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Machine learning has undergone a transition phase from being a pure statistical tool to being one of the main drivers of modern
medicine. In gastroenterology, this technology is motivating a growing number of studies that rely on these innovative methods to
deal with critical issues related to this practice. Hence, in the light of the burgeoning research on the use of machine learning in
gastroenterology, a systematic review of the literature is timely. In this work, we present the results gleaned through a systematic
review of prominent gastroenterology literature using machine learning techniques. Based on the analysis of 88 journal articles,
we delimit the scope of application, we discuss current limitations including bias, lack of transparency, accountability, and data
availability, and we put forward future avenues.

1. Introduction

In recent years, machine learning (ML) has got the bulk of
attention. Powered by an influx of big data and advancements
in computing power and coupled with considerable
enthusiasm in the mainstream media, this exciting
technology is driving major industry transformations.
According to the statistics, a quarter of organizations
worldwide are spending more than 15 % of their IT budget on
ML (https://www.statista.com/statistics/695582/worldwide-
machine-learning-share-of-budget/), while the global ML
market is expected to reach US$ 39.98 billion by 2025
(https://www.researchandmarkets.com/research/xf4j28/the
global?w=4).

In a nutshell, ML encompasses a broad set of techniques
inspired by human learning and reasoning systems; they
share the same basic functioning, that is, to establish the
extent to which the past is likely to be an accurate guide
to the future. Endowed with this faculty of learning, these
techniques are capable of analyzing large amounts of data,
extracting (that is, learning) information from them, and
driving automatic decisions. In this vein, ML methods are
particularly suited for analyzing medical data, given their

complexity, high dimensionality, and incompleteness. There-
fore, in medical context, ML methods hold the potential
of assisting clinicians in diseases diagnosis and prediction,
thus improving delivery of quality and personalized care
to patients and ultimately realizing performance improve-
ment and efficiency gains. Like any technology, ML is not
without its limitations. Security, privacy, data quality, and
transparency are major concerns that hinder the use of ML in
clinical settings. However, considering the increased research
effort in both ML and medicine, the mix of these two areas is
worth further exploring and developing.

Against this backdrop, valuable benefits are expected
from the use of ML in gastroenterology (GE). Indeed, given
the high prevalence and related mortality rate of digestive
diseases and the amount of data generated by procedures
used in this domain, addressing GE issues by mean of ML
will widen diagnostic and therapeutic capabilities and beget
newprocedures, therebymaking the scope and practice ofGE
more diverse, interesting, and gratifying.

The confluence of ML’s immense potential with the
challenges posed in GE settings has inspired a growing body
of GE research relying substantially on ML. However, while
the number of empirical studies concerning the use of ML

Hindawi
Advances in Bioinformatics
Volume 2019, Article ID 1870975, 24 pages
https://doi.org/10.1155/2019/1870975

http://orcid.org/0000-0002-9697-666X
http://orcid.org/0000-0001-5260-3055
http://orcid.org/0000-0003-4167-2324
https://www.statista.com/statistics/695582/worldwide-machine-learning-share-of-budget/
https://www.statista.com/statistics/695582/worldwide-machine-learning-share-of-budget/
https://www.researchandmarkets.com/research/xf4j28/the_global?w=4
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1870975


2 Advances in Bioinformatics

for GE needs has increased, the literature lacks an overview
of the extant research. Indeed, very few works discuss the
topic from the literature lens. Moreover, existing works suffer
from two limitations, either they are not updated [1] or
they deal only with some specific issues [2]; hence lack in
terms of holism, actualization, and completeness is clearly
observed. By contrast, in other medical domains, such as
radiology [3], oncology [4], neurosurgery [5], ophthalmology
[6], diabetology [7], and orthopaedics [8], ML is obtaining
a crescent interest in form of dedicated recent systematic
reviews. We believe that, given the efforts made so far, it
is also important for GE to evaluate the present state-of-
the-art regarding the use of ML in this practice in order to
chart a path toward promising and suitable directions for
future research. In this respect, we carried out a systematic
literature review of ML application on GE. The present work
synthesizes the trends observed through the analysis of 88
papers selected from the screening of 2768 studies. We tried
to make this review accessible to both gastroenterologists
and ML researchers hoping that this will inspire more
collaborations between the two communities and motivate
the design of novel ML approaches for GE applications.

The remaining sections of this paper summarize the
results of our systematic literature review as follows: in order
to establish the context of this review, Section 2 proposes
a preliminary background that describes key concepts of
ML and addresses this technology in the broader context
of medicine with a more specific focus on GE practice. In
Section 3, we outline the protocol we use for our systematic
literature review based on established guidelines. In Section 4,
findings are reported from two perspectives, medical and
technological, and supported by several illustrative charts.
Section 5 discusses research directions and open issues that
we gathered from the surveyed literature. Finally, Section 6
concludes this review.

2. Background

This section provides an overview of the area under study,ML
and its application to GE.

2.1. Machine Learning Overview. The literature on ML is so
extensive that even a superficial overview of all the main ML
approaches goes far beyond the possibilities of this paper. In
this section, our aim is instead to provide the reader with
some basic insights that might help better understand the
remaining parts of this article.

ML is a core multidisciplinary subfield of artificial
intelligence (AI) that got its inspiration from a variety of
academic disciplines, including computer science, statistics,
philosophy, biology, and psychology. The core function of
ML is to discover patterns in data that lead to actionable
insights. It includes a broad class of algorithms that share the
capability of learning from previous experience to improve
future performance. More precisely, following the Mitchell’s
definition [9], “A computer program is said to learn from
experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E”. If we suppose,
for example, that the learning task is to predict hepatitis C
infection after liver transplantation, the experience would be
a database including data about patients who have undergone
this procedure and the infection status as determined by
human experts, and the performance would be the difference
between real and predicted infections.

In contrast to traditional algorithms, ML algorithms do
not need to be explicitly programmed to perform tasks [10].
Instead, they are fed by observation data that enable them
to gradually learn how to solve problems by induction. For
this to happen, the learning process of a ML-based system
is divided into two phases: (a) the training phase, where an
estimation of unknown dependencies in the system from a
given dataset is done and, as a result, a model is constructed;
(b) the testing phase, where the model is given test data
that have no answers as input, and based on the training it
received, the model will predict the answers. According to
the approach used for the learning process, ML algorithms
may be broken down into four main families, namely, (i)
supervised, (ii) unsupervised, (iii) semisupervised, and (iv)
reinforcement learning.

Supervised ML requires that the algorithm’s possible
outputs are already known and that the data used to train
the model is already labelled with the correct answers. For
example, in training a system to identify a specific liver
tumour type, the label would be the tumour pathologic results
or genomic information. The ML algorithm is exposed to
enough of these labelled data to allow it to morph into a
model designed to detect the type of liver tumour for a
new given case. Supervised learning algorithms are useful
for solving two kinds of learning tasks: (i) classification and
(ii) regression. The task of classification refers to a learning
process that categorizes the data into a set of finite classes.
In the case of regression problems, a learning function
maps the data into a real-value variable. Some of the most
common supervised techniques are decision trees, K-nearest
neighbors, support vector machines, and logistic regression.

In unsupervised ML, unlabelled training data are exposed
to the algorithm with the goal of generating labels that
will meaningfully organize the data. This is typically done
by finding which examples are similar to each other and
grouping them in clusters. On the other hand, a supervised
classification algorithm learns to ascribe inputted labels
to endoscopic images of some structure; for example, its
unsupervised counterpart will look at inherent similarities
between the images and separate them into groups accord-
ingly, assigning its own new label to each group. This type of
algorithm ismainly used for (i) clustering and (ii) association.
The objective of clustering problem is to discoverer the
inherent groupings in the data, while the objective of an
association learning problem is to discover rules that describe
large portions of data, which serve principally to reduce
the dimensionality of the data. Examples of clustering algo-
rithms include K-means, hierarchical clustering, and self-
organizing map. The main algorithms used for association
are principal component analysis, independent component
analysis, nonnegative matrix factorization, and singular value
decomposition.
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Semisupervised ML is a technique that combines the
power of both supervised and unsupervised learning. Typ-
ically, it takes advantage of the huge amount of unlabelled
data to perform a classification. In many practical learn-
ing domains, there is large supply of unlabelled data but
limited labelled data which can be expensive to generate.
So semisupervised learning algorithms is used for the same
applications as supervised learning but it uses both labelled
and unlabelled data for training. Examples of semisupervised
learning algorithms include self-training, generative models,
graph-based algorithms, multiview algorithms.

Another kind of ML is reinforcement learning [11] which
is based on behavioural psychology. This type of algorithms
is trained to map actions to situation so that the reward or
the feedback signal is maximized. It should be mentioned
that algorithms from this family are not told which action to
take, as in most forms of ML, but instead they must discover
themselves which actions yield the most reward by trial and
error. Thus, in this type of ML, the focus is shifted from
pattern recognition to experience-driven sequential decision-
making.

As we are reviewing studies that have tackled the appli-
cation of ML methods on GE, we propose in Table 1 an
overview of commonly used ML algorithms (techniques) in
this practice.

Besides how a ML technique works, what is more crucial
in practice is the resulting performance. Generally, to esti-
mate the performance of an algorithm, one of three main
variations of the cross-validation technique is used [12]:

(a) K-fold cross-validation: The dataset is partitioned
into K subsets; each subset acts as the validation/test
set once and the rest of the data are used for training
the model. Model performance is then assessed by
averaging the results attained from each subset.

(b) Leave-one-out cross-validation: The model is trained
using the entire dataset except for one data point and
themodel is validated with the data point that was left
out.This process is repeated until every data point has
been used as the test data point.

(c) Random stratification: Set percentage of the dataset
is randomly assigned to the training set and the
remaining becomes the test set.

To quantify performance evaluation, different metrics are
employed. The most common ones are described in Table 2.

