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Traditional approach for predicting coronary artery disease (CAD) is based on demographic data, symptoms such as chest pain
and dyspnea, and comorbidity related to cardiovascular diseases. Usually, these variables are analyzed by logistic regression to
quantifying their relationship with the outcome; nevertheless, their predictive value is limited. In the present study, we aimed
to investigate the value of different machine learning (ML) techniques for the evaluation of suspected CAD; having as gold
standard, the presence of stress-induced ischemia by 82Rb positron emission tomography/computed tomography (PET/CT)
myocardial perfusion imaging (MPI) ML was chosen on their clinical use and on the fact that they are representative of
different classes of algorithms, such as deterministic (Support vector machine and Naïve Bayes), adaptive (ADA and
AdaBoost), and decision tree (Random Forest, rpart, and XGBoost). The study population included 2503 consecutive patients,
who underwent MPI for suspected CAD. To testing ML performances, data were split randomly into two parts: training/test
(80%) and validation (20%). For training/test, we applied a 5-fold cross-validation, repeated 2 times. With this subset, we
performed the tuning of free parameters for each algorithm. For all metrics, the best performance in training/test was observed
for AdaBoost. The Naïve Bayes ML resulted to be more efficient in validation approach. The logistic and rpart algorithms
showed similar metric values for the training/test and validation approaches. These results are encouraging and indicate that
the ML algorithms can improve the evaluation of pretest probability of stress-induced myocardial ischemia.

1. Introduction

Artificial intelligence has assumed a consolidated role in
numerous fields and also in the healthcare and research
and development. Machine learning (ML), an application
of artificial intelligence that refers to computational algo-
rithms designed to learn from experience, has been used suc-
cessfully for diagnosis, prognosis, and drug development

[1–4]. Among the recommendations for ML implementa-
tion in clinical research, there is data normalization, feature
selection, parameter tuning, and independent validation [5,
6].

In the field of cardiology, the search for methods for
obtaining reliable pretests probability of disease has been
underway for some time [7]. These tools should assist the
physician in making decisions about referring patients for
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examination. Usually, for the prediction of coronary artery
disease (CAD), traditional risk factors, such as age, gender,
chest pain, and comorbidity related to cardiovascular dis-
eases, such as hypertension, diabetes, and hyperlipidemia,
are considered. These variables are analyzed by logistic
regression to quantifying their relationship with the out-
come of the exam and obtaining predictions for new patients
[8–11]. However, the models obtained by these studies do
not show a great performance, probably due to the declining
prevalence of CAD and because the evaluation for CAD has
shifted to older patients, more women, and more patients
with atypical symptoms than in previous decades [12].
Including in the model, other clinical, laboratory, and
instrumental characteristics could improve prediction accu-
racy; however, adding variables may be expensive and
time-consuming and also incorrectly reclassify patients with
suspected CAD. Using publicly available dataset, it has been
recently reported that ML algorithms have high accuracy to
detect the presence of CAD [13]. Yet, if the application of
more complex algorithms on traditional risk factor may
optimize the estimation of pretest probability of CAD, it
remains to be defined. In the present study, we aimed to
investigate the potential of different ML techniques for the
evaluation of suspected CAD, having as gold standard the
presence of stress-induced ischemia by 82Rb positron emis-
sion tomography/computed tomography (PET/CT) myocar-
dial perfusion imaging (MPI).

In summary, the main contributions of this work include
the following:

(1) A comparison of the value of several ML algorithms
in predicting the presence of stress-induced ischemia
by noninvasive cardiac imaging

(2) We selected ML algorithms based on their use in the
medical field and on the fact that they are represen-
tative of different classes of algorithms, such as
deterministic, adaptive, and decision tree

The rest of this paper is organized as follows. Section 2
describes the method with detailed information of datasets
and ML techniques used. Section 3 describes the results.
The discussion is presented in Section 4 followed by the con-
clusions in Section 5.

