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Diatomite was slightly modified with a sodium hydroxide solution. The resulting material was characterized by using energy-
dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning
electron microscopy (SEM), and nitrogen adsorption-desorption isotherms. The so-treated diatomite has a high specific surface
area (77.8m2/g) and a high concentration of isolated silanol groups on the surface, and therefore, its adsorption capacity
increases drastically in both the single and binary adsorption systems for rhodamine B and methylene blue. The binary system is
more effective than the single system, with methylene blue being adsorbed more than rhodamine B. The adsorption process is
spontaneous and fits well with the Langmuir isothermal model, and it depends on pH significantly.

1. Introduction

Dyes are widely used in numerous applications, such as
textile, paper, plastic, and dye industries [1]. The amount
of dyes produced annually worldwide is estimated at over
7 × 105 tons, and more than 100,000 commercially avail-
able dyes with different physical and chemical properties
are being used [2–4]. Various dyes and their decomposi-
tion products are toxic and carcinogenic, thus posing a
danger to aquatic organisms [1, 5]. Therefore, dye removal
from wastewater is essential.

A large number of dyes have a complex aromatic ring
structure and are difficult to degrade biologically [4, 6].
Therefore, it is necessary to reduce their concentration in
wastewaters prior to biological treatment. Chemical oxida-
tion has been extensively studied for dye removal from
wastewaters [1, 7–9]. However, oxidation often produces
intermediate products that can cause secondary pollution.
Meanwhile, the adsorption technique has proven to be a sim-
ple, efficient, and attractive way to remove nonbiodegradable
pollutants (including dyes) from wastewaters [5, 10, 11].

To remove dyes from complex aqueous solutions, a vari-
ety of adsorbents have been used, such as banyan aerial roots
[12], peat [2], bentonite [13], mesoporous silica nanoparti-
cles [14], clay [15, 16], activated banana peel carbon [17], sil-
ica extracted from rice husk [18], and zeolite [19], and some
of them exhibit high performance. However, the search for
new, effective, cheap, and environmentally friendly adsor-
bents is on the way.

Diatomite is a low-density, small-particle sedimentary
rock consisting mainly of amorphous silica (SiO2·nH2O)
derived from diatoms. Diatomite encompasses a variety of
structures and has high porosity (up to 80%), a large specific
surface area, and multiple hydroxyl groups on the surface [3,
6, 10, 11, 20]. These properties enable diatomite to be a
potential adsorbent for the pollutants present in industrial
wastewaters, including dyes. Besides, diatomite is abundant
in nature, cheap, and environmentally friendly [11]. Several
studies have dealt with the applicability of natural diatomite
in the adsorption field [6, 10, 11, 21–23]. Other studies have
focused on diatomite surface modification with metals or
organic functional groups to improve adsorption efficiency
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Table 1: Main characteristics of the dyes used in this study.

Dye RB MB

Type Basic violet 10, C.I.45170, cationic Basic blue 9, C.I.52015, cationic

Phase Solid Solid

Molecular formula C28H31O3N2Cl C16H18N3SCl

Molecular weight (g/mol) 479.03 319.85

Chemical structure
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Figure 1: UV-Vis absorption spectra for aqueous solutions of (a) RB, (b) MB, and (c) both of the dyes along with alkali-activated diatomite at
various adsorption times.
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or expand its applications [1, 7–9, 24–32]. In some studies,
natural diatomite is treated thermally [3, 10, 20, 33, 34], with
acids [3, 20, 35–37], or with alkalines [4, 37, 38] to enhance
its application performance. Other studies use diatomite as
a raw material to manufacture other products [14, 35, 39–
42]. The diatomite purified by calcining is also investigated
by Yuan et al. [43]. They discovered that when the tempera-
ture increases, the condensation of surface silanol groups
occurs. Hydrogen-linked hydroxyl groups condense more
easily than isolated hydroxyl groups. Bronsted acid centers
also condense at high temperatures. This condensation
reduces the adsorption capacity of the diatomite treated by
calcining toward base dyes. When treated with acids (nor-
mally at high concentration: 5M H2SO4 [3], 5M HCl [35],
1-5MHCl [36], 10% HCl [20], and 1MH2SO4 [37]), it is dif-
ficult to perform the modification and is easily contaminated
by secondary pollution. Therefore, numerous studies have
focused only on diatomite purification because it is cheap,
easy to operate, and environmentally friendly [4]. When
purified with alkali, diatomite retains its hydroxyl groups
on the surface, and they are excellent adsorption centers for
many metals as well as dyes.