Although the first ML algorithms have existed decades
ago [10], it is only recently that stunning achievements have
ignited interest in diverse domains.These advances are in part
due to increases in computing power (processing, storage,
andmemory), but also owe a great deal to the huge quantities
of data that are being generated in the Internet age.Themajor
developments in ML that are exciting so much interest at
the moment could not have been made without big data.
Today, ML has become ubiquitous and increasingly vital for
the evolution of a range of fields including social media,
education, finance, manufacturing, energy, and medicine. It
is mainly used to recognize complex patterns in observed

data in order to automatically make decisions about patterns
hidden in that data.

2.2. Machine Learning in Medicine

2.2.1. Potential Application and Current Use of ML in
Medicine. As modern medicine relies on the ever-increasing
amounts of data and as ML algorithms—the data hungry
technology—become better at finding patterns and making
predictions that far exceed that of humans, it is clear that this
technology can take medicine far beyond what it is capable of
today.

In order to draw up the “big picture” of ML opportunities
in medicine, we discuss the potential use of ML in this
sector along three key areas, namely, (a) medical research and
development, (b) clinical practice, and (c) population heath.
From our standpoint, each of these areas is spanning its own
spectrumbut together they constitute a proper representation
of the medical landscape.

(a) Research and Development: Drug Discovery. ML-driven
automation can help to address some of the biggest challenges
in medical research, particularly in preclinical applications
such as drug discovery and genomic science. Indeed, drug
development is a time-consuming and cost-intensive process
encompassing the early stages of research, preclinical testing,
clinical trials, and review and approval. Speeding up one of
these steps in this long process would have big implications
for the entire chain; for example, predicting the likelihood of
toxicity in the earliest stages before undergoing the clinical
trials would considerably save time and cost. ML techniques
are the best candidate for improving drug discovery process;
some of the potential use cases of ML in this industry
include

(i) identifying potentially useful molecules to take for-
ward through the drug development process,

(ii) predicting potential side effects of drugs earlier,
(iii) repurposing drugs, i.e., finding new uses for previ-

ously tested compounds, which is a much cheaper
alternative to starting from scratch,

(iv) identifying drugs that could work together as a
combination for treatment,

(v) speeding up the design of clinical trials by auto-
matically identifying suitable candidates as well as
ensuring the correct distribution for groups of trial
participants.

A further use for ML lies in gene editing, a complex
process where specific alterations are made to DNA at the
cellular level. Gene editing is considered as a revolutionized
technique that appears to be emerging as a key tool for drug
discovery ranging from target identification and validation to
preclinical testing.

Another potential application of ML is genomics.
Genomics are characterized by huge, complex datasets.
Sophisticated tools relying on ML can then be used to
analyze these datasets more quickly than human analysis
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Table 1: Overview of ML techniques.

Algorithm Overview

Artificial neural
networks (ANN)

ANN is inspired by interconnections between neurons in biological neural networks. It consists of a set of nodes
configured in layers (input, hidden, and output), connected to one another via weighted edges. Input feature
vectors are processed sequentially by every layer in the net via non-linear transformations, before an output is
generated upon reaching the final layer. During the training process, if the output of the ANN is incorrect, an
algorithm known as backpropagation distributes the error term back up through the layers, by modifying the
weights at each edge. ANN can be supervised or unsupervised. More recently, there has been a resurgence of
interest in multi-layered ANNs or Deep Learning (DL), given their ability to work well with complex and
high-dimensional data sets. Convolutional Neural Network (CNN), a variation of DL, is a useful technique used
in image classification.

Support vector
machine (SVM)

SVM is a discriminative classifier formally defined by a separating hyperplane. In other words, given labelled
training data, the algorithm outputs an optimal hyperplane that categorizes new examples.

Decision Tree (DT)

DT is the simplest tree-based supervised ML model. The aim is to recursively construct a tree structure, in
which each internal node represents a condition based on which the tree splits into branches/ edges. The end of
the branch that does not split anymore is the decision/leaf.
Importantly, trees can be combined using ensemble learning to yield potent classifiers such as Random Forests
(RF) and Boosted Trees.

k-Nearest neighbours
(KNN)

KNN is supervised algorithm that classifies new data by a majority vote of its neighbors, with the data being
assigned to the class most common amongst its K nearest neighbors measured by a distance function.

Logistic regression
(LR)

LR is a traditional statistical method for solving binary classification problems (problems with two class values).
It predicts the probability of occurrence of an event by fitting data to a logistic function.

K-mean clustering
(KM)

KM is a popular unsupervised ML algorithm. The algorithm works iteratively to partition data into k clusters in
which each object belongs to the cluster with the nearest mean. This technique produces exactly k different
clusters of greatest possible distinction.The best number of clusters k leading to the greatest separation
(distance) is not known a priori and must be computed from the data.

Table 2: Overview of performance metrics.

Metric Formula Description

Sensitivity (SV)
TP

TP + FN
It measures the portion of positives that are correctly identified (performance
measure of the whole positive of a dataset)

Specificity (SP)
TN

TN + FP
It measures the portion negatives that are correctly identified (performance
measure of the whole negative part of a dataset)

Positive Predictive Value
(PPV)

TP
TP + FP The ratio of correctly diagnosed positives to the total of identified positives

Negative Predictive Value
(NPV)

TN
TN + FN The ratio of correctly diagnosed negatives to the total of identified negatives

Accuracy (ACC)
TP + TN

TP + FP + TN + FN
The ratio of correctly diagnosed cases to the total diagnosed cases ( the overall
performance measure)

Area under the receiver
operating characteristics
curve (AUC-ROC)

Graphical plot [13]

In a Receiver Operating Characteristics (ROC) curve the sensitivity is plotted in
function of the false positive rate (100-Specificity) for different cut-off points of a
parameter. Each point on the ROC curve represents a sensitivity/specificity pair
corresponding to a particular decision threshold. The area under the ROC curve
(AUC-ROC) is a measure of how well a parameter can distinguish between two
diagnostic groups (diseased/normal)

TP: true positive (number of positive cases correctly detected).
TN: true negative (number of negative cases correctly detected).
FP: false positive (number of negative cases incorrectly detected as positive).
FN: false negative (number of positive cases incorrectly detected as negative).

would allow. This recent advance would make it possible
to rapidly identify and interpret the genetic variation
underlying a single patient's disease, thereby providing a
window into patient-specific mechanisms that cause or
contribute to disease, which could ultimately enable the
'precise' targeting of these mechanisms. Thus, ML is major

driver in the development of drug in the era of precision
medicine.

(b) Clinical Practice: Diagnosis and Prognosis. The accurate
prediction and identification of a disease constitute one of
the most interesting and challenging tasks for physicians.
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In this sense, ML provides methods, techniques, and tools
that can help to solve diagnosis and prognosis problems in a
variety of medical domains, where the input is a dataset with
characteristics of the subjects, and the output is the diagnosis
or the prognosis of a specific disease.

Medical diagnosis reasoning has always been an impor-
tant application area of computational intelligence tech-
niques. Back to mid-70s, expert systems and model-based
schemes providedmechanisms for the generation of hypothe-
ses from patient data. In recent years, the interest has been
shifted to the use of ML in computer-aided diagnosis; the
major expected improvement over classical expert systems
is a higher diagnostic accuracy through algorithms that will
generate differential diagnoses, suggest high-value tests, and
reduce overuse of testing.

Similarly, for medical prognosis, classical prognostic
models were restricted to only a handful of variables, because
humans must enter and tally the scores. With the use of ML,
data could be drawn directly from a multitude of databases,
allowing models to use thousands of rich predictor variables,
which naturally will lead to better predictions.

(c) Population Health: Epidemic Outbreak Prediction. ML
can also be useful in monitoring and predicting epidemic
outbreaks and biological attack around the world, especially
in developing countries where this issue is particularly
pressing considering the general lack of medical infras-
tructure and the limited access to treatments. By receiv-
ing training from different data sources such as satellites,
previous outbreaks, weather, rainfall, and the total number
of positive cases, ML-based systems can make predictions
about the likelihood of an infectious disease outbreak like
AIDS, malaria, influenza, or BSE. They can forecast the
spread behaviours of these epidemic diseases well before they
occur and hence help in controlling their impact and reduc-
ing casualties by implementing adequate countermeasures
(quarantine, vaccination, medical treatment). However, it is
important to mention that although a considerable amount
of theory has studied the benefit of using ML for epidemic
outbreak prediction and medicine in general, actual proven
clinical performance and utilization of ML are still mostly
lacking.

As a result, given its ability to deal with large, complex
data and its emphasis on obtaining accurate predictions,
ML can help physicians more efficiently diagnosing diseases,
developing drugs, personalizing treatments, and even editing
genes. Aside from those core applications, ML can also help
in scenarios in which current IT solutions may not be optimal
such as scheduling patients and staffing optimization, billing
and collections, and patient-facing applications. However,
though diagnosis and prognosis are relatively straightforward
ML problems, clinical decision-making using ML is not yet
widely used by themedical community. Indeed, a light scan of
literature related to the current ML applications in medicine
shows that there is uneven use of ML across medicine
domains and that, in general, the overall work in this area is
still in its infancy. To better illustrate this point, we present in
Table 3 a selection of studies and applications of ML across a
range of medical domains.

As depicted in Table 3, current ML use for diagnosis
and prognosis needs is groundbreaking. This use is evolv-
ing increasingly in radiology, pathology, and oncology. The
concentration around these specialties is not completely
unexpected. All the three of them are inherently data
interpretation professions, especially radiology, which deals
almost exclusively with data in the form of images. The
potential for pattern recognition and automated analyses
of images in radiology is unique, and that is why a large
number of works in literature are studyingML in this domain.
Oncology and pathology are akin to radiology; the benefits
seen in radiological image analysis have been translated
into histological images and a number of studies applying
this ability in interesting ways. Digital pathology is one of
the most active fields in ML applications. Computer-aided
diagnosis using ML techniques has extensively been used for
analyzing and interpreting digital whole slide images (WSI)
[14]. In this regard, popular ML applications for diagnosis-
related tasks in digital pathology include segmentation of
region of interest (ROI), scoring of immunostaining, cancer
staging, and content based image retrieval [15].

