducted on the
PubMed, Medline, Web of Science, and Google Scholar
databases. Various combinations of keywords were used in
the search process, including “tendon”, “ligament”, “tissue”,
“engineering”, “hybrid”, “composite”, “scaffold”, “material”,
“biomaterial”, “graft”, and “polymer”. Only publications in
English were included and there were no restrictions on
year of publication since no previous reviews were found
covering the use of composite materials in tendon and
ligament tissue engineering simultaneously. All relevant
manuscripts were accessed and articles that combined tissue
engineering approaches for both tendons and ligaments were
included. Articles that discussed different tissue engineering
approaches of the tendon/ligament to bone interface were
also excluded due to the broadness of the topic and the
important number of review articles on the subject [8, 22–
24].

3. Results and Discussion

3.1. Composite Scaffolds for Tendon and Ligament Tissue
Engineering. Tendon injuries present significant healthcare
challenges due to slow healing rates, loss of function, and
scar tissue formation around trauma sites [12]. In severe cases,
tissue engineered scaffolds have been fabricated to replace the
lost tissues. These artificial grafts can be composed of natural
or synthetic biomaterials [49]. The ideal scaffold in tendon
tissue engineering should exhibit specific properties such as
controlled degradation rates, appropriate mechanical proper-
ties, nonimmunogenicity, and suturability. Additionally, easy
mass processing and fabrication, while mimicking the native
tissue environment, are desirable [12].

3.2. Synthetic CompositeMaterials. One example of materials
used for tendon tissue engineering involved the fabrication
of composite, heterogeneous scaffolds from polyglycolic acid
(PGA), and polylactic acid (PLA) [44]. The outer surface
was composed of a knitted scaffold made from a 4:2 mixture
of PGA and PLA fibres. Internally, the construct contained
longitudinally arranged, unwoven PGA fibres. The whole
construct was folded and secured with sutures at each end to
produce a cord structure and was tested both in vitro and in
vivo. Results showed that the scaffold seeded with adipose-
derived stem cells (ADSCs) promoted matrix deposition
and the formation of mature collagen fibrils. These scaffolds
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presented subphysiological mechanical properties. Although
the study showed promising results, assessment of tenogenic
differentiation of ADSCs was not elaborated.

Another manufacturing technique was proposed by
Baker B. M. et al., who investigated the use of coelectrospin-
ning technique of different polymers to yield a composite
scaffold with variable degradation techniques [28]. They
evaluated the use of PCL fibres as slow absorbing elements,
while PLGA (50:50 polylactic/ glycolic acid) or PCL/ PLGA
fibres were applied for intermediate degradation rates in a
single scaffold. A water-soluble polyethylene oxide (PEO)
was as a sacrificial fibre element with fast absorption rates
and aimed to increase the scaffold porosity with minimal
influence on scaffold integrity. Mechanical assessment of
PCL/ PLGA/ PEO constructs showed a maximum stress
yield of nearly 3.5MPa at 0.08% strain. The modulus was
around 100MPa and the yield strain was 0.026. PCL/ PLGA-
PCL/ PEO scaffolds showed a maximum stress yield of
2MPa at 0.12% strain. Initial modulus of the material was
25MPa and dropped to 12.5MPa after 63-day incubation
in culture media. Strain increased from 0.065% to 0.12%
after incubation. A 22% mass decrease of the composite
scaffold after hydration was caused by the dissolution of the
PEO component. However, themechanical properties change
after hydration and dissolution of PEO are worth further
explanation.

It has been suggested that woven scaffolds are superior
for tissue integration due to their interconnected porous
structures.Nevertheless, they require challenging cell seeding
techniques and complex cell delivery systems [4, 5]. Sahoo S.
et al. investigated the use of woven scaffoldsmade fromPLGA
or PLLA [29]. Both f scaffolds were coated with PCL, PLGA
nanofiber, or collagen type I to yield composite scaffolds and
were seeded with porcine bonemarrow-derived MSCs. Some
collagen-coated scaffolds were seeded with human dermal
fibroblasts to test cell seeding and integration efficiency.
Results showed that PLLA-based woven scaffolds performed
inferiorly in terms of cell attachment. This was linked to the
hydrophobic nature of the PLLAmaterial. Furthermore, PCL
coating of both types of knitted scaffolds was associated with
highermechanical strength but reduced cell attachment. This
was also linked to greater hydrophobicity in PCL than in the
other polymers.