2. Materials and Methods

2.1. Study Design and Eligibility. Our cohort included a total
of 2503 consecutive patients, who underwent cardiac 82Rb
PET/CT for suspected CAD as part of their diagnostic pro-
gram between June 2010 and October 2019. Patients with
known CAD and patients with acute coronary syndrome
were excluded. A patient was considered to have known
CAD at the time of imaging based on a provided history of
previously diagnosed atherosclerotic coronary disease, his-
tory of myocardial infarction (chest pain or equivalent
symptom complex, positive cardiac biomarkers, or typical
electrocardiographic changes), history of percutaneous coro-
nary intervention, or history of coronary artery bypass graft-
ing. For patients undergoing more than one PET/CT study,
only the earliest procedure was considered. All patients were
part of ongoing prospective dedicated database [14]. This
study complies with the Declaration of Helsinki. The review
committee of our institution approved this study (Ethics
Committee, University Federico II, protocol number 110/
17), and all patients gave informed consent.

2.2. Clinical Definitions. Chest pain was classified according
to the American College of Cardiology/American Heart
Association 2002 guideline update on exercise testing [15].
Patients were considered as having diabetes if they were
receiving treatment with oral hypoglycemic drugs or insulin.
A family history of premature CAD was defined as a diagno-
sis of CAD in a first-degree relative prior to or at 55 years of
age. Hypertension was defined as a blood pressure > 140/90
mmHg or use of antihypertensive medication. Hyperlipid-
emia was defined as total cholesterol level > 6:2mmol/L or
treatment with cholesterol lowering medication. Smoking
history was defined as prior or current tobacco use. Body
mass index (BMI) was dichotomized with cut-off to 30,
according to obesity definition.

2.3. PET/CT Imaging. As a routine preparation for 82Rb car-
diac PET/CT, patients were asked to discontinue taking
methylxanthine containing foods or beverages for 24 hours.
Scans were acquired using a Biograph mCT 64-slice scanner
(Siemens Healthcare). Rest and stress cardiac PET/CT

Table 1: Clinical characteristics of cohort according to MPI
outcome.

Normal
(n = 2002)

Ischemic
(n = 501)

P
value

Age, n (%) <0.001
<55 777 (39) 84 (17)

55-65 603 (30) 146 (29)

>65 622 (31) 271 (54)

Male gender, n (%) 881 (44) 334 (67) <0.001
Body mass index ≥30, n
(%)

1024 (51) 258 (52) 0.93

Chest pain, n (%) <0.001
Typical 678 (34) 114 (23)

Atypical 256 (13) 87 (17)

Noncardiac∗ 1068 (53) 300 (60)

Diabetes, n (%) 479 (24) 187 (37) <0.001
Dyspnea, n (%) 446 (22) 139 (28) <0.05
Family history of CAD,
n (%)

945 (47) 199 (40) <0.005

Hypertension, n (%) 1361 (68) 401 (80) <0.005
Hyperlipidemia, n (%) 1210 (60) 343 (69) <0.005
Smoking, n (%) 557 (28) 144 (29) 0.72

Diagnostic question, n
(%)§

<0.001

Diagnostic evaluation 1642 (82) 370 (74)

Presurgery evaluation 360 (18) 131 (26)
∗Considering noncardiac patients as the reference. §Considering diagnostic
evaluation patients as the reference.
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images were acquired as follows: scout CT was performed to
check patient position, and low-dose CT (0.4mSv; 120 kVp;
effective tube current, 26mA [11-mAs quality reference]; 3.3
seconds) was performed for attenuation correction, during
normal breathing before and after PET acquisitions. For