Besides the three major specialties, ML has been applied
in other medical domains as well. Two interesting exam-
ples are cardiology and neurology. Cardiology applications
mainly deal with early detection of cardiovascular diseases;
in this vein a very recent use of ML lies in monitor-
ing heart disease. Typically, the person uses an “app” on
their smartphone to measure their pulse, and a ML model
detects their arterial stiffness [16]. In neurology, in addition
to usual applications of brain disorders diseases detection
and neuroimaging analysis, ML can enable a “physiological
augmented intelligence”, a form of AI that extends human
abilities. An illustrative example is a study that proposes a
ML-based system capable of reading cortical activity directly
from the brain, transmitting signals froma paralyzed human’s
motor cortex to hand muscles and restoring motor control
[17]. Much more upcoming ambitious intelligent technolo-
gies like the very recent “neural lace” [18] hold the promise to
revolutionize the relationship between the human brain and
computer.

Furthermore, it is worth noting that the most used
ML techniques are supervised including Bayesian Networks,
SVM, DT, and an increasing use of DL especially in image
analysis.

Most recently, we have seen ML emerging in other
medical specialties that are not yet as ripe for ML as the
discussed ones but surely hide an untapped potential. Most
notably, otolaryngology [19], dermatology [20], endocrinol-
ogy (diabetology) [21], and of course gastroenterology are no
exception.

2.2.2. ML in Gastroenterology. GE focuses on the diges-
tive system and its disorders. Gastrointestinal disorders are
extremely common in the general population. This makes
gastroenterology an important branch of medicine since all
physicians, regardless of specialty, encounter GE symptoms
and diseases. This domain is concerned with prevention,
investigation, and treatment of and research into illnesses
involving the gastrointestinal tract and liver. GE is divided
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Table 3: ML applications in medical domains.

Medicine domain ML applications References

Radiology

Radiological imaging tasks such as:
(i) Risk stratification.
(ii) Therapy response.
(iii) Lesions segmentation and classification.
(iv) Multi-omics disease discovery.
(v) Discovery of radiographic imaging biomarkers.
(vi) Creating study protocols.

[22–26]

Pathology

Digital pathological image analysis notably:
(i) Tissue phenomics.
(ii) Histopathological imaging analysis.
(iii) Whole Slide imaging analysis.

[14, 27, 28]

Oncology

Early cancer diagnosis and prognosis:
(i) Cancer metastases detection.
(ii) Molecular subtyping of cancer.
(iii) Cancer detection from microarray gene expression data
(iv) Risk classification of cancer survival.

[29–31]

Cardiology

Early detection of cardiovascular diseases based on:
(i) Electrocardiographic interpretation.
(ii) Echocardiography interpretation.
(iii) Myocardial perfusion analysis.
(iv) Discrimination of different diseases with similar symptoms like constrictive
pericarditis and restrictive cardiomyopathy or hypertrophic cardiomyopathy and
physiological hypertrophy.

[32–34]

Neurology

Neurological disorders identification and prediction:
(i) Electroencephalography data interpretation
(ii) Electromyography data interpretation
(iii) Augmented Intelligence such as:
(iv) Restoring the control of movement in patients with quadriplegia.
(v) Controlling upper-limb prostheses via Brain-computer interface.

[17, 35]

into two main subdomains, namely, hepatology and “hollow
organ” gastroenterology.

Considering the presented discussion on ML potential
in different medicine domains, it is expected for GE, like
the other fields, to be a fertile ground for ML. Endoscopic
imaging and polyps identification and differentiation among
other applications are natural targets for optimization and
automation via ML.

In this sense, a particular excitement has been gen-
erated by economic (industrial) players with commercial
solutions and products aimed at involving ML-based systems
in GE practice and procedures. Most popular examples
include ai4gi (https://ai4gi.com/) that offers a package of
solutions that use DL for gastrointestinal screening, Crospon
(https://www.crospon.com/) that has developed EndoFLIP, a
popularML-based imaging solution for the functional assess-
ment of the gastrointestinal tract, and a Poland-based startup
cta.ai (http://cta.ai/en/projects/gastro-view) that proposes
ML software called GastroView that can analyze video of the
gastrointestinal tract taken with tiny cameras swallowed in
the form of a capsule.

By focusing so far on ML, we discussed how this trendy
technology impacts medicine in general and GE in particular.
By shifting the focus to GE, it seems appropriate to cast
insights on the most important technological advances in the
GE space, discussing how they are connected and how ML is
positioned among them.

As amatter of fact, GE is largely regarded as a technology-
driven field. Indeed, in the era of the fourth industrial rev-
olution, a number of technologies are taking strides toward
transforming GE practice by providing tools to augment and
extend the effectiveness of gastroenterologists. At frontline
are three key enabling technologies: (a) Internet of Things
(IoT) [36], (b) big data [36], and (c) AI.

IoT: an IoT system connects all the available medical
resources as a network to perform clinical activities over the
Internet. IoT devices include wearable, portable, or digestible
(bio)sensors, which are connected to cloud-based platforms
that help to store and analyze the captured data. They are
wildly integrated with smartphones due to portability and
ubiquitous availability of mobile technology. IoT opens up
the possibility of telemedicine (monitoring patients in their
homes); thisway of delivering healthcare is particularly useful
for chronic diseases and, thanks to IoT, it is becoming a
mainstream healthcare model.

Big data: the driver behind all the IoT sensors is the data
that is generated. Big medical data has three characteristics:
it is available in extraordinarily high volume; it moves at high
velocity and spans the healthcare industry’s massive digital
universe; and, because it derives from many sources, it is
highly variable in structure and nature. This is known as
the 3Vs of big data. Given its volume and availability, one
of the most exciting implications of big data in medicine
is enabling data-driven clinical activities with much more

https://ai4gi.com/
https://www.crospon.com/
http://cta.ai/en/projects/gastro-view
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Figure 1: Key enabling technologies in GE practice.

precise and personalized care.This goal is known as precision
medicine.

AI: AI allows converting medical big data to useful and
actionable information. It offers intelligent systems able to
sense the world, comprehend, act, and learn. In medicine,
AI is essentially considered as a decision-support systems. In
addition toML techniques, AI provides other tools including
robotic surgical systems, conversational AI (chatbots), and
human brain interfaces that speed up the transition to the
digital health.

It is clear that the combination of IoT, big data, and
AI is much obvious and beneficial. Synergistically, each
technology adds value to the other and drives the need for the
other. Ample data is generated from IoT sources to feed the
algorithms that find patterns in data leading to breakthroughs
in therapies and treatment. Ultimately, this momentum
enables the “intelligentization” of the clinical practice (Fig-
ure 1). Innovation enabled by these triplet technologies can
be illustrated in practice with a typical gastroenterological
scenario where belly sensors measure stomach activity while
the patient is carrying out his normal daily activities, and
store the generated data in a secure cloud platform on which
the patient’s electronic health record and other information
such as laboratory results and medical and prescription
histories are also stored. Based on a ML algorithm feed-
ing by the available data, decision recommendations are
provided to gastroenterologists in real time to advance the
treatment.

In this chain of value, ML plays a vital role as it can be
considered the brain that makes sense of available data. As
a result, given the potential and current applications of ML
in GE as an important branch of medicine and considering
the strategic position of ML in the GE intelligentization
technologies landscape, we can conclude that the meeting
between ML and GE is worth further studying.

3. Method

This survey was carried out in a systematic manner guided
by the PRISMA standards [37]. Accordingly, details about
the planning and the execution of the undertaken review are
giving in the following subsections.

3.1. Research Questions. We used the PICOC [37] model to
frame our research questions:

Population: Interested communities including clinically
oriented physicians (gastroenterologists), AI researchers, and
other health professionals.

Intervention: ML techniques applied to GE.
Comparison: Not applicable. We are interested in all

techniques and classifying them.
Outcomes:We look forML techniques that are revolution-

izing GE practice.
Context: Academic and clinical context, with a focus on

empirical studies.
This allowed us to form the three research questions of

this review described in Table 4.

3.2. Search Process. As depicted in Figure 2, the works
reported herein result from a four-part search process. This
involves the following steps: (i) search strategy, (ii) study
selection, (iii) quality assessment, and (iv) data extraction
strategy.

3.2.1. Search Strategy. To select relevant works within the
scope addressed in this systematic review, a query-based
search was carried out in bothMedline (through the Pubmed
search engine) and Scopus Elsevier databases. We performed
a temporally unbounded search for articles published from
inceptionup toOctober 2018.Weonly considered studies that
have been published in indexed journals and which applied at
least one ML technique (MLT).

Our search strings are formed by the union of the words
“Machine Learning” and a set of related terms including
“Artificial Intelligence” as ML is a subfield of AI, “Data
Mining” as in many works MLTs are mentioned as data
mining techniques, “Neural Network”, and “Deep Learning”;
though DL is a MLT, because of its popularity it begins to
be referred to as a standalone technique; thus we considered
this key-phrase explicitly. Finally, we added “Algorithms” as a
related term, since a considerable number of medical works
stay at an abstract technological level and use only the term
“algorithms” to refer to MLTs (Table 5).

On the other hand, in order to capture a large range
of GE studies we combined the aforementioned search
strings with a set of terms related to the GE main topics of
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Records retrieved from Scopus 
n= 1223 

Records retrieved from PubMed
n= 1545 

Total of retrieved papers
n= 2768

Removing duplicates and 
scanning titles

n= 511

Screening abstract
n= 166

Studies eligible for final review
n=88

Quality assessment
Data extraction

Figure 2: The process of search and selection of papers.

Table 4: Research questions.

Research question Objective
RQ1: What are the main machine learning techniques
that have been applied on gastroenterology?

Identifying techniques currently in use and studying their characteristics and
outcomes in terms of learning class, sources of data, and performance.

RQ2: Which sub-fields of gastroenterology has machine
learning been applied to?

Identifying where ML is making changes and hence
identifying the potentially fruitful GE application domains that are still
unexplored.