As mechanical strength is particularly important, an
approach using PLAwith graphene nanoplatelets (GNP) and
PLA with carboxyl functionalized carbon nanotubes (CNT-
COOH) has been proposed by Pinto et al. [25, 26]. In
vitro assessment of the composite was nontoxic to human
fibroblasts. In vivo assessment using mouse model did not
show any toxicity or local or systemic inflammatory response.
The addition of nanofillers mentioned enhanced themechan-
ical properties of PLA polymer films reaching Young’s
modulus of 4.86±0.47 GPa for CNT-COOH scaffolds and
4.92±0.15GPa for GNP scaffold groups. The tensile strength
however was mostly enhanced in the PLA/ CNT-COOH
scaffolds reaching up to 72.22±1.52MPa. The authors did not
investigate, however, the effect of in vivo implantation on
the associated mechanical properties mimicking real clinical
settings.

3.3. Biological Composite Scaffolds. Collagen type I composite
scaffold was also investigated to incorporate resilin-like pro-
tein. Resilin is an arthropods protein with elastic and highly
stretchable structure. Sanami, M., et al. [27] investigated the
fabrication of such composite.The scaffoldwasmade through
extrusion process of composite solution containing Collagen
and Resilin at different concentration into polyethylene
glycol buffer. Fibres were subsequently cross-linked using 4-
arm poly(ethylene glycol) ether tetrasuccinimidyl glutarate
solution. Mechanical assessment showed that resilin in non-
cross-linked collagen scaffold significantly reduced stress
at break and Young’s modulus values, while significantly
increasing break strain. Cross-linked collagen/resilin scaffold
showed significant increase in stress and strain values and a
significantly decreased Young’s modulus values. This shows
an interesting effect of resilin exhibiting its natural properties.
In vitro, the scaffold produced supported 100% fibroblast
proliferation and alignment compared to 80% in collagen-
fibre control.

Scaffolds made from collagen and glycosaminoglycan
(GAG) were recognised for their role in supporting cellu-
lar proliferation and differentiation. However, this type of
scaffold lacks the mechanical characteristics required for
tendon tissue engineering applications. Caliari et al., 2011,
have proposed the concept of developing composite mate-
rials in a core-shell fashion with the necessary mechanical
properties [30]. The group fabricated scaffolds composed
of highly porous, aligned isotropic GAG cores surrounded
by strong, high density isotropic GAG membranes. The
core-shell design was proposed to increase the mechanical
strength of the scaffolds. The material was fabricated using
an evaporation technique to create membranes and freeze-
drying to incorporate the core within the membrane shell.
Dehydrothermal (DTH) cross-linking was used to increase
material integration, as well as the mechanical properties. In
vitro assessment using horse-derived tenocytes demonstrated
good cell attachment, proliferation, and cell viability up to
14 days after seeding. Scaffolds exhibited high porosity and
appropriate mechanical properties depending on the mem-
brane thickness. Several factors however that need further
investigation like cellular functional assessment (e.g., protein
expression), nature and content of collagen after cell seeding,
and the mechanical properties of the scaffold at different
states (e.g., wet versus dry).

Chitosan is a naturally derived polysaccharide with excel-
lent potential for tissue engineering applications. Due to
the biocompatible and cell adhesive properties of chitosan,
the polysaccharide has been investigated for tendon tissue
regeneration [9–11]. In one example, composite scaffolds
made from chitosan and alginates were produced through a
spinning/coagulation technique to yield an alginate-0.1% chi-
tosan scaffold. Alginate is an anionic polysaccharide with cal-
cium chain in which the integration of chitosan improves its
biocompatibility and cell adhesive potential and decreases its
degradation rate. In vitro assessment using rabbit patellar ten-
don fibroblasts showed that alginate-0.1% chitosan scaffolds
had significantly higher cell adhesion and matrix deposition
compared to alginate-only and polyglactin 910 controls. The
alginate-0.1% chitosan material was evaluated mechanically