both rest and stress images, 1110MBq of 82Rb was injected
intravenously with a 7-minute list-mode PET acquisition.
Dynamic PET acquisition was started at rest followed by
adenosine pharmacologic stress (140 μg × kg−1 × min−1 for
4.5 minutes, with tracer administration between 2 and 2.5
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Figure 1: Correlation matrix of the features used. The matrix elements are displayed in hierarchical clustering order. The numbers indicate
the Spearman ρ coefficient between two features.
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Figure 2: Importance of the features for each ML algorithm. ADA, AdaBoost, and Naïve Bayesian features importance were grouped into a
single bar plot as the values for the two adaptive algorithms turned out to be equals, and Naïve Bayesian values differed with them by less
than 5%.
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minutes). Rest and stress dynamic images were recon-
structed into 26-time frames (12 × 5 seconds, 6 × 10
seconds, 4 × 20 seconds, and 4 × 40 seconds; total, 6 minutes)
using the vendor standard ordered subsets expectation max-
imization 3D reconstruction (2 iterations, 24 subsets) with
6.5mm Gaussian postprocessing filter. In addition, the
images were corrected for attenuation using the low-dose
CT. The heart rate, systemic blood pressure, and 12-lead
ECG were recorded at baseline and throughout the infusion
of adenosine. An automated software program (e-soft, 2.5,
QGS/QPS, Cedars-Sinai Medical Center, Los Angeles, CA)

was used to calculate the scores (summed stress score,
summed rest score, and summed difference score) incorpo-
rating both the extent and severity of perfusion defects,
using the standardized segmentation of 17 myocardial
regions [16, 17]. A summed difference score ≥ 2 was consid-
ered ischemic.

2.4. Statistical Analysis. Statistical analysis was performed
using the R software, version 3.6.2 (The R Foundation for
Statistical Software, Vienna, Austria). Two-sided P values
<0.05 were considered statistically significant. The dataset

Table 2: Values used for tuning of parameters for each ML technique.

Parameter Parameter space Chosen value

ADA

Number of trees 10, 25, 50, 100, 200 25

Max tree depth 5, 10, 20, 50 10

Learning rate 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 0.01

AdaBoost
Number of trees 10, 25, 50, 100, 200 50

Method AdaBoost.M1, real AdaBoost AdaBoost.M1

Logistic Family Binomial Binomial

Naïve Bayes

Laplace correction 0, 0.5, 1.0 0

Distribution type (kernel) True, false False

Bandwidth adjustment 0.01, 0.05, 0.1, 0.5, 1.0 0.1

Random Forest Number of randomly selected predictors 3, 5, 10, 20 10

Rpart

Minimum number of observations in a node 10, 15, 30 15

Minimum number of observations in any leaf node 3, 5, 10 5

Max tree depth 3, 5, 10, 20 10

Complexity parameter of the tree 0.0001, 0.001, 0.01, 0.1 0.001

SVM

Kernel Linear, radial, sigmoid Sigmoid

Parameter needed for sigmoid 0.05, 0.1, 0.25, 0.5 0.1

Cost 0.5, 1, 2, 5 1

XGBoost

Number of trees 25, 50, 100, 200 100

Max tree depth 5, 10, 20 10

Learning rate 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 0.01

Subsamples 0.5, 0.75, 1 1

Table 3: Metrics obtained from the ML techniques, evaluated on training/test and validation approaches.

Training/test (n = 2003) Validation (n = 500)
Accuracy

(%)
Sensitivity

(%)
Specificity

(%)
AUROC
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUROC
(%)

ADA 88 48 97 90 76 26 89 68

AdaBoost 89 67 95 95 71 23 87 66

Logistic 80 5 98 72 80 7 98 75

Naïve Bayes 77 23 91 70 80 27 92 73

Random
Forest

89 51 98 93 75 21 89 65

Rpart 82 27 96 75 76 17 91 70

SVM 72 13 87 61 77 21 91 65

XGBoost 83 27 97 83 77 18 92 69
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consisted of 11 features, of which 10 demographic or clinical
variables (age, gender, BMI, typical or atypical chest pain,
diabetes mellitus, dyspnea, family history, hypertension,
hyperlipidemia, smoking), and the diagnostic question with
two categories: diagnostic or presurgery evaluation. Age
and BMI continuous variables were categorized (<55, 55-
65, >65 years, and BMI < 30); then, all data were expressed
as percentages. Differences between groups were analyzed
by χ2 test. The correlation among features was tested by
Spearman ρ coefficient, embedded in the corrplot package.
This nonparametric test is appropriate to evaluate the corre-
lation between categorical variables and to find redundant
features. Data in input to ML algorithms were normalized.
Sensitivity, specificity, and accuracy were computed using
the confusionMatrix function embedded in the caret pack-
age. Sensitivity evaluated how good a ML is for detecting
the positive patients (i.e., ischemic according to MPI results),
and its numeric value was obtained by ratio between the
number of patients correctly assessed as positive by ML
and the number of positive patients. Specificity evaluated
the negative patients (i.e., normal according to the MPI
results), and it was calculated by ratio between the number
of patients correctly assessed as negative by ML and the
number of negative patients. Accuracy measured how cor-
rectly a ML identified and excluded a given condition, and
it was obtained from the ratio between the number of