Since most industrial wastewaters contain different pol-
lutants, it is important to investigate the effect of multicom-
ponent systems on the adsorption capacity. Various studies
have studied the simultaneous removal of different pollutants
from aqueous solutions [2, 5, 44] to assess the competitive-
ness of adsorbates. In this study, natural diatomite is acti-
vated by treating with low-concentrated sodium hydroxide
to enhance the adsorption capacity for rhodamine B (RB)
and methylene blue (MB) in single and binary systems. The
equilibrium isotherms and thermodynamic parameters of
the adsorption processes are studied. In addition, the effect
of the solution pH on the adsorption efficiency of RB or
MB in the single system is also investigated.

2. Materials and Methods

2.1. Materials. Natural diatomite was obtained from Phu Yen
province, Vietnam. Natural diatomite was washed several
times with water, dried at 100°C, sieved, and stored in closed
containers for further tests. The product is called purified
diatomite.

Sodium hydroxide (NaOH), hydrochloric acid (HCl),
and potassium chloride (KCl) were purchased from Guang-
dong (China). Methylene blue (Guangdong, China) and rho-
damine B (HiMedia, India) dyes were used as adsorbates. A
summary of the main characteristics of these dyes is given
in Table 1 [3, 5, 22, 27, 37].

2.2. Activation of Diatomite. Purified diatomite was activated
with NaOH to enhance the adsorption capacity. The purified
diatomite sample was immersed in a 5% NaOH solution at a
ratio of 1 : 10 (w/w) and stirred at 100°C for 2 h to remove
impurities and organics. Then, the solid was filtered, washed
several times with distilled water, dried at 100°C, and sieved.
The obtained alkali-activated diatomite was stored in closed
containers for further tests.

2.3. Characterization. The chemical analysis of diatomite was
performed by using energy-dispersive X-ray spectroscopy
(EDX, JEOL JED-2300, Japan) at different sites of the mate-
rial. The powder X-ray diffraction (XRD) patterns were
recorded by VNU-D8 Advance, Bruker, Germany, with Cu
Kα radiation (λ = 1:5406Å). Fourier-transform infrared
spectra (FT-IR) were measured on a Jasco FT/IR-4600 spec-
trometer (Japan) with a range of 4000-400 cm−1. The mor-
phology of diatomite was observed with scanning electron
microscopy (SEM) using SEM JMS-5300LV (Japan). Nitro-
gen adsorption/desorption isotherm measurements were
conducted using a TriStar 3000 analyzer. Samples were pre-
treated by heating at 250°C for 5 h with N2 before the
measurements.

2.4. Point of Zero Charge. The point of zero charge (pHPZC)
of the adsorbent was determined to follow the methods of
Mahmood et al. [45], Jing et al. [46], and Du and Hoai [47].
To a series of 100mL Erlenmeyer flasks, 50mL of a 0.01M
KCl solution was added. The initial pH (pHi) of the solutions
was adjusted, ranging from 2 to 12, by adding a 0.1M HCl or
0.1MNaOH solution. Then, 0.1 g of the adsorbent was added
to each flask and mixtures were shaken for 48h. The final pH
(pHf) of the solutions was measured. The difference between
the final and initial pHs (ΔpH = pHf − pHi) was plotted
against the pHi. The point of intersection of the curve with
the abscissa, at which ΔpH = 0, provides pHPZC.

2.5. Adsorption

2.5.1. Adsorption Experiments. Adsorption experiments were
carried out with a typical batch approach in a 250mL round
flask with a reflux condenser. In each experiment, 0.02 g of
the adsorbent was stirred with 100mL of a solution contain-
ing RB (or MB or a mixture of RB and MB) at a specific con-
centration, and the temperature of the reactor was fixed at 30
or 45°C. After a certain interval, 5mL of the solution was
withdrawn and centrifuged to remove the adsorbent, and
the concentration of the remaining solution was determined.
The concentration of dyes was determined with the UV-Vis

Table 2: Elemental composition of the diatomite samples (w%,
EDX).