4 Journal of Materials

and exhibited lower tensile strength and strain at failure than
the polyglactin group [33]. Chitosan was also fabricated with
hyaluronic acid followed by wet spinning and hybridisation
to increase the mechanical properties of the construct.
Different hyaluronic acid concentrations were investigated
and showed that the combination of chitosan with 0.1%
hyaluronic acid showed the best cell attachment. The final
composite constructs were sterilised using ethylene oxide gas
prior to in vitro evaluation with rabbit patellar fibroblasts.
Mechanical properties of the materials were reduced within
the first 2 hours after seeding but the consequent modulus
was maintained for 28 days of culture. Cell proliferation
quantificationusingDNAcontent analysis showed significant
improvement in chitosan-0.1% hyaluronic acid composites
compared to other chitosan-based scaffolds. Todetermine the
clinical potential of the composite scaffolds, authors assessed
the chitosan-0.1% hyaluronic acid composites in vivo by
treating rabbit rotator cuff injuries with cell-seeded scaffolds
[31]. The scaffolds were cultured with rabbit patellar tendon
fibroblasts for 4 weeks prior to implantation. Additionally,
authors tested the potential for ligament tissue engineering
using a rabbit medial collateral ligament injury model. They
used scaffolds seeded with fibroblasts adapted from rabbits
Achilles tendon for 2 weeks prior to implantation. For
the tendon model, results indicated collagen deposition in
cell-seeded scaffolds with significant improvement in the
mechanical properties from 4 to 12 weeks after implantation.
For the ligament-engineering model, authors showed a lack
of tissue integration with the bony tunnel attachment with
60% recovery in failure load compared to healthy ligament.
Additional research on the chitosan-hyaluronic acid scaffolds
has aimed to understand the effects ofmechanical stimulation
on fibroblasts response [35]. It was found that the application
of 90-degree rotations and 5% stretch at 0.5Hzwas associated
with increased expression of fibromodulin, and collagens I
and III. No further assessment of the overall mechanical
influence of the cultured scaffolds under dynamic conditions
was made.

Additionally, composite scaffolds made from extruded,
cross-linked bovine type I collagen and chondroitin-6-sulfate
were fabricated [36]. The collagen-based constructs under-
went a series of cross-linking steps using carbodiimide, 1-
ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), and
N-hydroxysuccinimide (NHS). Cross-linking was combined
with freeze-drying to incorporate a porous chondroitin-6-
sulfate. The final constructs had open and interconnected
porosity with an average pore size of 100𝜇m and axi-
ally aligned collagen fibres. Mechanical assessment showed
that the cross-linked composite scaffolds could withstand
61.94±15.54 N, compared to 11.75±2.62 N without cross-
linking. The maximum strain was shown to be 30.17±7.17%
with cross-linked fibres, while it was 15.40±3.22% with-
out. Composites with cross-linked fibres presented a tensile
strength of 1.55±0.30MPa compared to 0.24±0.08MPa for
non-cross-linked fibres. It is important to mention that
scaffold porosity is inversely related to mechanical strength
and further studies are required to evaluate the cell response
of such construct for application in tendon and ligament
tissue engineering.

Gelatin was also utilised to fabricate a composite scaffold
for tendon tissue engineering applications. Coelectrospin-
ning of aligned poly-𝜀-caprolactone (PCL) and methacry-
lated gelatin (mGLT) followed by photo-cross-linking was
used in the fabrication process [34]. Scaffold films were first
produced and then were seeded with ADSC, after which
photo-cross-linking of 5 layers using UV radiation was made
to produce a multilayered scaffold mimicking the natural
tendon structure. In vitro assessment showed biocompatibil-
ity of produced composite in which ADSCs were oriented
along the longitudinal access of aligned fibre construct and
expressed tendon-related markers (scleraxis and tenascin-C)
after being stimulated with TGF𝛽-3. Mechanical assessment
of cell-seeded cross-linked scaffolds however was far inferior
for potential clinical application (details in Table 1).