patients correctly assessed by ML and the total number of
patients. Receiver operating characteristic curve is a graphic
presentation of the relationship between sensitivity and
specificity, whereas the area under this curve provides a
measurement of the correct evaluation of ML with respect
a random classifier. The areas under the receiver operating
characteristic (AUROC) curves were computed by the pROC
package.

2.5. ML Techniques. For the comparison presented in this
study, we selected supervised ML algorithms, appropriate
to categorical data for a binary response. We used the algo-
rithms developed in R. ADA is a classification tree based on
adaptive algorithms, used to fit a variety stochastic boosting.
This algorithm can be used in conjunction with other types
of learning procedures to improve performance. The output
of these procedures, called weak learners, is combined into a
weighted sum that represents the final output of the boosted
classifier [18]. AdaBoost is a classifier similar to ADA, differ-
ing from this for the AdaBoost.M1 algorithm implemented
by Freund and Schapire [19]. Logistic algorithm used in this
study is a part of generalized linear models [20]. This classi-
fier was chosen as a reference because adopted in clinical sta-
tistical analysis, with categorical or numerical data and
dichotomous response. The equation assumed a linear rela-
tionship between the predictor variables xi and the log odds

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Se
ns

iti
vi

ty

ML (AUROC)
ADA (90%)
ADABoost (95%)
Logistic (72%)
Naïve bayes (70%)

Random forest (93%)
RPart (75%)
SVM (61%)
XGBoost (83%)

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Se
ns

iti
vi

ty
ML (AUROC)

ADA (68%)
ADABoost (66%)
Logistic (75%)
Naïve bayes (73%)

Random forest (65%)
RPart (70%)
SVM (65%)
XGBoost (69%)

(b)

Figure 3: Comparison among the ROC curves of the eight ML techniques considered. The ML performances are reported separately for the
training/test approach (a) and validation approach (b). Parenthesis are reported the AUROC values.
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(in term of probability p) of the event, as follows:

log p
1 − p

= β0 + 〠
n

i=1
βixi: ð1Þ

Then, the β coefficients are determinates, with β0 represent-
ing the particular case with all variables equal to zero. The
Naïve Bayes is a probabilistic classifier based on the Bayes’
theorem. This algorithm requires a strong (naïve) indepen-
dence assumption between the features [21]. Random Forest
is an algorithm based on an ensemble learning method for
classification and regression that operate by constructing a
multitude of decision trees at training time. The procedure
returns as output the class that is the mode of the classes
(for classification) or average prediction (for regression) of
the individual trees [22]. Rpart is a decision tree algorithm
that works by splitting in two parts the dataset recursively.
For each step, the split is obtained considering the feature
that results in the largest possible reduction in heterogeneity
of the outcome variable [23]. Support vector machine (SVM)
is an algorithm that constructs hyperplanes in a high-
dimensional space, which can be used for classification and
regression [24]. SVM is a robust prediction method that
can efficiently perform nonlinear classifications, by appro-
priate kernels. XGBoost is a scalable end-to-end tree boost-

ing method, based on a sparsity-aware algorithm for sparse
data and weighted quantile sketch for approximate tree
learning [25].

2.6. Approaches Used for the ML Evaluation. To testing the
ML performances, the data were split randomly into two
parts: training/test (80%) and validation (20%). For the
training/test of data, we applied a 5-fold cross-validation
method, repeated 2 times. With this subset, we performed
the tuning of free parameters for each algorithm. For both
training/test and validation, we computed accuracy, sensitiv-
ity, specificity, and AUROC.