RQ3: How ML will impact gastroenterology practice? Drawing conclusions about the current research efforts and the main research
directions

Table 5: Search terms used for query.

ML related terms GE related terms

Artificial Intelligence – Machine learning – Data
mining – Neural network – Deep learning – Algorithms

Oesophagus – Stomach – Gallbladder – Liver –Pancreas – Biliary bowel –
Colon – Intestine – Anus – Gut – Rectum– Gastroenterology – Hepatology –
Proctology – Endoscopy – Digestive

interest: Oesophagus, Stomach, Gallbladder, Liver, Pancreas,
Biliary Bowel, Colon, Intestine, Gut, Anus, and Rectum, in
addition to some general concepts such as Gastroenterology,
Hepatology, Proctology, Endoscopy, and Digestive (Table 5).

The identified search terms were then compiled into
a query using the “OR” and “AND” operators, to link,
respectively, terms variation of the same group and terms of
the two groups (i.e., ML and GE related terms).

3.2.2. Study Selection. After removing duplicates, a first
selection of the resulting papers was based on reading their
titles and excluding all the irrelevant papers on the basis of
this information alone. When deemed necessary, the abstract
was also taken into consideration. For the selected articles,
abstracts were screened. Then, available full texts were read
in order to identify relevant articles based on the inclusion
criteria (IC). At this stage, additional IC were applied in
addition to the two aforementioned IC:

IC1: The study is published in indexed journal.
IC2: At least one MLT is used.
The following IC were also applied:
IC3: The full-text of the paper is accessible.
IC4: The paper is written in English or French.
IC5: GE related application is the only issue considered

(we exclude general works that deal with many medical
domains, for example, studies related to cancer of the liver
but also that of the lung and the breast).

IC6: The paper presents empirically oriented work (no
surveys or reviews).

IC7: Performance measures of the applied MLTs are
clearly stated.

IC8: The data that were used as a source for the training
and validation are reported.

As a result, 1545 articles were initially identified through
Medline database searching and 1223 articles were identified
through Scopus database searching (for a total of 2768



Advances in Bioinformatics 9

1 1 1 1 1
2

3 3
2

4
5

4
5

4

8

12
13

18

0
2
4
6
8

10
12
14
16
18
20

1994 1996 2001 2003 2004 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

N
um

be
rs

 o
f p

ap
er

s

Years

58% of all included studies

Figure 3: Distribution of the included studies by year of publication.

initial articles). After duplicates were removed and titles
were scanned, abstracts of 511 papers were screened. Then
166 full-text articles were assessed for inclusion, with 88
studies meeting final IC. Although it is impossible to achieve
a complete coverage of the literature, we believe that a
significant number of relevant papers were extracted and are
presented in this review.

3.2.3. Quality Assessment. We assessed quantitatively the
methodological quality of each selected paper based on
established study quality assessment tools and guidelines [38–
40]. The goal here is to assure the quality of included studies
in terms of rigour, credibility, and relevance. The quality
assessment questions are described below. Three possible
answers could be chosen for each question, yes (Y), no (N),
or partially (P). The scoring procedure was Y = 1, P = 0.5, N
= 0. A study could thus score between 0 and 9. We selected
the first third (i.e., 3) to act as a cutoff point, with any study
scoring 3 or belowbeing removed from the corpus. As a result
of performing the quality assessment for all 88 articles, none
of the included studies have got the elimination score.

Question 1: Was there a clear statement of the aims of
the study?
Question 2: Was the study designed to achieve these
aims?
Question 3: Was the study population clearly specified
and defined?
Question 4: Are the techniques used clearly described?
And is their selection justified?
Question 5: Are the data collection methods ade-
quately detailed?
Question 6: Is the implementation process adequately
detailed?
Question 7: Is there a clear statement of findings?
Question 8: Were the evaluation measures clearly
defined, valid, and reliable?

Question 9: Was the conclusion supported by the
reported findings?

3.2.4. Data Extraction Strategy. In order to address the
research questions, we examined each of the included papers
in detail and extracted the following information: (a) study
title, (b) date of publication, (c) country where the study was
ran or the country where authors’ affiliations are situated,
(d) the used MLTs, (e) the type of data source, (f) the
performance measures, and (g) the aim of the study (from
a GE viewpoint). Then we filtered through the gathered
information to find any reasonable subcategorization of the
studied GE problems in terms of the application areas. After
several rounds of analysis, we were able to identify five GE
subfields whereMLwas applied and eight GE activities where
ML was involved. Details about this categorization and other
findings are given in the next section.

4. Results

4.1. Temporal and Regional Trends. Figure 3 shows the
distribution of the included studies by year of publication.
We noted an upward trend for publications in the last four
years. 58% of the reviewed studies have been published
since 2015. 37.5% were published between 2004 and 2014,
and only 0.5% were published before 2004. This shows that
ML is becoming an increasingly common topic among GE
community. We believe that this is owing to the recent
democratization of the use of inexpensive and available ML
tools (e.g., WEKA software, R platform, and TensorFlow
framework) that can be accessible to nontechnical users.
Furthermore, it should be noted that although researchers
worldwide have been studying ML within GE, the leading-
edge work is performed in China, USA, and Japan. The rest
of the studies are mainly distributed between Europe and the
UK (24 studies) and other Asian countries (14 studies). The
detailed breakdown of the studies by country is provided in
Figure 4.
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Table 6: GE activities using ML.

Aim of study Number of
studies Application/Description

Disease classification
and discrimination 27

The usage of ML in disease classification is very frequent. Indeed, as ML systems are
capable to analyze large volumes of patient data, they can, efficiently and accurately,
correlate these features with some disease state. This is particularly useful for
difficult-to-diagnose diseases, such as celiac disease which involves multiple clinical
presentations and symptoms shared with other diseases. ML ability to accurately classify
disease states (present/absent), etiology, and subtype allows subsequent investigations,
treatments, and interventions to be delivered in an efficient and targeted manner.

Risk stratification 17
The accurate assessment of a patient’s risk of adverse events remains a mainstay of clinical
care; MLTs form an attractive platform to build risk metrics because they can easily
incorporate disparate pieces of data, yielding classifiers with improved performance.

Endoscopic imaging
examination 16

Endoscopic procedures generate a large amount of images in one examination of a
patient. It is hard for clinicians to leave continuous time to examine the full endoscopic
images. Thus, the use of ML to assist in endoscopic imaging examination tasks represents
a response to the urgent need for new technologies to supplement existing imaging
techniques.

Early detection of
cancer 7

Early identification of cancer is challenging because symptoms are non-specific (or
absent) and compounded by overlap with symptoms of other diseases. That is why ML
has emerged as a promising technique for handling complex interactions of
high-dimensional medical data related to cancerology tasks.

Survival prediction 7

Survival probability prediction is one important problem encountered in medical studies
when the primary endpoint of interest is time to an event. An accurate survival
probability prediction can provide a useful tool for selecting prevention and treatment
strategies.Thus, considerable studies in the reviewed literature have introduced MLTs as a
rapid and reliable technique to predict survival.

Others tasks 14
Other applications of MLTs that have been studied in literature with promising results
include drug development and treatment planning (6 studies), endoscopy or surgery
candidate selection (4 studies), and surgical/clinical outcomes prediction (4 studies).

4.2. GE Embraces ML:The Broad Spectrum of GEApplications.
Based on the conducted review, areas of active focus of ML
within GE are related to major clinical disorders including
(a) liver diseases, (b) upper gastrointestinal tract disorders,
(c) intestinal disorders, (d) pancreatic and biliary disor-
ders, and (e) inflammatory bowel disease. Figure 5 depicts
the breakdown of the reviewed studies according to the
addressed disorders. Currently, a large portion of research
has tackled ML from a vantage point of liver diseases (41%),
although the range of applications is rapidly expanding. In
this line of work, ML models have been mainly used to
assist in screening for hepatitis viruses infection [S63], [S74]
and liver cancer [S43], [S83], planning liver surgery [S57],
[S85], and staging advanced fibrosis and cirrhosis [S51], [S82].
On the other front, considerable evidence-oriented studies
have been conducted to prove the efficacy of using MLTs
for diagnosing different types of gastric, oesophageal, and
colorectal disorders with an innovative focus on endoscopic
image analysis [S60], [S61]. Some studies have specifically
dealt with inflammatory bowel disease in terms of diagnosis
and risk prediction [S37], [S44]. However, less number of
studies have been noted in the landscape of pancreatic and
biliary disorders [S26], [S79]; this appears to be mainly due
to the GE domain restriction. Indeed, since the pancreas is
functioning as two glands in one: a digestive exocrine gland
and a hormone-producing endocrine gland, only studies cov-
ering the digestive related functions were selected. However,

it should be pointed out that “endocrine” pancreas disorders
have also been the subject of several studies that demonstrate
the ML potential in improving treatment and diagnosis of
chronical diseases like diabetes, notably in the development
of artificial pancreas [41–43].

Ultimately, ML-based approaches are used as a decision-
support system to address clinical issues related to prog-
nosis, diagnosis, treatment, and patient management. More
precisely, most of the applications within GE are narrowly
focused on achieving some specific tasks. An in-depth analy-
sis of each reviewed study’s aims allowed us to identify eight
key tasks (activities) where MLTs assets are readily evident;
Table 6 describes in detail the distilled tasks.

It should be noted that these categories of tasks have
a significant amount of overlap, but they provide a useful
framework for discussing current applications of ML in GE
practice. Indeed, task categorization was essentially based
on the primary aim of each analyzed study. However, it
is clear that disease classification and accurate endoscopic
images interpretation play a major role in cancer early
detection and that predicting mortality, risk stratification,
and outcomes prediction are important for an adapted and
effective treatment planning.

Figure 6 resumes the identified ML applications in GE,
with an emphasis on the aiming clinical task to perform
per GE practice. It stresses the clear tendency of using
ML for disease classification and discrimination, endoscopic
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Figure 5: Main GE disorders covered by the identified studies.

imaging examination, and risk stratification. Again, it is liver
diseases area that encompasses the large range of task types in
terms of scope and diversity. Although endoscopic imaging
is limited in the hepatology practice, ML enabling imaging
examination is discussed based on other medical imaging

techniques such as multiphasic computed tomography (CT)
and magnetic resonance imaging (MRI) [S15], [S82].