Other groups have combined collagen type I with silk
to improve scaffold properties for tendon applications [37].
Sericin protein was extracted from silk fibres produced
by Bombyx mori, and mixed with collagen solution to fill
the gaps in the silk fibre net. Furthermore, adherence and
mechanical strength were increased though DTH cross-
linking.Mesenchymal stem cells derived fromhuman embry-
onic stem cells (hEC-MSCs) were used in in vitro and in
vivomodels and showed that themechanically loaded knitted
silk/ collagen microsponge scaffolds can induce tenogenic
differentiation in mesenchymal stem cells and support ten-
don regeneration up to 360 days after implantation (Table 1).

In an additional study, the same composite scaffolds
were tested with the supplementation of recombinant human
stromal cell-derived factor-1 alpha (rhSDF-1 alpha), to the
collagen type I sponges [38]. SDF-1 is a chemokine that
promotes cell recruitment and enhances tissue regeneration.
In a murine Achilles tendon model, the authors showed that
this approach permits higher expression of collagen one week
after implantation, indicating an accelerated onset of tendon
healing. Further, the mechanical properties were marginally
higher than in scaffolds without rhSDF-1 alpha treatment.

In order to improve the mechanical properties and
tendon regeneration, Chen X. et al. utilised the same com-
posite scaffolds with hEC-MSCs [39]. Cells were genetically
engineered to overexpress the Scleraxis (SCX) gene. SCX is a
transcription factor identified for its role as a tenocytemarker
and upstream regulator of tendon-related genes. In vitro and
in vivo results showed enhanced tendon regeneration and
better quality neotendon formation, compared to the previ-
ous studies with the same scaffolds. Importantly, there was
less osteogenic, chondrogenic, and adipogenic differentiation
of the SCX-hEC-MSCs compared to nongenetically modified
MSCs. Mechanical properties in a murine Achilles tendon
eight weeks after implantation were inferior to native tendon
tissue. This research highlights that scaffold properties are
important for tendon tissue engineering, but factors like cell-
types used can influence mechanical and histological results.

3.4. Synthetic and Biological Composite Scaffolds. Others
have also focused on incorporating PLGA with silk derived
materials for tendon tissue engineering applications [40]. A
composite scaffold comprised degummed silk microfibers
coated electrospun PLGA.The authors degummed silk fibres
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to achieve a more efficient sericin removal. This resulted in
smoother fibre surfaces and preserved the generalmechanical
properties of the silk. In vitro studies using rabbit bone
marrow-derivedMSCs revealed good cell viability depending
on the seeding technique applied (single or dual surface
seeding) and whether scaffolds had a flat or rolled/ cylindrical
morphology. Rolled structures had lower cell proliferation
compared to the other constructs but, overall, the electrospun
PLGA polymer provided a large surface area for cell prolifer-
ation. To increase tenocyte differentiation of bone marrow-
derivedMSCs, authors reported amodified protocol inwhich
the scaffold has a 1-week release of basic fibroblast growth
factor (bFGF) [45]. bFGFwas blendedwith PLGAand bovine
serum albumin prior to electrospinning with knitted silk
fibres. Results showed that incorporating bFGF was associ-
ated with upregulation of tenogenic markers during MSC
differentiation. Collagen expression was also increased, and
this contributed to improved mechanical properties of the
scaffold. The combined effect of growth factor incorporation
together with dynamic culturing conditions would be of
interest for its effect over MSC differentiation and overall
construct incorporation.

Sharifi-AghdamM. et al. [46] have investigated a compos-
ite scaffold consisting of knitted silk coated with electrospun
collagen-I/polyurethane nanofibres. The main aim of this
approach was to incorporate a polyurethane polymer layer
to increase the attachment of collagen to silk fibres. In
vitro testing using seeded human fibroblast showed that
composite scaffold maintained adequate cellular metabolic
activity. Assessment of mechanical properties showed an
ultimate stress profile reaching 13.5±1.5MPa and Young’s
modulus of 21.7±4MPa. However, further assessment of
seeded constructs for their biocompatibility and cell function
was not investigated.