2.7. Hardware and Software Characteristics. For this study,
we used a common personal computer equipped with a
2.2GHz Intel i3-2330 quad-core processor, 8GB of RAM,
and a 0.5 TB SSD. The operating system was a Windows
10, whereas the scripts in R programming code were
obtained developing inhouse software.

3. Results

Demographic and clinical characteristics of study population
according to normal or ischemic MPI response are summa-
rized in Table 1. All features, except BMI and smoking, were
statistically significant to χ2 test.
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Figure 4: Decision tree obtained by rpart algorithm. Each node or leaf is reported the prevalence concerning MPI outcome (nor: normal;
isch: ischemic), the ratio between the number of prevalent and total patients, and the relative percentage.
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Figure 1 shows the Spearman correlation coefficients
matrix of features. All the found absolute values were
<0.25, highlighting only weak correlations among features.
The cluster with higher correlation among features was
obtained by diabetes, hypertension, and hyperlipidemia
(ρ = 0:22). The very low correlation values demonstrated
the absence of redundant features.

Figure 2 reports the feature importance for each algo-
rithm. We observed the same feature importance values for
ADA and AdaBoost algorithms, whereas small differences
(<5%) were found between these procedures and the Naïve
Bayes ML. Therefore, we reported a unique bar plot for these
three algorithms. In general, the most important features
were age and gender, followed from diabetes or chest pain.
We also observed relevant differences among features
importance of most of ML algorithms, except for the two
adaptive and Naïve Bayesian algorithms. In fact, for these
three algorithms, the importance values were comprised
between 0.50 and 0.65, whereas for the logistic algorithm,
we obtained larger interval of values from 0.001 to 0.93.

Table 2 summarizes the space parameters and the value
chosen for the tuning of ML. Parameters were tested using
a 5-fold cross-validation, repeated 2 times, targeted to max-
imize the C-index. Among all tested setting for each algo-
rithm, we chose the combination with higher sensitivity to
balance the result performances.

Table 3 shows the C-statistics results of the ML algo-
rithms, for training/test and validation approaches. In gen-
eral, the performances in training/test approach were better
than of the validation approach. Due to unbalanced dataset,
specificity resulted greater than sensitivity. For all metrics,
the best performance in training/test was observed for Ada-
Boost ML. The Naïve Bayes ML resulted to be more efficient
in validation approach. ML based on traditional logistic
algorithm showed a low sensitivity and similar performance
for the training/test and validation approaches. Figure 3
shows a graphical comparison among the ROC curves of
the ML algorithms, for both training/test and validation
approaches.

Figure 4 shows the tree generated from the rpart algo-
rithm. To make the decision tree easier to read, the max
depth was fixed to 5. The first spit was on age and for youn-
ger patients (≤65 years), without any node until the terminal
leaf, where a prevalence of normal MPI of 86% was
observed. For older patients (>65 years), the algorithm cal-
culated the gender node, with a percentage of normal MPI
of 70%. The split in this node, related to the female gender,
was followed by diabetes, chest pain, and family history of
CAD.

4. Discussion

At best of our knowledge, this is the first study comparing
the value of several ML algorithms in predicting the pres-
ence of stress-induced ischemia by 82Rb PET/CT cardiac
imaging. We selected eight ML algorithms based on their
clinical use and on the fact that they are representative of
different classes of algorithms, such as deterministic (e.g.,
SVM), adaptive (e.g., ADA), and decision tree (e.g., rpart).

The results indicate that by adaptive (ADA and AdaBoost)
and Random Forest algorithms, AUROC curve was ≥90%
in training/test phase.

As input features for the ML algorithms, we considered
demographic data and traditional cardiac risk factors. No
significant correlations were detectable between variables, a
necessary condition for features selection in ML techniques
and for data processing. The feature importance is an impor-
tant step for ML techniques. In our study aside from demo-
graphic characteristics, diabetes and chest pain resulted to be
the most useful features for predicting stress-induced ische-
mia by PET/CT. This result confirms another study based on
SPECT, where the feature importance, obtained by logistic
regression, was the following: gender, age, and chest pain
[26]. Noteworthy, features (BMI and smoking) showing
not significant χ2 statistic resulted relevant at ML analysis.
Indeed, ML algorithms may capture the subtle value of fea-
tures apparently not significant at conventional analysis.