Besides the identification of potential improvement in
major clinical use cases and practices to whichML is strongly
contributing, upon further analysis, we spot studies which,
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by mean of ML, address some critical questions and open
challenges that have widely been debated within GE com-
munity. In what follows, we outline four key issues, namely,
(i) liver transplantation, (ii) hepatitis C virus infection, (iii)
gastric-intestinal cancer management, and (iv) computer-
aided endoscopic diagnosis.

(a) Liver Transplantation. Liver transplantation (LT) is the
gold standard for treatment of end-stage liver disease of
various etiologies. However, this life-saving therapy involves
several clinical challenges. The most controversial issue in
transplantation is the large discrepancy between the increas-
ing demand for organs and limited number of donors, which
makes optimization of scarce resources a priority. In this
sense, ML-based techniques have shown the potential utility
of offering an efficient decision-support model to assist
medical experts in determining candidacy for LT.

Doyle et al. [S1] introduced ML algorithms as reliable
tools for prediction of outcomes in terms of morbidity and
mortality early after liver transplantation. Dorado-Moreno
et al. [S57] used ANN to predict the probability of organ
survival at different thresholds for each donor-recipient pair.
Following the concept of benefit of survival, Briceño et al.
[S35] proposed ML-based donor-recipient matching model
for an objective liver transplant.

In an effort to prognosticate recurrent hepatitis C virus
(HCV) infection after LT, Piscaglia et al. [S6] and Stoean et
al. [S21] adopted ML techniques to predict the presence or
absence of significant fibrosis with the aim of staging HCV
hepatitis in LT recipients.The former based their approach on
ANNwhereas the latter defended the use of SVM and genetic
algorithms as an innovative andmore performant techniques.

Moccia et al. [S85] investigated the automatic analysis of
liver texture with semisupervised ML algorithms to automate
the hepatic steatosis assessment process, which is of primary
importance for lowering liver dysfunction risks after trans-
plantation. This study is considered as the first attempt to use
MLTs and automatic texture analysis of RGB images from
ubiquitous smartphone cameras for the task of graft hepatic
steatosis assessment.

Reviewed studies regarding LT used different sources of
information ranging from clinical data, biochemical data,

and medical imaging. ANN and SVM are the most used
MLTs. Algorithm performance is mainly evaluated by accu-
racy measurement and it is often compared against current
standards of donor and recipient risk assessment, such as
DRI, MELD, and SOFT score [S9], [S58].

(b) Hepatitis C Virus Infection. HCV infection is a major
cause of liver-related morbidity and mortality. With no
vaccine and a prevalence estimated at 2.5% (177.5 million
of HCV infected adults) [44], this virus is considered as a
global health challenge. Hence, accurate prognosis, the rate
of progression, and effective antiviral treatments of HCV
represent major concerns that are preoccupying the research
agenda of many GE communities. In this respect, several
studies have investigated the use of MLTs in HCV diagnosis
in the quest of accuracy and early diagnosis. Lara et al.
[S64] proposed an ANN based model to identify acute and
recent stages of HCV infection using the genetic information
of hypervariable region 1 data. In an effort to improve the
accuracy of hepatitis disease diagnosis, a hybrid machine
learning approach was proposed by Nilashi et al. [S74] by
combining the outputs of several predictors. Recently, it has
been demonstrated that MLTs are very useful in exploring
patterns of care; Chirikov et al. [S65] used RF to identify
the quality of care patterns correlated with treatment receipt
among Medicare disabled patients with HCV infection.

HCV causes an increasing level of liver-related morbidity
and mortality due to the disease progression. For this reason,
previous and more recent studies have focused on automated
monitoring of HCV associated diseases. Kurosaki et al. [S28]
used DT analysis to build a predictive model for the identi-
fication of patients at high risk of developing hepatocellular
carcinoma in order to personalize the treatment plan for
chronic HCV. In another line of work, hepatic fibrosis is
considered the principal indicator of progressive liver disease
within HCV infection. It needs to be accurately staged for an
immediate antiviral therapy in case of a significant level. An
obvious trend in the clinical practice at this regard consists
of developing noninvasive markers of liver fibrosis as an
alternative to invasive and discomforting liver biopsy. In this
sense, numerous studies have shown that MLTs have a great
potential to improve the noninvasive diagnosis of significant
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fibrosis in HCV due to their ability to discover the hidden
predictive patterns from medical databases. Using different
predictivemodels and sharing the same goal of accurately and
individually predicting early stages of liver fibrosis, studies
such as [S6], [S21], [S27], [S73] have proposed valid and
reliable tool to assist in liver fibrosis staging.

Due to the large number of people infected, HCV is also
an attractive target for the development of antiviral drugs.
Weidlich et al. [S31] employed MLTs and structure-activity
relationship (SAR) analysis to identify novel inhibitors
of NS5B of HCV genotype 1b. They proposed a ligand-
based drug design approaches in an effort to reposition
known drugs as potential HCV therapeutics and to identify
new chemical scaffolds for inhibitors. In the same vein,
Worachartcheewan et al. [S38] explored the chemical space
of a set of HCV NS5B inhibitors and performed molecular
fragment analysis; they constructed a classification model
using a set of quantum chemical and molecular descriptors,
modeled using ML classifiers.

(c) Gastrointestinal Cancer Management. Cancer is among
the leading causes of death worldwide. At the intersection of
oncology and gastroenterology, early detection and prognosis
of gastrointestinal cancer (GI) represent a critical issue.
Several studies have been reported in the literature regarding
the application of ML in prognosis/prediction of different
types of GI. According to the nature of the predictive tasks,
reviewed studies can be divided into three main classes:

(i) Prediction of Cancer Susceptibility. A. Săftoiu et al. [S26]
assessed the accuracy of real-time endoscopic ultrasound
elastography in focal pancreatic lesions using computer-
aided diagnosis by ANN analysis. Based on their neural
computing approach, pancreatic cancer has been classified
correctly in 82.95% of cases. However an unbalanced distri-
bution of pseudotumoral chronic pancreatitis and pancre-
atic cancer patients was observed. Sirinukunwattana et al.
[S46] proposed a SpatiallyConstrainedConvolutionalNeural
Network for detection and classification of cell nuclei in
histopathology images of cancerous tissue. The evaluation
was conducted on a large dataset with 20 000 annotated
nuclei from samples of different histologic grades.The results
showed that the proposed approach could potentially offer
a systematic quantitative analysis of tissue morphology and
tissue constituents, lending itself to be a useful tool for better
understanding of the tumour. Recently, Haj-Hassan et al.
[S67] have also used convolution neural networks to predict
three tissue types related to the progression of colorectal
cancer: benign hyperplasia, intraepithelial neoplasia, and
carcinoma. An accuracy of 99.17% was obtained from seg-
mented image regions, outperforming existing approaches
based on traditional feature extraction and classification
techniques. In their work, Daniel et al. [S55] demonstrated
the basic principles for the breathomics to classify gastric
cancer using backpropagation neural network (BPN). This
work carried out a comparative study of the result obtained by
the single- and multilayer cascade-forward and feed-forward
BPN with different activation functions. Results showed
that the multilayer cascade-forward BPN outperforms the

classification of gastric cancer from normal and benign
cases.

(ii) Prediction of Cancer Recurrence. In their pilot study,
Woolsey et al. [S84] demonstrated that a powerful predictive
model for tumour recurrence can be identified by combining
radiomic signatures derived from quantitative texture analy-
sis of the in situ gastric tumour and normal liver parenchymal
tissue when used alone or combined with clinical outcomes
using two ML algorithms: random forest classification and
logistic regression. Ogihara et al. [S56] introduced their study
as a proof-of-concept that ML algorithms can be an invalu-
able tool, supporting the decision-making process for liver
transplant organ allocation. They used ANN and random
forest classifier to predict the likelihood of redeveloping liver
cancer after liver transplantation.

(iii) Prediction of Cancer Survival. Mofidi et al. [S7] proposed
an ANN based method for prediction of survival from
carcinoma of oesophagus and oesophago-gastric junction
following surgical resection. The accuracy of the ANN in
predicting survival at 1 and 3 years reached 88%, which
outperforms the classical method of staging for patients with
oesophageal and oesophagogastric junction carcinoma (the
Union for International Cancer Control TNM classification
system). Santos et al. [S43] introduced a new cluster-based
oversampling method for improving survival prediction of
hepatocellular carcinoma patients. The method is based on
K-means clustering and the SMOTE algorithm to build a
representative dataset and use it as training example for
different machine learning algorithms (logistic regression
and neural networks). The results are evaluated in terms of
survival prediction and compared across baseline approaches
that do not consider clustering and/or oversampling. The
results showed that the proposed methodology coupled with
neural networks outperformed all other classical approaches
currently used in hepatocellular carcinoma prediction mod-
els. Peng et al. [S49] developed a scoring system based on
ANN for predicting 10-year survival in stage II A colon cancer
patients after radical surgery. They showed by calculating
the 10-year overall survival rates and the 10-year disease free
survival rates that their scoring system could help to predict
long-term survival and screen out high-risk individuals for
more vigorous treatment. Recently, Chaudhary et al. [S77]
presented a deep learning based multiomics integration
that robustly predicts survival in liver cancer. The model
is recognized as the first study that employs deep learning
to identify multiomics features linked to the differential
survival of patients with hepatocellular carcinoma. Given
its robustness over multiple cohorts, the authors expect this
workflow to be useful at predicting liver cancer prognosis
prediction.

Furthermore, it is worthmentioning that the 23 identified
studies regarding this issue deal with four types of cancer:
colorectal cancer (8 studies), liver cancer (7 studies), gastric
and oesophageal cancer (6 studies), and pancreatic cancer
(2 studies). The predictive models depicted in these studies
are mainly based on supervised ML techniques as well as
on different input features and data samples including gene
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expression profiles and clinical variables aswell as histological
parameters.