Investigative work showed the incorporation of silk with
nanofibres derived either from Polycaprolactone (PCL) or
Poly(3-hydroxybutyrate) (P3HB) [41].The composite scaffold
was fabricated through electrospinning process of different
polymer material over twisted silk fibroin fibres. The main
aim of this approach was to incorporate nanofibrous struc-
tures onto the composite scaffold to increase the surface
to volume ratio and therefore increase cellular attachment.
Authors showed a composite scaffold with no toxic effect of
seeded fibroblasts with good cellular viability up to day 3
after seeding. Mechanical assessment of fabricated construct
showed amaximum load of 97.6±11.4 N for silk fibroin/P3HB
and 110.5±6.6 N for silk fibroin/PCL with no statistical
difference in between. Authors, however, did not further
investigate the effect of cellular functions or matrix produc-
tion or the effect of cell seeding on associated mechanical
properties.

Others have focused on the modification of silk to
produce scaffolds for tendon regeneration [42]. Degummed
silk fibroin meshes were integrated with electrospun aligned
silk fibroin cores [42]. In vitro assessment with rabbit MSCs
investigated the effects of aligned fabrication techniques,
compared to random fabrication, under static and dynamic
culture conditions. Results showed that the effects ofmechan-
ical stimulation on MSCs was intensified during culture

on aligned silk fibroin scaffolds. The dynamic effect was
applied in both translational and rotational movement to
mimic in vivo environment. This enhanced cellular pro-
liferation and remodelling, with an overall improvement
in mechanical properties. Apart from the material used,
presence of the aligned scaffold core was proven to be
essential for these positive effects when compared to the
same scaffolds without alignment. Several authors have
showed a similar effect when topography was introduced
to the surface of a polymeric scaffold with improvement in
cellular alignment and collagen content as well as the expres-
sion of different tendon-related extracellular matrix proteins
[43, 50].

Elsewhere, collagen has been combined with various
polymers through a range of manufacturing techniques to
simulate the heterogeneous nature of tendon tissues. Col-
lagen type I was electrospun with synthetic poly(L-lactide-
co-caprolactone) at a 10:90 ratio, respectively [47]. Fibres
were twisted into nanoyarn to produce 150 𝜇mthick scaffolds.
Scaffolds aligned randomly or in nanofibers were tested for
porosity, surface morphology, and adhesion of tenocytes.
Results showed improved cell proliferation in nanoyarn
scaffolds, but with poor mechanical properties not useful for
future clinical applicability.

In a follow-up study, tendon-derived stem cells (TDSCs)
were harvested from rabbit patellar tendons and seeded onto
the fibrous scaffolds [48]. In vitro and in vivo assessment
under static and dynamic conditions revealed that the com-
posite scaffolds seeded with TDSCs were a promising means
for neotendon formation. Furthermore, mechanical dynamic
stimulation of the cell-seeded constructs could significantly
promote tendon regeneration compared to static culture
conditions.

Sensini A. et al. have investigated an electrospun bun-
dled scaffold containing PLA and collagen type I [51]. This
scaffold had sufficient mechanical properties with blends
containing PLA/collagen 75:25 reaching aYoung’smodulus of
98.6±12.4MPa as spun bundles and 205.1±73.0MPa after 14
days of immersion inPBS.Maximumstress was 14.2±0.7 MPa
as spun bundles and 6.8±0.6MPa after 14 days in PBS
immersion. Tenocytes were metabolically active with good
cellular alignment more on blends containing PLA/collagen
50:50 ratio.