Element Purified diatomite Alkali-activated diatomite

O 52:72 ± 1:48 49:06 ± 1:27

Mg 0:53 ± 0:06 0:53 ± 0:04

Al 10:36 ± 0:87 11:59 ± 0:03

Si 30:56 ± 0:59 27:50 ± 1:42

K 0:20 ± 0:09 1:09 ± 0:83

Ca 0:21 ± 0:05 0:17 ± 0:03

Ti 0:91 ± 0:17 1:23 ± 0:10

Fe 4:50 ± 0:10 6:02 ± 0:27

Na — 1:77 ± 0:24

Cl — 1:03 ± 0:19
Total 100 100

3Adsorption Science & Technology



method on UVD-3000 (Labomed, USA) at λmax = 554 nm for
RB and λmax = 664 nm for MB (Figure 1). The adsorbed
capacity (qt or qe) and removal efficiency (R) of the dye
adsorbed onto the adsorbent were calculated according to
the following equations:

qt =
C0 − Ctð Þ × V

m
mol · g−1
� �

, ð1Þ

qe =
C0 − Ceð Þ ×V

m
mol · g−1
� �

, ð2Þ

R =
C0 − Ceð Þ
C0

× 100 %ð Þ, ð3Þ

where C0 and Ct are the concentrations of the dyes in the
solution (mol·L-1) at time t = 0 and t = t, respectively; Ce is
the concentration of the dyes in the solution (mol·L-1) at
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Figure 2: XRD pattern (a) and FT-IR spectra (b) of the diatomite samples.

(a) (b)

(c) (d)

Figure 3: SEM images. (a, b) Purified diatomite. (c, d) Alkali-activated diatomite.
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equilibrium; V is the volume of the solution (L); andm is the
weight of the dry adsorbent (g).

The influence of initial pH (3, 5, 7, 9, and 11) was also
studied in a single system with a similar procedure.

2.5.2. Isothermal Models. In this work, the Langmuir and
Freundlich two-parameter models were used to analyze the
adsorption equilibrium data.

The Langmuir model is based on the assumption that the
adsorption is a monolayer; that is, the adsorbates form a
monolayer and all the sorption sites on the adsorbent surface
have the same affinity for the adsorbates. The Langmuir iso-
therm equation [48] is as follows:

qe = qm ×
KL × Ce

1 + KL × Ce
, ð4Þ

where qm is the maximum monolayer adsorption capacity of
the adsorbent (mol·g-1) and KL is the Langmuir constant
(L·mol-1). The other parameters are described above. The
Langmuir constant is a measure of the affinity between the
adsorbate and the adsorbent and relates to the free energy
of adsorption [5]. The most commonly used linear form of
the Langmuir equation [2–5, 13, 18, 20, 32, 42, 49–51] is

Ce
qe

=
1
qm

× Ce +
1

KL × qm
: ð5Þ

The plot of Ce/qe versus Ce is a straight line with the slope
1/qm and intercept 1/ðqm · KLÞ.

The Freundlich expression is an exponential equation
and therefore assumes that as the adsorbate concentration

increases, the concentration of the adsorbate on the adsor-
bent surface also increases. The Freundlich isotherm is
expressed by the following empirical equation [48]:

qe = KF × C1/n
e , ð6Þ

where n is the heterogeneity factor, and KF is the Freundlich
constant (mol(1-1/n)·L1/n·g-1). n and KF are dependent on
temperature; n indicates the extent of the adsorption, and
KF expresses the degree of nonlinearity between the solution
concentration and the adsorption.
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Figure 4: Nitrogen adsorption-desorption isotherms (a) and pore size distributions (b) of the diatomite samples.

Table 3: Textural properties of the diatomite samples.

Sample SBET (m2·g-1) Smic (m
2·g-1) Sext (m

2·g-1) Vmic (cm
3·g-1) V tot (cm

3·g-1)
Purified diatomite 55.4 19.2 36.2 0.0088 0.0623

Alkali-activated diatomite 77.8 19.7 59.1 0.0089 0.0924
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Figure 5: Determination of the point of zero charge of the diatomite
samples.
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The linear form of the Freundlich equation is

log qeð Þ = log KFð Þ + 1
n
× log Ceð Þ: ð7Þ

The plot of log ðqeÞ versus log ðCeÞ is a straight line with
the slope 1/n and intercept log ðKFÞ.

2.5.3. Thermodynamic Parameters. To determine whether
the adsorption process occurs spontaneously or not, we have
to study the thermodynamic parameters. At equilibrium, the
Gibbs free energy of adsorption (ΔG°) is an important quan-
tity for determining the spontaneity of the process itself and
is calculated according to the following equation:

ΔG° = −R × T × ln Ke, ð8Þ
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Figure 6: Freundlich isothermal model for RB adsorption onto diatomite: (a) 30°C and (b) 45°C.
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Figure 7: Langmuir isothermal model for RB adsorption onto diatomite: (a) 30°C and (b) 45°C.