(d) Computer-Aided Endoscopic Diagnosis. GE endoscopy
is a major diagnostic and therapeutic tool in clinical gas-
troenterology; it involves, among others, making diagnosis
in real time based on the visual appearances. In order to
overcome limitations regarding human eye reduced accuracy
in identification and characterization of polyp and intra- and
interobserver variability, a computer-aided diagnosis (CAD)
system based on the texture appearances of polyps is highly
demanded to support diagnosis during endoscopic examina-
tions. In this background, several studies have suggested that
the use of ML-based CAD with advanced image processing
and accurate pattern recognition capabilities can improve
significantly the overall outcomes of endoscopic diagnosis.

Specifically, ML-based CAD systems were shown to be
effective in the differentiation of malignancy/benignancy
for lesions. Norton et al. [S3] and Săftoiu et al. [S11]
developed a self-learning CAD that can analyze endoscopic
ultrasonographic (EUS) images and differentiate pancreatic
malignancy from pancreatitis. In their work, Nguyen et al.
[S19] studied the role ofML-based image analysis in differen-
tiating EUS features of potentially malignant gastrointestinal
subepithelial lesions from those of benign lesions. Byrne
et al. [S59] trained a ML model on endoscopic videos to
differentiate diminutive adenomas from hyperplastic polyps
in real time using DL.

Another major application of ML-based CAD is the
capsule endoscopy (CE) imaging interpretation. Indeed, CE,
as a noninvasive endoscopic modality to visualize the entire
gastrointestinal tract, generates a tremendous amount of
data that can effectively be analyzed by MLTs. Reviewed
applications include detection of bleeding in the digestive
tract [S14], [S22], [S86], polyp recognition [S24], [S52], [S61],
intestinalmotility assessment [S17], and hookwormdetection
[S76].

In another vein, in order to increase the efficient use
of endoscopy, Buri et al. [S18] have used ML-based CAD
as a decision-making support to select appreciate patients
for upper endoscopy. Another decision-support system
that identifies candidate patients with acute gastrointestinal
bleeding for urgent endoscopy has been proposed by Chu et
al. [S13].

While the most state-of-the-art endoscopic CAD meth-
ods require labelled data to train various supervised machine
learning models, in an interesting recent study, Wang et al.
[S53] designed a new CAD system without human specific
labelling using multiple-instance learning technique.

Finally, the preponderance of the use of endoscopic
imaging as a source of data is worth noting; more than 40%
of all reviewed studies based their experiments on endoscopic
data. Furthermore, ANN is, without a double, the technique
of choice for treating this type of data with a remarkable
emergence of DL technique in recent studies [S48], [S59],
[S75], [S72], [S80].

4.3. ML Penetrates GE: The Broad Portfolio of Learning
Techniques. Reviewed studies follow a typical design that
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Figure 7: The main used MLTs.
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includes the application of one or more ML algorithms to
a set of data in order to perform a clinical task with a
certain level of performance. Hence, the scientific relevance
and interest of a given study are strongly associated with
three key elements: (1) the used MLT, (2) the typology of
data, and (3) the achieved performance. Next, we present the
result of analyzing the 88 studies from these three-dimension
standpoint. We support our findings by three illustrations
describing the level of use of each MLT (Figure 7), the data
source typology (Figure 8), and the performance measures
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(Figure 9). The technical description of all the included
studies is given in Figure 10.

4.3.1. ML Algorithms. Depending on how MLTs are used,
studies can be divided into three classes:

(i) Studies using a single MLT: Generally, this class of
studies introduce the use of a specific MLT for a
given clinical problem and prove its usefulness by
measuring its performance [S59].

(ii) Studies using multiple MLTs working in complemen-
tary fashion:This range of studies deal with a complex
clinical problem that requires the use of a composi-
tion of MLTs that work synergistically to perform the
overall task [S74].

(iii) Studies using multiple MLTs working in competition
manner: These include works aimed at optimization
by identifying the best model that outperform the
state-of-the-art techniques. Typically, these types of
studies carry out comparison of performance using
some references like ROC curves [S13].

Across studies, we identified the use of a plethora of MLTs
for different objectives (Figure 7). Unarguably, ANN is the
most usedMLT as 28% of identified studies have adopted this
technique. Early studies [S1], [S3], [S4], [S5], [S6], which used
ANN in its basic form, suggested that this technique is well
suited for tasks like clinical diagnosis and surgery/clinical
outcomes prediction and that it may perform better than
other traditional approaches like LR and classical expert
systems. Nevertheless, they noted a limitation regarding the
quantity of training and testing datasets that represents an
influential parameter affecting themodel performance. In the
era of big data, recent studies described ANN as a complex
and flexible nonlinear systems with unique properties includ-
ing robust performance in dealing with noisy or incomplete
input patterns, high fault tolerance, and the capability to
describe interactions between risk factors. Thus, recently,
ANN has increasingly been used in predicting survival [S42],
[S49], [S57], [S64].

Furthermore, the analysis of recent literature regarding
the use ofML inGE practice confirms that this field is broadly
in line with the recent surge of interest in DL. Indeed, the use

of DL has grown exponentially since 2015 with 22 identified
studies in just the last four years. Considered as a go-tomodel
on medical image pattern recognition related problems, the
implementation of DL in GE does not surprisingly involve
imaging. Several works have explored DL, especially through
CNNs, to enable the extraction of highly representative
features. This is done among the network layers by filtering,
selecting, and using these features in the last fully connected
layers for pattern recognition. However, this performance is
achieved at the cost of transparency. Application examples of
DL include 3D CT images segmentation [S41], [S66], [S82],
[S83], real-time assessment of endoscopic images [S59],
[S62], [S72], [S80], capsule endoscopy image/video analysis
[S60], [S61], [S76], and classification of histology images
[S46].

In the last decade, a growing trend is noted in the use
of other supervised learning techniques, namely, SVM and
DT. SVM has generated much enthusiasm because of its
high discriminative power (14% of studies). This technique
is designed for high-dimensional data with a large feature
space (large number of predictor variables) compared to the
sample size. Thus, it has been used to solve clinical problems
such as mining liver fibrosis [S21] and risk prediction for
inflammatory bowel disease [S30] and as a CAD for difficult-
to-diagnose diseases like early detection neoplastic lesions in
Barrett's esophagus [S54] and celiac disease diagnosis [S23].
However, though the accuracy of prediction deriving from
SVM is reported to be superior to that resulting from other
MLTs [S13], the complexity of the traditional mathematical
treatment of the inherent optimization task is somewhat
uninviting [S21].

On the other hand, DT has been described through lit-
erature as a preferred algorithm for building understandable
predictive models, that is simple yet fast-to-build, with good
accuracy and easy conversion to classification rules. Studies
that have adopted DT to build their models [S2] [S10], [S28],
[S70], [S73] agree on the simplicity of this technique as
it does not require any domain knowledge and it is easy
to assimilate by physicians. RF, a derived DT technique
with better predictive accuracy, has also been widely used
as predictive model [S29], [S58], [S65]. However, while RF
results in more reliable predictions than single trees, it is
difficult to interpret, as individual trees are lost in the overall
forest [S65].
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Other techniques have yet been less successfully used
in a range of GE applications. Notably, KNN (8 studies),
an attractive technique with its simplicity and its ability to
predict complex nonlinear behaviour, has been combined
with other techniques to achieve better accuracy [S27],
[S31], [S46], [S63]. By introducing a probabilistic treatment,
Bayesian inference (BI) (5 studies) is reported to be better
in overcoming problems related to local trapping, overfit-
ting, and overtime in training. It is even proposed to have
significant advantages over the conventional neural network
approach [S16], [S33], [S63], [S56]. KM (4 studies) has been
used as a clustering method for applications like liver vessel
segmentation [S86] and bleeding frame and region detection
[S87].

The use of classical techniques like LR [S13], [S37], [S84]
has also been observed in the literature, serving mainly
performance comparison needs. Finally, the rest of studies
(9%) have introduced other techniques including gradient
boosting [S45], rule induction [S33], nearest shrunken cen-
troid [S13], multiple-instance learning [S53], self-organizing
map [S74], genetic algorithm [S21], principal component
analysis (PCA) [S74], and linear discriminant analysis [S13],
[S51].

4.3.2. Data Sources. Looking back to the previous decade,
only molecular information and clinical information were
exploited for making predictions/diagnosis. With the rapid
development of high throughput technologies including
genomic, proteomic, and imaging technologies, new types of
input data source have been collected. As depicted in Figure 8,
there are three types of data thatweremainly used to train and
apply MLTs, namely, medical imaging (46 studies), patients’
data (25 studies), and biochemical data (17 studies).

Medical imaging prevails as the main data source, which
comes as no surprise, since imaging is an area that can
naturally take advantage of the pattern recognition capa-
bilities of MLTs. This includes interpretation of endoscopic
images/videos which encompass a large variety of image
sources such as capsule endoscopy [S60], [S87], endoscopic
ultrasound elastography [S19], [S26], colonoscopy [S59],
[S62], chromoendoscopy [S71], and esophagogastroduo-
denoscopy [S75]. Besides endoscopic imaging, several studies
proposed ML approaches to analyze CT images [S41], [S84],
histology images [S34], [S46], MR imaging [S15], ultrasound
images [S40], [S88], and images provided by real-time tissue
elastography, the emerging ultrasound imaging technology
[S63].

Furthermore, typical information that has been used as a
data source in the analyzed studies is patients’ data. Indeed,
the integration of features such as symptoms, family history,
age, diet, demographic data, and high-risk habits surely plays
a critical role in predicting and diagnosing GE disorders
[S12], [S18], [S28]. However, as claimed by some studies’
authors [S13], these types of parameters do not provide
sufficient information for making robust decisions. In this
sense, biochemical data have been proven as very informative
indicators for disorder detection and prognosis [S9], [S38],
[S39], [S69]. Based on microarray technology, some works
studied whethermiRNA expression data, in conjunction with

MLT, is suitable as a noninvasive test for major predictive
and diagnosis decision [S44], [S81]. A noted trend in the
reviewed literature includes the integration of mixed data,
such as clinical and genomic data [S77]. Other examples
include studies that have been conducted to discover the
interaction between FibroScan stiffness indicator, biochem-
ical data, and clinical examinations toward a respective
degree of liver fibrosis [S21], [S27], [S73]. Furthermore,
smartphones and wearable technology along with electronic
patient records have notably been used to collect all types of
data [S85].