Collagen type I has been integrated also with other com-
posite synthetic polymers blends. Polycaprolactone (PCL)/
collagen and poly L-lactide (PLLA)/collagen were evalu-
ated as potential composite materials for tendon-muscle
junction tissue engineering [52]. Triphasic scaffolds were
fabricated with regions primarily composed of PCL/collagen
in one part, PLLA/collagen on the other part, and a mix-
ture of both composites in the middle. All constructs had
good biodegradability and biocompatibility. PCL supported
myoblast growth due to its low stiffness profile and the
higher stiffness of PLLA encouraged fibroblast prolifera-
tion. Scaffolds were manufactured using electrospinning
technique combined with glutaraldehyde cross-linking and
collagen to increase mechanical strength and cell attach-
ment, respectively. In vitro, scaffolds presented good cell
integration, viability, and formation of myotubes as those
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found in tendon-muscle junctions in vivo. Aligned col-
lagen scaffolds were produced with surface cover having
polydioxanone (PDS) nanoplates [32]. Assessment in rabbit
Achilles tendon demonstrated the same biocompatibility as
the previously tested electrospun collagen scaffolds. Further
detailed assessment of the composite with and without PDS
showed significant improvement in water uptake and release.
Histological evaluation showed good tenocyte alignment,
neotendon formation, and an initial increase in the inflam-
matory cell response. The addition of PDS sheets resulted
in decreased peritendinous adhesions with higher numbers
of mature tenocytes and increased collagen fibril alignment.
Improved mechanical properties of the construct were also
observed compared to scaffolds made of collagen fibres only
[32, 50].

PLLA was also utilised to fabricate a composite scaffold
in which electrospinning process was used to form an
aligned nanofibres that was later on cross-linked to chitosan-
collagen hydrogel mimicking the extracellular matrix of
native tendons [53]. The scaffold was rolled and coated
on the outer surface with alginate gel aiming to produce
an antiadhesion layer around the construct. The scaffold
supported cellular alignment and proliferation of tenocytes
with no toxic effect. Additionally, adsorption tests showed
significantly less attached proteins on the coated surface
compared to the noncoated one. Mechanical assessment
of produced scaffold showed no effect of coating process
on tensile strength of produced scaffold with an effect on
the layer number having a value around 2MPa for 2-layer
coated and uncoated scaffolds whereas it was around 6MPa
for uncoated and 4MPa for coated 3-layer scaffolds. The
degradation profile of the scaffold was also investigated and
showed that scaffolds maintained 50% of their substance at
21 days after incubation with PBS containing 104 units/ml
lysozyme solution.

E.C. Green et al. [54] investigated the fabrication of
collagen-I/nanocarbon fibres composite scaffold for potential
tendon tissue engineering application. Fibres were made
through gel-spinning process with the use of a filling load of
0.5 and 5wt%.Thiswas followed by fibre elongation at a strain
rate of 0.02mm/s and subsequent glutaraldehyde (GA) cross-
linking. Material characterization showed a yielded fibre
construct similar to native tendon collagen with enhanced
mechanical properties.

3.5. Similarities and Dissimilarities between Tendons and
Ligaments. Tendons and ligaments have similar structures
with different fundamental properties and functions. Ten-
dons are fibrous inelastic structures that connect muscles to
bones within joints while ligaments are fibrous but flexible
structures important for supporting bone and cartilage. On a
structural level, both connective tissues are dense with vari-
able cellular and proteomic elements. Mechanical analysis of
human tendons and ligaments showed that the maximum
tensile strength ranges from 4.4 to 660MPa depending on
different locations [55, 56]. The maximum strain of these
connective tissues was shown to range between 18 and 30%.
Young’smoduluswas shown to range between 0.2 and 1.5 GPa
[57, 58]. Structurally, tendons are predominantly composed

of a collagen type I matrix containing tenocytes and
tenoblasts. In contrast, ligaments contain glycosaminoglycan
and lower levels of collagen compared to tendon tissue,
with fibroblasts being the main cellular element (Figure 2)
[59, 60]. Kharaz Y. et al. compared the extracellular matrix
composition of both, natural and tissue engineered, tendons
and ligaments [61]. Results showed that, although tissue
engineered constructs share the same composition with the
native tissue in variable proportions, fundamental differences
exist. Specific proteins, such as asporin and tenomodulin,
were limited to tendons, while versican, proteoglycan 4,
and SOD3 were ligament-specific (Figure 1). Identifying
differences in structural protein expression indicates that
tissue engineering approaches should aim to replicate these
distinctions at the proteomic level. To date, this has not always
been the case, and the terms tendon and ligament are often
used interchangeably in the literature. This is predominantly
because the two connective tissues exhibit similar functional
and mechanical properties [12]. An important concept to
remember is that cell source is fundamental in dictating
the type of the matrix produced [61]. This highlights the
intrinsic cell memory that is different between tendon and
ligament. In order to tissue engineer these specific tissues,
it is important to consider their functional differences so
that biomimicry can be achieved. This will eventually help
in enhancing integration and function to be restored when
used to replace injured tendon or ligaments. From this, it is
clear that although the two tissues share several features, a
difference exist.