The ML algorithms showed a variable accuracy (72%-
89%) by training/test phase, with low sensitivity and high
specificity. This latter finding probably reflects the unbal-
anced dataset between normal and abnormal MPI and is in
agreement with the observation that, in the contemporary
pretest probability of CAD, noninvasive imaging tests have
greater ruling out that ruling in capabilities [12]. Also, the
AUROC values were very wide (61%-95%), with better per-
formances for ADA, AdaBoost, and Random Forest. By
these ML algorithms, we obtained the greater values of sen-
sitivity. However, these better performances were lower in
the validation set, probably due to the ensemble of weakly
solutions and a high number of decision trees elaborated
during the training/test phase for each of the three ML algo-
rithms. For XGBoost, we observed a similar performance to
these three algorithms, but a lower sensitivity. The Naïve
Bayes and SVM resulted to have more generalized perfor-
mances by the two approaches, with lightly better results
by validation phase. The logistic and rpart algorithms
showed similar metric values for the training/test and valida-
tion approaches.

The logistic technique, taken as a reference, did not
result particularly performant with respect to the other ML
algorithms. In particular, the value of sensitivity was the low-
est, probably explainable with the unbalanced dataset. How-
ever, the AUROC resulted higher with respect to a similar
study (AUROC = 64%) based on clinical risk factors,
single-photon emission computed tomography imaging,
and logistic regression [10].

As an example of a tool for decision-making, we
reported the tree obtained by rpart. From a graphic point
of view, it is immediate to verify the effect of age and gender
on the construction of the decision tree. For younger
patients, there is a prevalence of normal MPI, without fur-
ther ramifications. Otherwise, a gender split is observed,
followed in both cases by the split of diabetes and chest pain,
with a larger complexity for the male gender.

Previous studies used ML algorithms in cardiology [27],
but at the best of our knowledge, no study evaluated this
approach to estimate the pretest probability of an ischemic
response to PET/CT. In a study based, an XGBoost ML
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was developed in a large series of symptomatic patients to
predict pretest probability of obstructive CAD on coronary
computed tomography angiography. The ML model had
significantly higher discrimination (AUROC = 81%), as
compared to traditional models, with a good sensitivity
(91.9%) but a low (38.8%) specificity. This study was used
a 10-fold cross-validation approach but and no indepen-
dent validation dataset [28]. In another study [29], a
SVM algorithm was used to determine the diagnostic
value of joint PET myocardial perfusion and metabolic
imaging for predicting obstructive coronary artery disease
in symptomatic patients with available coronary angiogra-
phy. The study included only 88 patients, most of them
with known CAD. The joint PET evaluation improves
had a good performance (AUROC = 86%), and the SVM
algorithm outperformed the other methods evaluated. In
a study [30], including a total of 16,120 patients, ML
improved one-year risk discrimination in predicting dura-
ble left ventricular assist devices as compared to logistic
regression (C-index 71% vs. 69%, P < 0:001); however, cal-
ibration metrics were comparable. Globally, these studies
confirm limited value of current clinical models to accu-
rately predict the presence of myocardial ischemia at stress
MPI [31].

5. Conclusions

The results of this study performed in a large series of
patients with suspected CAD demonstrate that the classifica-
tion based on demographic and cardiovascular risk factors
has a limited value in validation phase for predicting an
ischemic response by 82Rb PET/CT in patients with sus-
pected CAD. We selected eight ML algorithms that are
implemented by different software packages and can be used
by other researchers on their MPI data. Other ML algo-
rithms, such as monarch butterfly optimization [32], earth-
worm optimization algorithm [33], elephant farming
optimization [34, 35], moth search algorithm [36], slime
mould algorithm [37], and Harris hawks optimization [38],
can also be used to predict stress-induced ischemia by MPI
and should be tested in future studies. In conclusion, the role
of other clinical and instrumental characteristics, as well as
developing and perfecting more complex algorithms to
improve the prediction of stress-induced ischemia by MPI,
remains a work in progress.
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