4.3.3. Performance Evaluation. Validation of the proposed
system is an inescapable step that concluded each reviewed
study. Indeed, in order for the proposed approaches to be
used in the real clinical setting, their performance must be
evaluated. In the surveyed literature, various forms of cross-
validation have been applied and different evaluation metrics
have been used.

Based on the chart presented in Figure 9, among the
evaluation metrics mentioned in the literature, accuracy has
extensively been used (53 studies have used accuracy or
other measures that can be equated to accuracy), followed
by specificity and sensitivity (respectively, 50 and 43 studies),
which are by the way commonmeasures inmedical literature.
ROC curve analysis was used in 39 studies to evaluate the
performance. This latter was also assessed in terms of the
positive predictive values and negative predictive values in 12
studies.

Generally, these evaluation metrics estimate performance
in different ways. Thus, it is important to choose ones that
are consistent with the target domain. In the GE setting, it
is true that only predictive performance related measures
are considered (other measures like speed, scalability, and
interpretability are not used). However, it is not always
clear in the reviewed studies why a predictive performance
measure was used over another. Mostly, in order to underpin
their proposal, researchers used the above measures together
(15% of the studies used more than 4 common metrics
mentioned above).

Other measures, which are mentioned much less fre-
quently, encompass likelihood ratios for positive and neg-
ative tests, discriminant power value, Confidence Interval,
Matthews correlation coefficient, F-measures, and Dice Simi-
larity Coefficient, which is used to validate the spatial overlap
accuracy in automatic image segmentation tasks.

Even though it is difficult to comprehensively compare
different techniques under different conditions. It is worth
noting that by examining the reported models’ performance,
the achieved accuracy ranged from 80% to 99% according to
the solved problem, data sizing, and the used technique. The
highest accuracy of 99.17% goes for cancer early detection
using CNN to build a decision-support system for clas-
sifications of multispectral colorectal cancer tissues [S67].
As noted before, this has no deep signification. Indeed, to
conduct a fair comparison, the problem and the used data
should be the same for all researches to be able to compare
different applied MLTs.
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4.3.4. Learning Problems. Similarly to the narrative review
proposed in the previous section regarding the major GE
issues addressed in the reviewed literature. In what follows,
we describe works that dealt with fundamental learning
problems.The idea is to provide a complete balanced analysis
of literature in a way to advocate the beneficial link between
GE and ML.

Accordingly, we report studies aimed at developing mod-
els focusing on three main learning problems: (a) classifica-
tion, (b) clustering and segmentation, and (c) dimensionality
reduction.

(a) Classification. The majority of studies (∼80%) applied
supervised prediction and classification algorithms capable
of modeling linear and nonlinear relationships between
variables to develop predictive/diagnosis models. In general,
classifier studies trained a MLT using a labelled dataset
(e.g., endoscopic images associated with known outcomes)
to iteratively evaluate, compare, and select variables that
would determinate with the highest accuracy the class of
the observation (e.g., normal/benign cases for cancer or
none/early and advanced fibrosis/cirrhosis for liver fibrosis
degree). When a new observation is received (unlabelled
dataset), it is classified based on previous experiences.

Various classification techniques were used in different
clinical tasks and for several GE disorders particularly for
diseases classification and discrimination, risk stratification,
and survival prediction.

Studies for diseases classification and discrimination
include classification of gastric cancer using backpropagation
ANN [S55], classification of white regions in liver biopsies by
SVM [S34], differentiation between pancreatic malignancy
and pancreatitis using ANN [S11], and differentiation of
adenomatous and hyperplastic diminutive colorectal polyp
using DL [S59].

For risk stratification, examples of studies include pre-
dicting outcomes in patients with perforated gastroduodenal
ulcers using ANN [S42], predicting advanced liver fibrosis in
chronic hepatitis C using DT [S73], and predicting risk for
inflammatory bowel disease using SVM [S30].

Lastly, classification-learning problem has been studied
in predicting survival in liver cancer using DL [S77], in
predicting 10-year survival in stage II A colon cancer patients
after radical surgery using ANN [S49] and in a SVM model
for predicting mortality in gastric cancer [S20].

(b) Clustering and Segmentation. Conversely to the previous
range of works, unsupervised machine learning models were
applied on an unlabelled dataset for clustering or segmenta-
tion needs.

Aiming to improve survival prediction of hepatocellular
carcinoma patients, Santos et al. [S43] proposed a cluster-
based oversampling approach that is robust to small and
imbalanced datasets. KM technique has been used to assess
the underlying patient groups in the studied dataset. The
results were evaluated in terms of survival prediction and
compared across baseline approaches that do not consider
clustering and/or oversampling.

Zeng et al. [S86] proposed an automatic method for
liver vessel segmentation based on the application 3D region
growing and hybrid active contour model combined with K-
means clustering for thick vessel segmentation. They showed
that their method is capable of segmenting complex liver
vessels with more continuous and complete thin vessel
details, outperforming several existing 3D vessel segmenta-
tion algorithms.

Based on CT images, Gayathri et al. [S41] and Hu et
al. [S47] used, respectively, ANN and DL for an auto-
matic 3D segmentation of organs characterized by complex
backgrounds, ambiguous boundaries, heterogeneous appear-
ances, and highly varied shapes. Hwang et al. focused on
the advantages of CAD techniques for colon segmentation,
which aid in the identification of polyps for the detection
of colorectal cancer with an accuracy of 98%, while Hu et
al. focused on liver segmentation as a fundamental task in
computer-assisted liver surgery planning.

(c) Dimensionality Reduction. Clinical data involved in diag-
nostic/predictive models are usually high dimensional. High-
dimensional datasets increase the complexity of classification
and reduce the effect ofmodels.Thus, before buildingmodels,
some studies proposed tools to reduce the data dimension
while retaining essential information of the original data.

Chu et al. [S13] used RF and SVM for high-dimensional
data reduction. They argued that in addition to being good
classifiers, these MLTs are particularly relevant for the high
dimensionality problem in the context of prediction source
and severity of acute gastrointestinal bleeding, as its dataset
is characterized by a large number of predictor variables.

A SVM based model was proposed by Stoean et al. [S21]
for staging liver fibrosis in chronic hepatitis C. The applica-
tion of PCA, a commonly used feature extractionmechanism,
has led to a sizeable reduction of the data dimensionality from
24 to only 6 assembled attributes. However, a decrease in
the achieved accuracy was observed. The presented method
was, thus, endowed with a mechanism for dynamic feature
selection provided by a genetic algorithm that achieved a
good result in terms of dimensionality reduction without
impacting the model accuracy.

Acharya et al. [S51] proposed an automated characteriza-
tion of fatty liver disease and cirrhosis using curvelet trans-
formmethod and entropy features extracted fromultrasound
images. The dimensionality of the extracted feature was
reduced using discriminant analysis. Then the discriminant
analysis coefficients ranked based on F-value were fed to
different classifiers to choose the best performing classifier
using a minimum number of features. The proposed method
has attained 97.33% accuracy, 96% sensitivity, and 100%
specificity using ANN classifier based on only six features.

Finally, it should be noted that some studies dealt with
issues that involve all the aforementioned learning problems.
For instance, Nilashi et al. [S74] proposed a hybrid ML
approach for hepatitis disease diagnosis using self-organizing
map technique for the clustering of data in the experimental
dataset, PCA for reducing dimensionality and improving the
accuracy of clustering, DT as a supervised learning technique
for the selection of the most important features, and adaptive
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neurofuzzy inference system technique (a type of ANN) for
hepatitis disease diagnosis.

5. Discussion

In this work, we reviewed publications in which ML
approaches were applied in GE practice. To the best of
our knowledge, this is the most comprehensive systematic
review regarding the topic. For the sake of completeness
and in order to answer our research questions we reported
our results from two complementary perspectives: (a) the
impact of ML in GE; in this regard we discuss how this
technology is revolutionizing the field, notably by providing
innovative solutions toward solving challenging GE issues;
(b) the dynamic of ML in GE by focusing, this time, on the
diversity of the used algorithms, the quality of their predictive
performance, and the typology of the employed data sources.

In doing so, we made sure to present first a synthesis of
findings in form of statistics and charts and subsequently
we gave more insights about some studies. For the sake
of synthesis and relevance, not all the surveyed studies
were explicitly detailed in this work. Our informal criteria
for this choice are as follows: (a) the papers are deemed
to be a significant work (received high citation level) and
(b) they pertinently address and illustrate the discussed
issues/problems. In addition, for each issue/problem, we
tried to cover the whole corresponding timeline by citing
references dating back to 1994 to have an overview of the
progress made so far.

In what follows, we present a compilation of the main
findings along with a discussion of some research directions
and open problems distilled from the surveyed works.

5.1. Current and Potential GE Applications. We observed
that a wide range of GE areas was related, to a greater
or lesser degree, to potential applications of ML. Partic-
ularly, liver diseases have been extensively addressed; this
can be attributed to the medical pressure generated by the
liver-related mortality and morbidity. Indeed, the prevalence
of hepatocellular carcinoma and hepatitis infection indicates
that the burden of chronic and neoplastic liver diseases is
substantial and translates into a significant public health
problem. This makes hepatology related practices an area
of opportunity for ML to prove its effectiveness in terms
of prevention, diagnosis, and therapy of patients with liver
diseases.