4. Conclusion and Future Directions

This review summarises the current strategies based on
composite biomaterials for tendon and ligaments tissue
engineering. This approach represents a way to address the
heterogeneous nature shared between tendon and ligaments.
Although both structures share similar mechanical prop-
erties, their constituting cell-types and extracellular matrix
compositions are different. Currently, for tendon tissue engi-
neering, several challenges need to be addressed. First, the
necessity for a single standard evaluation identifying the
mechanical requirements for successful tendon regeneration
is lacking. Crucially, this should incorporate various forms of
mechanical assessment (including strain and rotation) with
different tissue engineering approaches to mimic the natural
environment. This is difficult to achieve and implement
because of the heterogeneous nature of tendons. The second
challenge is to address and control the response of the
surrounding tissue to the implanted scaffold. To date, this has
been limited to observation of the intrinsic healing response
during in vivo applications. Additionally, most of the studies
investigating the use of composite materials for tendon and
ligament tissue engineering utilise small animals like rabbits
rather than larger models like sheep or horses [62]. Such
limitations are based on significant weight and mechanical-
related difference between in vivo models and native human
tissues. Furthermore, the ability to fix the produced construct
in situ (with suture, anchors) and shelf life availability should
be considered whenever a model is being tested. In fact
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TendonLigament

Ligaments act to connect bones together around joints while tendons act to connect muscles to bones

Cell type Tenocytes (Fibroblast like cells).Fibroblasts.

Native ECM

Engineered
constructs
ECM

Mechanical
Properties

-Less collagen content. 
-Glycosaminoglycan. 
-More water content.

-Asporin.
-Tenomodulin.

-Abundant collagen content. 
-Proteoglycan.
-Elastin.

- Versican.
- Proteoglycan 4. 
- SOD3.

-Maximum tensile strength ranges from 4.4 up to 660 MPa for both tissue types. 
-Maximum strain of both structures ranges between 18 and 30%.
-Estimated Young’s modulus ranges between 0.2 and 1.5 GPa for both.

Figure 2: Comparison between natural and tissue engineered tendon and ligament constructs. Unique cellular and extracellular matrix
composition that is different between the two types of tissues is important for future clinical translation of tendon and ligament research.
SOD3, superoxide dismutase;MPa, mega-Pascal; GPa, giga-Pascal.

the interface scaffold-tendon or scaffold-bone is the place
at risk of rupture after implantation rather the scaffolds
itself.

The described challenges constitute a potential issue for
future clinical application of tissue engineered tendon and
ligament solutions. Further research is required on the roles
of composite materials in order to mimic the appropriate
structural, mechanical, and functional characteristics of ten-
don and ligaments. While synthetic materials are being used
currently in clinical practice for tendon and ligament repairs,
it will be essential to mechanically match their properties
to native tissue. To mimic the mechanical properties of
tendon is particularly important as it would allow faster
physiotherapy and therefor reduce scar tissue formation
which can evolve to articular stiffness. Moreover, this will
enhance integration and healing at injury site. The use of
certain growth factors such as basic fibroblast growth factor
(bFGF) [45] can also be employed during surgery to enhance
tissue integration. However this requires a strict control and
regulated environment. Since advanced composite materials
can be tailored to match different mechanical properties of
native tissue, they can be incorporated with growth factors
and employed with and without cells, providing large number
of possibilities for their clinical use based on site and extent
of injuries.
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