Table 4: Isotherm parameters for adsorption of RB onto the diatomite.

Sample Temperature (°C)
Freundlich Langmuir

n KF R2 qmax (mol·g–1) KL R2

Purified diatomite
30 2.80 8:02 × 10−3 0.9738 2:20 × 10−4 2:45 × 105 0.9880

45 2.97 6:05 × 10−3 0.9104 1:93 × 10−4 3:49 × 105 0.9955

Alkali-activated diatomite
30 2.09 38:98 × 10−3 0.9833 3:00 × 10−4 1:53 × 105 0.9857

45 1.98 47:23 × 10−3 0.9874 2:97 × 10−4 1:23 × 105 0.9856
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where Ke is the thermodynamic equilibrium constant; R is
the universal gas constant (8.314 J·mol-1·K-1); and T is the
absolute temperature in Kelvin.

For the adsorption process, Ke can be determined in a
number of ways, depending on the experimental conditions,
such as the equilibrium constant KC = ðC0 − CeÞ/Ce [3, 16,
18, 20, 38], the distribution coefficient Kd = qe/Ce [12–14,
34, 37, 42, 50–52], and the Langmuir constant KL [4–6,
53, 54].

In this study, the adsorption constant in the Langmuir
isotherm (KL) was used to determine thermodynamic
parameters (ΔG°, ΔH°, and ΔS°) for the adsorption by using
the following equations [5]:

ΔG° = −R × T × ln KL, ð9Þ

ΔH° = −R ×
T2 × T1
T2 − T1

� �
× ln

KL1
KL2

, ð10Þ
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Figure 8: Plots of the isothermal equations in the linear form for MB adsorption onto alkali-activated diatomite at different temperatures in
the single systems: (a) Freundlich and (b) Langmuir.

Table 5: Isotherm parameters for adsorption of MB onto alkali-activated diatomite in the single systems.

Temperature (°C)
Freundlich Langmuir

n KF R2 qmax (mol·g–1) KL R2

30 6.59 2:64 × 10−3 0.8676 7:14 × 10−4 1:69 × 105 0.9874

45 6.34 2:72 × 10−3 0.7353 6:90 × 10−4 1:77 × 105 0.9915
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Figure 9: Plots of the isothermal equations in the linear form for the adsorption onto alkali-activated diatomite in the binary systems at 30°C:
(a) Freundlich and (b) Langmuir.
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ΔS° =
ΔH° − ΔG°

T
, ð11Þ

where KL1 and KL2 are adsorption Langmuir constants at T1
and T2, ΔH

° is the enthalpy change, and ΔS° is the entropy
change in a given process.

3. Results and Discussion

3.1. Characterization of Purified and Alkali-Activated
Diatomite Samples. As can be seen from Table 2, both the
purified and alkali-activated diatomite samples mainly con-
sist of O, Si, Al, and Fe. Alkali-activated diatomite has a lower
O and Si content than purified diatomite, and this is probably
due to the removal of organic constituents and the dissolu-
tion of SiO2 during alkali treatment. This decrease entrains
the increase in the content of Fe and Al.

Both the purified and alkali-activated diatomite samples
have an amorphous structure (Figure 2(a)). The broad peaks
at 20-25° are typical for amorphous SiO2 [1, 32, 37, 39, 51].
The absence of the peak around 27° indicates that the diato-
mite in our study does not contain quartz crystals like other
types of diatomite [1, 26, 30, 32, 35, 37, 39, 40].

The FT-IR spectra of the diatomite samples are similar
(Figure 2(b)). The broad absorption bands at 3450 cm-1 and
1641cm-1 correspond to the adsorbed H2O, including inter-
layer water and hydrogen-bonded water with surface hydroxyl
groups. A broad band centered at 1101-1031 cm-1 and two
bands at 789 cm-1 and 465 cm-1 correspond to the asymmetric
stretching vibration, symmetric stretching, and bending vibra-
tion of Si-O-Si bonds, respectively [1, 20]. The peaks observed
at 3699 cm-1 and 3623 cm-1 are assigned to surface hydroxyl
groups in diatomite. The peak at 3699 cm-1 is attributed to
the isolated hydroxyl (Si-OH) on the surface of diatomite [1,
43, 55], while the peak at 3623 cm-1 belongs to O-H stretching
vibration of the aluminol groups (≡AlOH) [55]. Alkali-
activated diatomite has high-intensity peaks for O–H stretch-
ing, indicating that more isolated hydroxyl groups are present
on the surface. The peak at 536 cm-1 corresponds to the