However, this opportunity can also potentially be seen in
other GE areas that seem to be underexplored by researchers,
for instance, nutrition disorders. Even though recently clin-
ical nutrition has been very much welcomed into the family
of GE, in our review we did not encounter relevant studies
that discuss this type of disorders. We believe that early
diagnosis and/or prediction of nutritional disorders such as
anorexia, obesity, malabsorption, and anemia by means of
ML is a potential application of this technology and that
more focus should be given to this area. More studies are also
expected in the neurogastroenterology field; as an advancing
subspecialty of GE dealing with neurological relations to

functional gastrointestinal disorders, this area can benefit
from contributions done in both GE and neurology fields.
Recently, some works have begun to study the opportunity
of another promising application of ML that is related to
intestinal microbiome [45, 46]. Indeed, studies have shown
that the knowledge of the gut microbiome and the interre-
lationships with the human body bring major opportunities
for diagnosis, prognosis, and treatment of a variety of human
diseases. In this vein, MLTs can efficiently be used for
automatic extraction of knowledge from the large amounts
of data produced by the research of the human microbiome.

Furthermore, as noted in the previous section, thanks
to ML, a multitude of complex clinical tasks that were
exclusively done by physicians before have been automated.
This includes planning surgery and predicting its outcomes
but not direct gastrointestinal surgery related tasks. In fact,
by conceiving our research query (Section 3) we purposely
focused on clinical GE, while also not totally disregarding
surgical procedures. Indeed, principally surgery practice
involves two broad areas: surgical decision-making and
operative surgery. While the first area was covered in this
work (choices about the need for surgery, timing of surgery,
potential risks, and the likelihood of mortality), we believe
that innovation in the second area will be essentially derived
by medical robotics [47], another powerful tool of AI.

Ultimately, the use of ML in GE practice aims to provide
the ability to support decisions and to reduce the number
of invasive tests for reliable prognosis and diagnosis. This
continuous penetration of ML in everyday medical practice
had gradually pushed the general debate about AI/ML taking
away the need for a human workforce to the realm of
the medical community. According to this claim, because
AI-based systems outperform their human counterparts in
tasks involving analyzing large volumes of data and finding
patterns, they are becoming indispensable and vital tools in
the physician’s arsenal and slowly the role of this latter is
eroding. Most surveyed studies refute this extremist vision.
Since human experts and machines have different strengths,
they advocated the use of ML as a complement rather than
a replacement of human experts. ML can serve as an ideal
“second opinion”; however, the final decision will always be
made by physicians.

Finally, across studies, it was confirmed that personalized
treatment/precision medicine is deeply connected to and
dependent on the use of ML. Indeed, several studies have
shown [S56], [S21], [S27] how ML approaches can lead to
medical decisions based on individual patient characteristics
which allow customizing and tailoring the treatment plan to
an individual’s unique disease.

5.2. Trends in the Use of MLTs. A large portfolio of MLTs
was employed in the reviewed studies with an increasing
attention to DL in recent years. Some studies used unsu-
pervised learning algorithms while the majority of studies
used supervised one. However, there are no reports on
the use of reinforcement learning (RL). In the literature
of other medical fields, there exist several examples of RL
applications, which have been used to develop treatment
strategies for epilepsy [48] lung cancer [49] and in developing
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artificial pancreas [50]. Practically, RL includes problems
where an agent attempts to improve its performance at a
given task over time by continual interaction with its envi-
ronment. Thus, it is suited to problems including sequences
of decisions along a timeline. Additionally, it can be used
when decisions depend on the observed state. In this view,
we believe that personalized treatment plans and nutrition
disorders are particularly well suited for RL application in GE
setting. Nutrition disorder effects are unpredictable, making
it necessary to closely monitor the patient’s condition. For
personalized treatment, RL can offer an attractive alternative
to classical treatment systems that are based exclusively on
the current state of patients, by taking into account not only
the immediate effect of treatment, but also the long-term
benefit to the patient. Hence, using reinforcement algorithms
that incorporate deep learning (deep reinforcement learning)
can enhance the aforementioned potentialities of RL with the
powerful predictive ability of DL.

Furthermore, it has been observed that the choice of the
use of some MLTs over others is generally poorly justified.
There is no guidance on which would work best in one
situation or another. A common rule of thumb is to try a
number of algorithms and compare their performance with
the aim of finding the most optimal one [S13], [S23], [S33],
[S51]. However, this is obviously time and cost consuming
especially if some approaches are unlikely to work well a
priori. Asmentioned before, unfortunately this is also the case
of the evaluation metrics that are used in an additive way;
that is, in order to prove the quality of some algorithms in
given settings, we should use as much metrics as possible.
Comparison across studies is thus not possible in absence
of a consensus regarding the manner in which such models
are constructed and applied or their results are objectively
evaluated. We believe that more research efforts should be
done in this sense in order to establish a solid theatrical
background to guide and support the end-to-end process of
ML approaches implementation. Apart from this, it is worth
mentioning that in order to strengthen their models, some
studies use a kind of MLT composition which includes a
mix of algorithms (supervised and unsupervised) that are
interplaying in respect of some process in order to reach a
complex objective [S47], [S74]. The advantage conferred by
this composition is seen in the high performance reached by
the overall model.

5.3. Acceptance in Clinical Setting. Another fundamental
observation is that in spite of the number of studies that have
been published during the past two decades, very few have
actually penetrated the “real-world” clinical setting. Fromour
standpoint, this can be attributed to three limitations:

(a) Lack of Validation for Clinical Setting. Despite the impres-
sive high level of performance reported in the studies, this
performance remains questionable as the proposed models
are deployed in the research environment only; the same
models may behave differently when deployed in a “real-
world” situation and poorly generalize to other populations
and regions. Thus, for an algorithm to be established in
clinical setting rigorous validation is required. This includes

internal and external validation and validation in a prospec-
tive clinical trial. This process is time-consuming and costly.
Consequently, the number of clinically validated studies
is limited in the literature. Therefore, optimal validation
model should be developed in order to capitalize on the
intensive research efforts made so far and to ensure a faithful
translation into the clinical setting.

(b) Difficulties in Interpretation. While MLTs can detect
complex patterns in large data and yield accurate predictions,
due to their black-box nature they are unable to provide
an explanation of their outcomes. Moreover, there is often
a tradeoff between accuracy and interpretability: the most
accurateMLmodels usually are not very explainable (e.g., DL,
RF, and SVM), and the most interpretable models usually are
less accurate (e.g., logistic regression and DT). Explainability
is a crucial issue though; it is very important to understand
the decision process of a predictive model before its decision
can be utilized in clinical setting since it affects the life and
death of a patient. Technically, explainable AI (XAI) [51], the
research field that aims to make AI/ML systems results more
understandable to humans, is still in its incipient phase. Con-
siderable interesting works have already been done, especially
in domains involving life-threatening decisions such as self-
driving vehicles, military, and healthcare. However, hearty
research effort is yet to be expected.

Another related issue is the problem of accountability.
Who is responsible for a medical error if the diagnosis is
provided by a black-box AI where no doctor was involved?
This shed light on one of AI’s biggest modern problems,
trust and ethics. Indeed, intensive use of AI/ML raises
natural questions about the distribution of responsibility and
authority and the role of moral values and principles in
decision-making. Again, this issue is of greater consequence
in medicine because decisions are literally a matter of life
and death. One of the leading initiatives responding to this
issue is recognized as responsible AI [52], an emerging
research field concerned with incorporating ethics in AI/ML
systems at design, production, use, and governance of AI.
In this sense, we think that insights from bioethics can
help in developing such responsible models for healthcare.
Implementing adapted regulations plays also a major role
in governing the interaction of medical ecosystem actors,
namely, patients, doctors, and AI.

(c) Data Quality and Quantity. Some of the reasons for slow
acceptance in clinical setting may relate to data. As has been
noted in many of the studies cited in the previous section,
it is challenging to find large unbiased sources of data due
to lack of public datasets. Consequently, the lack of data to
feed ML models can result in misclassifications and risks
“overfitting” the data with loss of generalizability. Except the
data size, another limitation concerns imbalanced data, that
is, when the number of observations belonging to one class is
significantly lower than those belonging to the other classes.
This happens because ML models are usually designed to
optimize the overall accuracywithout considering the relative
distribution of each class. However, this could bias the
MLT toward the majority class and thus affects the overall
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performance. Technically speaking, data augmentation [53]
and transfer learning [53] approaches appear to be promising
solutions for small dataset. Some researchers have also
introduced crowd-sourcing as a viable alternative approach
formedical data collection [54]. Nevertheless, still availability
and free dissemination of data are the primary prerequisites
for progress in the clinical application of ML.

Lastly, it should be emphasized that the limited number
of gastroenterologists currently trained in ML methods, the
lack of collaboration between physicians and ML scientists,
and limited financial investments to install ML tools are also
factors that hinder the penetration of ML in the GE clinical
setting.

As a result, we can conclude that the current body
of research exploring the utility of ML in the GE is very
promising, in the sense that it proposes a set of tools to
augment and extend the effectiveness of gastroenterologists
in numerous domains and diverse practices. However, the
implementation in clinical realm is limited by the lack of
clinical validation, quality, and availability of data and by the
inability of AI to display some human characteristics like
being explainable and ethical.

6. Conclusion

In this work, a systematic effort was made to identify and
review ML approaches applied to GE practice. Against a
comprehensive background that covered all aspects related
to ML and its application in medicine in general and in GE
in particular, synthesis of reviewing 88 studies was presented.
Findings showed that ML is yielding promising potential
to provide valuable assistance to gastroenterologists in their
main tasks. However, while the promise of ML is taking
shape, there is still a gap between its potential and its effective
usability in clinical settings. In order to improve clinical
acceptance of ML systems, thought should be given to unrav-
elling the “black-box” nature of MLTs, to establishing more
validation models for clinical environment, and to making
medical data available and freely disseminated. Furthermore,
more ML application in some promising but underexplored
areas is expected in the near future, notably in nutrition
disorders, neurogastroenterology, and gut microbiome. This
notwithstanding, considering the speed with which advances
are made in the breadth and depth of ML applications, this
exciting technology is expected to significantly influence the
current and future practice of GE.
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