stretching vibration of Fe-O [1]. The peak at 1380cm-1 is
attributed to some organic substances [20]. The intensity of
this peak is lower in alkali-activated diatomite than in purified
diatomite samples, indicating the removal of organic sub-
stances from purified diatomite during NaOH treatment.

The SEM images show that purified diatomite consists of
circular cylinders of a diameter of about 5-7μm, with small
pores on the surface (Figures 3(a) and 3(b)). However, these
cylinders are partly shattered, causing the pores to become
smaller and even blocked. The alkali-activated diatomite
retains its multipore structure, and the pores on the surface
become larger after treatment (Figures 3(c) and 3(d)). This
change may be the result of the formation of soluble silicates
SiO2−

3 from SiO2 [4]. Another reason for this change is prob-
ably the removal of organic constituents, leading to the
increase in the pore size and hence the increase of the surface
area of alkali-activated diatomite.

Figure 4 shows the nitrogen adsorption-desorption iso-
therms and pore size distribution of the diatomite samples.
The diatomite exhibits a type II isotherm and an H3-type
hysteresis loop, indicating the presence of macroporous
structures with nonuniform size and/or shape [56]. Thus,
the morphology of the diatomite consists of a variety of
shapes (Figure 3). However, the pore size distribution curves
of the diatomite samples demonstrate a uniform pore size
with an average diameter of 4.3 nm. The textural properties
of the samples are presented in Table 3. According to the
Brunauer-Emmett-Teller analysis, the purified diatomite
exhibits a large specific surface area of 55.4m2/g. This value
is consistent with that reported by Son et al. [6] (51m2/g)
for Phu Yen’s diatomite and is much higher than that pub-
lished in previous works [4, 8, 11, 20, 24, 26, 32, 38, 55]
(1.0-27m2/g). It can be seen from Table 3 that the specific
surface area of alkali-activated diatomite (77.8m2/g) is signif-
icantly larger than that of purified diatomite. This increase in
the surface area results from the removal of organic impuri-
ties during the alkali treatment.

The zero charge point of purified diatomite is 5.7
(Figure 5). This pHPZC is similar to that published in the
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Figure 10: Plots of the isothermal equations in the linear form for the adsorption onto alkali-activated diatomite in the binary systems at
45°C: (a) Freundlich and (b) Langmuir.
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literature [6, 11, 21, 22]. However, the pHPZC of alkali-
activated diatomite (8.9) is much greater than that of purified
diatomite. This increase is probably due to the formation of
isolated hydroxyl groups on the surface of the material dur-
ing alkali treatment.

3.2. Isothermal Studies

3.2.1. Adsorption in Single Systems

(1) Adsorption of RB onto Purified and Alkali-Activated Diat-
omite Samples. Figures 6 and 7 present the Freundlich and
Langmuir isothermal models for the adsorption of RB dye
onto the diatomite samples at 30 and 45°C. The isothermal
parameters obtained from the experimental data and the
respective correlation coefficients are listed in Table 4. It
can be seen that the experimental points fit the models well
with high correlation coefficients (0.9104-0.9955). Table 4
also shows that the maximal RB adsorption capacity of the
alkali-activated diatomite sample is greater than that of the
purified diatomite sample. Thus, the activation of diatomite
with sodium hydroxide enhances the adsorption of the RB

basic dye on diatomite. This enhancement can be attributed
to a larger number of the silanol groups formed on the sur-
face, as well as the larger specific surface area of the material.

The results presented above show that alkali-activated
diatomite is superior to purified diatomite in terms of chem-
ical and physical properties and adsorption capacity. There-
fore, in the following sections, only an alkali-activated
diatomite sample is used for the adsorption of dyes from
aqueous solutions.

(2) Adsorption of MB onto Alkali-Activated Diatomite. The
MB adsorption isotherms onto alkali-activated diatomite

Table 6: Isotherm parameters for the adsorption onto alkali-activated diatomite in the binary systems at different temperatures.

Dye Temperature (°C)
Freundlich Langmuir

n KF R2 qmax (mol·g–1) KL R2

RB
30 14.68 0:25 × 10−3 0.5081 1:40 × 10−4 2:27 × 105 0.9983

45 3.53 1:88 × 10−3 0.8578 1:80 × 10−4 0:37 × 105 0.9905

MB
30 13.00 0:93 × 10−3 0.6898 4:55 × 10−4 5:78 × 105 0.9949

45 7.29 2:06 × 10−3 0.9288 5:59 × 10−4 4:36 × 105 0.9950

Table 7: Maximum adsorption capacity of RB and MB of different adsorbents.

Adsorbent
Adsorption capacity (mg·g-1)

References
RB MB

Alkali-activated diatomite
143.9-142.1∗

67.0-86.1∗∗
228.4-220.7∗

145.6-178.9∗∗ The present work

Purified diatomite 105.1-92.2∗ — The present work

Diatomite was treated with H2SO4 (1 molar) — 127 [37]

Purified diatomite — 72 [37]

Diatomite was treated with sulfuric acid — 126.6 (30°C) [3]

Diatomite was treated with sodium hydroxide — 27.86 (25°C) [4]

Sodium alginate/silicone dioxide 148.23 [49]

Tagaran natural clay 131.8 (20°C) [16]

Zeolite 4A 44.35 [19]

AlMCM-41 41.9 (25°C)∗ 66.5 (25°C)∗ [5]

α-Ag2WO4/SBA-15 150 — [50]

Co and N comodified mesoporous carbon composites 141 (25°C) — [57]

Modified banyan aerial roots 115.23 — [12]

Biosorbent prepared from inactivated Aspergillus oryzae cells 98.59 (293K) — [52]

L-Asp capped Fe3O4 NPs 10.44 — [19]

Silica extracted from rice husk 6.0-6.87 — [18]
∗In single systems and ∗∗in binary systems at 30 and 45°C.

Table 8: Thermodynamic parameters for adsorption of RB onto
purified diatomite in single systems.

Temperature
(°C)

ΔG° (kJ·mol-
1)

ΔH° (kJ·mol-
1)

ΔS° (J·mol-1·K-

1)

30 -31.26 18.90 165.53

45 -33.74
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were also investigated and analyzed according to the linear
Freundlich and Langmuir equations. Analysis results are
shown in Figure 8 and Table 5. In this case, the Langmuir
model is significantly more suitable to describe the adsorp-
tion data than the Freundlich model (R2 = 0:9874-0.9915 as
opposed to R2 = 0:7353-0.8676). That is, the adsorption
mainly occurs in a monolayer. The maximum adsorption
capacity of MB on alkali-activated diatomite is 7:14 × 10−4
and 6:90 × 10−4 (mol·g–1) at 30 and 45°C, respectively.

3.2.2. Adsorption onto Alkali-Activated Diatomite in Binary
Systems. Like in the single system, in the binary system, the
adsorption of the dyes at 30 or 45°C also follows the Lang-
muir isothermal model with the R2 values approaching 1
(Figures 9 and 10). The isothermal data in Table 6 also show
that the maximum adsorption capacity of alkali-activated
diatomite for MB is higher than that for RB, which is similar
to the single systems (Tables 4 and 5). Specifically, the ratio of
the maximum adsorption capacity of the dyes in the binary
system (MB/RB = 4:55 × 10−4/1:40 × 10−4 ≈ 3:3 times at
30°C, and MB/RB = 4:55 × 10−4/1:40 × 10−4 ≈ 3:1 times at
45°C) is higher than that in the single system (MB/RB =
7:14 × 10−4/3:00 × 10−4 ≈ 2:4 times at 30°C, and MB/RB =
6:90 × 10−4/2:97 × 10−4 ≈ 2:3 times at 45°C). This proves that
there is competitive adsorption in the binary system, where
MB molecules preferentially adsorb onto alkali-activated
diatomite compared with RB molecules. This enhanced

adsorption might result from the smaller size of the MB mol-
ecule. MB molecules more easily diffuse into the pores of
diatomite than RB molecules, thus occupying the adsorption
sites on the adsorbent surface before the RB molecules do.
Similar results are also reported by Eftekhari et al. [5].

Table 7 compares the adsorption capacity of the diato-
mite samples for RB and MB in this study and that of other
adsorbents published in the literature. It can be seen that
alkali-activated diatomite has a much higher adsorption
capacity than all other adsorbents. Therefore, alkali-
activated diatomite might serve as a promising adsorbent
for the removal of dyes from aqueous solutions.

3.3. Thermodynamic Studies. The spontaneity of the adsorp-
tion process and the interactions on the liquid/solid interface
can be explained by using thermodynamic parameters (ΔG°,
ΔH°, and ΔS°). If ΔG° < 0, the adsorption process is sponta-
neous; otherwise, adsorption does not occur on its own. If
ΔH° < 0, the adsorption process is exothermic and vice versa.
If ΔS° > 0, it is possible to infer that the adsorbent affinity for
the dye increases, leading to the increase in randomness of
the adsorbates at the liquid/solid interface [4, 42]; in contrast,
if ΔS° < 0, more adsorbate molecules adhere to the adsorbent
surface [13, 16, 37].

The thermodynamic parameters of RB and MB adsorp-
tion onto the diatomite samples are calculated from Equa-
tions (9)–(11). The ΔG° of adsorption is negative for both
the single and binary systems (Tables 8 and 9), indicating

Table 9: Thermodynamic parameters for the adsorption of the dyes onto alkali-activated diatomite.

Dye Temperature (°C)
Single system Binary system

ΔG° (kJ·mol-1) ΔH° (kJ·mol-1) ΔS° (J·mol-1·K-1) ΔG° (kJ·mol-1) ΔH° (kJ·mol-1) ΔS° (J·mol-1·K-1)

RB
30 -30.08 -11.96 59.79 -31.07 -96.42 -215.69

45 -30.98 -27.83

MB
30 -30.32 2.48 108.27 -33.42 -15.04 60.66

45 -31.94 -34.33
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Figure 11: Removal efficiency of the dye onto alkali-activated diatomite at different initial solution pHs in the single systems: (a) RB and (b)
MB (adsorbent dosage 0.2 g·L-1, initial RB concentration 2:09 × 10−5 mol · L−1, initial MB concentration 3:13 × 10−5 mol · L−1, and 30°C).
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the spontaneity of adsorption processes. The values of ΔH°

and ΔS° differ between the adsorption processes, indicating
that the adsorption process is complex. Both the physical
and chemical adsorption mechanisms are possible.

3.4. Effect of Solution pH. Figure 11 shows the effect of solu-
tion pH on the adsorption of RB and MB onto alkali-
activated diatomite in the single system. The pH of the solu-
tion was adjusted between 3 and 11 with a 0.1MHCl or 0.1M
NaOH solution.

As can be seen from Figure 11(a), the adsorption effi-
ciency of RB reaches 94% after 240min of contact at pH3.
At higher pH, this efficiency decreases drastically, reaching
37% up to pH5–9 and even lower (30%) at pH11. We know
that RB has a carboxylic group in its molecule, and this group
dissociates at higher pHs of the solution. This dissociation
renders the molecule negative, resulting in the electric repul-
sion between RB and the negative surface of the adsorbent at
high pH. This result is consistent with that of Eftekhari et al.
[5].

For MB (Figure 11(b)), the adsorption efficiency reaches
100% after a short time (60min) of contact at pH3–9. The
efficiency only decreases to around 60% at pH11.

The zero charge point of alkali-activated diatomite is 8.9
(Figure 5). Theoretically, the surface of the material is posi-
tively charged when pH < 8:9 and negatively charged when
pH > 8:9. This means that when the pH of the dye solution
increases, the adsorption efficiency should increase because
the negatively charged diatomite surface attracts the dye cat-
ions. However, in both of our cases, the adsorption efficiency
decreases with pH, especially at pH11. This demonstrates
that the adsorption process is complex, and the electrostatic
interaction mechanism is not suitable to describe the adsorp-
tion of RB and MB onto alkali-activated diatomite.

4. Conclusions

Alkali-activated diatomite is applied to adsorb RB and MB in
the single and binary systems. The treatment with sodium
hydroxide increases the surface area of the diatomite from
55.4m2/g to 77.8m2/g and creates a large number of free sila-
nol groups on the surface of the material. This increases the
material’s ability to adsorb RB and MB. The adsorption equi-
librium data of RB and MB onto alkali-activated diatomite fit
the Langmuir model in both the single and binary systems.
MB has a higher affinity to the adsorbent than RB, and the
binary system is more effective than the single system. The
adsorption process is spontaneous, and the removal effi-
ciency of both MB and RB depends on pH significantly.
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